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imps, an Interactive Mathematical Proof System [5], aims at computational
support for traditional techniques of mathematics. It is based on three
observations about rigorous mathematics:

• Mathematics emphasizes the axiomatic method. Characteristics of
mathematical structures are summarized in axioms. Theorems are
derived for all structures satisfying the axioms. Frequently, a clever
change of perspective shows that a structure is an instance of another
theory, thus also bringing its theorems to bear.

• Many branches of mathematics emphasize functions, including partial
functions. Moreover, the classes of objects studied may be nested,
as are the integers and the reals; or overlapping, as are the bounded
functions and the continuous functions.

• Proof proceeds by a blend of computation and formal inference.

Support for the Axiomatic Method. imps supports the “little the-
ories” version of the axiomatic method, as opposed to the “big theory”
version. In the big theory approach, all reasoning is carried out within one
theory—usually some highly expressive theory, such as the Zermelo-Fraenkel
set theory. In the little theories approach, reasoning is distributed over a
network of theories. Results are typically proved in compact, abstract theo-
ries, and then transported as needed to more concrete theories, or indeed to
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other equally abstract theories. Theory interpretations provide the mech-
anism for transporting theorems. The little theories style of the axiomatic
method is employed extensively in mathematical practice; in [4], we discuss
its benefits for mechanical theorem provers, and how the approach is used
in imps.

Logic. Standard mathematical reasoning in many areas focuses on func-
tions and their properties, together with operations on functions. For this
reason, imps is based on a version of simple type theory.1 However, we have
adopted a version, called lutins,2 containing partial functions, because they
are ubiquitous in both mathematics and computer science. Although terms,
such as 2/0, may be nondenoting, the logic is bivalent and formulas always
have a truth value. In particular, an atomic formula is false if any of its
constituents is nondenoting. This convention follows an approach common
in traditional rigorous mathematics, and it entails only small changes in the
axioms and rules of classical simple type theory [2].

Moreover, lutins allows subtypes to be included within types. Thus,
for instance, the natural numbers form a subtype of the reals, and the con-
tinuous (real) functions a subtype of the functions from reals to reals. The
subtyping mechanism facilitates machine deduction, because the subtype
of an expression gives some immediate information about the expression’s
value, if it is defined at all. Moreover, many theorems have restrictions that
can be stated in terms of the subtype of a value, and the theorem prover
can be programmed to handle these assertions using special algorithms [4].

This subtyping mechanism interacts well with the type theory only be-
cause functions may be partial. If σ0 is a subtype of τ0, while σ1 is a subtype
of τ1, then σ0 → σ1 is a subtype of τ0 → τ1. In particular, it contains just
those partial functions that are never defined for arguments outside σ0, and
which never yield values outside σ1.

1This version is many-sorted, in that there may be several types of basic individuals.
Moreover, it is multivariate, in that a function may take more than one argument. Cur-
rying is not required. However, taking (possibly n-ary) functions is the only type-forming
operation.

2Pronounced as in French. See [2, 3] for studies of logical issues associated with lutins;
see [7] for a detailed description of its syntax and semantics.

2



Computation and Proof. One problem in understanding and control-
ling the behavior of theorem provers is that a derivation in predicate logic
contains too much information.

The mathematician devotes considerable effort to proving lemmas that
justify computational procedures. Although these are frequently equations
or conditional equations, they are sometimes more complicated quantified
expressions, and sometimes they involve other relations, such as ordering
relations. Once the lemmas are available, they are used repeatedly to trans-
form expressions of interest. Algorithms justified by the lemmas may also
be used; the algorithm for differentiating polynomials, for example. The
mathematician has no interest in those parts of a formal derivation that
“implement” these processes within predicate logic.

On the other hand, to understand the structure of a proof (or especially,
a partial proof attempt), the mathematician wants to see the premises and
conclusions of the informative formal inferences.

Thus, the right sort of proof is broader than the logician’s notion of a for-
mal derivation in, say, a Gentzen-style formal system. In addition to purely
formal inferences, imps allows also inferences based on sound computations.
They are treated as atomic inferences, even though a pure formalization
might require hundreds of Gentzen-style formal inference steps. We believe
that this more inclusive conception makes imps proofs more informative to
its users.

The System

The imps system consists of four components.

Core. All the basic logical and deductive machinery of imps on which the
soundness of the system depends is included in the core of imps. The core
is the specification and inference engine of imps. The other components of
the system provide the means for harnessing the power of the engine.

The organizing unit of the core is the imps theory . Mathematically, a
theory consists of a lutins language plus a set of axioms. A theory is im-
plemented, however, as a data structure to which a variety of information
is associated. Some of this information procedurally encodes logical con-
sequences of the theory that are especially relevant to low-level reasoning
within the theory. For example, the great majority of questions about the
definedness of expressions are answered automatically by imps using tabu-
lated information about the domain and range of the functions in a theory.
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Theories may be enriched by the definition of new sorts and constants and
by the installation of theorems.

Proofs in a theory are constructed interactively using a natural style of
inference based on sequent calculus. imps builds a data structure which
records all the actions and results of a proof attempt. This object, called a
deduction graph, allows the user to survey the proof and to choose the order
in which he works on different subgoals. Alternative approaches may be
tried on the same subgoal. Deduction graphs also are suitable for analysis
by software.

The user is only allowed to modify a deduction through the application
of primitive inferences, which are akin to rules of inference. Most primitive
inferences formalize basic laws of predicate logic and higher-order functions.
Others implement computational steps in proofs. For example, one class
of primitive inferences performs expression simplification, which uses the
logical structure of the expression [8], together with algebraic simplification,
deciding linear inequalities, and applying rewrite rules.

Another special class of primitive inferences “compute with theorems”
by applying extremely simple procedures called macetes [9].3 An elementary
macete, which is built by imps whenever a theorem is installed in a theory,
applies the theorem in a manner determined by its syntax (e.g., as a con-
ditional rewrite rule). Compound macetes are constructed from elementary
and other kinds of atomic macetes (including macetes that beta-reduce, un-
fold defined constants, and perform expression simplification). They apply
a collection of theorems in an organized way.

In addition to the machinery for building theories and reasoning within
them, the core contains machinery for relating one theory to another via
theory interpretations. A theory interpretation can be used to “transport”
a theorem from the theory it is proved in to any number of other theories.
Theory interpretations are also used in imps to show relative consistency
of theories, to formalize symmetry and duality arguments, and to prove
universal facts about polymorphic operators [5, 4, 1]. The great majority
of the theory interpretations needed by the imps user are built by software
without user assistance. For example, when a theorem is applied outside of
its home theory via a transportable macete, imps automatically builds the
required theory interpretation if needed.

3Macete, in Portuguese, means a chisel, or in informal usage, a clever trick.
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Supporting Machinery. We have built an extension of the core machin-
ery with the following goals in mind:

• To facilitate building and printing of expressions by providing various
parsing and printing procedures.

• To make the inference mechanism more flexible and more autonomous.
In particular, the set of commands available to users includes an ex-
tensible set of inference procedures called strategies. Strategies affect
the deduction graph only by using the primitive inference procedures
of the core machinery, but are otherwise unrestricted.

• To facilitate construction of theories and interpretations between them.

User Interface. From the outset imps has been designed to provide users
with facilities to easily direct and monitor proofs. This is accomplished by a
user interface which controls three critical elements of an interactive system:

• The display of the state of the proof. This includes graphical displays
of the deduction graph as a tree, TEX typesetting of the proof history,
and TEX typesetting of individual subgoals in the deduction graph.
The graphical display of the deduction graph permits the user to vi-
sually determine the set of unproven subgoals and to select a suitable
continuation point for the proof. On the other hand, the TEX typeset-
ting facilities allow the user to examine the proof in a mathematically
more appealing notation than is possible by raw textual presentation
alone.

• The presentation of options for new proof steps. For any particular
subgoal, the interface presents the user with a well-pruned list of com-
mands and macetes to apply. This list is obtained by using syntactic
and semantic information which is made available to the interface by
the imps supporting machinery. For example, in situations where over
400 theorems are available to the user, there are rarely more than 10
macetes presented to the user as options.

• Processing of user commands and submitting them to the inference
software, requesting from the user whenever necessary, additional ar-
guments required to execute the command.
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The user interface, which is a completely detachable component of imps,
is primarily written in Emacs; the other components are written in T, a
sophisticated version of Scheme.

Theory Library. imps is equipped with a library of basic theories, which
can augmented as desired by the user. The theory of the reals, the central
theory in the library, specifies the real numbers as a complete ordered field.
(The completeness principle is formalized as a second-order axiom, and the
rationals and integers are specified as the usual substructures of the reals.)
The library also contains various “generic” theories that contain no nonlog-
ical axioms (except possibly the axioms of the theory of the reals). These
theories are used for reasoning about objects such as sets, unary functions,
and sequences.

Applications

We have formulated a variety of different kinds of mathematics within imps,
with emphasis on mathematical analysis and abstract algebra. In our theory
of the reals, we have proved a large number of basic facts such as the combi-
natory identity, Bernoulli’s inequality, and the Archimedean property of the
reals. In analysis, we have proved Banach’s Contraction Principle in a the-
ory of an abstract metric space, and the theorem that the continuous image
of a connected set is itself connected in a theory of two metric spaces (see
[6]). The proof in imps of a simple “inverse function theorem” in a theory
of an Banach space is described in [4]. In algebra, we have proved a version
of the binomial theorem for commutative rings, and various facts about an
abstract iterated product operator in a theory of an abstract monoid, which
can be transported to the reals as theorems about the Σ and Π operators.
The Schröder-Bernstein Theorem and Fundamental Counting Theorem of
group theory, of which Lagrange’s theorem is an immediate corollary, have
also been proved in imps.
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