Chiron Notation
William M. Farmer

24 May 2011

H Official ‘ Compact ASCII
PROPER EXPRESSIONS
Operator (op,0,k1,. .., knt1) (0 kyy... kny1) (0 :: kiy.o. o kna1)
Operator application (op-app, (op,o ki,... knt1),e1,--0en) | (0 ke, oo knrr)(er, .- ven) | (0 1t kiyeoot k1) (ers. .. sep)
Constant (con,0,k) [0:: K] lo :: k]
Variable (var,z, @) (z:a) (x : a)
Type application (type-app, o, a) ala) ala)
Dependent function type || (dep-fun-type, (var, z, «),) Az :a.p) (Lambda = : a . 3)

(x :a-—>P0

Function application (fun-app, f,a) f(a) fla)
Function abstraction (fun-abs, (var, z, a), b) Az :a.b) (lambda = : a . b)
Conditional term (if, A, b, ¢) if(A,b,¢) if(A,b,c)
Existential quantification || (exists, (var,z,a), B) (Jz:a.B) (exists z : a . B)
Unique existential (uni-exists, (var, z,), B) (F!'z:a.B) (exists! =z : a . B)
Universal quantification (forall, (var, z,), B) (Vz:a.B) (forall z : a . B)
Definite description (def-des, (var, z, «), B) (tz:a.B) (iota z : o . B)
Indefinite description (indef-des, (var, z,), B) (ex:a.B) (epsilon z : a . B)
Set Construction (set-cons, aq,...,an,) {ai,...,an} {ai,...,an}
List Construction (list-cons, ay, ..., an) [a1,...,apn] lai,...,an]
Class abstraction (class-abs, (var, z,), B) (Cx:a.B) (class z : a . B)
Left type (left-type, @) left(ca) left(a)
Right type (right-type, a, a) right(c, a) right(«,a)
Dependent type product | (dep-type-prod, (var,z,), 3) (®x:a.p) xz:a. 8
Dependent ordered pair (dep-ord-pair, a, b) (a,b) <a,b>
Dependent head (dep-head, a) hd(a,) hd(a,b)
Dependent tail (dep-tail, a) tl(a,b) tl(a,b)
Quotation (quote, e) Fe™ [~e”|
Quasiquotation (quasiquote, (fun-app, f, |a])) Tf(le])” [“f(l_a_D)"]
Evaluation (eval,a, k) [a]k [lal]l k
Evaluation for types (eval, a, type) lalty [lall_ty
Evaluation for terms (eval,a, C) [a]te [lal]_te
Evaluation for formulas (eval, a, formula) la]fo [lal]l_fo

H Official Compact | ASCII
TYPES
Set type (con, set, type) v
Class type (con, class, type) C C
Type for expressions (con, expr, type) E E
Type for symbols (con, expr-sym, type) Esy E_sy
Type for operator names || (con,expr-op-name, type) Eon E_on
Type for operators (con, expr-op, type) Eop E_op
Type for types (con, expr-type, type) Ety E_ty
Type for terms (con, expr-term, type) Eie E_te
Type for terms with type | (op-app, (op, expr-term-type, Ey, type), a) Ef, E_telal
Type for formulas (con, expr-formula, type) Es E_fo
EQUALITIES
Type equality (op-app, (op, type-equal, type, type, formula), «, 3) (v =¢y B) | (@ =ty B)
Term equality in a type (op-app, (op, term-equal, C, C, type, formula), a, b a) (a =4 b) (a =_a b)
Term equality (op-app, (op, term-equal, C, C, type, formula), a, b, C) (a=0) (a = b)
Quasi-equality (op-app, (op, quasi-equal, C, C, formula), a, b) (a ~b) (a == D)

(((

Formula equality op-app, (op, formula-equal, formula, formula, formula), A, B) A=B) (A iff B)

LOGIC

Truth (con, true, formula) T T
Falsehood (con, false, formula) F F

Negation (op-app, (op, not, formula, formula), A) (—A) not (A)
Disjunction (op-app, (op, or, formula, formula, formula), A, B) (AV B) (A or B)
Conjunction (op-app, (op, and, formula, formula, formula), A, B) (AN B) (A and B)
Implication (op-app, (op,lmplles formula, formula, formula), A, B) (A D B) (A implies B)
Definedness in a type (op-app, (op, defined-in, C, type, formula), a, «) (al a) #(a,q)
Definedness (op-app, (op, defined-in, C, type, formula), a, Q) (al) #(a)
Canonical undefined term || (con, undefined, C) lc undef
Canonical empty type (con, empty-type, type) \Y% empty-type
Type order (op-app, (op, type-le, type, type, formula), a, 3) (a < p) (a <<)
Conditional type (op-app, (op, if-type, formula, type, type, type), A, 3,7) if(A, B,v) | if(A,B,7)
Conditional formula (op-app, (op, if-formula, formula, formula, formula, formula), A, B, C) | if(A,B,C) | if(A,B,C)
Simple function type (op-app, (op, sim-fun-type, type, type, type) a, B) (v — B) (a >)

H Official ‘ Compact ‘ ASCII
SET THEORY
Class membership | (op-app, (op,in,V, C,formula), a,b) (a €b) (a in b)
Empty set (con, empty-set, V) 0 empty-set
Universal class (con, universal-class, C) U universe
Pair (op-app, (op, pair, V,V, V), a,b) {a,b} {a,b}
Ordered pair (op-app, (op, ord-pair,V,V, V), a, b) (a,b) <a,b>
Subclass (op-app, (op, subclass, C, C, formula), a, b) aChb (a subcl b)
Union (op-app, (op, union, C, C, C), a, b) alUb (a union b)
Intersection (op-app, (op, intersection, C,C, C), a, b) anb (a inters b)
Complement (op-app, (op, complement, C, C), a) a compl (a)
Head (op-app, (op, head, V, V), a) hd(a) hd (a)
Tail (op-app, (op, tail, V, V), a) tl(a) tl(a)
Type product (op-app, (op, type-prod, type, type, type), o, B) | (a X [3) (a *)
Type sum (op-app, (op, type-sum, type, type, type), a, 8) | (o + f3) (a +)
Type to Term (op-app, (op, type-to-term, type, C), «) term(«) term(w)
Term to Type (op-app, (op, term-to-type, C, type), «) type(a) type(a)

