Copy on Write

Francisco Javier Thayer Fabrega and Joshua D. Guttman

November 1, 1995

Abstract

The copy-on-write optimization is used in operating systems such as
Mach [8] to avoid copying data when large portions of memory are sent be-
tween processes in messages. The kernel maintains data structures which
allow the system to defer copying any data until either the sender or re-
cipient needs to store a new value. After repeated copies, these structures
may grow complex. In this paper, we formalize the copy-on-write opti-
mization using IMPS, an Interactive Mathematical Proof System developed
at The MITRE Corporation. We prove formally that the copy-on-write
optimization provides the same user-visible behavior as if all the data had
been copied immediately in the naive way.

1 Introduction

One of the prime optimizations of Mach [8, 7, 1] is the so-called copy-on-write
optimization. In an operating system like Mach, which emphasizes client-server
computing, processes very frequently send other processes, which are acting as
servers, large amounts of data. The server process may not even handle the
data itself; indeed, frequently the data is simply sent to a third (or fourth ...)
process before real actions are taken. Moreover, commonly, little or none of
the data will be altered, although the client cannot know when the server will
modify particular data. In this situation, traditional operating systems faced
a dilemma. One possibility is to copy the data each time that it is sent in a
message, but this takes time and is frequently unnecessary. Alternatively the
memory to be transferred could be mapped into the virtual address space of
the recipient as shared memory. Although this is fast, it is insecure, because
the client can see any changes the server may make (and vice versa), and it
is unreliable, because the processes must agree on a protocol for accessing and
modifying the shared memory.

To resolve this problem, Mach offers the copy-on-write optimization. When
memory is sent to another process, Mach does not in fact make a copy; the two
processes will in fact read the same data. The microkernel ensures, however,
that if either process writes to a portion of the shared memory, then Mach

will silently create a copy of that portion. Thus, each process sees only the
modifications it makes itself. This is efficient because a portion of memory is
copied only if this is necessary to provide each process with the illusion that
memory was not shared.

In Mach, a “portion” of memory means a page as supported by the demand-
paged virtual memory system. Copy-on-write is implemented by setting the
page protection for shared pages to be read only; an attempt to write to the
page causes a page fault. Mach responds to this page fault by copying the page
containing the requested address, so that the write may be retried.

1.1 How Copy-on-Write Works

In order for this machinery to work properly, Mach must maintain data struc-
tures which indicate where to retrieve not-yet-copied pages and where to write
them when they must indeed be copied. In Mach these interrelations are stored
in the memory object data structures that the kernel maintains to represent
the permanent or temporary objects that user processes have allocated in their
address spaces.

When a copy is done using the copy-on-write optimization, the kernel creates
two new memory objects, although no actual data is copied to either. One of
the two is returned as the new object, and it will typically be sent to another
process. The second is treated specially by the kernel; user processes will not
access it. Instead, it serves as a snapshot of the state of the original memory
object at the time that the copy was made. For clarity in the discussion below,
we will refer to these three memory objects as the original O, the snapshot
object S, and the user process’s copy object C; we refer to the time the copy
operation occurs as tg.

Two fields in the memory object data structure are relevant; they are illus-
trated in Figure 1. First, there is a default pointer which is set to point from the
user’s copy C' to the snapshot object S, and from S to the original O. Second,
there is a dependent pointer which is set to point from the original object O to
the snapshot object S.

The expected effects of reads and writes are altered in the presence of these
pointers. First, any attempt to write to O will cause the page containing the
target address to be “pushed” first, by which we mean copied from O to S before
being altered. As a consequence, if @ is any address at which the original O has
data but S does not, then the value of O at a is the same as it was at time ¢g.
If a is an address for which S does have data, then the value of S at a is the
same as the value that O had at time tg; this is why we call S a snapshot. If a
particular page of O has already been pushed, then writes to that page proceed
normally, just as if no copy had been made.

Any attempt to write to C' will cause the page containing the target address
to be “pulled” first. By this we mean that if the data is not already present in
C, the operating system copies the data there. If the page is not in physical

dependent

default default

Figure 1: Relations Created by a Copy Operation

memory, the system locates the correct data for that page by following the
default pointers. It may be found in S, or alternatively the operating system
may follow S’s default pointer to retrieve it from O. The page of data, once
found, is then copied into C. As a consequence, whenever C does not have data
for an address a, no write attempt has occurred, and the value expected for C'
at that address is the same as the value that O had at time tg. Once the data
has been pulled into C, this write attempt—and subsequent writes—may occur
normally.

An attempt to read data from C will cause a search along the default chain.
That is, if the data is present in C, then that value is used; otherwise, the
default pointer is followed to S. Here again, either the data is present, or else
the default pointer is followed to O. The result of the search will be cached.
Later fetches from the same page do not require intervention from the operating
system unless the virtual memory system has removed or relocated the page of
data.

The situation becomes more complex when a second object is copied from
the same original. Let us now refer to the initial copy as Cy and the initial
snapshot as Sg. The effect of the second operation depends on whether the
original has been altered between ty and the time ¢; when the second copy Ci
is made.

When there have been alterations to O before ¢;, so that pages have been
pushed into Sy, then C; must see the new data in O. In this case, C; must
have its own snapshot S;. However, Mach ensures that when alterations are
made to O, the pages need only be pushed to one snapshot object. This is
achieved by changing Sy’s default to point to S, as shown in Figure 2. If data
has been changed between ¢, and t;, that data is already present in Sy. Hence,

Cy default

S1 | dependent

g default
0
Co default default

Figure 2: Relations Created by a Second Copy Operation (Original Altered)

the values present in Sy will be used; later values represented in O or S; will
never be visible to Cy. On the other hand, data in O altered only after ¢; will
be copied to Si. Since these pages are not represented in Sy, the values in Sy
will show through when Mach follows the default chain. For data that is never
changed, the default chain will lead back all the way to O.

By contrast, if no writes have been made against O in the interval, then
the initial snapshot Sp, which as yet contains no data, can be reused for both
objects (see Figure 3). When, later, alterations are made to O, and the original
unchanged pages are moved to Sy, these pages will be visible to both Cy and
Ch.

As a consequence of this scheme, reads against Cy will deliver whatever
values O held at time tg, while reads against C; will deliver the values O held
at time t;. Moreover, an alteration to O never requires a page to be pushed to
more than one snapshot object.

A succession of copies may be made from the same original. Thus, if the
object changes frequently, the default chain may grow long. If copies are made
more frequently than the original object changes, the structure may grow bushy.
The mechanism in Mach has some additional fine points:

e A copy may start at a specified offset n in the original. In this case, the
Oth word in C has the same value as the nth word in O, and generally
when there is an ith word in C, it has the same value as the n + ith word
in O.

new default

Ch

So

dependent

Co default default

Figure 3: New Relation Created by a Second Copy Operation (Original Unal-
tered)

e A copy may have a limited length ¢c. In this case, the copy contains at
most £c words; more exactly, it has min(4¢, £o —n) words, where o is the
current length of the original and n is the offset, or 0 if none is specified.

Given that there is a flexible relation between the contents of the original and
those of the copy, we found it convenient to specify the semantics of the copy
operation in a way that allows any function to interrelate their locations.

1.2 Correctness Condition for Copy-on-Write

Intuitively, the copy-on-write mechanism seems just as good as actually carrying
out all the copying; however, questions may remain about just what would
occur with complicated sequences of copy operations. It is also not clear which
states are legitimate, in the sense of which graph-like structures of default and
dependent pointers would make starting points from which the copy-on-write
mechanism behaves as expected.

In this subsection we will describe what correctness means for the copy-
on-write mechanism. In the remainder of the paper, we will establish that it
really is correct in this sense. As part of carrying out the proof strategy, we
will also determine the set of states which provide legitimate starting-points for
copy-on-write behavior.

The sense in which copy-on-write is as good as the unoptimized alternative,
which we will refer to as eager copying, is that user-level processes receive the
same services from the operating system no matter which is used, except that

they presumably receive that service more promptly when copy-on-write is used.
The intuition is that user processes may request a sequence of actions, and that
these actions will issue in the same visible consequences no matter which copy
strategy the operating system selects. So if an applications program exhibits
some behavior when the operating system offers eager copying, then it will
exhibit just the same behavior (except possibly more quickly) if the operating
system instead offers copy-on-write.

Thus we view the operating system as providing a collection of services
to its clients, including operations to copy memory objects, and to fetch and
store values as their contents. We regard these services as providing a state
machine interface. In each state, a set of events is offered. Which set of events
is available will depend on the state of the machine; this is how the model
expresses information made available from the state machine (which, in our
case, represents the kernel) to its environment (which, in our case, represents
the user-level processes).

The fact that copy-on-write is a faithful refinement of eager copy may then
be formalized as the assertion that one machine, which offers services including
a copy operation using the copy-on-write strategy, is a faithful refinement of a
different machine, which instead offers a copy operation using the unoptimized
eager copy. We will refer to the latter as the “abstract” state machine, and to
the former as the “concrete,” or “implementation,” state machine.

One strategy for formalizing this is to introduce an abstraction function. The
abstraction function yields a state of the abstract machine, when given as ar-
gument a state of the implementation machine. The purpose of the abstraction
function is to say which abstract state a concrete state corresponds to. An ab-
straction function may be used when there may be several concrete states, all of
which represent the same abstract state. By contrast, in formalizing refinements
in which a single concrete state may represent several different abstract states,
an abstraction relation is needed, instead of an abstraction function. When a
function is usable, as is the case in the current example, it is more convenient
to do so. We will refer to the abstraction function as abstr.

The main correctness property is the claim that every computation' of the
abstract state machine corresponds to a computation of the implementation
machine and vice versa, in a certain sense of “correspond.” To state it, we will
use | to mean “is defined,” and we will say that s ~ ¢ (read “s is quasi-equivalent
tot”)if (s L Vtl) = s =t Quasi-equivalence says that the terms have the
same denotation or lack thereof, and in our logic [3, 2] it is the condition that
justifies substitution of s for ¢, wherever s is free for t.

If C; is a computation of the implementation, then an abstract computation
C corresponds to C; if there is a non-decreasing function f : N — N onto
the domain of C such that abstr(C;(j)) = C(f(4)), for all j. This notion of

IThat is, a finite or infinite sequence C of states such that C(0) is an initial state, and for
every j where C(j + 1) |, there is an operation h such that C(j + 1) = h(C(j)).

refinement is closely connected with the storage layout relations used in VLISP [6,
5].

The refinement theorems are divided into safety theorems and liveness the-
orems. Suppose first that g is one of the specified operations, with parameters
fixed, and h is the implementation version of that operation. Then the safety
condition states that h(o;) | = abstr(h(c;)) = g(abstr(s;)).

To state the liveness constraints, we will call a function f on implementation
states, which is a composition of state machine operations, an abstract no-op
when abstr(f(o;)) = abstr(o;). The liveness condition for an abstract operation
g and the corresponding concrete operation h states that there is an abstract
no-op f such that

abstr(h(f(0;))) ~ g(abstr(o;))

This is a liveness condition: when the abstract machine can undergo operation
g from abstr(o;), then even if the implementation cannot undergo h from o;, it
can evolve to an indistinguishable state f(o;) from which it can undergo h.

In our case, the situation is slightly more complex. There is a contrast
among two different ways that memory objects can be used in the Mach-style
copy-on-write mechanism. First, there are the objects O and C, which are of
interest to user-level processes, and produced at their request. Second, there are
the snapshot objects S, which are not of interest to user-level processes, but are
rather used by the operating system for its own bookkeeping purposes. These
objects are intended not to be user-visible. Operations intended to be abstract
no-ops, such as adding a snapshot, are in fact no-ops only if there is a way of
masking off the visibility of these system-maintained objects.

One way to do so would be to use an implementation-level state which speci-
fied, in one of its components, which objects are user-visible in that state. There
were two reasons why we have not done so. First, it appeared to be a distraction
from the main line of development, focused on the structure of the default re-
lations. Second, Mach itself does not appear to classify memory objects in this
way. Although there is a notion of an internal memory object, in the current
implementation (Mach 3.0 [1]), it is used differently. It coincides with “tempo-
rary” objects, which are all objects paged against the system’s default pager.
Many of these objects are user-visible, such as ordinary memory allocated in
the address space of a user-level process. Instead, Mach appears to rely on its
convention of naming objects by means of ports to ensure that user-level pro-
cesses do not gain access to snapshot objects. This is a complicated mechanism,
which relies on the assumption that no part of the code of the kernel or of the
default pager will pass a right to the port to any other user-level process.

Thus, we have pursued a different idea. We will add a parameter to the
abstraction function. Thus, given an implementation state and a set of “in-
tended” user visible objects, the abstraction function returns an abstract state
from which other objects have been hidden. Correctness theorems will naturally
assume that certain objects are not user-visible.

In our case, the operations offered by the abstract machine will be:

® a_copy, to cause a new memory object C to have its data initialized to
equal the data of a specified original memory object O;

e q_fetch, to retrieve a word of data from a memory object; and
e qg_store, to alter the value of a word in a memory object.

The semantics of a_store are the eager semantics in which the data of C is
initialized right away.

The implementation machine provides some similar operations, and also an
additional operation. To avoid confusion, we will label corresponding operations
in the implementation machine with a leading

e c_copy, to cause the defaults to be updated for a set of places;

c_redirect, to re-route default pointers from one object to another (always
a snapshot), when it can be used instead;

e c_snapshot, to cause the defaults to be updated for a set of places, when
these are to be used as a snapshot object;

e c_fill, to cause a data to be copied from the source determined by the
default chain;

e c_fetch, to retrieve the word stored in a place by dereferencing through
the default chain;

e c_store, to alter the value of a word in a memory object, but possible only
when the value is immediately present, without using the default chain.

The operation i-fill is used to implement both the “push” that copies a page of
data from O to S and also the “pull” that copies a page of data to C, from either
S or O. The operations c_fetch and c_store are trivial, and omitted below.

In the pages that follow, then, we will concentrate on the kernel level data
structures. However, for our purposes it will be unnecessary to formalize the
dependent pointers. Our formalization can always consider whether O is in the
range of the default pointers. By contrast, the implementation must be able to
efficiently discover the snapshot S that defaults to O.

We have also chosen here to abstract from the issue of page protection, and
the handling of page faults when a process tries to store into a write-protected
portion of a copy-on-write object. We have not postponed it because it raises
difficult questions. On the contrary, we set it to one side because it seems
completely amenable to the method developed in a previous paper [4].

2 The Abstract State Machine

In Mach, memory objects are the natural unit. Memory objects are used both
to represent permanent storage objects such as files and also temporary storage
such as a process’s private address space. Conceptually, a memory object is a
sequence of locations, indexed by natural numbers. Each location stores a word-
sized datum. The association between locations and their contents is modelled
by a function v on P. Thus y(m,n) is the word in memory object m at index n.
However, for the correctness of the copy-on-write strategy this product decom-
position is totally unnecessary. We thus view memory as a homogeneous set of
points called places on which is defined a partial function representing stored
data; the values that can be stored are called words. This abstraction allows
the essential mathematical elements to become more apparent. In this model,
immediate memory is represented by a partial function 7 defined on the set of
places. Though simplifying the mathematics, however, the change of view also
requires that some commonly understood operations (such as copying a portion
of one memory object to another) must be reformulated in a less constrained
manner. We will specify a relation between source and target by giving a func-
tion f from places to places. When f(p1) = pa, that will indicate that the value
for p; should be copied from ps. The function, thus, maps target to source.

Language 2.1 language-for-places
Embedded Language: h-o-real-arithmetic
Base Types: P W

The base types P and W denote places and words respectively.

Theory 2.2 places
Language: language-for-places
Component Theories: h-o-real-arithmetic.

In the view of memory as a product set, “copying” a memory object m to
m' in effect extends the domain of the memory contents function 4 to a new
function ' obtained by composition with the mapping (m',i) — (m,i). This
motivates the following:

Definition 2.3 Let f: P —~P,®: P —~ W.
copy(®, f) = ®o f.
Theory: places

This general definition allows for copying with an offset, and it allows for copying
a limited portion of a memory object.

We want copying to preserve existing memory and not to overwrite memory
locations currently in use. On the other hand, when a copy is made, the source

should have contents. Therefore, a restriction must be imposed on copying
functions; it is embodied in the following definition. The leading <= should
be read, “The following are equivalent.”

Definition 2.4 Let f: P —~P,®:P —~ W.

—
e copyfn(®, f)
e conjunction
oVz:P z€dom{®}D f(z)==z
o ran{f} C dom{®}.

Theory: places
The abstract machine’s copy operation may thus be defined:
Definition 2.5 Let f: P =P, ®: P — W.

a_copy(®, f) = conditionally, if copy fn(®, f)
o then copy(®, f)
o else L[P = W].

Theory: places
We treat the abstract machine’s operation to store with similar generality:

Definition 2.6 Let h,®: P — W.

astore(®,h) =[z:P —
conditionally, if x € dom{h}
e then h(x)
o clse (z)].

Theory: places

On the other hand, the abstract machine’s fetch operation retrieves a value
for a single location. It returns the given state unaltered. However, to determine
the word retrieved, it uses a “guessing” style. If the third argument is the correct
guess for the value to be retrieved, the state is returned unaltered; otherwise,
the result is undefined. This approach is discussed in more detail in [4].

Definition 2.7 Let w: W,p: P, ®: P - W.

afetch(®,p,w) = conditionally, if w = ®(p)
o then ®
o else L[P = W]

Theory: places

10

3 Concrete Machine: The State and its Proper-
ties

We turn next to the structure of the class of implementation states (denoted
by). An implementation state is an ordered pair consisting of a memory
contents function v and a default function 6. We will prove the main theorems in
this section, before introducing the concrete machine’s operations, and applying
them to prove the correctness theorems, in Section 4.

Cartesian Product Sort 3.1 ()
Components: [P = W] [P — P]
Accessors: v &

Constructor: make_istate

Much of the mathematical content needed here concerns function iteration
and a theory of discrete flows. That material has been developed in a more
abstract context; it is presented in the Appendices. Here we will simply import
it. The constant first_entry is introduced in Definition A.11, while flow_ext is
introduced in Definition A.18.

Translation 3.2 ind_2-to-place
Source: generic-theory-2

Target: places

Fixed Theories: h-o-real-arithmetic
Sorts: I, - P L - W

We will overload the symbols first_entry and flow_ext, and use them for the
corresponding notions in this more concrete theory of places and words.

Transported Symbols 3.1 Transport:
first_entry — first_entry flow_ext — flow_ext iterate — iterate
Translation: ind_2-to-place

In the concrete machine, the values stored immediately in memory are used
in combination with the default pointers. If a place p has a value stored imme-
diately, in the sense that (o) (p) is well-defined, then it represents that value. If
it does not, then we consult the default function §(c). We apply §(c) as many
times as needed to reach the immediately available memory. This is formalized
using flow_ext.

Definition 3.3 Let pl: P,o : Q.
promote(o, pl) = flow_ext(6(o),v(o), pl).

Theory: places

11

The bound memory of a state is the set of places for which promote is well
defined. It is written Pg.

Definition 3.4 Let o : (.
Pr(0) = dom{[p: P +— promote(o,p)]}.
Theory: places

Thus we will refer to the immediate memory of a state, meaning the set of p
such that v(o)(p) is well-defined, as well as the bound places of the state, which
are all the places from which we can eventually reach immediate memory, by
following default pointers.

Theorem 3.5 bound%place-characterization
Vo :Q Pg(o)={p: P|firstentry(d(c), dom{v(c)},p) |}
Theory: places

We introduce now an auxiliary abstraction function. This is not the abstrac-
tion function mentioned in the introduction; that has an additional parameter
to specify the set of places intended to be user-visible. This auxiliary function
corresponds to the case in which all places are intended to be visible.

Definition 3.6 Let o : Q.
abstr(o) =[m : P — promote(o, m)].
Theory: places

Observe that Pg(o) = dom(abstr(o)).

One ingredient of the copy-on-write strategy is the factorization of the copy
function, copy = &' o §', where &' is an extension of the default function for the
given state. One application of ¢’ brings us from the copy object to a snapshot;
another is needed to bring us to the original. As the state evolves, the number
of times that the default must be applied to bring us back to immediate memory
may increase.

Thus, we are interested in the places x in the domain of the copy function,
such there is some n such that 6"(z) € dom{~}.

The notation of the following definition requires some explanation: Given
an x : P, we are interested in the first entry of the iterates f"(x) in the set
Pe (o). The first such iterate (if it exists) is of the form f™°(z) for some integer
ng depending on z. We will denote this f[7).

Definition 3.7 Let f : P =~ P,0: Q.
flel =[x : P w first_entry(f, Pe(0),z)].

12

Theory: places

This function symbol is referred to as raise in running prose (or theorem names).

The next result explains how the copy-on-write strategy works. In a way, the
result is stated backwards, because we regard the user-supplied copy function as
being of the form f[°] for some f. This function f must agree with the existing
default function d(c)(z) where it counts, namely on the set Pg (o).

Theorem 3.8 default-modification

Vf:P—="P,0:Q implication
eVz:P s .t z€Ps(o), 60o)(z)~f(x)
e conjunction
o abstr(make_istate(y(c), f)) = copy(abstr(a), fl1)
o copy_fn(abstr(c), flo1).

Theory: places

The other crucial lemma justifying the copy-on-write strategy allows the
default pointers to be redirected. The lemma states that we can alter the
default d(o) to f, wherever f is defined, under a condition. The alteration
will not change the abstract, user-visible state. We isolate the condition in the
predicate c_redirect_fn. A redirection function f for a state o has its range
disjoint from its domain. Also, its range is disjoint from the immediate memory
of 4. Finally, f does not affect §(c) in the sense that d(c)(z) = §(o)(f(x)),
where f is defined at all.

Definition 3.9 Let o : istate, f : place — place.

—
o c_redirect fn(f,0)
e conjunction
o ran{f} N dom{y(c)} =0
o dom{f}Nran{f} =10
o Vz:place s.t. =z € dom{f},
§(0)(x) = 6(0)(f(=))-
Theory: places
Theorem 3.10 default-multiplicity-reduction

Vf : place — place, o : istate implication
o c_redirect_fn(f, o)
e abstr(make_istate(y(o), [z : place —
conditionally, if x € dom{f}
o then f(x)
o else §(o)(2)]))
= abstr(o).

Theory: places

13

Definition 4.4 Let f: P = P,0: Q.

c_copy(o, f) = conditionally, if c_copy_fn(o, f)
e then make_istate(y(o), f)
o else L.

Theory: places

Figure 4: The Concrete Copy Operation

4 Concrete Machine: The Operations and their
Correctness

The definition of a primitive copy operation for the implementation state ma-
chine is given in Figure 4. The safety and liveness theorems justifying it are
Theorems 4.5-4.6. Each of these theorems is a straightforward consequence of
the Default Modification Theorem (3.8). The liveness theorem also requires the
auxiliary notion lower, and a lemma relating it to the raise operation f1.

Definition 4.1 Let f: P = P,0 : Q.

<~
e c_copy-fn(o, f)
eVp:P st péePglo),
f(®) = é(0)(p).

Theory: places
Definition 4.2 Let f: P = P,0 : Q.

lower(o, f) =[p: P — conditionally, if p € Pg(o)
o then 6(o)(p)
o clse f(p)].

Theory: places

Theorem 4.3 raise-lower-composition

Vi:P—=P,0:Q s. t. acopy(abstr(c),f) |,
f = (lower(a, f))l.

Theory: places

Theorem 4.5 copy-safety

14

Definition 4.8 Let f: P = P,0: Q.

c_redirect(c, f) = conditionally, if c_redirect_fu(f, o)
o then make istate(y(o),[z : P — if z € dom{f} then f(z)
else §(o)(x)])
o eclse LA

Theory: places

Figure 5: The Redirect Operation

Vf:P—=P,0:Q s.t ccopy(of)l,
abstr(c_copy(a, f)) = a_copy(abstr(a), flo1).

Theory: places

Theorem 4.6 copy-liveness

Vf:P—=P,0:Q s.t acopy(abstr(c),f) |,
abstr(c_copy(c, lower (o, f))) = a_copy(abstr(a), f).

Theory: places

Theorem 4.7 copy-liveness-corollary

Vi:P—=P,0:Q s. t. acopy(abstr(c),f),
c_copy(a, lower(a, f)) {.

Theory: places

We now introduce—in Figure 4—an operation c_redirect which simply redi-
rects default pointers. Its correctness is an immediate consequence of the Default
Multiplicity Reduction Theorem 3.10.

Theorem 4.9 c¢%redirect-no-op

Vf:P—=P,0:Q s. t credirect(o,f) |,
abstr(c_redirect(o, f)) = abstr(c).

Theory: places
Definition 4.10 Let u : sets[P],g,f : P = W.

—
*f=uyg
o flu=glu.

15

Definition 4.12 Let f: P — P,o : .

c_snapshot(c, f) = conditionally, if a_copy(abstr(c), f) {
e then c_copy(o,lower(o, f))
o else L.

Theory: places

Figure 6: The Snapshot Operation

Theory: places

When a snapshot is added to the state, the snapshot set is the set of locations
that will newly come into service. These are the places in the domain of f which
are not already bound places. By the condition for c_snapshot to be defined, f
must be the identity for bound places.

Definition 4.11 Let f: P =~ P,0: Q.
snapshot_set(a, f) = dom{f} N (C(Pg(0))).

Theory: places

The snapshot operation causes no change in the user-visible portion of the
state, so long as the snapshot set is not regarded as user-visible. The symbol 4
here should be read “is disjoint from.”

Theorem 4.13 ¢%snapshot-no-op

Vf:P = P,v:sets[P],o: Q@ implication
e conjunction
o v ésnapshot_set(a, f)
o c_snapshot(o, f) |
e user_eq(abstr(c), abstr(c_snapshot(a, f)),v).

Theory: places

Using the following definition, we can introduce (in Figure 4) the last inter-
esting state machine operation, c_fill.

Definition 4.14 Let a : sets[place], o : istate.

ifill(o, a) = make_istate([p : place —
conditionally, if p € a
e then promote(a, p)
o clse Lword],default(o)).

16

Definition 4.16 Let a : sets[P], o : Q.

cAill(o,a) = conditionally, if dom{y(c)} C a
o then ifill(c, a)
o else 19).

Theory: places

Figure 7: The Fill Operation

Theory: places

There is a restriction on a in the theorem establishing that ifill is a no-op.
The restriction has the effect of ensuring that the ifill does not throw away
memory that already has immediate contents in o.

Theorem 4.15 ifill-abstraction

Vo : istate, a : sets[place] s. t. dom{v(o)} C a,
abstr(ifill(o, a)) = abstr(o).

Theory: places

Theorem 4.17 c%fill-no-op

Vo :Q,a:sets[P] s. t. cAill(o,a){,
abstr(c) = abstr(c_fill(o, a)).

Theory: places

5 Mach: Three Cases for Copying

With these tools in hand, we can now turn to the details of Mach’s treatment
of the copy-on-write optimization. In order to avoid unnecessary snapshot ob-
jects and redundant copying, the actual Mach system distinguishes three cases.
Suppose that in state o a user-level copy is requested, and let the function h
carry the places of the desired copy object C' to the corresponding places of the
original O. Let AT be

[p:place — if p € bound_place(o) then p else h(p)]
and let &' be lower(o, h). Observe that h' = lower(o, hT).

Theorem 5.1 lower-h%plus

17

default ’—‘ default

c s 0
]

Figure 8: Relations Created by an Initial Copy Operation

c h 0

Figure 9: Relations before Redirection (Case 1)

Vo :Q,h,ht : P =P implication
e ht =[p:P — conditionally, if p € Pa(o)
o thenp
o else h(p)]
e lower(o, h™) = lower (o, h).

Theory: places

In the first case, the original has—as yet—no copies or snapshot objects.
Formally, this is represented by the case where ran(h) and ran(d(c)) are dis-
joint. In this case, to produce the relations pictured in Figure 8, three steps
will be required. First, the system can apply c_copy(o,h') to simulate the in-
tended effect of the a_copy, obtaining a new state o;. Second, a snapshot
is selected. Formally, this consists of choosing a bijection on places g such
that ran(g) = ran(h) and dom(g) is unused. The snapshot object is the set
dom(g). If there is no such g, then the system has run out of storage to use
for its internal snapshot objects, and the operation must fail. Otherwise, let
o2 = c-snapshot(c,g). Let o2 = ccopy(o,h). Finally, in the third step, we
reduce the multiplicity (i.e., reduce the number of default pointers into ran(h)),
by letting o3 = c_redirect(os, (g~ o h)).

Definition 5.2 Leto : Q,h: P — P.

—
e h ok(h,o)
e conjunction
o ran{h} C Pg(0)
o dom{h} 6Pg(0).

18

Theory: places

Definition 5.3 Leto : Q,h,g: P — P.

—
e g h ok(g,h,o)
e conjunction
o bijective-on{g, dom{g}, ran{h}}
o dom{g} 6Pr(0)
o dom{g} 6 dom{d(c)}
o dom{g} 6 dom{h}.

Theory: places

Definition 5.4 Let v : sets[P],g: P — P.

<
e snapshot_not_visible(g, v)
o dom{g}dv.

Theory: places

Theorem 5.5 case-1-mach-copy-thm

Vo :Q,g,h, f,ht,h' : P = P v :sets[P] implication
e conjunction
o h_ok(h, o)
o ran{h} 6 ran{é(o)}
o g-h_ok(g, h,0)
o snapshot_not_visible(g, v)
o ht =[p:P — conditionally, if p € Pr(0)
o thenp
o else h(p)]
o h' =lower(c, ht)
o copy_fn(abstr(c), hT)
o f=[p:P — conditionally, if p € Pg(c_copy(o,h’))
o thenp
o else g(p)]
e a_copy(abstr(c), ht)
=, abstr(c_redirect(c_snapshot(c_copy(a, h'), f),g~1 o h)).

Theory: places

The second case arises when a copy has already been made of all or part of
the original O, and moreover some data has been altered, causing data to be
copied into the snapshot. Here a new snapshot object Sy is created, and the
old snapshot is redirected to it (Figure 10). The second case really subsumes

19

Ch default

default

default g default
0

Co

Figure 10: Relations Created by a Second Copy Operation (Original Altered)

the first, taking Cy and Sy to be empty, and we represent it, like the first case,
as a composition of three state machine operations. Formally, this composite
can be applied correctly even in case 3 below; it simply leads to a less efficient
situation in which storage is wasted and longer chains of default pointers need
to be traversed.

In this case, as in case 1, let g be a bijection on places such that ran(g) =
ran(h) and dom(g) consists of unused places. If no such g exists, we have run
out of storage. Otherwise, let sigma; = c_copy(o1, h') to simulate the intended
effect of the a_copy. Second, we add the new snapshot using c_snapshot(oy, f),
where f is the identity on the bound places of o; and agrees with g elsewhere.
Let o2 be the result. Finally, in the third step, we reduce the multiplicity (i.e.,
reduce the number of default pointers into ran(h)) by redirecting the defaults
of the new copy object and the old snapshot object at once. The result is
o3 = c_redirect(os, (g~ o h')).

Here, as in the other cases, it is quite easy to prove that the two states
a_copy (abstr(c), hT) and

c_redirect(c_snapshot(c_copy (o, h'), f), g o b')

are indistinguishable to the user if the latter is well-defined. The work is showing
that the conditions are met to execute the second and third steps. We show the
theorem that establishes this.

Theorem 5.6 c¢%redirect-c %snapshot-c%copy-definedness-case2

20

Vo :Q,g,h, f,hT,h' : P =P, v:sets[P] implication
e conjunction
o h_ok(h,o)
o g-h_ok(g, h,0o)
o snapshot_not_visible(g, v)
o ht =[p:P — conditionally, if p € Pg(0)
o thenp
o else h(p)]
o h' = lower(c, ht)
o copy_fn(abstr(c), h™)
o f=[p:P — conditionally, if p € Pa(c_copy(o,h'))
o thenp

o else g(p)]
e c_redirect(c_snapshot(c_copy(a, h'), f),g 1 oh') | .

Theory: places

Theorem 5.7 case-2-mach-copy-thm

VYo :Q,g,h, f,ht,h' : P = P,v:sets[P] implication
e conjunction
o h_ok(h,o)
o g-h_ok(g, h,o)
o snapshot_not_visible(g, v)
o ht =[p:P — conditionally, if p € Pg(0)
o thenp
o else h(p)]
o copy_fn(abstr(c), k™)
o h! =lower(c, ht)
o f=[p:P — conditionally, if p € Pa(c_copy(o,h'))
o thenp
o else g(p)]
e a_copy(abstr(c), ht)
&, abstr(c_redirect(c_snapshot(c_copy(a, h'), f),g 1 o h')).

Theory: places

The third case arises when a copy object already exists, but no immediate
data has been filled into the snapshot (Figure 11). Formally, this is the case
where ran(h) C ran(d(c)), but dom(vy(o)) is disjoint from the inverse image of
ran(h) under §(c). We also require that the portion of §(¢) yielding values in
ran(h) should be a bijection. Let g be this subfunction of 6(¢), and let s be
dom(g).

Definition 5.8 Let o : Q,s : sets[P],h,g: P = P.

21

C new default

So
Co default default 0

Figure 11: New Relation Created by a Second Copy Operation (Original Unal-
tered)

<~

e g h oks(g,h,s,0)

e conjunction
o bijective_on{g, s, ran{h}}
o dom{g} 6 dom{~(0)}
o dom{g} 6 dom{h}
oVp:P st g(pd,

9(p) = 6(0)(p)-

Theory: places

In this case, we can achieve the desired result in two steps. First, we apply
c_copy(o,h') to simulate the intended effect of the a_copy. Next, we apply
c_redirect to the resulting state, using g—' o h as the redirection function.

Theorem 5.9 case-3-mach-copy-thm

Vo :Q,g,h,ht b : P — P s,v:sets[P] implication
e conjunction
o h_ok(h,0)
0 g—h—0k3 (ga ha S, U)
o snapshot_not_visible(g, v)
o ht =[p:P — conditionally, if p € Pr(0)
o thenp
o else h(p)]
o h' =lower(c, ht)
o copy_fn(abstr(c), hT)
e a_copy(abstr(a),ht)
= abstr(c_redirect(c_copy(a, h'), g1 o h)).

Theory: places

22

A Iteration of Functions in IMPS

A.1 Basic Properties of Iteration

In order to deal with the Copy-on-Write strategies, we need to define iteration and
state a few general facts about it. This is done in the context of the mvMPS theory
generic-theory-1.

Definition (Recursive) A.1 Letn:Z,z: I, f:I; —I;.

iterate(f,xz)(n) = conditionally, if n =10
e then x
o clse f(iterate(f,z)(n — 1)).

Theory: generic-theory-1
Note that the expression iterate(f, z)(n) is usually written f"(z).

Theorem A.2 iterate-front-back-lemma
Vi:Ii =~ Ii,x:1i,2: Z f(iterate(f,z)(z)) ~ iterate(f, f(x))(2).
Theory: generic-theory-1

The next result says that once an iterate becomes undefined it remains undefined.

Theorem A.3 iterate-definedness-refinement

Vf: I =TI,z :11,2,j: Z implication
e conjunction
°00<j
°0j<z
o iterate(f,z)(z) |
o iterate(f,z)(j) | .

Theory: generic-theory-1

Theorem A.4 iterate-additivity

Vm,n:Z,z: I, f:I1 =1 s.t. 0<nAQ0<m,
iterate(f, iterate(f,)(n))(m) ~ iterate(f, z)(n + m).

Theory: generic-theory-1

Quasi-constructor A.5 Let f:I) = 1Iy,s: sets[Il].

invariant{s, f} ezpands to Vm : I s. t. m € sA f(m) |,
f(m) € s.

Language: pure-generic-theory-1

Theorem A.6 iterate-invariance

23

Vf:Ii = Ti,z : 11,2 : Z,a : sets[I1] implication
e conjunction
o invariant{a, f}
ocxEa
00z
o iterate(f,z)(z) |
o iterate(f, z)(z) € a.

Theory: generic-theory-1

Theorem A.7 iterate-locality

Vi:Ii =~ Ii,z:11,2:Z,a:sets[l;] s. t. invariant{a, f} Az € a,
iterate(f, z)(z) ~ iterate(f[a, x)(2).

Theory: generic-theory-1

The entry_index of f relative to a set s is the first index n for which the iterate
f"(x) lands in s. Later we define first_entry which is the value f"(z).
Definition A.8 Let x : Iy, :sets[Ii], f:I; = I .
entry_index(f, s,xz) = set_min({m : Z |iterate(f, z)(m) € s}).
Theory: generic-theory-1

Theorem A.9 entry%indez-characterization

Vf:Ii = Ij,s:sets[li],z : I1,n: Z <=
e entry_index(f, s,z) =n
e conjunction
o iterate(f,z)(n) € s
oVm:Z m <nD -(iterate(f,z)(m) € s).

Theory: generic-theory-1

Theorem A.10 entry%indez-definedness

Vi:LIi = Iy,s:sets[li],z: i <=
e entry_index(f, s,z) }
e dn:Z iterate(f,z)(n) € s.

Theory: generic-theory-1

Definition A.11 Let z: I, s : sets[I1], f : Iy — I;.
first_entry(f, s, z) = iterate(f, z)(entry_index(f, s, x)).
Theory: generic-theory-1

Theorem A.12 first%entry-locality

Vi: I =T,z : 11,a,s : sets[I1] s. ¢. invariant{a, f} Az € a,
first_entry(f, s, z) ~ first_entry(f| a, s, x).

Theory: generic-theory-1

24

Theorem A.13 first%entry-restriction-lemma

Vi: I =11,z :11,a,s : sets[I1] s. ¢. invariant{a, f} Az € a,
first_entry(f, s, z) ~ first_entry(f, s Na, z).

Theory: generic-theory-1

Theorem A.14 first%entry-characterization

Vf:Ii = Iy, s:sets[li],z,y: Iy <=
o first_entry(f,s,z) =y
e conjunction
oyeEs
odn:Z iterate(f,z)(n) =yA(Vm:Z m <n D -(iterate(f,z)(m) € s)).

Theory: generic-theory-1

Theorem A.15 first%entry-minimality

Vg,f:I; = I, s :sets[I;] implication
e Vr:1i g(x)~ conditionally, if v € s
o then x

o else g(f(z))
eVr:Iy s. t firstentry(f,s,z) |,

first_entry(f,s,z) = g(x).
Theory: generic-theory-1

Theorem A.16 first%entry-definedness

Vf:I = Iy, s:sets[li],z,y: I1 <=
o first_entry(f,s,z) |
e dn:Z iterate(f,z)(n) € s.

Theory: generic-theory-1

Theorem A.17 first%entry-equation

Vf:Ii =T,z : 11, s :sets[I1] first_entry(f,s,z) ~ conditionally, if x € s
o then x
o clse first_entry(f, s, f(x)).

Theory: generic-theory-1

A.2 Flow Extension and its Properties

In the following definition, we view f as generating a discrete flow. The function g is
extended along the flow as follows:

Definition A.18 Letx:1;,9: 11 = I, f: I —14.

flow_ext(f, g, z) = g(first_entry(f, dom{g},x)).
Theory: generic-theory-2

Theorem A.19 flowZ%ext-definedness

25

Vi:Ii =~ Li,g: I ~In,z: 1) A
o flow_ext(f,g,z) |
e In:Z g(iterate(f,z)(n)) | .

Theory: generic-theory-2

Theorem A.20 flow%ext-minimality-lemma
Vg:I1 = Ip, f: Iy = I1,h: Iy = I> implication
e Vz:1; g(x)~ conditionally, if h(x) |
o then h(x)
o else g(f(x))
eVr:1; s t. flowext(f,h,z)],
flow_ext(f, h, z) = g(x).

Theory: generic-theory-2

Theorem A.21 flowZ%ezt-minimality
Vg: I = I, f: Iy =I1,h:I; = I implication
e Vr:1I1 g(x)~ conditionally, if h(x) |
o then h(x)

o else g(f(x))
eVr:I; s. t flowext(f h,z)ld,

flow_ext(f, h, z) ~ g(x).
Theory: generic-theory-2

Theorem A.22 first%entry-iteration

Vi:Ii = I,z : I1,a,s : sets[I1] first_entry(f, {z : I |first_entry(f,s,z) |},) ~

conditionally, if first_entry(f, s, z) |
o then x
o else LI;.

Theory: generic-theory-1

Theorem A.23 domain-of-flow%ext-lemma
Vf:Il—\Il,glll—\IQ,.’L‘ZIl dom{[:c:Il —

flow_ext(f, g,z)]} = {z : I | first_entry(f, dom{g}, z) |}.
Theory: generic-theory-2

Theorem A.24 flow%ext-idempotency

Vi:Ii~Ti,9: I =~ Ih,z: I, flowext(f,[z: 11 —
flow_ext(f,g,z)], z) ~ flow_ext(f, g, z).

Theory: generic-theory-2

Theorem A.25 locality-of-flow%ext

Vi:Ii = I;,9: I = Is,z:11,a,s:sets[I1] s. t. invariant{a, f} Az € a,
flow_ext(f, g, z) ~ flow_ext(f[a, g a,).

Theory: generic-theory-2

26

Theorem A.26 locality-of-flow%ext-corollary

Vf, f1 I — 11,9,91 I — Iz, X : Il, a,s: sets[Il] implication
e conjunction
o invariant{a, f}
oVm:Ii m € a D (f(m)=~ fi(m)Ag(m) =~ gi(m))
oxre€a
e flow_ext(f, g,z) ~ flow_ext(fi, g1,).

Theory: generic-theory-2

Theorem A.27 flowZ%ext-recursive-equation

Vi:L =~ L,g:Ti ~I,o:Li flowext(f,g,%) ~ conditionally, if g(z) |
o then g(z)
e clse flow_ext(f, g, f(x)).

Theory: generic-theory-2

Theorem A.28 flowZ%ext-restriction-lemma
Vi —=Ti,9g: I =~ Ip,z: I, flowext(f,g,z) ~ flow_ext(f[Cdom{g}, g,).
Theory: generic-theory-2

Theorem A.29 flow%ext-restricted-invariance
Vi:Ii =~ Ii,g: I = I, invariant{dom{[z: I, —
flow_ext(f, g,2) 1}, fI Cdom{g}}.

Theory: generic-theory-2

Theorem A.30 flow%ext-complement-invariance

Vf:Ii = I;,9: I = I invariant{Cdom{[z: I —
flow_ext(f,g,z)]}, f}.

Theory: generic-theory-2

Theorem A.31 flow%ezt-domain-monotonicity

Vg: I = I, f: Iy =I1,h:1I; = Io,z:I; implication
e conjunction
o dom{g} C dom{h}
o flow-ext(f, 9,) |
o flow_ext(f,h,z) | .

Theory: generic-theory-2

References

[1] CMU Mach Project. Mach 3.0 source code. Available at
<URL:http://www.cs.cmu.edu/afs/cs/project/mach/public/www/sources/sour/
ces_top.html>, 1993.

[2] W. M. Farmer, J. D. Guttman, and F. J. Thayer. The IMPS user’s manual. Tech-
nical Report M93B-138, The MITRE Corporation, Bedford, MA, November 1993.

27

[3] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPs: an Interac-

[4]

[5]

tive Mathematical Proof System. Journal of Automated Reasoning, 11(2):213-248,
October 1993.

Joshua D. Guttman and Dale M. Johnson. Three applications of Formal Methods
at MITRE. In M. Naftalin, T. Denvir, and Miguel Bertran, editors, FME ’9/:
Industrial Benefits of Formal Methods, volume 873 of Lecture Notes in Computer
Science, pages 55—65. Springer Verlag, 1994.

Joshua D. Guttman, John D. Ramsdell, and Vipin Swarup. The VLISP verified
Scheme system. Lisp and Symbolic Computation, 8(1/2):33-110, 1995.

Joshua D. Guttman, John D. Ramsdell, and Mitchell Wand. VLISP: A verified
implementation of Scheme. Lisp and Symbolic Computation, 8(1/2):5-32, 1995.

Keith Loepere. Mach 3 kernel interfaces. Technical report, Open Software Founda-
tion, Cambridge, MA, July 1992. Jointly copyright by Open Software Foundation
and Carnegie-Mellon University.

Keith Loepere. OSF Mach final draft kernel principles. Technical report, Open
Software Foundation, Cambridge, MA, May 1993. Jointly copyright by Open
Software Foundation and Carnegie-Mellon University.

28

Contents

1

Introduction
1.1 How Copy-on-Write Works
1.2 Correctness Condition for Copy-on-Write

The Abstract State Machine

Concrete Machine: The State and its Properties
Concrete Machine: The Operations and their Correctness
Mach: Three Cases for Copying

Iteration of Functions in IMPS
A.1 Basic Properties of Iteration
A.2 Flow Extension and its Properties

29

N

11

14

17

