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Abstract.
Mathematics is a process of creating, exploring, and connecting mathematical mod-
els. This paper presents an overview of a formal framework for managing the mathe-
matics process as well as the mathematical knowledge produced by the process. The
central idea of the framework is the notion of a biform theory which is simultaneously
an axiomatic theory and an algorithmic theory. Representing a collection of mathe-
matical models, a biform theory provides a formal context for both deduction and
computation. The framework includes facilities for deriving theorems via a mixture
of deduction and computation, constructing sound deduction and computation rules,
and developing networks of biform theories linked by interpretations. The framework
is not tied to a specific underlying logic; indeed, it is intended to be used with several
background logics simultaneously. Many of the ideas and mechanisms used in the
framework are inspired by the imps Interactive Mathematical Proof System and the
Axiom computer algebra system.

Keywords: Mechanized mathematics, computer theorem proving, computer alge-
bra, axiomatic method, little theories method

AMS subject classification: 00, 03, 68

1. Introduction

What is mathematics? Mathematics is a process of creation, explo-
ration, and connection. It consists of three intertwined activities:

1. Model creation. Mathematical models representing mathematical
aspects of the world are created.

∗ To appear in: B. Buchberger, G. Gonnet, and M. Hazewinkel, eds., Mathemat-
ical Knowledge Management, special issue of Annals of Mathematics and Artificial
Intelligence, 2003.
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2. Model exploration. The models are explored by stating and prov-
ing conjectures and by performing computations.1

3. Model connection. The models are connected to each other so
that results obtained in one model can be used in other related
models.

Although mathematical models come in many forms, most mathemati-
cal models can be considered as collections of objects related in certain
ways. For example, the standard model of the natural numbers consists
of an infinite set N = {0, 1, 2, . . .}, the usual binary operations + and
∗ on N , and the usual binary relations = and < on N .

By producing models and knowledge about models, the mathematics
process enlarges the body of mathematical knowledge. Mathematical
knowledge, in turn, fuels the mathematics process. Old ideas are joined
and refined into new ideas. Old structures are extended and refashioned
into new structures. Patterns are discovered and illuminated.

The mathematics process has produced a body of mathematical
knowledge that is truly overwhelming in both size and complexity and
that is being enlarged at an ever increasing rate. Compared to other
disciplines, the system for managing the mathematics process and the
knowledge it produces is very primitive and has changed relatively little
in the last half century. Although computers are used extensively for
performing computations, they are rarely used for the other parts of the
mathematics process. The great majority of mathematical knowledge
is expressed in the abbreviated, informal, non-machine-readable style
mathematicians have employed for centuries. In this new century, how
should mathematics be managed to best facilitate its further produc-
tion via the mathematics process and its application in science and
technology?

This question is one of the most important questions facing math-
ematics today. We believe that the answer to it should be a formal
framework that meets the following goals:

1. Model Representation. The framework provides a way of repre-
senting models and knowledge about models.

2. Process Facilitation. The framework facilitates the full process of
creating, exploring, and connecting models.

3. Mechanization. The framework can be effectively mechanized by
a software system.

1 Visualization is another important model exploration technique which is not
considered in this paper.
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There are two principal candidates for such a framework: computer
theorem proving and computer algebra.

Computer Theorem Proving

Computer theorem proving emphasizes the conjecture proving aspect of
the mathematics process. An axiomatic theory T is used to represent a
collection of one or more mathematical models with similar structure.
Formally, T is a triple (K, L,Γ) where K is a logic (consisting of a
family of formal languages and a set of models for each language), L
is a language of K, and Γ is a set of formulas of L. The members of
Γ are called the axioms of T . A model of T is a model of K for L
in which each axiom of T holds. The language L provides a common
vocabulary for making statements about the models of T . Each logical
consequence of the axioms of T holds in each model of T . Example 1.1
below presents a formulation of Peano arithmetic, a famous axiomatic
theory that represents the standard model of the natural numbers.

The computer theorem proving framework is mechanized by a wide
range of different kinds of computer theorem provers. Examples include
Automath [45], Coq [2], eves [15], hol [36], imps [28], Isabelle [47],
Mizar [50], Nqthm [5], Nuprl [14], Otter [43], and pvs [46]. Most theo-
rem provers are primarily used to prove conjectures in the context of an
axiomatic theory. Other aspects of the mathematics process are usually
not well supported. However, some can be used to manage the creation,
extension, and connection of axiomatic theories, and some can perform
computations in the process of proving conjectures.

EXAMPLE 1.1 (Peano Arithmetic). Let L be a language of second-
order logic (SOL) with exactly two nonlogical constants:

1. An individual constant 0.

2. A unary function constant S (the successor function).

(L also contains the binary predicate constant = which is considered a
logical constant.)

Let Γ be the set of the following three formulas of L:

1. ∀x . S(x) 6= 0 (0 is not a successor).

2. ∀x, y . S(x) = S(y) ⊃ x = y (S is injective).

3. ∀P . [P (0) ∧ (∀x . P (x) ⊃ P (S(x)))] ⊃ ∀x . P (x) (induction
axiom).
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PA = (SOL, L,Γ) is the (second-order) theory of Peano arithmetic.
PA specifies a single model (up to isomorphism), namely, the standard
model of the natural numbers. (The operations + and ∗, the relation
<, and the natural numbers 1, 2, . . . , are definable in PA.) 2

PA is a powerful theory which is well suited for proving general
theorems about the standard model of the natural numbers. How-
ever, it has some significant shortcomings. First, let PA′ be PA plus
definitions for +, ∗, <, and each nonzero natural number n. PA′ is
not finitely axiomatizable (even in second-order logic), which means
that PA′ cannot be represented in a computer system without some
kind of procedural mechanism for encoding the infinite set of defini-
tions {1 = S(0), 2 = S(S(0)), . . .}. Second, to prove an equation such
as 4671 ∗ 8334 = 38928114 directly from the axioms of PA′ requires a
prodigious number of steps, while it can be proved with one calculation
using a simple calculator.

Computer Algebra

Computer algebra emphasizes the computational aspect of the math-
ematics process. An algorithmic theory T usually represents a single
mathematical model. Formally, T is a triple (K, L,Γ) where K is a
logic, L is a formal language of K, and Γ is a set of algorithms that
take expressions of L as input and return expressions of L as output.
The language L provides a vocabulary for making statements about the
model T represents. The algorithms exhibit the behavior that the model
possesses. Example 1.2 below presents a simple algorithmic theory that
represents the standard model of the natural numbers.

The computer algebra framework is mechanized by computer algebra
systems. Examples include Axiom [40], Macsyma [42], Maple [10], and
Mathematica [54]. Most computer algebra systems are designed primar-
ily for performing computations. Computations are performed at great
speed, but the results are not always reliable. The algorithmic theories
in which computation is performed are usually not represented as ex-
plicit, manageable units. Conjecture proving is generally not possible
since mathematical knowledge is represented algorithmically.

EXAMPLE 1.2 (Natural Number Arithmetic). Let L be a language of
first-order logic (FOL) with the following nonlogical constants:

1. Infinitely many individual constants 0, 1, 2, . . . .

2. Two binary function constants + and ∗.

3. One binary predicate constant <.
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(L also includes the binary predicate constant = which is considered a
logical constant.) A numeral of L is a member of {0, 1, 2, . . .}, a numeric
term of L is a variable-free term of L, and a numeric formula of L is
an equation t1 = t2 or inequality t1 < t2 where t1 and t2 are numeric
terms of L.

Let eval be an algorithm that, given a numeric term t of L, returns
the numeral that “equals” t. Let reduce be an algorithm that, given
a numeric formula A, returns the logical constant true or false if A is
“true” or “false”, respectively. NNA = (FOL, L, {eval, reduce}) is an
algorithmic theory of natural number arithmetic. NNA specifies the
standard model of the natural numbers. 2

NNA is a powerful theory for evaluating (variable-free) numeric
terms and deciding equations and inequalities between (variable-free)
numeric terms. However, it is not at all suitable for proving abstract
properties about the natural numbers. For example, it does not provide
the means to prove the fundamental theorem of arithmetic that says
every natural number > 1 can be factored into a product of primes
that is unique up to the order of the factors.

Neither computer theorem proving nor computer algebra fulfills our
requirements for a formal framework for managing mathematics. First,
some knowledge about mathematical models is best encoded declara-
tively using axioms, while other knowledge is best encoded procedurally
using algorithms that manipulate expressions. A formal framework
should allow models and knowledge about models to be represented
in both ways. Second, the full process of creating, exploring, and con-
necting mathematical models should be supported. Emphasizing just
conjecture proving or just computation is not enough. The power of the
mathematics process comes from the rich interplay of creating models,
exploring them using both deduction and computation, and connecting
them when they share structure.

Our Proposal for a Formal Framework

In this paper we propose a Formal Framework for Managing Mathe-
matics (ffmm). It is for managing both the mathematics process and
the knowledge it produces. ffmm is based on the notion of a biform
theory which is simultaneously an axiomatic theory and an algorith-
mic theory. A biform theory represents a collection of mathematical
models by encoding knowledge about the models both declaratively
and procedurally. ffmm is intended to support the full mathematics
process; it provides the means to manage the creation, exploration, and
connection of biform theories. ffmm includes facilities for “derivation”,
“theoremoid construction”, and “theory development”. Derivation is a
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merger of deduction and computation which is driven by the application
of deduction and computation rules called theoremoids. Theoremoids
are constructed from theorems and axiomoids, the primitive theore-
moids of a biform theory, using techniques that guarantee soundness.
And networks of biform theories are developed by creating biform
theories, linking them with interpretations, and installing theorems,
theoremoids, and definitions in them.

Many of the ideas and mechanisms used in ffmm are inspired by
the imps Interactive Mathematical Proof System [31, 28, 29] and the
Axiom [40] computer algebra system. The mechanization of ffmm is
not discussed in this paper. We believe that ffmm can be mechanized
using ideas embodied in computer theorem proving systems like imps

and computer algebra systems like Axiom and Maple.
This paper presents an overview of ffmm; proofs and many other

details are not presented. For a detailed presentation of ffmm, see the
technical report [33].

There is a large body of work related to our proposal concerning
(1) logical frameworks for managing logical systems and investigating
metalogical issues and (2) the problem of integrating computer theorem
proving and computer algebra. This related work is discussed at the end
of the paper in section 11.

The rest of the paper is organized as follows. The properties that a
background logic for ffmm must satisfy are discussed in section 2. The
central notion of a biform theory is defined in section 3. Two techniques
for constructing theoremoids are discussed in section 4. Derivation,
the process for exploring biform theories, is introduced in section 5.
Connecting biform theories using translations and interpretations is the
subject of section 6. A brief overview of the ffmm infrastructure for
developing networks of biform theories is found in section 7. Sections 8
and 9 present two special computational devices, algebraic processors
and computational models. The paper then ends with a conclusion in
section 10 and a survey of related work in section 11.

2. Logics

ffmm is not based on one particular background logic. Instead, math-
ematics can be formalized within a variety of traditional logics such as
first-order logic and simple type theory. Moreover, several background
logics can be used in ffmm simultaneously, and mathematical results
can be shared between related logics (see section 6).

Each background logic must satisfy a relatively small set of prop-
erties. These properties are expressed in the notion of an “admissible
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logic” defined precisely in [33]. An admissible logic is a classical noncon-
structive, two-valued logic defined as a family of “admissible languages”
(that usually share a common structure).

Languages

A language is a triple L = (S, E , σ) where:

1. S is a set of syntactic objects called the sorts of L.

2. E is a set of syntactic objects called the expressions of L.

3. σ : E → S is a total function.

The phrase “E is an expression of L of sort α” means that E ∈ E and
σ(E) = α.

Let E be an expression of L, E1 be a subexpression of E at position
p in E, and E2 be an expression of L such that σ(E1) = σ(E2). The
result of replacing E1 at position p in E with E2 is the syntactic object
denoted by E[p/E2]. We assume that E[p/E2] is an expression of L of
the same sort as E. That is, we assume that all languages are closed
under the replacement of a subexpression with another expression of
the same sort. E is atomic if it contains no subexpressions other than
itself.

Let Li = (Si, E i, σi) be a language for i = 1, 2. L1 is a sublanguage of
L2 and L2 is an extension of L1, written L1 ≤ L2, if S1 ⊆ S2, E1 ⊆ E2,
and σ1 is a subfunction of σ2.

A language L = (S, E , σ) is admissible if the following conditions
hold:

1. S contains ∗, which denotes the sort of truth values.

2. true and false are expressions of L of sort ∗.

3. If E,E′, E1, . . . , En are expressions of L of sort ∗ (0 ≤ n), then
¬E (negation), (E ⊃ E′) (implication), ∧(E1, . . . , En) (multi-
ary conjunction), and ∨(E1, . . . , En) (multiary disjunction) are
expressions of L of sort ∗.

4. If E1 and E2 are expressions of L of the same sort, then (E1 ' E2)
is an expression of L of sort ∗ (called an equation) that asserts
the equality of E1 and E2.2

2 In a standard logic, (E1 ' E2) means that E1 and E2 denote the same value,
while in a logic that admits undefinedness like lutins [18, 19, 20], the logic of imps,
(E1 ' E2) means that either E1 and E2 denote the same value or E1 and E2 are
both undefined.
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5. If E1, E2, E3 are expressions of L with σ(E1) = ∗ and σ(E2) =
σ(E3) = α, then if(E1, E2, E3) is an expression of sort α (called
a conditional) that denotes E2 if E1 is true and denotes E3 if E1

is false.

In summary, a language is admissible if it contains certain basic machin-
ery for forming propositional statements, equations, and conditionals.
Let a formula be an expression of an admissible language of sort ∗.

Models

A semantics for an admissible language L is given by a set of models
for L (see [33]). Let M be a set of models for L, M = (D, V ) ∈ M,
A be a formula of L, and Σ be a set of formulas of L. M satisfies A,
written M |= A, if V (A) = t (i.e., A is true in M). M satisfies Σ,
written M |= Σ, if M satisfies each B ∈ Σ. A is valid with respect
to M, written |=M A, if every model in M satisfies A. A is a logical
consequence of Σ with respect to M, written Σ |=M A, if every model
in M that satisfies Σ also satisfies A.

Local Contexts

Let E and E1 ' E2 be expressions of L such that E1 is a subexpression
of E at position p, M be a set of models for L, and C be a set of
formulas occurring in E. C is a local context in E at p with respect to
M if, for all sets Σ of formulas of L,

Σ ∪ C |=M E1 ' E2

implies

Σ |=M E ' E[p/E2].

In other words, a local context in an expression E at a position p is a
set of formulas in E that govern the subexpression of E occurring at
p. For example, {A} is a local context at the position where B occurs
in A ⊃ B and {A1, . . . , Ai−1} is a local context at the position where
Ai occurs in ∧(A1, . . . , An).

The method of local contexts [44] is a powerful idea that is applicable
to both deduction and computation. See [28, 30] for examples of how
local contexts are used in imps to facilitate deduction and computation.
In ffmm, local contexts are used to control the local application of
deduction and computation rules (see section 5).
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Admissible Logics

An admissible logic is a triple K = (L, µ, κ) such that:

1. L is a set of admissible languages.

2. For each L ∈ L, µ(L) is a set of models for L.

3. For each expression E of L ∈ L and position p in E, κ(E, p) is a
local context in E at p with respect to µ(L).

Many traditional logics (including propositional logic, first-order logic,
and simple type theory) can be formulated as admissible logics. Logics
that admit undefinedness, such as lutins [18, 19, 20], the logic of
imps, and other related logics (see [24, 25]), can also be formulated
as admissible logics.3

For examples later in the paper, let Kstt = (L, µ, κ) be an admissible
logic formulation of Church’s simple type theory [11].

3. Theories

In this section we introduce the central notion of a “biform theory”,
which is a generalization of both an axiomatic theory and an algorith-
mic theory. The “axioms” of a biform theory have both an axiomatic
meaning and an algorithmic meaning. As a result, a biform theory is
simultaneously an axiomatic theory and an algorithmic theory. Repre-
senting a collection of mathematical models, a biform theory provides
a formal context for deduction and computation.

Transformers

Deduction and computation rules are represented in ffmm as algo-
rithms called “transformers” that map expressions of one admissible
language to expressions of another.

Let Li = (Si, E i, σi) be an admissible language for i = 1, 2. A
transformer Π from L1 to L2 is an algorithm that implements a partial
function π : E1 ⇀ E2. For E ∈ E1, let Π(E) mean π(E), and let dom(Π)
denote the domain of π, i.e., the subset of E1 on which π is defined. Π
resides in a language L = (S, E , σ) if Π is a transformer from L to L
and, for all expressions E ∈ dom(Π), σ(E) = σ(Π(E)).

A transformer is intended to be an expression transforming algo-
rithm that preserves meaning or modifies meaning in a prescribed way.

3 For the logics lutins and stmm [24], this requires adding machinery to the
framework to handle “subsorts”.
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For instance, a transformer can represent an evaluator, a simplifier, a
rewrite rule, a rule of inference, a decision procedure, or a translation
from one language to another. Various examples of transformers will
be given later in the paper.

REMARK 3.1. Context-sensitive deduction and computation rules,
that give different values under different assumptions, can be repre-
sented by transformers that return conditionals.

Suppose Π is a transformer residing in a language L. Let E be an
expression of L and E1 be a subexpression of E at position p in E.
The application of Π to E at p, written Π(E, p), is the expression
E[p/Π(E1)]. Π(E, p) is undefined if Π(E1) is undefined. (Since L is a
language, E[p/Π(E1)] is an expression of L of sort σ(E) if Π(E1) is
defined.)

Formuloids

A “formuloid” generalizes a formula and an algorithm.
Let L be an admissible language. A formuloid of L is a pair θ =

(k,X) where:

1. k ∈ {0, 1, 2, . . .} is the kind of θ.

2. If k = 0, then X is a formula A of L and θ is called an assertional
formuloid.

3. If k > 0, then X is a transformer Π residing in L and θ is called
a transformational formuloid.

A formuloid of kind 1 is called an equational formuloid. In this paper,
we will concentrate our attention on formuloids of kind 0 and 1, i.e.,
on assertional and equational formuloids. Many other useful kinds of
transformational formuloids can be defined (see [33] for examples).

The span of θ, written span(θ), is a set of formulas of L. If k = 0,
span(θ) = {A}. If k = 1, span(θ) = {E ' Π(E) : E ∈ dom(Π)}. For
a transformational formuloid of kind k > 1, span(θ) will normally be
a set of formulas relating the input of Π to its output. For example,
span(θ) could be a set of implications E ⊃ Π(E), inequalities E <
Π(E), transitive relations R(E,Π(E)), etc.

The operation of θ, written oper(θ), is a transformational formuloid.
If k = 0, oper(θ) = (1,ΠA7→true) where ΠA7→true is a transformer that
maps A to true but is undefined on all other expressions. If k ≥ 1,
oper(θ) = θ. A formuloid has two meanings. Its axiomatic meaning is
its span of formulas, and its algorithmic meaning is its operation.
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Biform Theories

A biform theory is a triple T = (K, L,Γ) where:

1. K = (L, µ, κ) is an admissible logic called the logic of T .

2. L is a member of L called the language of T .

3. Γ is a set of formuloids of L called the axiomoids of T .

The span of T , written span(T ), is the union of the spans of the
axiomoids of T , i.e.,⋃

θ∈Γ

span(θ).

The operations of T , written oper(T ), is the set of operations of the
axiomoids of T , i.e.,

{oper(θ) : θ ∈ Γ}.

T can be viewed as having two forms simultaneously: (K, L, span(T ))
is its form as an axiomatic theory and (K, L, oper(T )) is its form as an
algorithmic theory.

A model of T is a model M ∈ µ(L) such that M |= span(T ). A is
an axiom of T if A ∈ span(T ). A is a theorem of T , written T |= A,
if span(T ) |=µ(L) A. Let thm(T ) denote the set of theorems of T . A
theoremoid of T is a formuloid θ of L such that, for each A ∈ span(θ),
T |= A. Obviously, each axiomoid of T is also a theoremoid of T . Let
thmoid(T ) denote the set of theoremoids of T .

REMARK 3.2. The great majority of commonly used rules of infer-
ence can be represented by transformational formuloids of one kind or
another. The exceptions include rules like universal generalization (∀-
introduction) and existential instantiation (∃-elimination). In [22], we
show how rules of inference of this kind can be realized with conserva-
tive extensions made from “profiles” (see section 7). 2

Let K = (L, µ, κ) be an admissible logic and Ti = (K, Li,Γi) be
a biform theory for i = 1, 2. T1 is a subtheory of T2 and T2 is an
extension of T1, written T1 ≤ T2, if L1 ≤ L2 and thm(T1) ⊆ thm(T2).4

If T = (K, L,Γ) is a biform theory and ∆ is a set of formuloids of
4 Notice that this definition does not require that Γ1 ⊆ Γ2, i.e., that T2 con-

tain all the axiomoids of T1. Thus two theories that are equivalent in the sense of
being subtheories of each other could be based on entirely different axiomatic and
algorithmic assumptions.
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languages in L, then T [∆] is the extension T ′ = (K, L′,Γ ∪ ∆) of T
where L′ is the smallest language in L such that L ≤ L′ and each θ ∈ ∆
is a formuloid of L′. (T [∆] may not always be defined.) Obviously, if
T [∆] is defined, T ≤ T [∆]. For a set of formulas Σ, let T [Σ] mean
T [{(0, A) : A ∈ Σ}], and for a single formula A, let T [A] mean T [{A}].

For examples later in the paper, let Tstt = (Kstt, Lstt,Γstt) be a
biform theory formulation of the logical theory of Kstt.

EXAMPLE 3.3 (Biform Theory of Peano Arithmetic). Let Tpa =
(Kstt, Lpa,Γpa) be an extension of Tstt such that:

1. Lstt ≤ Lpa.

2. Lpa includes atomic expressions 0, 1, 2, . . . of sort ι; an atomic
expression S of sort (ι→ ι); atomic expressions + and ∗ of sort
(ι→ (ι→ ι)); and an atomic expression < of sort (ι→ (ι→ ∗)).
(ι, the sort of individuals, is intended to denote the set of natural
numbers.)

3. Γpa = Γstt ∪ {θ1, . . . , θ8} where:

a) θ1, θ2, and θ3 are assertional axiomoids representing the
three axioms of the axiomatic theory PA presented in
Example 1.1.

b) θ4, θ5, and θ6 are assertional axiomoids that define the
operations + and ∗ and the relation <, respectively.

c) θ7 and θ8 are equational axiomoids representing the al-
gorithms eval and reduce of the algorithmic theory NNA
presented in Example 1.2.

Tpa is biform theory formulation of Peano arithmetic that combines the
axiomatic and algorithmic machinery of PA and NNA. 2

It is important to emphasize that the axiomoids of a biform theory
are assumptions. The members of their spans are assumed to be true
and the results of their operations are assumed to be sound. Thus,
the transformational axiomoids θ7 and θ8 of Example 3.3 are taken
as assumptions and whether or not they are sound in Tpa is not a
meaningful question.
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4. Theoremoid Construction

In the next section we will present the notion of “derivation”, a merger
of deduction and computation. We will see that the essence of deriva-
tion is the application of theoremoids. Effective derivation requires a
well-stocked toolbox of theoremoids for each employed biform theory.
Of course, the toolbox of theoremoids for a theory contains the ax-
iomoids of the theory, but these may not embody all the reasoning and
computational techniques that are desired. How are other theoremoids
obtained?

There are two parts to the answer for a biform theory T . First, if
A is a theorem of T , then (0, A) will always be an assertional theore-
moid of T . Second, a transformational theoremoid of T is obtained by
constructing a transformer Π residing in the language of T and then
proving that, for some k ∈ {1, 2, . . .}, (k,Π) is a theoremoid of T .

ffmm does not include a general system for proving that a given
transformational formuloid is a theoremoid of a particular theory. In-
stead, it includes a collection of techniques for constructing transfor-
mational formuloids for which theoremoidhood is guaranteed by the
construction itself. Two of the techniques are described in this sec-
tion. A third technique, based on theory interpretation, is described
in section 6. Together these techniques constitute a toolkit for building
sound deduction and computation tools in the form of transformational
theoremoids.

Computing with Theorems

One can define a family of theorem-to-theoremoid constructors for Kstt

that automatically generate transformational theoremoids from theo-
rems, in the style of theorem macetes as employed in imps (see [28, 30]).
The form of the generated transformational theoremoid depends on the
syntactic form of the theorem.

For example, suppose the theorem A is a formula of the form

∀x1 : α1, . . . , xn : αn . B ⊃ E1 ' E2

where each xi is a quantified variable of sort αi that may occur in B, E1,
and E2. Define θA to be (1,ΠA) where ΠA is a transformer residing in L
defined as follows: If E is alpha-equivalent to E1τ , where τ is a substitu-
tion with domain {x1, . . . , xn}, then Π(E) = if(Bτ,E2τ, E); otherwise
Π(E) is undefined. θA is an equational theoremoid of T that applies A
as a conditional rewrite rule (the “reverse” conditional rewrite rule can
also be generated from A). When θA is applied in a derivation graph,
it introduces a conditional that can be resolved by simplification or
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split with the split-conditional operator (see section 5). Other examples
of theorem-to-theoremoid constructors using quantification are given
in [32, 33].

This method of generating transformational theoremoids from the-
orems is a very powerful technique. Transformational theoremoids are
designed by writing formulas of the right form, are verified by proving
that the formulas are theorems, and, finally, are constructed automat-
ically. Thus the construction of a large collection of useful transforma-
tional theoremoids is reduced to essentially just theorem formulation
and proving.

Combining Theoremoids

A theoremoid combinator forms a new transformational theoremoid
from a set of existing transformational theoremoids. Theoremoid com-
binators are inspired by the macete constructors of imps (see [28, 30]).

For example, the fixpoint combinator builds a transformational the-
oremoid whose transformer has the effect of repeating applying the
transformer of a given transformational theoremoid to an expression
until the expression remains unchanged. Let T = (K, L,Γ) be a biform
theory and θ = (k,Π) ∈ thmoid(T ) where 0 < k. For n ≥ 1, define
Πn to be Π if n = 1 and Π ◦Πn−1 otherwise. Now define fixpoint(θ) to
be (k,Π′) where Π′ is defined as follows. Let E be an expression of L.
Π′(E) = E′ if, for some n ≥ 1, each of Π1(E), . . . ,Πn+1(E) is defined,
Πi(E) 6= Πi+1(E) for all i with 1 ≤ i < n, and E′ = Πn(E) = Πn+1(E).
Π′(E) is undefined otherwise. It is easy to see that whenever θ is an
equational theoremoid of T (i.e., k = 1), fixpoint(θ) is also a equational
theoremoid of T .

Several other theoremoid combinators are given in [32, 33].

5. Derivation

In ffmm, a biform theory provides a context for performing both de-
ductions and computations, and more importantly, operations in which
deduction and computation are intertwined. We want to replace the
unfortunate separation between deduction and computation with a new
notion that combines the two, which we will call derivation.

We need a formal workspace for building derivations, that is, inter-
twined deductions and computations. The workspace should work with
biform theories of any fixed admissible logic. Our solution is the notion
of a “derivation graph” defined in this section. It is a generalization of
the notion of a deduction graph employed in imps (see [28]).
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Table I. Derivation Graph Connectors

Name Tuple Meaning

implication (1, N1, N2) where N1, N2 N1 ⇒ N2

are assertional

biimplication (2, N1, N2) where N1, N2 N1 ⇔ N2

are assertional

one-to-many (3, N0, {N1, . . . , Nn}) N0 ⇔ N1 & · · · & Nn
where N0, N1, . . . , Nn are
assertional (1 ≤ n)

computation (4, N1, N2, N) where N N
is assertional

Derivation graphs have several levels. We will concentrate on the
base level of a derivation graph that defines derivation at the low-
est level. Above the base level are several other levels of structure
that are intended to raise derivation to a level at which mathematics
practitioners will be comfortable.

Derivation Graphs: Base Level

Let K be an admissible logic. A (derivation graph) node N of K is a pair
(T,E) such that T = (K, L,Γ) is a biform theory and E is an expression
of L. The node (T,E) is intended to represent the expression E in the
context of the biform theory T . N is assertional if E is a formula.
An assertional node N = (T,A) represents the assertion T |= A. It is
analogous to a sequent node in an imps deduction graph; T plays the
role of the context and A plays the role of the assertion.

Let N1 = (T1, A1) and N2 = (T2, A2) be assertional nodes of K.
N1 ⇒ N2 means that, if T1 |= A1, then T2 |= A2. N1 & N2 means both
T1 |= A1 and T2 |= A2 hold. And, N1 ⇔ N2 means both N1 ⇒ N2 and
N2 ⇒ N1 hold.

There are four kinds of (derivation graph) connectors named impli-
cation, biimplication, one-to-many, and computation. They are given in
Table I. Each connector is a tuple consisting of a kind k ∈ {1, 2, 3, 4},
and a certain collection of nodes. The intended meaning of each kind
of connector is given in the table. A derivation graph connector is
analogous to an inference node in an imps deduction graph; in fact,
a inference node can be represented as a combination of an implication
connector and a one-to-many connector.

The computation connector is used to connect two nodes N1 =
(T1, E1) and N2 = (T2, E2) related to each other by a computation.
The relationship between E1 and E2 is recorded by an assertional node
N = (T,A). The form of A is not restricted. For example, A could
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be an equation E1 ' E2, an inequality E1 < E2, a transitive relation
R(E1, E2), etc.

A derivation graph of K is a pair G = (N , C) such that N is a
finite set of nodes of K and C is a finite set of connectors that contain
only nodes in N . A derivation graph is intended to record a web of
deductions and computations. Trees of assertional nodes connected by
the first three kinds of connectors represent deductions, while sequences
of nodes connected by computation connectors represent computations.

Let a truth node be an assertional node of the form (T, true). For
each G, let N true

G be a canonical truth node. An initial derivation graph
is a derivation graph G of the form ({N true

G }, ∅). Derivation graphs are
built from an initial derivation graph G by applying “operators” that
add new nodes and connectors to G.

There are nine primitive (derivation graph) operators for adding
nodes and connectors to a derivation graph. They are defined in Ta-
ble II. Each operator takes a derivation graph G = (N , C) (of an admis-
sible logic K) and other objects (the inputs), and returns a derivation
graph

G′ = (N ∪N ′, C ∪ C′)

obtained by adding a finite set N ′ of nodes (the output nodes) and a
finite set C′ of connectors (the output connectors) to G. (The output
nodes are required to be nodes of K.)

add-node simply adds a node to the derivation graph. strengthen-1
and strengthen-2 create new nodes by replacing the theory T of a node
in the derivation graph with an extension of T . eliminate-implication,
split-conjunction, split-biimplication, and split-conditional are restructur-
ing operators. apply-0-thmoid and apply-1-thmoid are operators for ap-
plying theoremoids of kind 0 and 1, respectively, to nodes in the deriva-
tion graph. They provide the means to employ the formulas and trans-
formers asserted by the axiomoids and other theoremoids of biform
theories. Notice that these operators exploit the local context at the
position where a theoremoid is to be applied. For each kind of theore-
moid of kind k > 1, there will be a corresponding operator theoremoid
apply-k-thmoid.

Each operator is well defined in the sense that, if an operator is
applied to a derivation graph, the result is still a derivation graph. A
derivation graph is admissible if it is an initial derivation graph or it is
the result of applying an operator to an admissible derivation graph.
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Table II. The Primitive Derivation Graph Operators

Name Input Objects Output Objects

add-node T = (K, L,Γ) is a N = (T,E)
biform theory

E is an expression of L

strengthen-1 N = (T,A) ∈ N is N ′ = (T ′, A)
assertional C = (1, N,N ′)

T ′ is a biform theory
with T ≤ T ′

strengthen-2 N = (T,E) ∈ N N ′ = (T ′, E)
T ′ is a biform theory N0 = (T ′, E ' E)

with T ≤ T ′ C1 = (4, N,N ′, N0)
C2 = (2, N0, N

true
G )

eliminate-implication N = (T,A1 ⊃ A2) ∈ N N ′ = (T [A1], A2)
C = (2, N,N ′)

split-conjunction N = (T,∧(A1, . . . , An)) Ni = (T,Ai)
∈ N for i = 1, . . . , n

C = (3, N, {N1, . . . , Nn})
split-biimplication N = (T,A1 ' A2) ∈ N N1 = (T,A1)

where A1 and A2 are N2 = (T,A2)
formulas C = (2, N1, N2)

split-conditional N = (T,E) ∈ N N0 = (T [κ(E, p)], A)
p is a position of N ′ = (T,E[p/E1])

if(A,E1, E2) in E N1 = (T,E ' E[p/E1])
C1 = (4, N,N ′, N1)
C2 = (1, N0, N1)

apply-0-thmoid N = (T,E) ∈ N N ′ = (T,E[p/true])
p is a position of A in E N0 = (T,E ' E[p/true])
θ = (0, A) ∈ C1 = (4, N,N ′, N0)

thmoid(T [κ(E, p)]) C2 = (2, N0, N
true
G )

apply-1-thmoid N = (T,E) ∈ N N ′ = (T,Π(E, p))
p is a position in E N0 = (T,E ' Π(E, p))
θ = (1,Π) ∈ C1 = (4, N,N ′, N0)

thmoid(T [κ(E, p)]) C2 = (2, N0, N
true
G )

and Π(E, p) is defined

5.1. Deductions and Computations

Fix an admissible derivation graph G = (NG, CG). A deduction of N
from N in G is a pair ∆ = (N∆, C∆) such that {N} ∪N ⊆ N∆ ⊆ NG

and C∆ ⊆ CG and one of the following is true:

1. N∆ = N = {N} and C∆ = ∅.

2. ∆′ = (N∆′ , C∆′) is a deduction of N ′ from N in G, N∆ = N∆′ ∪
{N}, and C∆ = C∆′ ∪ {C} where C is (1, N ′, N), (2, N ′, N), or
(2, N,N ′).
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3. ∆i = (N∆i , C∆i) is a deduction of Ni from N i in G for all i
with 1 ≤ i ≤ n (1 ≤ n), N∆ = N∆1 ∪ · · · ∪ N∆n ∪ {N}, N =
N 1∪· · ·∪N n, and C∆ = C∆1∪· · ·∪C∆n∪{(3, N, {N1, . . . , Nn})}.

A proof of N in G is a deduction of N from a set of truth nodes in G.

THEOREM 5.1 (Soundness of Deductions). Let G be an admissible
derivation graph. If there is a deduction of N from N = {N1, . . . , Nn}
in G, then N1 & · · · & Nn ⇒ N . Moreover, if there is a proof of
N = (T,A) in G, then T |= A.

Let N and N ′ be nodes of G and T be a biform theory. An equational
computation from N to N ′ in T and G is a sequence

〈N0, (4, N0, N1, N
1), N1, . . . , Nn−1, (4, Nn−1, Nn, N

n), Nn〉

(0 < n) of alternating nodes and computation connectors in G such
that:

1. N = N0 and N ′ = Nn.

2. Ni = (Ti, Ei) for all i with 0 ≤ i ≤ n.

3. N i = (Ti, Ei−1 ' Ei) for all i with 1 ≤ i ≤ n.

4. Ti ≤ T for all i with 1 ≤ i ≤ n.

THEOREM 5.2 (Soundness of Equational Computations). Let T be a
biform theory and G be an admissible derivation graph. If there is an
equational computation from N1 = (T1, E1) to N2 = (T2, E2) in T and
G, then T |= E1 ' E2.

Derivation Graphs: Higher Levels

At the base level, a derivation graph consists of set of nodes and connec-
tors and is construction by the application of operators. A derivation
graph has at least four additional levels of structure above the base
level:

1. Annotations. At this level, a derivation graph is annotated with
the operator applications used to construct it.

2. Tactics. Composite derivation graph operators that apply prim-
itive derivation graph operators in certain specified ways can
be introduced in the style of tactics [35]. For example, a tactic
to split a conditional negatively applied to a conditional C =
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if(A,E1, E2) in a node N would (1) apply apply-1-thmoid to N
with an appropriate theoremoid to create a new node N ′ in
which C is replaced by C ′ = if(¬A,E2, E1) and then (2) apply
split-conditional to C ′ in N ′. At this level, a derivation graph is
constructed by the application of tactics, and primitive derivation
graph operators can only be applied indirectly via tactics.

3. Scripts. A derivation graph script is a list of tactic applications
for building a derivation graph. It serves as a compact prescrip-
tive representation of the derivation graph. Scripts are convenient
for storing derivation graphs, building new tactics, and reusing
parts of a derivation graph construction. (Proof scripts and their
use are discussed in [26].) At this level, a derivation graph in-
cludes a derivation graph script that records the history of how
it was constructed via tactics.

4. Tracking. A derivation graph can easily become a mess of in-
complete deductions and computations. At this level, the par-
tial deductions and computations within a derivation graph and
the theorems they produce along the way are tracked as the
derivation graph is constructed.

6. Translations and Interpretations

“Translations” are transformers that connect one biform theory to
another. “Interpretations” are meaning preserving translations.

Let Ki be an admissible logic and Ti = (Ki, Li,Γi) be a biform
theory for i = 1, 2. A translation from T1 to T2 is a transformer Φ from
L1 to L2 that respects sorts, i.e., if E1 and E2 are expressions of L1

of the same sort and Φ(E1) and Φ(E2) are defined, then Φ(E1) and
Φ(E2) are also of the same sort. In the case when the two logics are the
same, i.e., K1 = K2, a translation will normally be a homomorphism
with respect to the syntactic structure of the logic (see [20]). Hence,
for example, Φ(A1 ⊃ A2) would equal Φ(A1) ⊃ Φ(A2) whenever Φ(A1)
and Φ(A2) are defined.

An interpretation of T1 in T2 is a translation Φ from T1 to T2 such
that, for all formulas A of L1, if T1 |= A and Φ(A) is defined, then
T2 |= Φ(A). In other words, an interpretation is a translation that
maps theorems to theorems (see [17, 20, 51]).

Translations and interpretations are a powerful mechanism for con-
necting biform theories with similar structure. They serve as conduits
for passing information (in the form of formulas) from one theory to
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another. Translations transport problems (i.e., conjectures), while in-
terpretations transport solutions (i.e., theorems). A translation may not
preserve meaning, but an interpretation connects an abstract theory to
a more concrete theory, or an equally abstract theory, in a meaning
preserving way. Interpretations enable the little theories method [27],
in which mathematical knowledge and reasoning is distributed across
a network of theories, to be applied to biform theories.

EXAMPLE 6.1. Let M be a biform theory of monoids, and let Φ0,+

and Φ1,∗ be interpretations of M in Tpa (see Example 3.3) that interpret
the unit and binary operator of M by 0 and + of Tpa and 1 and ∗ of
Tpa, respectively. These interpretations enable theorems about monoids
to be “transported” to Tpa. 2

REMARK 6.2. In some cases, an interface for a mechanized mathe-
matics system S can be formalized as a biform theory TS . Suppose
S1 and S2 are mechanized mathematics systems with biform theory
interfaces TS1 and TS2 . Then problems and solutions could be passed
between S1 and S2 using translations and interpretations, respectively,
between TS1 and TS2 .

Theoremoid Instantiation

Theoremoid instantiation is another technique for constructing trans-
formational formuloids for which theoremoidhood is guaranteed by the
construction itself.

Let Φ be a translation from T1 to T2. Suppose Π is a transformer
residing in L1. Π′ is an instance of Π via Φ if Π′ implements the function
that maps Φ(E) to Φ(Π(E)) for each E ∈ dom(Φ) ∩ dom(Π) with
Π(E) ∈ dom(Φ). Π′ is clearly a transformer residing in L2.

Let θ be a formuloid of L1. For θ = (0, A) such that Φ(A) is defined,
the instance of θ via Φ is the formuloid (0,Φ(A)). For θ = (k,Π) where
k ∈ {1, 2, . . .}, an instance of θ via Φ is a formuloid (k,Π′) where Π′ is
an instance of Π via Φ.

PROPOSITION 6.3. If Φ be an interpretation of T1 in T2, then the
instance of an assertional theoremoid of T1 via Φ is an assertional
theoremoid of T2.

PROPOSITION 6.4. Let Φ be an interpretation of T1 in T2 such that,
for all expressions E1 and E2 in the language of T1, if Φ(E1) and Φ(E2)
are defined, then Φ(E1 ' E2) = Φ(E1) ' Φ(E2). Then each instance
of an equational theoremoid of T1 via Φ is an equational theoremoid of
T2.
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We can now describe the technique of theoremoid instantiation:
Create a formuloid θ residing in the language of a theory T that is
instantiable via interpretations of T . Prove, in one way or another,
that θ is an equational theoremoid of T . Then, by Proposition 6.4,
each instance of θ via an appropriate interpretation of T in T ′ will be a
theoremoid of T ′. Theoremoid instantiation also works for constructing
other kinds of transformational theoremoids.

7. Theory Development

In ffmm, derivation is performed on top of a network of biform theo-
ries connected by translations and interpretations. The network is not
static. Like the collection of models in informal mathematics itself,
it needs to be continuously expanded and enriched. ffmm therefore
includes a facility for developing theories that provides services to:

1. Create new biform theories.

2. Create new links between biform theories using translations and
interpretations.

3. Store derived theorems.

4. Store constructed theoremoids.

5. Add new objects and concepts to biform theories using conser-
vative extensions.

Our theory development facility for biform theories is based on the
infrastructure for developing axiomatic theories presented in [22] and
partially implemented in imps. It consists of several kinds of storage ob-
jects and a collection of primitive operations for creating and modifying
the storage objects. In this section, we will give just a brief overview of
the theory development infrastructure for ffmm.

Let K = (L, µ, κ) be an admissible logic. Recall that an atomic
expression of a language L is an expression of L that contains no
subexpressions other than itself. Let Ti = (K, Li,Γi) be a biform theory
for i = 1, 2. T2 is a conservative extension of T1, written T1 � T2, if
T1 ≤ T2 and, for all formulas A of L1, if T2 |= A, then T1 |= A.

A biform theory object T stores a “development” of a biform theory.
More specifically, T includes a base (biform) theory T0 = (K, L,Γ0), a
current (biform) theory T = (K, L,Γ) such that T0 �T , a set of derived
theorems of T , and a set of constructed theoremoids of T . There are also
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objects for storing translations, interpretations, theorems, theoremoids,
definitions, and profiles (see below).

A definition D is a pair (A, θ) where A is a set of atomic expressions
and θ = (1,Π) is an equational formuloid with dom(Π) = A called the
defining axiomoid of D. D is installed in a biform theory T by changing
T to T [{θ}]. The result is a new theory T [D] in which a has the value
Π(a) for each a ∈ A. The installation of D in T is only allowed if T [D]
is defined and T � T [D]. Hence, a definition is a means to introduce
new machinery into T without compromising its original machinery.
Moreover, each defined atomic expression a ∈ A can be “eliminated”
from expressions of T [D] using a ' Π(a) as a rewrite rule. D is simple
if A is a singleton. Simple definitions are much more commonly used
in practice than nonsimple definitions.

EXAMPLE 7.1. Let T ′pa = (Kstt, L
′
pa,Γ

′
pa) be the biform obtained

from Tpa in Example 3.3 by removing the atomic expressions 1, 2, 3, . . .
from Lpa and the axiomoids θ7 and θ8 from Γpa. T ′pa is a biform theory
formulation of the axiomatic theory PA presented in Example 1.1 (with
definitions for +, ∗, and <). Let D = (A, (1,Π)) be the nonsimple
definition such that A = {1, 2, 3, . . .} and, for each n ∈ A, Π(n) =
S(· · · (S(0)) · · ·) where S is applied n times. T ′pa �T ′pa[D] and θ7 and θ8

are theoremoids of T ′pa[D]. Moreover, T ′pa[D] is equivalent to Tpa, i.e.,
T ′pa[D] ≤ Tpa and Tpa ≤ T ′pa[D]. 2

A profile P is a pair (A, θ) where A is a set of atomic expressions
and θ is a formuloid called the profiling axiomoid of P . P is installed in
a biform theory T by changing T to T [{θ}]. The result is a new theory
T [P ] in which the members of A satisfy the properties expressed by
θ. A profile is thus a generalization of a definition. The installation of
P in T is only allowed if T [P ] is defined and T � T [P ]. Hence, like
a definition, a profile is a means to introduce new machinery into T
without compromising its original machinery. But, unlike a definition,
the profiled atomic expressions in A may not be eliminable. Profiles
can introduce abstract machinery that is impossible to introduce with
direct definitions.

For example, in a biform theory R of real number arithmetic con-
sider a profile with the assertional profiling axiomoid (0, A) where
A = (

√
2)2−2 ' 0 is obtained by applying the predicate λx . x2−2 ' 0

to the atomic expression
√

2. The profile introduces
√

2 in R as an
expression that denotes one of the two square roots of 2 (but which one
is unspecified). For another example, a profile can be used to introduce
in a biform theory an abstract algebra or data type consisting of a
collection of objects plus a set of operations on the objects.
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There are primitive operations for creating each kind of storage
object and for “installing” theorem, theoremoid, definition, and profile
objects in a biform theory object T. The result of installing a theorem
or theoremoid object in T is that the theorem or theoremoid is added
to the derived theorems or constructed theoremoids of T, respectively.
The result of installing a definition or profile object X in T is that the
current theory T of T is replaced by T [X]. Replacement is appropriate
because T [X] is a conservative extension of T .

There is also a primitive operation for extending translations (and
interpretations). When the current theory T of a biform theory object T
is replaced by an extension T [X] of T , the stored translations of T would
not normally be defined on the defined or profiled atomic expressions
of X. Three basic solutions to this problem are discussed in [22]. The
first two solutions extend the old translations of T automatically to new
translations of T [X], while the third solution is to provide the user with
a primitive operation for extending translations. With a mechanism for
extending translations, it is often advantageous to create a translation
of the base theory of a biform theory object and then extend it later
as needed. This is the reason why the base theory of T—which is the
initial current theory of T—is permanently stored in T.

Many useful theory development operations could be defined using
these primitive operations. For examples, operations could be defined
for transporting theorems, theoremoids, definitions, and profiles from
one biform theory object to another and for creating new biform theory
objects by instantiating an existing biform theory object, in both cases
using interpretations (see [22]).

8. Algebraic Processors

By changing atomic expressions, a transformer for simplifying expres-
sions in a general biform theory T (say of fields) can often be turned
into a transformer for simplifying expressions in a more specialized
biform theory T ′ (say of real arithmetic). Moreover, if the transformer
is sound for T and T ′ has the right structure, the modified transformer
will be sound for T ′. This is the idea behind the notion of an “algebraic
processor”, an equational theoremoid that can be specialized via an
interpretation.

An algebraic processor is a pair P = (T, θ) where:

1. T = (K, L,Γ) is a biform theory that is intended to represent a
class of mathematical structures (such as monoids, vector spaces,
partial orders, etc.).
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2. θ = (1,Π) is an equational theoremoid of T that is intended to
simplify expressions of L.

T encodes the properties that are required for θ to be a theoremoid.
An instance of P via an interpretation Φ of T in T ′ is an algebraic
processor P ′ = (T ′, θ′) where θ′ is an instance of θ via Φ.

EXAMPLE 8.1. Suppose P = (T, (1,Π)) is an algebraic processor
where T is a biform theory of commutative semirings with additive
and multiplicative identities and natural number exponents. It would
be reasonable for Π to simplify an expression

x+ x ∗ x ∗ x+ x

to the expression

x(1+1+1) + (1 + 1) ∗ x.

Notice that the first and second sum of 1s are actually very different
expressions: the first denotes a natural number and the second denotes
a semiring element. Moreover, if T contains appropriate computational
models (see section 9), Π could actually simplify x + x ∗ x ∗ x + x to
x3 + 2 ∗ x.

Suppose further that Φ is an interpretation of T in Tpa such that
there is an instance P ′ of P via Φ. Then P ′ will be algebraic processor
for Tpa which is a specialization of P . 2

An algebraic processor constructor is a procedure for creating al-
gebraic processors from other algebraic processors. A small collection
of algebraic processor constructors together with algebraic processor
instantiation can be used to construct a large variety of algebraic pro-
cessors. For example, imps provides two instantiable algebraic processor
constructors, one for modules (i.e., vector spaces over a ring instead of
a field) and one for partial orders (see [29]). They have been combined
to make simplifiers for theories of real arithmetic, octet arithmetic,
abstract fields, and vector spaces over the real numbers.

9. Computational Models

A domain of computation (domain for short) is a set of data structures
that represents a set of mathematical elements (such as the integers)
and a set of operations on the data structures that implement mathe-
matical functions (such as addition and multiplication). Domains play
a fundamental role in the Axiom computer algebra system [40] (and in
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the Aldor programming language [53]). In fact, Axiom is equipped with
a sophisticated programming language for constructing simple domains
(such as a domain of the integers) and complex domains from other
simpler domains (such as a domain of the rational numbers constructed
from a domain of the integers). However, the “background theory” of an
Axiom domain is only implicit. The notion of a “computation model”
cements an Axiom-style domain to a background theory in the form of
a biform theory.

A representation is a triple R = (L,S, h) such that:

1. L = ({α}, E , σ) is a (usually nonadmissible) language where each
E ∈ E is an expression of sort α.

2. S is a (possibly infinite) set of data structures.

3. h is a bijection from E to S.

An instance of R via a translation Φ is a representation

R′ = (({α′}, E ′, σ′),S, h′)

such that Φ is a bijective from E to E ′ and h′ = h ◦ g where g is the
restriction of the inverse of Φ to E ′.

EXAMPLE 9.1. Let Lnn be the sublanguage ({ι}, E , σ) of Lpa (see
Example 3.3) where E = {0, 1, 2, . . .}. Let Snn be a set of character
strings of base-10 numerals that represent the natural numbers. And
let hnn be a function from E to Snn that maps each n ∈ E to the
string s ∈ Snn that represents n. Then Rnn = (Lnn,Snn, hnn) is a
representation (of the natural numbers). 2

A computational model is a tuple M = (T,R,D,Θ) such that:

1. T = (K, L,Γ) is a biform theory.

2. R = (L′,S, h) is a representation such that L′ ≤ L.

3. D is a domain consisting of the set S of data structures and a
set of operations.

4. Θ is a finite set of transformational theoremoids of T such that,
for each θ = (k,Π) ∈ Θ, Π uses the data structures and opera-
tions of D to compute the values of expressions constructed from
the expressions of L′.

An instance of M via an interpretation Φ of T in T ′ is a computational
model M ′ = (T ′, R′, D,Θ′) such that R′ is an instance of R via Φ and
each θ′ ∈ Θ′ is an instance of some θ ∈ Θ via Φ. (Notice that the
domain is the same in both M and M ′.)
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EXAMPLE 9.2. Recall the theory

Tpa = (Kstt, Lpa, {θ1, . . . , θ8})

from Example 3.3 and the representation Rnn = (Lnn,Snn, hnn) from
Example 9.1. Let Dnn be a domain consisting of the set Snn of data
structures and operations for adding and multiplying the members of
Snn. If θ7 and θ8 are defined using the data structures and operations
of Dnn, then (Tpa, Rnn, D, {θ7, θ8}) is a computational model. 2

Two entities similar to computational models are provided by imps

(see [29]). The first is for arithmetic over the integers, and the second,
which extends the first, is for arithmetic over the rational numbers.
Both are in the imps theory of real arithmetic.

A computational model constructor is a procedure for creating com-
putational models. It is an expansion of the Axiom concept of a domain
constructor. Simple computational models are created by constructors
that take no arguments. Complex computational models are created by
constructors that take one or more computational models as arguments.
For example, a computational model constructor could build a model
of polynomials with rational coefficients from a model of the rational
numbers. A computational model constructor could also build a model
of a field of quotients from a model that is an integral domain.

10. Conclusion

In this paper we have proposed a formal framework called ffmm for
managing the mathematics process and the mathematics knowledge
produced by the process. We claim that ffmm meets the three goals
given in the Introduction.

Model Representation. A biform theory, which is simultaneously an
axiomatic theory and an algorithmic theory, is used to represent a
collection of mathematical models. The properties of the models are
specified both declaratively and procedurally.

Process Facilitation. Mathematical models are created, explored,
and connected via biform theories. The theory development facility
provides operations for creating biform theories and storing them in
biform theory objects. It also has operations for connecting biform
theories with translations and interpretations and for developing biform
theories by installing theorems, theoremoids, definitions, and profiles
in biform theory objects. Biform theories are explored using the deriva-
tion facility. Driven by the application of theoremoids, derivation is a
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combination of deduction and computation that produces theorems.
The theorems represent knowledge about models, and the theoremoids
are tools for reasoning and computing.

The mathematics process in ffmm is thus divided into a triad of
symbiotic processes: (1) Biform theories are created and incrementally
enriched with new language and theoremoids. (2) Theorems are derived
by applying the theoremoids of biform theories. And (3) new theore-
moids are constructed from the theorems and the existing theoremoids
of biform theories.

Mechanization. We have not discussed in this paper how ffmm can
be mechanized as a computer system. It is a subject for an entirely sep-
arate paper. Although we have not produced a computer mechanization
of ffmm, we believe that it is mechanizable and we intend to mechanize
it in the future. We expect to borrow heavily from the implementation
ideas employed in imps, Axiom, Maple, and other mechanized mathe-
matics systems. Moreover, we view the success of the imps and Axiom
implementations as a proof of concept for our framework proposal.

An implementation of ffmm would be a kernel for an interactive
mathematics laboratory (IML) [21, 23] with which students, engineers,
scientists, and even mathematicians could create, explore, and connect
mathematics in countless ways that are not possible today—at least for
the common mathematics practitioner. An IML that supports the full
mathematics process, is equipped with a well-endowed mathematics
library, and is accessible to a wide range of mathematics practition-
ers has the potential to revolutionize how mathematics is learned and
practiced.

11. Related Work

A logical framework is a system for managing logical systems and in-
vestigating metalogical issues. There is a large literature on the design
and use of logical frameworks (see F. Pfenning’s Web guide to logical
frameworks [48]). Many logical frameworks have been proposed which
provide one or more of the following services:

S1 Representation of logical systems.

S2 Implementation of logical systems.

S3 Interoperation of logical systems.

S4 Analysis of metalogical issues.
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ffmm is a logical framework that provides services S1 and S3. ffmm

manages logical systems represented as biform theories. As we have
shown, in ffmm biform theories can be connected with translations
and interpretations and incrementally enriched, and a derivation can
involve many different biform theories (of the same logic). Most logical
frameworks deal with logical systems for deduction, but biform theories
are for mixed deduction and computational. The notion of a biform
theory is both simple and abstract: the details about the syntax and
semantics of a biform theory T are given by the underlying logic of T
and the details about derivation in T are given by the axiomoids of T .

The problem of integrating computer theorem proving and com-
puter algebra systems is one of the primary challenges in mechanized
mathematics today. A mechanized mathematics system that combines
the capabilities of a computer theorem proving system and a computer
algebra system would be of great value to a wide range of mathemat-
ics practitioners. Unfortunately, there has historically been very little
communication between the computer theorem proving and computer
algebra communities. Recently, researchers in Europe and North Amer-
ica have begun to pursue ways of integrating computer theorem proving
and computer algebra (for example, see [7, 9, 13, 52]).

There are four general approaches for creating an integrated system.
First, computational capabilities are added to a computer theo-

rem proving system. Computation in various forms has been added to
many computer theorem proving systems. Examples include (1) deci-
sion and simplification procedures (rewrite rule systems, propositional
simplification using binary decision diagrams (BDDs), linear arith-
metic [6], and generic algebraic simplification in imps [28, 30]) and
(2) mechanisms for applying theorems and rules of inference (LCF-style
tactics [35], imps macetes [28, 30], and imps proof scripts [26]).

Second, deductive capabilities are added to a computer algebra sys-
tem. Examples include (1) Analytica [12], a computer theorem proving
system for mathematical analysis implemented in Mathematica, (2) the
incorporation of logic into the computer algebra system Axiom [49],
and (3) the addition of formal proof capabilities to Maple using PVS
libraries [16].

Third, a computer theorem proving system and a computer algebra
system are combined. Examples include (1) systems combining a com-
puter theorem proving system with a computer algebra system [37, 38]
and (2) frameworks and techniques for integrating computer theorem
proving and computer algebra systems [1, 3, 4, 34, 39, 41].

Fourth, a system is created in which deduction and computation
are integrated at the bottom level. Examples include (1) the Theorema
system [8] which is intended to support the full process of mathematical
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problem solving including conjecture proving and computation and (2)
the framework ffmm proposed in this paper.
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