
Chiron Notation
William M. Farmer

24 May 2011

Official Compact ASCII

PROPER EXPRESSIONS

Operator (op, o, k1, . . . , kn+1) (o :: k1, . . . , kn+1) (o :: k1,...,kn+1)

Operator application (op-app, (op, o, k1, . . . , kn+1), e1, . . . , en) (o :: k1, . . . , kn+1)(e1, . . . , en) (o :: k1,....,kn+1)(e1,...,en)

Constant (con, o, k) [o :: k] [o :: k]

Variable (var, x, α) (x : α) (x : α)

Type application (type-app, α, a) α(a) α(a)

Dependent function type (dep-fun-type, (var, x, α), β) (Λx : α . β) (Lambda x : α . β)

(x : α -> β)

Function application (fun-app, f, a) f(a) f(a)

Function abstraction (fun-abs, (var, x, α), b) (λx : α . b) (lambda x : α . b)

Conditional term (if, A, b, c) if(A, b, c) if(A,b,c)

Existential quantification (exists, (var, x, α), B) (∃x : α . B) (exists x : α . B)

Unique existential (uni-exists, (var, x, α), B) (∃ !x : α . B) (exists! x : α . B)

Universal quantification (forall, (var, x, α), B) (∀x : α . B) (forall x : α . B)

Definite description (def-des, (var, x, α), B) (ι x : α . B) (iota x : α . B)

Indefinite description (indef-des, (var, x, α), B) (ε x : α . B) (epsilon x : α . B)

Set Construction (set-cons, a1, . . . , an) {a1, . . . , an} {a1, . . . , an}
List Construction (list-cons, a1, . . . , an) [a1, . . . , an] [a1, . . . , an]

Class abstraction (class-abs, (var, x, α), B) (Cx : α . B) (class x : α . B)

Left type (left-type, α) left(α) left(α)

Right type (right-type, α, a) right(α, a) right(α,a)

Dependent type product (dep-type-prod, (var, x, α), β) (⊗x : α . β) (* x : α . β)

Dependent ordered pair (dep-ord-pair, a, b) 〈a, b〉 <a,b>

Dependent head (dep-head, a) hd(a, b) hd(a,b)

Dependent tail (dep-tail, a) tl(a, b) tl(a,b)

Quotation (quote, e) peq |^e^|

Quasiquotation (quasiquote, (fun-app, f, bac)) pf(bac)q |^f(|_a_|)^|

Evaluation (eval, a, k) JaKk [|a|] k

Evaluation for types (eval, a, type) JaKty [|a|] ty

Evaluation for terms (eval, a,C) JaKte [|a|] te

Evaluation for formulas (eval, a, formula) JaKfo [|a|] fo

1

Official Compact ASCII

TYPES

Set type (con, set, type) V V

Class type (con, class, type) C C

Type for expressions (con, expr, type) E E

Type for symbols (con, expr-sym, type) Esy E sy

Type for operator names (con, expr-op-name, type) Eon E on

Type for operators (con, expr-op, type) Eop E op

Type for types (con, expr-type, type) Ety E ty

Type for terms (con, expr-term, type) Ete E te

Type for terms with type (op-app, (op, expr-term-type,Ety, type), a) Eate E te[a]

Type for formulas (con, expr-formula, type) Efo E fo

EQUALITIES

Type equality (op-app, (op, type-equal, type, type, formula), α, β) (α =ty β) (α = ty β)

Term equality in a type (op-app, (op, term-equal,C,C, type, formula), a, b, α) (a =α b) (a = α b)

Term equality (op-app, (op, term-equal,C,C, type, formula), a, b,C) (a = b) (a = b)

Quasi-equality (op-app, (op, quasi-equal,C,C, formula), a, b) (a ' b) (a == b)

Formula equality (op-app, (op, formula-equal, formula, formula, formula), A,B) (A ≡ B) (A iff B)

LOGIC

Truth (con, true, formula) T T

Falsehood (con, false, formula) F F

Negation (op-app, (op, not, formula, formula), A) (¬A) not(A)

Disjunction (op-app, (op, or, formula, formula, formula), A,B) (A ∨B) (A or B)

Conjunction (op-app, (op, and, formula, formula, formula), A,B) (A ∧B) (A and B)

Implication (op-app, (op, implies, formula, formula, formula), A,B) (A ⊃ B) (A implies B)

Definedness in a type (op-app, (op, defined-in,C, type, formula), a, α) (a ↓ α) #(a,α)

Definedness (op-app, (op, defined-in,C, type, formula), a,C) (a↓) #(a)

Canonical undefined term (con, undefined,C) ⊥C undef

Canonical empty type (con, empty-type, type) ∇ empty-type

Type order (op-app, (op, type-le, type, type, formula), α, β) (α� β) (α << β)

Conditional type (op-app, (op, if-type, formula, type, type, type), A, β, γ) if(A, β, γ) if(A,β,γ)

Conditional formula (op-app, (op, if-formula, formula, formula, formula, formula), A,B,C) if(A,B,C) if(A,B,C)

Simple function type (op-app, (op, sim-fun-type, type, type, type), α, β) (α→ β) (α -> β)

2

Official Compact ASCII

SET THEORY

Class membership (op-app, (op, in,V,C, formula), a, b) (a ∈ b) (a in b)

Empty set (con, empty-set,V) ∅ empty-set

Universal class (con, universal-class,C) U universe

Pair (op-app, (op, pair,V,V,V), a, b) {a, b} {a,b}

Ordered pair (op-app, (op, ord-pair,V,V,V), a, b) 〈a, b〉 <a,b>

Subclass (op-app, (op, subclass,C,C, formula), a, b) a ⊆ b (a subcl b)

Union (op-app, (op, union,C,C,C), a, b) a ∪ b (a union b)

Intersection (op-app, (op, intersection,C,C,C), a, b) a ∩ b (a inters b)

Complement (op-app, (op, complement,C,C), a) a compl(a)

Head (op-app, (op, head,V,V), a) hd(a) hd(a)

Tail (op-app, (op, tail,V,V), a) tl(a) tl(a)

Type product (op-app, (op, type-prod, type, type, type), α, β) (α× β) (α * β)

Type sum (op-app, (op, type-sum, type, type, type), α, β) (α+ β) (α + β)

Type to Term (op-app, (op, type-to-term, type,C), α) term(α) term(α)

Term to Type (op-app, (op, term-to-type,C, type), α) type(a) type(a)

3

