
FCL: A Formal Language for Writing Contracts?

William M. Farmer and Qian Hu

McMaster University, Hamilton, Ontario, Canada
{wmfarmer,huq6}@mcmaster.ca

2 August 2017

Abstract. A contract is an artifact that records an agreement made
by the parties of the contract. Although contracts are considered to be
legally binding and can be very complex, they are usually expressed in an
informal language that does not have a precise semantics. As a result, it
is often not clear what a contract is intended to say. This is particularly
true for contracts, like financial derivatives, that express agreements that
depend on certain things that can be observed over time such as actions
taken of the parties, events that happen, and values (like a stock price)
that fluctuate with respect to time. As the complexity of the world and
human interaction grows, contracts are naturally becoming more com-
plex. Continuing to write complex contracts in natural language is not
sustainable if we want the contracts to be understandable and analyz-
able. A better approach is to write contracts in a formal language with a
precise semantics. Contracts expressed in such a language have a math-
ematically precise meaning and can be manipulated by software. The
formal language thus provides a basis for integrating formal methods
into contracts. This paper outlines fcl, a formal language with a precise
semantics for expressing general contracts that may depend on tempo-
rally based conditions. We present the syntax and semantics of fcl and
give two detailed examples of contracts expressed in fcl. We also sketch
a reasoning system for fcl. We argue that the language is more effec-
tive for writing and analyzing contracts than previously proposed formal
contract languages.

Keywords: Contracts, formal languages, simple type theory, observ-
ables, deontic logic, conditional agreements, temporally based conditions.

1 Introduction

A contract records, orally or in writing, a legally binding agreement between
two or more parties [22]. Contracts come in many forms and are used for many

? c© Springer International Publishing AG 2018. Published in: S.H. Rubin and T.
Bouabana-Tebibel, eds., Quality Software Through Reuse and Integration, Advances
in Intelligent Systems and Computing, Vol. 561, DOI 10.1007/978-3-319-56157-8 9,
Springer, 2018 (forthcoming). This is a revised and extended version of [9]. This
research was supported by NSERC.

2 William M. Farmer and Qian Hu

purposes [6, 22]. Written contracts are artifacts that can be stored, analyzed,
modified, and reused. As artifacts, contracts are usually expressed informally in a
natural language such as English. Since natural language does not have a precise
semantics, it can be difficult to write complex ideas in a natural language in a
clear and unambiguous way. Thus contracts that embody complex agreements
can be very difficult to both write and understand when natural language is
used.

The meaning of a contract — that is, what the agreement is — often de-
pends on certain things that can be observed, called observables, such as actions
taken by the parties of the contract, events that happen, and values (like a stock
price) that fluctuate with respect to time. A contract of this kind is dynamic:
the contract’s meaning changes over the course of time. A dynamic contract con-
tains temporally based conditions that trigger changes to the contract’s meaning
when the conditions become true. Since the structure of these conditions can be
very complex, dynamic contracts can be very difficult to understand and ana-
lyze. For example, financial derivatives that derive their values from fluctuating
underlying assets are dynamic contracts that are notorious for being difficult to
value [4].

Contracts — in particular, dynamic contracts — are naturally becoming
more complex as the complexity of the world and human interaction grows.
Continuing to write complex contracts in natural language is not sustainable if
we want the contracts to be understandable and analyzable. A better approach
is to write contracts in a formal language with a precise semantics. Then a
contract becomes a formal object that has a mathematically precise meaning
and that can be manipulated by software. A formal contract of this kind can be
written, analyzed, and manipulated in various ways with the help of sophisticated
software tools.

This paper outlines fcl, a Formal Contract Language with a precise se-
mantics for writing general contracts. In fcl, a contract is a set of components
(definitions, agreements, and rules) that can refer to observables and can include
conditions that depend on observables. The meanings of these components can
change when the values of observables mentioned in them change, and new com-
ponents can be added when conditions become true. Hence the state of a contract
as a set of components can evolve over time in much the same way as the state
of a computer program evolves over time.

The paper is organized as follows. Section 2 presents a simple example of a dy-
namic contract. Section 3 discusses what properties contracts have. An overview
of fcl is given in section 4, and the formal semantics of fcl is outlined in sec-
tion 5. Permissions and reparations are discussed in section 6. Section 7 shows
how the example from Section 2 can be expressed in fcl. A more complex exam-
ple expressed in fcl is given in section 8. A system for reasoning about contracts
written in fcl is sketched in section 9. How fcl is related to other formal and in-
formal contract languages is summarized in section 10. And the paper concludes
with section 11.

FCL: A Formal Language for Writing Contracts 3

2 Example 1: An American Call Option

To illustrate the role of observables and conditions that depend on them in a
dynamic contract, we will consider the following simple example.

Example 1. Consider an American call option for purchasing one share of a
certain kind of stock on June 30, 2015 for $5. The expiration date of the option
is December 17, 2015 (and so the option may be exercised on any date from
June 30, 2015 to December 17, 2015). The strike price of the option is $80. The
transaction of the sale of the stock must be finished within 30 days of payment.

An American option is a contract that gives the owner the right, but not
the obligation, to buy or sell a specified asset at a specified price on or before a
specified date [11]. This example describes the conditions that are required for
the sale of one share of stock. It shows the role that observables and conditions
commonly play in contracts. If a payment of $5 on June 30, 2015 is made to the
option seller to buy the option (first condition), the option contract will become
effective. If the option buyer exercises the option by paying $80 to the option
seller on or before December 17, 2015 (the second condition), the option seller
will transfer one share of the stock to the option buyer within 30 days after
the option is exercised. The payments of $5 and $80 are both observables on
which the first and second conditions respectively depend. The transference of
the stock is also an observable.

This American call option can be deconstructed into three components:

1. Condition 1: The option buyer gives the option seller $5 on June 30, 2015 to
buy an American call option consisting of a conditional agreement composed
of the following two components.

2. Condition 2: The option buyer chooses to exercise the option by paying
$80 to option seller on or before December 17, 2015.

3. Agreement: The option seller is obligated to transfer one share of stock to
the option buyer no later than 30 days after the option is exercised.

The contract thus has the following form:

i f Condition 1
then
i f Condition 2
then Agreement

Both if-then parts of the contract are conditional agreements. The second con-
ditional agreement consists of Condition 2 and Agreement, and the first
conditional consists of Condition 1 and the second conditional agreement.

The offer time of the American call option is the time the option contract is
offered by the option seller to possible buyers. At the offer time, the option con-
tract is not a legally binding agreement. It becomes a legally binding agreement

4 William M. Farmer and Qian Hu

only when the option contract is purchased by the option buyer (i.e., the time
when Condition 1 is satisfied).

A conditional agreement, like either of the two in this example, can be viewed
as a “rule” that generates an agreement depending on the values of certain
observables. In general, different agreements are generated when observables
have different values. Observables determine both the meaning of a contract and
how the meaning of the contract evolves over time.

3 What is a Contract?

Before we present fcl, our formal language for writing contracts, we need to
discuss what a contract is. A contract is an artifact with certain properties.
There is not a clear consensus of which of these properties are necessary and
which are optional. We favor the definition of a contract given by Brian Blum
in [6, p. 2]. He says a contract must have each of the following properties:

– Is an oral or written agreement.
– Involves at least two parties.
– Includes at least one promise made by the parties.
– Establishes an exchange relationship between the parties.
– Is legally enforceable.

A contract is created only because the parties reach agreement on the terms
of the contract. The parties are the people or entities that have mutually agreed
to the contract and are bound by its terms and conditions. In the case of written
agreements, the parties are typically identified as the people or entities that
signed the agreement. For any contract to be valid, there must be at least two
parties. Typically, one party makes an offer and the other party accepts it.
In addition, to be valid a contract must involve the parties in an exchange of
something of value such as services, goods, or a promise to perform some action.
Note that the exchange of money is not necessary.

A contract involves a promise which Blum defines as an “undertaking to act
or refrain from acting in a specified way at some future time” [6, p. 5]. We think
of “undertaking to act” as the deontic notion of obligation. Similarly, we under-
stand “refrain from acting” as the deontic notion of prohibition. Obligation and
prohibition are concepts studied in deontic logic [17]. They have the distinctive
characteristic of being violable. When a promise made in a contract is honored,
we say the promise has been satisfied. If it has not been honored, we say it has
been violated. A promise may be restricted by a temporal bound, that is, a pe-
riod of time during which an obligation or prohibition is in force. For example,
a tenant may be obliged to pay rent on the first day of each month.

We will use an expanded definition of a contract that includes “degenerate
contracts” that would not be considered contracts according to Blum’s definition
but are convenient to include in the space of all possible contracts. For example,
a contract is void if it violates the law [4]. Void contracts are not legally enforce-
able agreements, so by Blum’s definition they are not genuine contracts. We will

FCL: A Formal Language for Writing Contracts 5

consider them to be contracts, but we will designate them as being degenerate.
Similarly, we will consider an agreement between two parties that does not in-
clude a promise or establish an exchange relationship between the parties as a
degenerate contract.

4 Overview of FCL

This section describes the main components of fcl and informally explains their
purpose and meaning. The formal semantics of fcl is outlined in section 5.

4.1 Underlying Logic

We will assume that the underlying logic of fcl is some version of simple type
theory [8]. Simple type theory is a form of high-order logic with function types,
quantification over functions, and function abstraction. The underlying logic
must have the following base types:

1. Bool, a type consisting of the boolean values t (true) and f (false).
2. Time, a type consisting of the integers Z. That is, we assume that time is

represented as a discrete linearly ordered set of values such that each value
has a predecessor and a successor. The values many denote any convenient
measure of time such as days, hours, seconds, etc.

3. Event, a type of events. These can be actions performed by the parties of a
contract as well as events that the parties have no control over.

The underlying logic must include the following constants:

1. true and false of type Bool.
2. obs-event of type Time× Event→ Bool.

true and false represent the truth values t and f, respectively. obs-event is used
to express observations of events as described in section 4.2. The underlying
logic must also have the variable Xtime of type Time. Xtime is used to instantiate
expressions with the current time of a contract.

An expression of fcl is any expression in the underlying logic of fcl. A
formula of fcl is an expression of fcl of type Bool.

Building fcl on simple type theory gives fcl access to the high expressivity
and reasoning power of simple type theory [8]. This means that fcl can be
developed largely by utilizing the standard machinery of simple type theory
without the need to develop new logical ideas.

4.2 Observables

An observable is something that has a variable value that can be observed at a
particular time [20,21]. Let us look at a couple of examples. The temperature of
a room is an observable. Its value at a given time t is the temperature measured

6 William M. Farmer and Qian Hu

in the room at t. An event is an observable whose value is either true or false.
Its value at a given time t is true [false] if the event occurs [does not occur] at t.

An observable of fcl is the application of a constant f of type

Time× α1 × · · · × αn → β

where n ≥ 0. Thus the value of the observable f(t, a1, . . . , an) depends on time
in the sense that it depends on the value of its first argument which is of type
Time. The value of f(t, a1, . . . , an) also depends on the parameters a1, . . . , an.
An observation of fcl is an atomic formula of the form o = v where o is an
observable f(t, a1, . . . , an) and v is a value in the output type of f . When the
output type of f is Bool, o = true and o = false can be written as o and ¬o,
respectively. An observational statement of fcl is a formula of the underlying
logic of fcl constructed from observations using the machinery of the underlying
logic — which includes propositional connectives, quantifiers, and the other usual
machinery of simple type theory.

We will show how the two examples of observables mentioned above can
be expressed in fcl. Let obs-temp be a constant of type Time → Z. Then
obs-temp(t) = a represents the observation that the temperature in a particu-
lar room is a at time t. obs-event(t, e) represents the observation that the event
e occurs at time t.

4.3 Actions

An action is an event that can be performed by the parties of a contract. There
are two sorts of entities involved in an action: subjects and objects. The former
are the entities who perform the action, while the latter are the entities that are
acted upon by the subjects. An action a of type Event is defined as a tuple of
the form (L,α,S,O) where L is the label of an action, α is the act of the action
(i.e., the thing that is performed), S is the set of subjects of the action, and O
is the set of objects of the action.

Contracts typically include actions that specify the transfer of resources
(money, goods, services, and even pieces of information) between parties. The
act of the action would be the transfer of resources from one party (the subject)
to another party (the object). Notice that an action of this kind encodes both
what is transferred and what parties are involved in the transference.

4.4 Constant Definitions

A constant definition of fcl is an expression of the form c = e where c is a
new constant or an application of a new constant and e is an expression that
defines the value of c. Constant definitions are used, among other things, to
define temporally based values.

FCL: A Formal Language for Writing Contracts 7

4.5 Agreements

An agreement is a promise to do or not do a specific action. An agreement of
fcl is an expression of either the form O(a, T) or the form F(a, T) where a is an
action and T is a set of times. O(a, T) is called an obligation; it represents the
promise that the action a will be observed at some time in T . F(a, T) is called
a prohibition; it represents the promise that the action a will not be observed
at any time in T . O(a, T) and F(a, T) are considered to be duals of each other.
The operators O and F are inspired by the deontic operators for obligation and
prohibition [17].

4.6 Rules

A rule R of fcl is inductively defined as an expression of the form

ϕ 7→ B

where ϕ is a formula of fcl and B is a set of constant definitions, agreements,
and rules. We assume that each free variable occurring in a constant definition or
an agreement in B also occurs in ϕ. We will see in section 5 that, if ϕ is satisfied
at time t, the members of B are added to the state of a contract at time t + 1.
Thus a rule can dynamically change the meaning of a contract.

A rule of the form ϕ 7→ {A}, where A is an agreement, represents a condi-
tional agreement.

4.7 Contracts

A contract C of fcl is a pair (toffer,B) where toffer is a time and B is a set of
closed constant definitions, closed agreements, and rules. The parties of C are
the parties mentioned in the agreements in B. toffer is the time the contract is
offered to the parties.

As we will see in the next section, a contract has a state consisting of a set
of constant definitions, agreements, and rules. The state evolves over time like
the state of a program evolves over time. A contract is fulfilled when all the
agreements in its state are satisfied and all the rules in its state are no longer
applicable. A contract is breached when some agreement in its state is violated.

5 Formal Semantics of FCL

This section presents the formal semantics of fcl.

5.1 Models

A model of fcl is a model of stt. Throughout this section let M be a model
of fcl. Let VM be the valuation function of M that assigns each (closed)
expression of fcl a value in M. In particular, VM assigns each observable
f(t, a1, . . . , an) a value for all times t (and parameters a1, . . . , an). Thus a model
includes the values for all observables over all time.

8 William M. Farmer and Qian Hu

5.2 Agreements

Let t ∈ Z and t be some canonical expression whose value is t. The value of an
obligation O(a, T) in M at time t is VM(ϕ) where ϕ is the formula

∃u : Time . u ∈ T ∧ u ≤ t ∧ obs-event(u, a).

The value of a prohibition F(a, T) in M at time t is VM(ψ) where ψ is the
formula

∀u : Time . u ∈ T ⊃ (u ≤ t ∧ ¬obs-event(u, a)).

An agreement is satisfied inM at time t if its value inM at t is t. An agreement
is violated in M at time t if the value of its dual in M at t is t. We will
occasionally use an agreement O(a, T) or F(a, T) as a formula of fcl whose
meaning is ϕ or ψ, respectively.

5.3 Rules

Let R = ϕ 7→ B be a rule of fcl and t ∈ Z. Define sub(ϕ, t) to be the set of
substitutions σ that map the free variables in ϕ to appropriate expressions such
that σ(Xtime) = t. The variable Xtime is used to instantiate a rule with the
current time of a contract. For any expression e and substitution σ ∈ sub(ϕ, t),
let eσ be the result of simultaneously applying σ to each free variable in e if e is
not a rule and to each free variable in e except Xtime if e is a rule. Then define
new-items(R,M, t) to be

{eσ |σ ∈ sub(ϕ, t) ∧ VM(ϕσ) = t ∧ e ∈ B}.

R is active in M at t if VM(ϕσ) = t for some σ ∈ sub(ϕ, t). R is defunct in
M at t if VM(ϕσ) = f for all u ≥ t and all σ ∈ sub(ϕ, u). If R is defunct in M
at t, then R is not active in M at u and new-items(R,M, u) = ∅ for all u ≥ t.

5.4 Contracts

Let C = (toffer,B) be a contract. The state of C in M at time t ≥ toffer, written
state(C,M, t), is the set of constant definitions, agreements, and rules defined
inductively as follows:

1. state(C,M, toffer) = B.
2. If t ≥ toffer, then state(C,M, t+ 1) =

(state(C,M, t)) ∪
⋃
R∈B

new-items(R,M′, t)

where M′ is the smallest expansion of M such that VM(ψ) = t for each
constant definition ψ ∈ state(C,M, t).

FCL: A Formal Language for Writing Contracts 9

The modelM′ in clause 2 is called the C-expansion of M at time t. A model of
C at time t is any C-expansion of a model of fcl at time t.

C is fulfilled in M at time t ≥ toffer if every agreement in state(C,M, t) is
satisfied in the C-expansion ofM at t and every rule in state(C,M, t) is defunct
in the C-expansion of M at t. C is breached in M at time t ≥ toffer if there is
an agreement in state(C,M, t) that is violated in the C-expansion of M at t. C
is null inM at time t ≥ toffer if state(C,M, t) contains no agreements and every
rule in state(C,M, t) is defunct in the C-expansion of M at t.

Notice that we are employing a very simple model of concurrency in our
semantics for contracts: At each time t, all active rules are applied simultaneously
and the resulting new components – constant definitions, agreements, and rules
— are added to the state of the contract at the next point in time. There
is no opportunity for the application of rules to interfere with each other. In
particular, a component can never be removed from the state once it is added
to it. It is possible, however, for a contract state to be produced that contains
contradictions, but this would be caused by a flaw in the contract, not a flaw in
the conceptual framework.

6 Two Additional Concepts

This section explains how permissions and reparations can be expressed in fcl.

6.1 Permissions

Agreements of the form O(a, T) and F(a, T) are used in fcl to represent promises
in the form of obligations and prohibitions. Notice that agreements in fcl do
not include expressions formed using an operator corresponding to the deontic
operator for permission. Unlike an obligation or a prohibition, a permission is
not a promise.

Some kinds of permissions can be expressed in fcl. For example, the per-
mission to exercise a call option is expressed by adding a rule ϕ 7→ B to the
contract’s state where the condition ϕ holds if it is observed that the buyer of
the option exercises the option and B includes an obligation that the seller of
option sells to the buyer the goods specified by the option. See Section 7 for
details.

6.2 Reparations

A contract usually specifies actions to be taken in case of the violation of a
part of the contract. A conditional obligation arising in response to a violated
agreement is considered as a reparational agreement. We extend the example of
a sale of a laser printer contract from [15, p. 5] to explain how a violation that
arises in contract can be “repaired”.

Example 2. The contract consists of five clauses:

10 William M. Farmer and Qian Hu

1. Seller agrees to transfer and deliver to Buyer one laser printer within 22 days
after an order is made.

2. Buyer agrees to accept the goods and to pay a total of $200 for them ac-
cording to the terms further set out below.

3. Buyer agrees to pay for the goods half upon receipt, with the remainder due
within 30 days of delivery.

4. If Buyer fails to pay the second half within 30 days, an additional fine of
10% has to be paid within 14 days.

5. Upon receipt, Buyer has 14 days to return the goods to Seller in original,
unopened packaging. Within 7 days thereafter, Seller has to repay the total
amount to Buyer.

Note that clause 3 of this example is a primary obligation, saying that the
buyer is obligated to pay the second half within 30 days of delivery. Clause 4
of is an example of reparational obligation in which an unfulfilled obligation can
generate obligations to “repair” this violation. It says what the buyer is obligated
to do if he or she violates the primary obligation.

Similar to the reparational obligation, a reparational prohibition is a condi-
tional agreement arising in response to a violated prohibition. Both reparational
obligations and reparational prohibitions are reparational agreements. In fcl, a
reparational agreement is expressed as a rule that creates other agreements or
rules in response to the violation of the primary agreement. To express the poten-
tial violations, we introduce obs-event-during(t, T , e) to represent the observation
at time t that the event e occurred during the time period T .

In fcl, a reparational obligation of O(a, T) is expressed as a rule of the form

¬obs-event-during(Xtime, T , a) 7→ B.

¬obs-event-during(Xtime, T , a) represents a potential violation of agreement
O(a, T). If an obligation is satisfied, the rule to “repair” this obligation will
never be active. Similarly, a reparational prohibition of F(a, T) is expressed as
a rule of the form

obs-event-during(Xtime, T , a) 7→ B.

A rule that represents a reparational prohibition of F(a, T) will always be defunct
if the agreement F(a, T) is satisfied.

Consider clause 4 of Example 2, the reparational obligation of the primary
obligation given in clause 3 is the conditional agreement that, if the second half
of payment has not been observed within 30 days of delivery, then the buyer has
to pay an additional fine of 10% within 14 days. How this conditional agreement
is expressed in fcl is shown in section 8.

7 Example 1 Formalized: An American Call Option

We formalize here the American Call Option introduced in Section 2 as a con-
tract C of fcl. C has two parties: a seller and a buyer. The unit of time is one

FCL: A Formal Language for Writing Contracts 11

day. Let the offer time toffer of the contract, the time the seller offered the con-
tract to the buyer, be some day before June 30, 2015. C is defined as the pair
(toffer, {D1, D2, R1}) where:

D1 : tbuy = 0 (June 30, 2015).
D2 : texpire = 170 (December 17, 2015).
R1 is defined below.

C is constructed from two rules R1 and R2:

1. Rule for Buying the Option:
R1 = ϕ1 7→ {R2} where:
ϕ1 = obs-event(tbuy, e1).
e1 = (“Buy Option”, transfer($5), {buyer}, {seller}).
R2 is defined below.

2. Rule for Exercising the Option:
R2 = ϕ2 7→ {D3, A} where:
ϕ2 = obs-event(Xtime, e2) ∧ tbuy ≤ Xtime ≤ texpire.
e2 = (“Exercise Option”, transfer($80), {buyer}, {seller}).
D3 : texercise = Xtime.
A = O(e3, [texercise, texercise + 30]).
e3 = (“Transfer Stock”, transfer(stock), {seller}, {buyer}).

tbuy, texpire, and texercise are new constants of type Time. [texercise, texercise +30] is
the interval representing the set of times {texercise, texercise + 1, . . . , texercise + 30}.

Each of the three events e1, e2, and e3 are actions by one of the two parties.
The three events are tied to the contract. For example, a more exact name for
“Buy Option” would be “Buy Option Described by Contract C”. We assume
that each of the three events can happen as most once. ϕ1 asserts the option is
bought on June 30, 2015, and ϕ2 asserts the option is exercised at a time after
the option is bought and before the option expires.

The state of C in a model M at time t ≥ toffer, written as state(C,M, t),
evolves over time as indicated in Figure 1. How the state of C evolves depends on
the observables specified byM. In the figure, let u be the time that R2 becomes
active, i.e, when the buyer exercises the option. Let σ be the substitution that
maps Xtime to u. Applying σ has the effect of replacing Xtime with u, whose
value is the time u. D3σ is thus the equation texercise = u, but Aσ is A since
Xtime does not occur in A.

8 Example 2 Formalized: a Sale of Goods Contract

We previously saw an encoding of the American Call Option in fcl. In this
section we formalize the sale of the printer contract introduced in Section 6.2.
Although this example contract is very simple, two points should be noticed.
First, as illustrated in Section 6.2, this contract includes a reparational agreement
that can used to repair a potential violation. Second, consider the total amount

12 William M. Farmer and Qian Hu

state(C,M, toffer) = {D1, D2, R1} null

state(C,M, tbuy + 1) = {D1, D2, R1, R2} null

state(C,M, texercise + 1) = {D1, D2, D3σ,Aσ,R1, R2} breached

fulfilled

R1 is defunct

R1 is active

R1, R2 are defunct

R2 is active

Aσ is violated

Aσ is satisfied; R1, R2 are defunct

Fig. 1. Execution of the American Call Option C

specified in clause 5. Taken literally, it would imply that the total amount the
seller must repay to buyer in case of a return of the printer should be $200 as
stated in clause 2. Actually, this is certainly not the seller’s intention. In fact,
the total amount to be repaid should be the amount that the buyer has already
paid the seller (which may not be the full $200).

Now we formalize this contract in fcl to explain how we deal with the
problems mentioned above. Let C be this contract expressed in fcl. C has two
parties: a seller and a buyer. The unit of time is one day. C is defined as the pair
(toffer, {R1}) where toffer is the time when the seller offered the contract to the
buyer.

C is constructed from the following nine rules:

1. Rule for Ordering a Printer:
R1 = ϕ1 7→ {D1, A1, R2}.
ϕ1 = obs-event(Xtime, e1) ∧ toffer ≤ Xtime.
e1 = (“Order Printer”, transfer(order), {buyer}, {seller}).
D1 : torder = Xtime.
A1 = O(e2, [torder, torder + 22]).
e2 = (“Deliver Printer”, transfer(printer), {seller}, {buyer}).
R2 is defined below.

2. Rule for Delivering the Printer:
R2 = ϕ2 7→ {D2, D3, R3, R4, R5, R6}.
ϕ2 = obs-event(Xtime, e2) ∧ torder ≤ Xtime ≤ torder + 22.
D2 : tdeliver = Xtime.
D3 : total-payment(Xtime) = 0.
R3, R4, R5 and R6 are defined below.

FCL: A Formal Language for Writing Contracts 13

3. Rule for Returning the Printer:
R3 = ϕ3 7→ {D4, A2}.
ϕ3 = obs-event(Xtime, e3) ∧ tdeliver ≤ Xtime ≤ tdeliver + 14.
e3 = (“Return Printer”, transfer(printer), {buyer}, {seller}).
D4 : treturn = Xtime.
A2 = O(e4(total-payment(Xtime)), [treturn, treturn + 7]).
e4 = λXtotal.(“Return Payment”, transfer(Xtotal), {seller}, {buyer}).

4. Rules for Recording the Payment:
R4 = ϕ4 ∧ ¬ϕ5 7→ {D5}.
R5 = ¬ϕ4 ∧ ¬ϕ5 7→ {D6}.
ϕ4 = obs-event(Xtime, e5(Xpayment)) ∧ tdeliver ≤ Xtime.
e5 = λXpayment.(“Pay Seller”, transfer(Xpayment), {buyer}, {seller}).
ϕ5 = obs-event-before(Xtime, Xtime, e3).
D5 : total-payment(Xtime) = total-payment(Xtime − 1) +Xpayment.
D6 : total-payment(Xtime) = total-payment(Xtime − 1).

5. Rules for Making Payments:
R6 = ¬ϕ6 7→ {A3, R7}.
ϕ6 = obs-event-before(Xtime, tdeliver + 1, e3).
A3 = O(e5(200/2), [tdeliver, tdeliver + 1]).
R7 = ϕ7 ∧ ¬ϕ5 7→ {D7, R8}.
ϕ7 = obs-event(Xtime, e5(200/2)) ∧ tdeliver ≤ Xtime ≤ tdeliver + 1.
D7 : tfirst = Xtime.
R8 = ¬ϕ8 ∧ ¬ϕ5 7→ {R9}.
ϕ8 = obs-event-during(Xtime, [tfirst + 1, tdeliver + 14], e5(200/2)).
R9 is defined below.

6. Rules for Paying Fine for a Late Payment:
R9 = ¬ϕ9 7→ {A4, A5}.
ϕ9 = obs-event-during(Xtime, [tdeliver + 15, tdeliver + 30], e5(200/2)).
A4 = O(e5(200/2), [tdeliver + 31, tdeliver + 44]).
A5 = O(e5(10% ∗ 200/2), [tdeliver + 31, tdeliver + 44]).

torder, tdeliver, treturn, and tfirst are new constants of type Time. Each of the five
events e1, e2, e3, e4, and e5 are actions by one of the two parties. We assume
that the events e1, e2, e3, e4 can happen at most once and the “Pay Seller” event
e5 can happen at most twice.

total-payment(t) represents the total amount that the buyer has been observed
to have paid the seller at time t. When rule R4 is active, D5 is generated. D5 is
used to add a payment to the total amount paid at the previous time point. D5

and D6 work together to record the happenings of the “Pay Seller” event e5 in the
timeline. obs-event-before(t, t′, e), a constant of type (Time×Time×Event)→ Bool,
represents the observation at time t that the event e occurred on or before the
time t′.

We identify that the buyer has the following options to choose from after he
has accepted the printer and made the first payment:

1. Buyer makes a return within 14 days after the delivery is made.

14 William M. Farmer and Qian Hu

2. Buyer makes the second payment within 14 days after the delivery made.
3. Buyer makes the second payment between 15 to 30 days after the delivery

made.
4. Buyer makes the second payment with an additional fine between 31 to 44

days after the delivery made.

R8 and R9 work together as a reparation if the second payment is not made
on time. Within 14 days the buyer has the first and second options to choose
from. R8 says if the first two options have not been chosen, then between 15 to
44 days the buyer is obligated to make the second payment. If it is paid late,
which means R9 is active, then an additional fine must be paid.

9 A Reasoning System

In this section we will sketch a reasoning system for fcl which is an extension
of a proof system for simple type theory. Let t be an expression of type Time

whose value is the time t, ϕ be a formula, Γ be a set of formulas, A be an
agreement, R be a rule, and C be a contract. For a model M of fcl, M � ϕ
means VM(ϕ) = t and M � Γ means M � ψ for all ψ ∈ Γ .

A reasoning system for simple type theory (and other traditional logics)
has a judgment of the form Γ ` ϕ that asserts ϕ logically follows from Γ , i.e,
M � Γ implies M � ϕ for all models M of fcl. Since constant definitions,
agreements, and rules are not expressions of simple type theory, we need the
following additional judgments in a reasoning system for fcl:

1. Γ `C,t ϕ asserts that ϕ logically follows from Γ and C at t, i.e., M � Γ
implies M � ϕ for all models M of C at t.

2. Agreement[Γ,A,C, t] asserts that A is in the state of C at t with respect to
Γ , i.e., M � Γ implies A ∈ state(C,M, t) for all models M of fcl.

3. Rule[Γ,R,C, t] asserts that R is in the state of the C at t with respect to Γ ,
i.e., M � Γ implies R ∈ state(C,M, t) for all models M of fcl.

4. Satisfied[Γ,A,C, t] asserts that A is satisfied at t with respect to Γ , i.e.,
M � Γ implies that A is satisfied in M at t for all models M of C at t.

5. Violated[Γ,A,C, t] asserts thatA is violated at t with respect to Γ , i.e.,M � Γ
implies A is violated in M at t for all models M of C at t.

6. Defunct[Γ,R,C, t] asserts that R is defunct at t with respect to Γ , i.e.,M � Γ
implies R is defunct in M at t for all models M of C at t.

7. Fulfilled[Γ,C, t] asserts that C is fulfilled at t with respect to Γ , i.e., M � Γ
implies C is fulfilled in M at t for all models M of C at t.

8. Breached[Γ,C, t] asserts that C is breached at t with respect to Γ , i.e.,M � Γ
implies C is breached in M at t for all models M of C at t.

The role of Γ is to specify the models in which C will be considered.
The reasoning system has several rules of inference including the usual rules of

inference for simple type theory. There is a rule of inference that shows Γ `C,t ϕ
extends Γ ` ϕ:

FCL: A Formal Language for Writing Contracts 15

Γ ` ϕ
Γ `C,t ϕ

.

The rule of inference says that if ϕ follows from Γ , then ϕ follows from Γ and
C at t for any contract C and time t.

The following three rules of inference show how a rule changes the state of a
contract:

Rule[Γ,R,C, t], Γ `C,t ϕσ
Γ `C,t+1 ψ1σ, . . . , Γ `C,t+1 ψkσ

Rule[Γ,R,C, t], Γ `C,t ϕσ
Agreement[Γ,A1σ,C, t+ 1], . . . ,Agreement[Γ,Amσ,C, t+ 1]

Rule[Γ,R,C, t], Γ `C,t ϕσ
Rule[Γ,R1σ,C, t+ 1], . . . ,Rule[Γ,Rnσ,C, t+ 1]

where
R = ϕ 7→ {ψ1, . . . , ψk, A1, . . . , Am, R1, . . . , Rn},

ψ1, . . . , ψk are constant definitions, A1, . . . , Am are agreements, R1, . . . , Rn are
rules, and σ ∈ sub(ϕ, t)

There is a rule of inference for satisfied agreements:

Agreement[Γ,A,C, t], Γ `C,t A
Satisfied[Γ,A,C, t]

.

There are similar rules of inference for violated agreements, defunct rules, fulfilled
contracts, and breached contracts.

A reasoning system of this kind can be used to both prove statements about
a contract and to simulate the unfolding of a contract over time. The latter is
done by using Γ to specify the observations that are expected over the course of
the contract. The reasoning system can be strengthened by introducing temporal
operators that enable one to say, for example, that it follows from Γ that C will
be eventually be fulfilled.

10 Related Work

Several formal languages for writing contracts have been proposed. Our language
fcl is most closely related to the following work:

– S. L. Peyton Jones and J. M. Eber (J&E) [20,21].
– A. Goodchild, C. Herring, and Z. Milosevic (GHM) [12].
– G. Governatori and Z. Milosevic (G&M) [13,14,16].

16 William M. Farmer and Qian Hu

– J. Andersen, E. Elsborg, F. Henglein, J. G. Simonsen, and C. Stefansen
(AEHSS) [1].

– C. Prisacariu and G. Schneider (P&S) [10,23–26].
– P. Bahr, J. Berthold, M. Elsman (BBE) [5].
– LegalRuleML Technical Committee (TC) [2, 3].

The domains of these approaches are varied: J&E’s and BBE’s works are
restricted to financial contracts; GHM builds a domain-specific language for
business contracts; AEHSS is concerned with formalizing commercial contracts;
and the LegalRuleML TC focuses on the creation of machine-readable forms of
the content of legal texts, such as legislation, regulations, contracts, and case
law, for different concrete Web applications. Same as P&S’s work, our proposed
language fcl considers the formalization of general contracts that are agreements
written by and for humans.

Several techniques are employed in the literature for developing a precise
formal language for specifying contracts. Most of the techniques, such as those
given in [12, 13, 16], belong to the event-condition-action (ECA) based scheme.
GHM and G&M model contracts as sets of policies. A policy specifies that a legal
entity is either forbidden or obliged to perform an action under certain event-
based conditions. AEHSS provide an action-trace based language [1] to model
contracts. J&E’s functional programming based language [20, 21] and BBE’s
cash-flow trace based approach [5] use the idea of observables to specify events.
P&S introduce in [23–26] a contract language CL for expressing electronic con-
tracts based on a combination of concepts from deontic, dynamic, and temporal
logic. CL restricts deontic modalities to ought-to-do statements and adds the
modalities of dynamic logic to be able to reason about what happens after an
action is performed. Rather than providing a logical language for contracts, the
LegalRuleML TC extends RuleML to provide a rule interchange language with
formal features specific for the legal domain. This enables implementers to struc-
ture the contents of the legal texts in a machine-readable format by using the
representation tools. Motivated by the ECA-based formalisms and the idea of
observables, we introduce in fcl the concept of a rule that is (in its simplest
form) a conditional agreement that depends on certain observations. The use of
observables to determine both the meaning of a contract and how the meaning
of the contract evolves over time provides a basis for monitoring the dynamic
aspects of a contract.

Only P&S’s CL language and LegalRuleML can specify reparation clauses.
CL language incorporates the notions of contrary-to-duty and contrary-to-
prohibition by explicitly attaching to the deontic modalities a reparation which
is to be enforced in case of violations. LegalRuleML introduces in [2] a subor-
der list that is a list of deontic formulas to model penalties. We think CL’s and
LegalRuleML’s use of only contrary-to-duty obligations to recover a contract
when it is breached is too limited. There is no provision provided for recovery
from technical or business-related issues. In fcl, we interpret an agreement in
a contract in terms of the deontic concepts of obligation and prohibition. These
concepts are applied in expressions to actions that are executed by the parties of

FCL: A Formal Language for Writing Contracts 17

the contract. Thus, the concepts express what a party ought to do and or ought
not do. fcl rules can also be used for reparational purposes when an agreement
is violated (see subsection 6.2).

With the exception of approaches provided by AEHSS, BBE, P&S, and Legal-
RuleML TC, all of the languages above are informal. The work of both AEHSS
and P&S include a trace-based reduction semantics model for contracts. These
two approaches provide a run-time monitoring of the fulfillment and breach of
a contract since the state of a contract at a time is determined by the events
that have happened. LegalRuleML utilizes the defeasible deontic logic to rea-
son about violations of obligations. Both GHM’s work and G&M’s work lack
a formal semantics and a reasoning system even though they provide a good
framework for monitoring contracts. The semantics provided by J&E in [21] is
based on stochastic processes. J&E’s approach provides the ability to perform
compositional analysis of monetary values of contracts. This work can estimate
the expected value of financial contracts. BBE’s trace-based semantics allows
the modification of a contract according to the passage of time and the values
of observables. But since both of the approaches provided by J&E and BBE
pay more attention to finding the monetary value of contracts, they consider
the semantic meaning of a contract to be its cash-flow gain or loss, which is too
limited for general contracts from our point of view. We find this lack of work on
formal semantics surprising since one of the main benefits of defining a contract
language to be formal is to enable the language to have a precise, unambiguous
semantics.

Although the languages of AEHSS and P&S provide a formal mathematical
model for contracts with a formal semantics and are able to express some impor-
tant features of contracts, they are not as expressive as fcl. For example, in the
case where a contract is breached, the monitor should not only report a breach of
contract, but also who among the contract parties is responsible (blame assign-
ment). Except for the languages provided by BBE and LegalRuleML TC, all the
other contracts covered by these approaches, including the work of AEHSS and
P&S, are two-party contracts in which the parties are implicit. These approaches
are not able to determine who is to be blamed when a contract is breached. Our
proposed language provides explicit participants and thus provides the possibil-
ity of having contracts with both an unrestricted number of parties and with
blame assignment.

In addition, because time constraints are implicit in P&S’s CL language,
it only has relative deadlines where one party’s commitment to do something
depends on when the other party has performed an action. Our proposed lan-
guage fcl has not only relative temporal constraints, but also absolute temporal
constraints.

11 Conclusion and Future Work

In this paper we have presented fcl, a formal language for writing contracts
that may contain temporally based conditions. Changes to the meaning of a

18 William M. Farmer and Qian Hu

fcl contract are triggered when the conditions in it become true. fcl admits
agreements that correspond to the deontic notions of obligation and prohibition,
can express conditions that depend on events and other observables, and include
condition-based rules to define new constants and introduce new agreements and
rules. We have sketched a reasoning system for fcl. To our knowledge, no other
formal contract language is as expressive as fcl.

fcl offers three advantages to the contract writer. First, since fcl has a pre-
cise semantics, contracts written in fcl have an unambiguous meaning. Second,
since the underlying logic of fcl is simple type theory, the semantics of contracts
written in fcl is based on very well understood ideas and the logical tools for
writing contracts in fcl are very expressive. Third, since fcl is a formal lan-
guage, software-implemented formal methods can be used to assist in the writing
and analysis of fcl contracts. In particular, we can use software tools to check
whether an action in a contract has been performed or not, to report whether a
contract has been fulfilled or violated, to compute the value of a contract, etc.
We can also use software tools to reason about possible future outcomes of a
contract and about the relationship between different contracts.

Our future work will include (1) extending the design of fcl, (2) writing
several additional examples of contracts in fcl, (3) finishing the development
of a reasoning system for fcl, (4) designing a module system for building con-
tracts out of contract modules, and (5) integrating fcl with contract law and
regulations. We will also validate fcl by implementing it in Agda [7, 18, 19], a
dependently typed functional programming language. In a future paper, we will
give a full presentation of fcl and its implementation in Agda.

Acknowledgments

The authors are grateful to the reviewers for their comments and suggestions.
This research was supported by NSERC.

References

1. Andersen, J., Elsborg, E., Henglein, F., Simonsen, J., Stefansen, C.: Compositional
specification of commercial contracts. International Journal on Software Tools for
Technology Transfer (STTT) 8(6), 485–516 (2006)

2. Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.:
OASIS LegalRuleML. In: Francesconi, E., Verheij, B. (eds.) ICAIL. pp. 3–12. ACM
(2013)

3. Athan, T., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.Z.: Legal-
RuleML: Design principles and foundations. In: Wolfgang Faber and Adrian Pashke
(ed.) The 11th Reasoning Web Summer School. pp. 151–188. Springer, Berlin, Ger-
many (July 2015)

4. Attorney, R.S.: Contracts: The Essential Business Desk Reference. Nolo (2010)

FCL: A Formal Language for Writing Contracts 19

5. Bahr, P., Berthold, J., Elsman, M.: Certified symbolic management of financial
multi-party contracts. In: Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, Vancouver, BC, Canada,
September 1-3, 2015. pp. 315–327 (2015)

6. Blum, B.A.: Contracts: Examples and Explanations. Aspen Publishers, fourth edn.
(2007)

7. Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda — A functional language
with dependent types. In: TPHOLs. vol. 9, pp. 73–78. Springer (2009)

8. Farmer, W.M.: The seven virtues of simple type theory. Journal of Applied Logic
6, 267–286 (2008)

9. Farmer, W.M., Hu, Q.: A formal language for writing contracts. In: 2016 IEEE
17th International Conference on Information Reuse and Integration (IRI 2016).
pp. 134–141. IEEE (2016)

10. Fenech, S., Pace, G.J., Schneider, G.: Automatic conflict detection on contracts.
In: International Colloquium on Theoretical Aspects of Computing. pp. 200–214.
Springer (2009)

11. Finan, M.B.: A discussion of financial economics in actuarial models: A preparation
for exam mfe/3f (2015), prepared for Arkansas Tech University

12. Goodchild, A., Herring, C., Milosevic, Z.: Business contracts for B2B. In: Proceed-
ings of the CAISE00 Workshop on Infrastructure for Dynamic Business-to-Business
Service Outsourcing, Stockholm, Sweden (2000)

13. Governatori, G., Milosevic, Z.: A formal analysis of a business contract language.
International Journal of Cooperative Information Systems 15(04), 659–685 (2006)

14. Governatori, G., Rotolo, A.: Logic of violations: a gentzen system for reasoning
with contrary-to-duty obligations. Australasian Journal of Logic 4, 193–215 (2005)

15. Hvitved, T., Klaedtke, F., Zălinescu, E.: A trace-based model for multiparty con-
tracts. Journal of Logic and Algebraic Programming (2011)

16. Linington, P.F., Milosevic, Z., Cole, J., Gibson, S., Kulkarni, S., Neal, S.: A uni-
fied behavioural model and a contract language for extended enterprise. Data &
Knowledge Engineering 51(1), 5–29 (2004)

17. McNamara, P.: Deontic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy. Winter 2014 edn. (2014)

18. Norell, U.: Towards a Practical Programming Language based on Dependent Type
Theory. Ph.D. thesis, Chalmers University of Technology (2007)

19. Norell, U.: Dependently typed programming in Agda. In: Kennedy, A., Ahmed,
A. (eds.) Proceedings of the 4th International Workshop on Types in Language
Design and Implementation. pp. 1–2. No. 2 in TLDI ’09, ACM, New York, NY,
USA (2009)

20. Peyton Jones, S.L.: Composing contracts: An adventure in financial engineering.
In: Proceedings of the International Symposium of Formal Methods Europe on
Formal Methods for Increasing Software Productivity. Lecture Notes in Computer
Science, vol. 2021, p. 435. Springer (2001)

21. Peyton Jones, S.L., Eber, J.M.: How to write a financial contract. In: Gibbons,
J., de Moor, O. (eds.) The Fun of Programming, pp. 105–130. Cornerstones in
Computing, Palgrave (2003)

22. Poole, J.: Textbook on Contract Law. Oxford University Press, 11 edn. (2012)

23. Prisacariu, C., Schneider, G.: An algebraic structure for the action-based contract
language cl-theoretical results. Tech. rep., Technical Report 361, Department of
Informatics, University of Oslo, Oslo, Norway (2007)

20 William M. Farmer and Qian Hu

24. Prisacariu, C., Schneider, G.: A formal language for electronic contracts. In: In-
ternational Conference on Formal Methods for Open Object-Based Distributed
Systems. pp. 174 – 189. Springer (2007)

25. Prisacariu, C., Schneider, G.: Towards a formal definition of electronic contracts.
Tech. rep., Technical Report 348, Department of Informatics, University of Oslo,
Oslo, Norway (2007)

26. Prisacariu, C., Schneider, G.: A dynamic deontic logic for complex contracts. The
Journal of Logic and Algebraic Programming 81, 458–490 (2012)

