
Formalizing Undefinedness Arising in Calculus?

William M. Farmer

McMaster University
Hamilton, Ontario, Canada
wmfarmer@mcmaster.ca

June 21, 2018

Abstract. Undefined terms are commonplace in mathematics, particu-
larly in calculus. The traditional approach to undefinedness in mathemat-
ical practice is to treat undefined terms as legitimate, nondenoting terms
that can be components of meaningful statements. The traditional ap-
proach enables statements about partial functions and undefined terms
to be expressed very concisely. Unfortunately, the traditional approach
cannot be easily employed in a standard logic in which all functions are
total and all terms are defined, but it can be directly formalized in a stan-
dard logic if the logic is modified slightly to admit undefined terms and
statements about definedness. This paper demonstrates this by defining a
version of simple type theory called Simple Type Theory with Undefined-
ness (sttwu) and then formalizing in sttwu examples of undefinedness
arising in calculus. The examples are taken from M. Spivak’s well-known
textbook Calculus.

1 Introduction

A mathematical term is undefined if it has no prescribed meaning or if it denotes
a value that does not exist. Undefined terms are commonplace in mathematics,
particularly in calculus. As a result, any approach to formalizing mathematics
must include a method for handling undefinedness.

There are two principal sources of undefinedness. The first source are terms
that denote an application of a function. A function f usually has both a domain
of definition Df consisting of the values at which it is defined and a domain of
application D∗f consisting of the values to which it may be applied. (The domain
of definition of a function is usually called simply the domain of the function.)
These two domains are not always the same. A function application is a term
f(a) that denotes the application of a function f to an argument a ∈ D∗f . f(a)
is undefined if a 6∈ Df . We will say that a function is partial if Df 6= D∗f and
total if Df = D∗f .

As an example, consider the square root function
√

: R → R, where R
denotes the set of real numbers.

√
is a partial function; it is defined only on

? c© Springer-Verlag. Published in D. Basin and M. Rusinowitch, eds., Automated
Reasoning, LNCS, 3097:475-489, 2004.

2 W. M. Farmer

the nonnegative real numbers, but it can be applied to negative real numbers as
well. That is, D√ = {x ∈ R | 0 ≤ x} and D∗√ = R. Hence, a statement like

∀x : R . 0 ≤ x⇒ (
√
x)2 = x

makes perfectly good sense even though
√
x is undefined when x < 0.

The second source of undefinedness are terms that are intended to uniquely
describe a value. A definite description is a term t of the form “the x that has the
property P”. t is undefined if there is no unique x (i.e., none or more than one)
that has property P . Definite descriptions are quite common in mathematics but
often occur in a disguised form. For example,“the limit of sin 1

x as x approaches
0” is a definite description—which is undefined since the limit does not exist.

There is a traditional approach to undefinedness that is widely practiced in
mathematics and even taught to some extent to students in high school. This
approach treats undefined terms as legitimate, nondenoting terms that can be
components of meaningful statements. The traditional approach is based on
three principles:

1. Atomic terms (i.e., variables and constants) are always defined—they always
denote something.

2. Compound terms may be undefined. A function application f(a) is undefined
if f is undefined, a is undefined, or a 6∈ Df . A definite description “the x
that has property P” is undefined if there is no x that has property P or
there is more than one x that has property P .

3. Formulas are always true or false, and hence, are always defined. To ensure
the definedness of formulas, a function application p(a) formed by applying
a predicate p to an argument a is false if p is undefined, a is undefined, or
a 6∈ Dp.

Formalizing the traditional approach to undefinedness is problematic. The
traditional approach works smoothly in informal mathematics, but it cannot
be easily employed in mathematics formalized in standard logics like first-order
logic or simple type theory. This is due to the fact that in a standard logic all
functions are total and all terms denote some value. As a result, in a standard
logic partial functions must be represented by total functions and undefined
terms must be given a value.

The mathematics formalizer has basically three choices for how to formalize
undefinedness. The first choice is to formalize partial functions and undefined
terms in a standard logic. There are various methods by which this can be done
(see [8, 21]). Each of these methods, however, has the disadvantage that it is a
significant departure from the traditional approach. This means in practice that
a concise informal mathematical statement S involving partial functions or un-
definedness is often represented by a verbose formal mathematical statement S′

in which unstated, but implicit, definedness assumptions within S are explicitly
represented.

The second choice is to select or develop a three-valued logic in which the
traditional approach can be formalized. Such a logic would admit both unde-
fined terms and undefined formulas. The logic needs to be three valued since

Formalizing Undefinedness Arising in Calculus 3

formulas can be undefined as well as true and false. For example, M. Kerber and
M. Kohlhase propose in [19] a three-valued version of many-sorted first-order
logic that is intended to support the traditional approach to undefinedness. A
three-valued logic of this kind provides a very flexible basis for formalizing and
reasoning about undefinedness. However, it is nevertheless a significant depar-
ture from the traditional approach: it is very unusual in mathematical practice
to use truth values beyond true and false. Moreover, the presence of a third truth
value makes the logic more complicated to use and implement.

It is possible to directly formalize the traditional approach in a standard
logic if the logic is modified slightly to admit undefined terms and statements
about definedness but not undefined formulas (see [11]). The resulting logic re-
mains two-valued and can be viewed as a more convenient version of the original
standard logic. Let us call a logic of this kind a logic with undefinedness. As
far as we know, the first example of a logic with undefinedness is a version of
first-order logic presented by R. Schock in [23]. Other logics with undefinedness
have been derived from first-order logic [3–6, 15, 18, 20, 22, 26, 27], simple type
theory [8–10], and set theory [12, 15].

The third choice is to select or develop an appropriate logic with undefined-
ness. Using a logic with undefinedness to formalize the traditional approach has
two advantages and one disadvantage. The first advantage is that the use of
the traditional approach in informal mathematics can be preserved in the for-
malized mathematics. This helps keep the formalized mathematics close to the
informal mathematics in form and meaning. The second advantage is that as-
sumptions about the definedness of terms and functions often do not have to be
made explicit. This helps keep the formalized mathematics concise. The disad-
vantage, of course, is that one is committed to using a nonstandard logic that
is based on (slightly) different principles and requires different techniques for
implementation.

This disadvantage is not as bad as one might think. By virtue of directly
formalizing the traditional method, a logic with undefinedness is closer to tradi-
tional mathematical practice than the corresponding standard logic in which all
functions are total and all terms are defined. Hence, logics with undefinedness
are more practice-oriented than standard logics. Moreover, the logic lutins [10],
a logic with undefinedness derived from simple type theory, is the basis for the
imps theorem proving system [16, 17]. imps has been used to prove hundreds of
theorems in traditional mathematics, especially in mathematical analysis. Most
of these theorems involve undefinedness in some manner. The techniques used
to implement lutins in imps have been thoroughly tested and can be applied
to the implementation of other logics with undefinedness.

Even though lutins has been successfully implemented in imps and has
proven to be highly effective for mechanizing traditional mathematics, there
is still a great deal of scepticism and misunderstanding concerning logics with
undefinedness. The goal of this paper is to try to dispel some of this scepticism
and misunderstanding by illustrating how undefinedness arising in calculus can
be directly formalized in a very simple higher-order logic called Simple Type

4 W. M. Farmer

Theory with Undefinedness (sttwu). We will show that the conciseness that
comes from the use of the traditional approach can be fully preserved in a logic
like sttwu. For example,

f(x) =
√
x2 − 1,

a common-style definition of a partial function in which the domain of the func-
tion is implicitly defined, can be formalized precisely in sttwu as

∀x . f(x) '
√
x2 − 1

(where a ' b means a and b are both defined and equal or both undefined).
All of our examples from calculus come from M. Spivak’s well-known text-

book Calculus [24]. Spivak’s book is a masterpiece; it is elegantly rigorous, re-
plete with interesting examples and exercises, and exceptionally careful about
important issues such as undefinedness that are not always given proper atten-
tion in other calculus textbooks. More than just a book on calculus, Calculus
is also an uncompromising introduction to mathematical practice and mathe-
matical thinking. It is an excellent place to see how undefinedness is handled in
standard mathematical practice.

The paper is organized as follows. Section 2 presents the syntax and semantics
of sttwu, a version of simple type theory that directly formalizes the traditional
approach to undefinedness. Section 2 also give a proof system for sttwu. Sec-
tion 3 describes a theory of sttwu that formalizes the 13 properties of the real
numbers on which Spivak’s Calculus is based. How partial functions are defined
in Calculus and how their definitions are formalized in sttwu is the subject of
section 4. Section 5 deals with the important notion in calculus of a limit of a
function at a point, which is a rich source of undefinedness. Finally, a conclusion
and a recommendation are given in section 6.

2 Simple Type Theory with Undefinedness

In this section we present a version of simple type theory called Simple Type
Theory with Undefinedness (sttwu) that formalizes the traditional approach to
undefinedness. sttwu is a variant of Church’s type theory [7] with a standard
syntax but a nonstandard semantics. sttwu is very similar to PF [8], PF∗ [9],
and lutins [10], the logic of the imps. PF and PF∗ are simple versions of lutins
that are primarily intended for study unlike lutins. sttwu is much simpler than
these three logics but much less practical than PF∗ and lutins. The definition
of sttwu will show that the traditional approach can be formalized in Church’s
type theory by just a small modification of its semantics.

2.1 Syntax

The syntax of sttwu is exactly the same syntax as the syntax of stt, a very
simple variant of Church’s type system presented in [13]. sttwu has two kinds of

Formalizing Undefinedness Arising in Calculus 5

syntactic objects. “Expressions” denote values including the truth values t (true)
and f (false); they play the role of both terms and formulas. “Types” denote
nonempty sets of values; they are used to restrict the scope of variables, control
the formation of expressions, and classify expressions by value.

A type of sttwu is defined by the formation rules given below. type[α]
asserts that α is a type.

T1
type[ι]

(Type of individuals)

T2
type[∗]

(Type of truth values)

T3
type[α], type[β]

type[(α→ β)]
(Function type)

Let T denote the set of types of sttwu.
The logical symbols of sttwu are:

1. Function application: @.
2. Function abstraction: λ.
3. Equality : =.
4. Definite description: I (capital iota).
5. An infinite set V of symbols used to construct variables.

A language of sttwu is a pair L = (C, τ) where C is a set of symbols called
constants and τ : C → T is a total function. That is, a language is a set of
symbols with assigned types (what is also called a “signature”).

An expression E of type α of an sttwu language L = (C, τ) is defined by
the formation rules given below. exprL[E,α] asserts that E is an expression of
type α of L.

E1
x ∈ V, type[α]

exprL[(x : α), α]
(Variable)

E2
c ∈ C

exprL[c, τ(c)]
(Constant)

E3
exprL[A,α], exprL[F, (α→ β)]

exprL[(F @ A), β]
(Function application)

E4
x ∈ V, type[α], exprL[B, β]

exprL[(λx : α . B), (α→ β)]
(Function abstraction)

E5
exprL[E1, α], exprL[E2, α]

exprL[(E1 = E2), ∗]
(Equality)

E6
x ∈ V, type[α], exprL[A, ∗]

exprL[(Ix : α . A), α]
(Definite description)

6 W. M. Farmer

We will see shortly that the value of a definite description (Ix : α . A) is the
unique value x of type α satisfying A if it exists and is “undefined” otherwise.

“Free variable”, “closed expression”, and similar notions are defined in the
obvious way. An expression of L is a formula if it is of type ∗, a sentence if
it is a closed formula, and a predicate if it is of type (α → ∗) for any α ∈ T .
Let Aα, Bα, Cα, . . . denote expressions of type α. Parentheses and the types of
variables may be dropped when meaning is not lost. An expression of the form
(F @ A) will usually be written in the more compact and standard form F (A).

2.2 Semantics

The semantics of sttwu is the same as the semantics of stt except that:

1. A model contains partial and total functions instead of just total functions.
2. The value of an “undefined” function application is f if it is a formula and

is undefined if it is not a formula.
3. The value of a function abstraction is a function that is possibly partial.
4. The value of an equality is f if the value of either of its arguments is unde-

fined.
5. The value of an “undefined” definite description is f if it is a formula and is

undefined if it is not a formula.

A model1 for a language L = (C, τ) of sttwu is a pair M = (D, I) where:

1. D = {Dα : α ∈ T } is a set of nonempty domains (sets).
2. D∗ = {t, f}, the domain of truth values.
3. For α, β ∈ T , Dα→β is the set of all total functions from Dα to Dβ if β = ∗

and is the set of all partial and total functions from Dα to Dβ if β 6= ∗.2
4. I maps each c ∈ C to a member of Dτ(c).

Fix a model M = (D, I) for a language L = (C, τ) of sttwu. A variable
assignment into M is a function that maps each variable (x : α) to a member of
Dα. Given a variable assignment ϕ into M , a variable (x : α), and d ∈ Dα, let
ϕ[(x : α) 7→ d] be the variable assignment ϕ′ into M such that ϕ′((x : α)) = d
and ϕ′(X) = ϕ(X) for all X 6= (x : α).

The valuation function for M is the partial binary function VM that satisfies
the following conditions for all variable assignments ϕ into M and all expressions
E of L:

1 This is the definition of a standard model for sttwu. There is also the notion of
a general model for sttwu in which functions domains are not fully “inhabited”
(see [14]).

2 The condition that a domain Dα→∗ contains only total functions is needed to ensure
that the law of extensionality holds for predicates. This condition is weaker than
the condition used in the semantics for lutins and its simple versions, PF and
PF∗. In these logics, a domain Dγ contains only total functions iff γ has the form
(α1 → (α2 → · · · (αn → ∗) · · ·)) where n ≥ 1. The weaker condition, which is due to
A. Stump [25], yields a semantics that is somewhat simpler.

Formalizing Undefinedness Arising in Calculus 7

1. Let E be a variable (i.e., E is of the form (x : α)). Then VMϕ (E) = ϕ(E).

2. Let E be a constant of L (i.e., E ∈ C). Then VMϕ (E) = I(E).

3. Let Eβ be of the form (F @ A). If VMϕ (F) is defined, VMϕ (A) is defined, and

VMϕ (A) is in the domain of VMϕ (F), then VMϕ (Eα) = VMϕ (F)(VMϕ (A)), the

result of applying the function VMϕ (F) to the argument VMϕ (A). Otherwise,

VMϕ (Eβ) = f if β = ∗ and VMϕ (Eβ) is undefined if β 6= ∗.
4. Let Eα→β be of the form (λx : α . B). Then VMϕ (Eα→β) is the (partial or to-

tal) function f : Dα → Dβ such that, for each d ∈ Dα, f(d) = VMϕ[(x:α) 7→d](B)

if VMϕ[(x:α)7→d](B) is defined and f(d) is undefined if VMϕ[(x:α)7→d](B) is unde-
fined.

5. Let E∗ be of the form (E1 = E2). If VMϕ (E1) is defined, VMϕ (E2) is defined,

and VMϕ (E1) = VMϕ (E2), then VMϕ (E∗) = t; otherwise VMϕ (E∗) = f.
6. Let Eα be of the form (Ix : α . A). If there is a unique d ∈ Dα such that
VMϕ[(x:α)7→d](A) = t, then VMϕ (Eα) = d. Otherwise, VMϕ (Eα) = f if α = ∗
and VMϕ (Eα) is undefined if α 6= ∗.

Let E be an expression of type α of L. When VMϕ (E) is defined, VMϕ (E) is

called the value of E in M with respect to ϕ and VMϕ (E) ∈ Dα. Whenever E

is a formula, VMϕ (E) is defined. A formula A is valid in M , written M |= A, if

VMϕ (A) = t for all variable assignments ϕ into M . A theory of sttwu is a pair
T = (L, Γ) where L is a language of sttwu and Γ is a set of sentences of L
called the axioms of T . A model of T is a model M for L such that M |= B for
all B ∈ Γ .

2.3 Definitions and Abbreviations

We define in sttwu the standard propositional connectives and quantifiers as
well as some special operators concerning definedness.

T means (λx : ∗ . x) = (λx : ∗ . x).
F means (λx : ∗ . T) = (λx : ∗ . x).
¬A∗ means A∗ = F.
(Aα 6= Bα) means ¬(Aα = Bα).
(A∗ ∧B∗) means (λ f : (∗ → (∗ → ∗)) . f(T)(T)) =

(λ f : (∗ → (∗ → ∗)) . f(A∗)(B∗)).
(A∗ ∨B∗) means ¬(¬A∗ ∧ ¬B∗).
(A∗ ⇒ B∗) means ¬A∗ ∨B∗.
(A∗ ⇔ B∗) means A∗ = B∗.
(∀x : α . A∗) means (λx : α . A∗) = (λx : α . T).
(∃x : α . A∗) means ¬(∀x : α . ¬A∗).
(Aα ↓) means ∃x : α . x = Aα

where (x : α) does not occur in Aα.
(Aα ↑) means ¬(Aα ↓).
(Aα ' Bα) means (Aα ↓ ∨Bα ↓)⇒ Aα = Bα.

8 W. M. Farmer

⊥α means Ix : α . x 6= x.
if(A∗, Bα, Cα) means Ix : α . (A∗ ⇒ x = Bα) ∧ (¬A∗ ⇒ x = Cα)

where (x : α) does not occur in A∗, Bα, or Cα.

Notice that we are using the syntactic conventions mentioned in section 2.1. For
example, the meaning of T is officially the expression

((λx : ∗ . (x : ∗)) = (λx : ∗ . (x : ∗))).

(Aα ↓) says that Aα is defined, (Aα ↑) says that Aα is undefined, and Aα ' Bα
says that Aα and Bα are quasi-equal, i.e., that Aα and Bα are either both defined
and equal or both undefined. ⊥α is a canonical undefined expression of type α.
if is an if-then-else expression constructor such that if(A∗, Bα, Cα) denotes Bα
if A∗ holds and denotes Cα if ¬A∗ holds.

We will write a formula of the form 2x1 : α . · · · 2xn : α . A as simply
2x1, . . . , xn : α . A where 2 is ∀ or ∃. If we fix the type of a variable x, say to
α, then an expression of the form 2x : α . E may be written as simply 2x . E
where 2 is λ, I, ∀, or ∃. If desired, all types can be removed from an expression
by fixing the types of the variables occurring in the expression.

2.4 Proof System

We present now a Hilbert-style proof system for sttwu called Au that is sound
and complete with respect to the general models semantics for sttwu [14]. It
is a modification of the proof system A for stt given in [13] which is based on
P. Andrews’ proof system [1, 2] for Church’s type theory.

Define Bβ [(x : α) 7→ Aα] to be the result of simultaneously replacing each
free occurrence of (x : α) in Bβ by an occurrence of Aα. Let (∃ !x : α . A) mean

∃x : α . (A ∧ (∀ y : α . A[(x : α) 7→ (y : α)]⇒ y = x))

where (y : α) does not occur in A. This formula asserts there exists a unique
value x of type α that satisfies A.

For a language L = (C, τ), the proof system Au consists of the following
sixteen axiom schemas and two rules of inference:

A1 (Truth Values)

∀ f : (∗ → ∗) . (f(T) ∧ f(F))⇔ (∀x : ∗ . f(x)).

A2 (Leibniz’ Law)

∀x, y : α . (x = y)⇒ (∀ p : (α→ ∗) . p(x)⇔ p(y)).

A3 (Extensionality)

∀ f, g : (α→ β) . (f = g)⇔ (∀x : α . f(x) ' g(x)).

Formalizing Undefinedness Arising in Calculus 9

A4 (Beta-Reduction)

Aα ↓ ⇒ (λx : α . Bβ)(Aα) ' Bβ [(x : α) 7→ Aα]

provided Aα is free for (x : α) in Bβ .

A5 (Equality and Quasi-Quality)

Aα ↓ ⇒ (Bα ↓ ⇒ (Aα ' Bα) ' (Aα = Bα)).

A6 (Expressions of Type ∗ are Defined)

A∗ ↓ .

A7 (Variables are Defined)

(x : α)↓ where x ∈ V and α ∈ T .

A8 (Constants are Defined)

c↓ where c ∈ C.

A9 (Function Abstractions are Defined)

(λx : α . Bβ)↓

A10 (Improper Function Application)

(Fα→β ↑ ∨Aα ↑)⇒ Fα→β(Aα)↑ where β 6= ∗.

A11 (Improper Predicate Application)

(Fα→∗ ↑ ∨Aα ↑)⇒ ¬Fα→∗(Aα).

A12 (Improper Equality)

(Aα ↑ ∨Bα ↑)⇒ ¬(Aα = Bα).

A13 (Proper Definite Description of Type α 6= ∗)

(∃ !x : α . A∗)⇒ ((Ix : α . A∗)↓ ∧A∗[(x : α) 7→ (Ix : α . A∗)])

where α 6= ∗ and provided (Ix : α . A∗) is free for (x : α) in A∗.

A14 (Improper Definite Description of Type α 6= ∗)

¬(∃ !x : α . A∗)⇒ (Ix : α . A∗)↑ where α 6= ∗.

A15 (Proper Definite Description of Type ∗)

(∃ !x : ∗ . A∗)⇒ A∗[(x : ∗) 7→ (Ix : ∗ . A∗)]

provided (Ix : ∗ . A∗) is free for (x : ∗) in A∗.

A16 (Improper Definite Description of Type ∗)

¬(∃ !x : ∗ . A∗)⇒ ¬(Ix : ∗ . A∗).

10 W. M. Farmer

R1 (Modus Ponens) From A∗ and A∗ ⇒ B∗ infer B∗.

R2 (Quasi-Equality Substitution) From Aα ' Bα and C∗ infer the
result of replacing one occurrence of Aα in C∗ by an occurrence of Bα,
provided that the occurrence of Aα in C∗ is not immediately preceded by λ.

Au is sound and complete with respect to the general models semantics for
sttwu [14]. The completeness proof is closely related to the completeness proofs
for PF [8] and PF∗ [9]. All the standard laws of predicate logic hold in sttwu
except some of those involving equality and instantiation. However, the laws
of equality and instantiation do hold if certain “definedness requirements” are
satisfied. See [8, 9, 14] for details.

3 A Theory of the Real Numbers

Spivak’s development of calculus in his textbook Calculus [24] begins with a
presentation of 13 basic properties of the real numbers [24, pp. 9, 113]. These
properties are essentially the axioms of the theory of a complete ordered field—
which has exactly one model up to isomorphism, namely, the standard model of
the real numbers.

We will begin our exploration of undefinedness in Spivak’s Calculus by for-
mulating the 13 properties as a theory in sttwu. Let COF = (L, Γ) be the theory
of sttwu such that:

– L = ({+, 0,−, ·, 1,−1, pos, <,≤, ub, lub}, τ) where τ is defined by:

Constant c Type τ(c)
0,1 ι
−,−1 ι→ ι
pos ι→ ∗
+, · ι→ (ι→ ι)
<,≤ ι→ (ι→ ∗)
ub, lub (ι→ ∗)→ (ι→ ∗)

Note: The type ι is being used to represent the set of real numbers.
– Γ is the set of the 19 formulas given below. We assume that the variables
a, b, c are of type ι and the variable s is of type (ι→ ∗).

P1 ∀ a, b, c . a+ (b+ c) = (a+ b) + c.
P2 ∀ a . a+ 0 = a ∧ 0 + a = a.
P3 ∀ a . a+−a = 0 ∧ −a+ a = 0.
P4 ∀ a, b . a+ b = b+ a.
P5 ∀ a, b, c . a · (b · c) = (a · b) · c.
P6a ∀ a . a · 1 = a ∧ 1 · a = a.
P6b 0 6= 1.

Formalizing Undefinedness Arising in Calculus 11

P7a ∀ a . a 6= 0⇒ (a · a−1 = 1 ∧ a−1 · a = 1).
P7b 0−1 ↑.
P8 ∀ a, b . a · b = b · a.
P9 ∀ a, b, c . a · (b+ c) = (a · b) + (a · c).
P10 ∀ a . (a = 0 ∧ ¬pos(a) ∧ ¬pos(−a)) ∨

(a 6= 0 ∧ pos(a) ∧ ¬pos(−a)) ∨
(a 6= 0 ∧ ¬pos(a) ∧ pos(−a)).

P11 ∀ a, b . (pos(a) ∧ pos(b))⇒ pos(a+ b).
P12 ∀ a, b . (pos(a) ∧ pos(b))⇒ pos(a · b).
D1 ∀ a, b . a < b⇔ pos(b− a).
D2 ∀ a, b . a ≤ b⇔ (a < b ∨ a = b).
D3 ∀ s, a . ub(s)(a)⇔ (∀ b . s(b)⇒ b ≤ a).
D4 ∀ s, a . lub(s)(a)⇔ (ub(s)(a) ∧ (∀ b . ub(s)(b)⇒ a ≤ b)).
P13 ∀ s . ((∃ a . s(a)) ∧ (∃ a . ub(s)(a))⇒ ∃ a . lub(s)(a).

Notes:

1. Axioms P1–P13 correspond to Spivak’s 13 properties P1–P13. Properties
P6 and P7 are both expressed by pairs of axioms. Axioms D1–D4 are defi-
nitions.

2. We write the additive and multiplicative inverses of a as −a and a−1 instead
of as −(a) and −1(a), respectively.

3. + and ∗ are formalized by constants of type (ι → (ι → ι)) representing
curryed functions. However, we write the application of + and ∗ using infix
notation, e.g., we write a + b instead of +(a)(b). < and ≤ are handled in a
similar way. In our examples below, we will also write a− b instead of a+−b
and a

b instead of a · b−1.
4. pos is a predicate that represents the set of positive real numbers.
5. ub(s)(a) and lub(s)(a) say that a is an upper bound of s and a is the least

upper bound of s, respectively.
6. Axiom P13 expresses the completeness principle of the real numbers, i.e.,

that every nonempty set of real numbers that has an upper bound has a
least upper bound.

COF is an extremely direct formalization of Spivak’s 13 properties. (The
reader is invited to check this for herself.) The only significant departure is
Axiom P7b. The undefinedness of the multiplicative inverse of 0 is not stated
in property P7. However, Spivak says in the text that “0−1 is meaningless” and
implicitly that 0−1 is always undefined [24, p. 6].

COF is categorical, i.e., it has exactly one model (D, I) up to isomorphism
where Dι = R, the set of real numbers, and I assigns +, 0, −, ·, 1, −1, pos, <,
≤, ub, lub their usual meanings.

4 Partial Functions

In this section and the next section we will examine six examples of statements
from Spivak’s Calculus involving undefinedness. The examples in this section

12 W. M. Farmer

are definitions of partial functions, and the examples in the next section involve
limits that can be undefined. For each example, we will display how Spivak
expresses it in Calculus followed by how it can be formalized in sttwu. We will
assume that in the sttwu formalizations the variables f, g are of type (ι → ι)
and the variables a, l,m, x, δ, ε are of type ι. The listed page numbers refer to
the first edition [24] of Calculus.

Spivak devotes two chapters in Calculus to functions. He emphasizes that
functions are often partial and discusses several examples of partial functions.
He handles partial functions according to the traditional approach. In fact, he
says “the symbol f(x) makes sense only for x in the domain of f ; for other x
the symbol f(x) is not defined” [p. 38].

Example 1. This is a definition of a partial function in which the function’s
domain is given explicitly.

Spivak: k(x) = 1
x + 1

x−1 , x 6= 0, 1 [p. 39].

sttwu: ∀x . if(x 6= 0 ∧ x 6= 1, k(x) = 1
x + 1

x−1 , k(x)↑).

The formalization of the definition in sttwu is very explicit but certainly more
verbose than Spivak’s definition. A second formalization in sttwu as an equation
is

k = λx . if(x 6= 0 ∧ x 6= 1, 1
x + 1

x−1 , ⊥ι).

Although the second formalization directly identifies what is being defined and
is somewhat more succinct, we prefer the first formalization because it more
faithfully captures the form and meaning of Spivak’s definition.

Example 2. This is a shortened version of the previous example in which the
function’s domain is implicit and, as Spivak says, “is understood to consist of
all [real] numbers for which the definition makes any sense at all” [p. 39].

Spivak: k(x) = 1
x + 1

x−1 [p. 39].

sttwu: ∀x . k(x) ' 1
x + 1

x−1 .

Notice that in the formalization quasi-equality ' must be used instead of or-
dinary equality =. Spivak does not distinguish in Calculus between these two
kinds of equality, but he is certainly aware of the important distinction between
them. See his comment after problem 28 of Chapter 5 on p. 92.

This example illustrates that a partial function can be precisely described
in sttwu, as in informal mathematics, without mentioning the domain of the
function. The definition is thus more succinct than it would be if the domain were
made explicit. The implicit domain can always be determined later if necessary.

Formalizing Undefinedness Arising in Calculus 13

Example 3. This example defines the quotient of two functions.

Spivak:
(
f
g

)
(x) = f(x)

g(x) [p. 41].

sttwu: ∀ f, g, x : fun div(f)(g)(x) ' f(x)
g(x) .

fun div is a constant of type ((ι → ι) → ((ι → ι) → (ι → ι))) that denotes
the quotient of two functions. Notice that the domain of fun div(f)(g) is not
explicitly defined, but it can be computed to be Df ∩Dg ∩ {x : R | g(x) 6= 0}.

5 Limits

The notion of a limit of a function at a point in its domain of application is
perhaps the most important concept in calculus. Spivak devotes an entire chap-
ter to it. Since a limit does not always exist, this concept is a rich source of
undefinedness.

Example 4. This is Spivak’s definition of a limit—which is actually formed
from two definitions: (1) what it means for a function to approach a limit near
a point [p. 78] and (2) what the notation limx→a f(x) denotes [p. 81]3.

Spivak: limx→a f(x) denotes the real number l such that, for every ε > 0,
there is some δ > 0 such that, for all x, if 0 < |x− a| < δ, then |f(x)− l| < ε
[pp. 78, 81].

sttwu: ∀ f, a . lim(f)(a) '
(I l .

(∀ ε . 0 < ε⇒
(∃ δ . 0 < δ ∧

(∀x . (0 < abs(x− a) ∧ abs(x− a) < δ)⇒
abs(f(x)− l) < ε))))

abs denotes the absolute value function. Both the informal and formal definitions
of a limit at a point are defined as the value of a definite description provide the
value exists. Other limit concepts, such as the limit of a sequence, are defined
by similar definition descriptions.

Example 5. This is a theorem about the limit of the quotient of the identity
function and another function g.

Spivak: If limx→a g(x) = m and m 6= 0, then limx→a

(
1
g

)
(x) = 1

m [Theo-

rem 2(3), p. 84].

sttwu: ∀ g, a,m . (lim(g)(a) = m ∧m 6= 0)⇒ lim(fun div(id)(g))(a) = 1
m .

3 Spivak remarks that a “more logical symbol” like lima f is “so infuriatingly rigid
that almost no one has seriously tried to use it” [p. 81].

14 W. M. Farmer

id is λx . x, the identity function. Notice that there is no explicit mention of
the definedness of the limit of g at x in either Spivak’s theorem or in its formal-
ization in sttwu. This is because the hypothesis that the limit lim(g)(a) equals
m automatically implies that lim(g)(a) is defined by the third principle of the
traditional approach.

Example 6. This is the definition of the notion of a function being continuous
at a point.

Spivak: The function f is continuous at a if limx→a f(x) = f(a) [p. 93].

sttwu: ∀ f, a . cont(f)(a)⇔ lim(f)(a) = f(a).

It is crucial to use equality = instead of quasi-equality ' because f is continuous
at a only if lim(f)(a) and f(a) are both defined and equal to each other.

6 Conclusion

In this paper we have presented sttwu, a version of simple type theory that
directly formalizes the traditional approach to undefinedness. We have also for-
malized in sttwu several examples from Spivak’s Calculus involving undefined-
ness. The formalizations are exceedingly faithful in form and meaning to how the
examples are expressed by Spivak. Moreover, the conciseness that comes from
Spivak’s use of the traditional approach is fully preserved in the formalizations
in sttwu.

It is our recommendation that logics with undefinedness, such as sttwu, be
considered as the logical basic for mechanized mathematics systems. They are
much closer to mathematical practice with respect to undefinedness than stan-
dard logics, and as imps has demonstrated, they can be effectively implemented.

7 Acknowledgments

The author would like to thank Jacques Carette for many valuable discussions
on formalizing undefinedness, partial functions, and countless other aspects of
mathematics.

References

1. P. B. Andrews. A reduction of the axioms for the theory of propositional types.
Fundamenta Mathematicae, 52:345–350, 1963.

2. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
through Proof, Second Edition. Kluwer, 2002.

3. M. Beeson. Formalizing constructive mathematics: Why and how? In F. Richman,
editor, Constructive Mathematics: Proceedings, New Mexico, 1980, volume 873 of
Lecture Notes in Mathematics, pages 146–190. Springer, 1981.

Formalizing Undefinedness Arising in Calculus 15

4. M. J. Beeson. Foundations of Constructive Mathematics. Springer, Berlin, 1985.
5. T. Burge. Truth and Some Referential Devices. PhD thesis, Princeton University,

1971.
6. T. Burge. Truth and singular terms. In K. Lambert, editor, Philosophical Appli-

cations of Free Logic, pages 189–204. Oxford University Press, 1991.
7. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,

5:56–68, 1940.
8. W. M. Farmer. A partial functions version of Church’s simple theory of types.

Journal of Symbolic Logic, 55:1269–91, 1990.
9. W. M. Farmer. A simple type theory with partial functions and subtypes. Annals

of Pure and Applied Logic, 64:211–240, 1993.
10. W. M. Farmer. Theory interpretation in simple type theory. In J. Heering,

K. Meinke, B. Möller, and T. Nipkow, editors, Higher-Order Algebra, Logic, and
Term Rewriting, volume 816 of Lecture Notes in Computer Science, pages 96–123.
Springer, 1994.

11. W. M. Farmer. Reasoning about partial functions with the aid of a computer.
Erkenntnis, 43:279–294, 1995.

12. W. M. Farmer. STMM: A Set Theory for Mechanized Mathematics. Journal of
Automated Reasoning, 26:269–289, 2001.

13. W. M. Farmer. The seven virtues of simple type theory. SQRL Report No. 18,
McMaster University, 2003. Revised 2006.

14. W. M. Farmer. A sound and complete proof system for STTwU. Technical Report
No. CAS-04-01-WF, McMaster University, 2004.

15. W. M. Farmer and J. D. Guttman. A set theory with support for partial functions.
Studia Logica, 66:59–78, 2000.

16. W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An Interactive Mathe-
matical Proof System. Journal of Automated Reasoning, 11:213–248, 1993.

17. W. M. Farmer, J. D. Guttman, and F. J. Thayer Fábrega. IMPS: An updated
system description. In M. McRobbie and J. Slaney, editors, Automated Deduction—
CADE-13, volume 1104 of Lecture Notes in Computer Science, pages 298–302.
Springer, 1996.

18. S. Feferman. Polymorphic typed lambda-calculi in a type-free axiomatic frame-
work. Contemporary Mathematics, 106:101–136, 1990.

19. M. Kerber and M. Kohlhase. A mechanization of strong Kleene logic for partial
functions. In A. Bundy, editor, Automated Deduction—CADE-12, volume 814 of
Lecture Notes in Computer Science, pages 371–385. Springer, 1994.

20. L. G. Monk. PDLM: A Proof Development Language for Mathematics. Technical
Report M86-37, The MITRE Corporation, Bedford, Massachusetts, 1986.

21. O. Müller and K. Slind. Treating partiality in a logic of total functions. The
Computer Journal, 40:640–652, 1997.

22. D. L. Parnas. Predicate logic for software engineering. IEEE Transactions on
Software Engineering, 19:856–861, 1993.

23. R. Schock. Logics without Existence Assumptions. Almqvist & Wiksells, Stock-
holm, Sweden, 1968.

24. M. Spivak. Calculus. W. A. Benjamin, 1967.
25. A. Stump. Subset types and partial functions. In F. Baader, editor, Automated

Deduction—CADE-19, volume 2741 of Lecture Notes in Computer Science, pages
151–165. Springer, 2003.

26. N. Tennant. Natural deduction for first order logic with identity, description, and
restricted quantification. In Contributed Papers of the 5th International Congress
of Logic, Methodology and Philosophy of Science. 1975.

16 W. M. Farmer

27. N. Tennant. Natural Logic. Edinburgh University Press, 1978.

