
A Simple Framework for Contracts in

Federated Database Systems

William M. Farmer∗ Mark E. Nadel†

23 May 1995

Abstract

A federated database system is a collection of organizations, called a
federation, and a collection of databases belonging to the organizations.
Members of the federation can enter into contracts that specify how
data is shared between the databases of the system. An important issue
is how the contracts interact with one another. This paper presents a
simple framework for writing contracts in federated database systems
that limits contract interaction, and thereby, makes it possible to detect
contention between contracts.

Keywords: federated database systems, information security, contract
interactions, information sharing

ACM Categories: F.4, H.2, K.6

1 Foreword

The problem of formulating the basic doctrine supporting federated database
systems is interesting and challenging, as is the design and implementation
of such systems [2]. A large part of the difficulty is contributed by various
underlying technologies. There are problems in designing single-owner dis-
tributed databases as well as in implementing consistency constraints on a
∗Address: The MITRE Corporation, 202 Burlington Road, Bedford, MA 01730-1420.

Phone: 617-271-2907. E-mail: farmer@mitre.org.
†Address: Lemma Inc., 25 Woodlawn Dr., Chestnut Hill, MA 02167. Phone: 617-244-

6870. E-mail: mnadel@math.harvard.edu.

1



single database through the use of triggers, for example. As another ex-
ample, the use of roles already occurs in single-owner systems, but in a
federated database system there may be additional difficulties in authenti-
cation, which we do not think of as specifically a database issue. We want to
find a framework in which we can say something significant about federated
database systems without first having to settle these other questions. To
enable this goal we will be guided by a principle of parsimony to include
only what we deem most essential.

One of the central issues in the field of federated database systems is
the creation of contracts to control the sharing of data between members
of the federation. Our framework will provide a few simple constructs from
which contracts are to be fashioned. The framework is somewhat analogous
to specifying geometric figures as being constructible by ruler and compass:
we only give the basic building blocks, but say nothing about a language
for describing complicated constructions, nor about the range of geometric
figures that can be constructed in this way.

One should expect several things from this framework. First, the con-
structs of the framework should be adequate for expressing a significant
number of contractual objectives in an acceptable way. Second, the im-
plementation of contracts following the framework should be possible using
standard techniques. Moreover, the fact that the contract is expressed in this
way should guide us directly to an implementation. Third, such contracts
should be easy to understand. In particular, one should be able to easily
detect conflicts between contracts. This objective should be supported by
keeping contracts as “local” as possible, thereby minimizing the interaction
between contracts.

One might imagine a contract as containing information concerning cer-
tain actions and, in addition, the rationale behind these actions. Our view
is that this second aspect of contracts need not be handled on the same
technical level as the first. The framework to follow will address the first
aspect. The second aspect can be dealt with using more familiar contractual
vehicles and does not need to be explicitly present in the implementation of
the contract.

Although our intension is to address the problem of writing contracts for
sharing data stored in databases, the reader will see that the framework we
propose could be used equally well for writing contracts for sharing many
other kinds of privileges.

2



2 The Basic Framework: Granting Rights

The heart of the federated database problem is to be able to share cer-
tain data between independent organizations without giving up full control
of that data. Typically, one organization will permit another organization
certain accesses to its data provided that the latter organization agrees to
fulfill certain obligations. A problem that needs addressing is that obliga-
tions imposed by various contracts may conflict with one another. In the
following we present a framework that eliminates potential conflicts between
obligations by eliminating the need for obligations. In fact, we simply do
not allow for obligations in the framework. One might say that there is only
one global obligation, namely, to abide by the framework. (We also make
the tacit assumption that an interorganizational access privilege can only be
granted through a contract.) The desired effect will be achieved partly by
the particulars of the contract and partly by the general framework itself.
We make no attempt in this framework to address issues of implementation
or assurance. Specifically, we will not be concerned with general mecha-
nisms for guaranteeing that all parties must abide by the contract, though
it will be possible for contracts to be written so as to impose some checks
and balances toward this end.

We now present the Basic Framework. It’s purpose in this paper is
mainly pedagogical; it introduces the first half of the Full Framework which
is presented later in §6.

Assume there is a collection of organizations Oi. For each i there is
a database Di which is completely controlled by Oi and to which Oi has
complete access—which means Oi has the freedom to do anything it wants
with Di. (Later in the Full Framework, we will allow for an organization Oi
to relinquish some of its access rights to Di.) For each i there is a database
di which is accessible by Oi only to the extent allowed by contracts and
whose control is generally shared by a collection of organizations.

Our version of contracts will be asymmetric. In any contract there will
be a single importer Oi and a set O = {Oj1 , . . . , Ojn} of exporters. Under
such a contract Oi will be allowed certain accesses to Dj1 , . . . , Djn , di, while
Ojk will be given certain accesses to di. More specifically, we will think of
di as being partitioned into various parts di,c, where c ranges over contracts
in which Oi is the importer. This partition, and even di itself, is only a
conceptual device; we place no assumptions on how it will implemented. (In
fact, it might be the case that di resides with the exporters rather than the
importer.) Access to di,c will be limited to the signatories of the contract c.

3



More specifically, any access granted to di,c must be granted in c itself.
We think of the existence of di,c as bound up in c. It does not exist before

c is in effect nor after c is dissolved. In fact, we will regard a subsequent
modification of c as the dissolution of c followed by the creation of a new
contract.

As we pointed out, our formal notion of a contract is asymmetric. The
reason for doing this is to be able to associate a unique di with each con-
tract. We will use the term pact to denote informal agreements between
organizations concerning data sharing. We envision that typical pacts, even
those focused on a single issue, may require several formal contracts. The
same organization may well play both the role of importer and exporter in
a pact.

The framework will be built on top of the underlying database query
language used by the organizations, which we will denote by L. This lan-
guage may be SQL-like or some kind of object-oriented language. Its exact
definition is not important for the framework. Later we will mention a few
very minimal requirements for L. If different organizations are using dif-
ferent languages, then we will imagine that they are all embedded in L in
a coherent way. We will not pursue the issue of heterogeneity any further
here. We also assume that each organization has the potential to execute
a command1 against any set {Di1 , . . . , Din}. Contracts will determine how
much of this potential is to be realized.

In a distributed database setting, given a command σ in L, it is some-
times assumed that to execute σ one must additionally specify the database
or set of databases against which it is to be executed. Specifically, for each
table reference one would associate a particular database. For the sake of
notational brevity we adopt the opposite strategy: we assume that σ carries
with it the relevant database references.2

Associated with each command σ in L is a set of databases called the
support of σ, written

supp(σ),

which includes all the databases that may be accessed during the execution
of the command. By “database” we mean a Di or a di,c. We say “may”

1We think of a command as a request to apply a function (such as the SQL select)
that manipulates data in a database to arguments (such as a portion of a table) that
specifies data in a database.

2If an actual language really works in the first way, we would simply regard one of our
commands as one of those commands with the necessary database references.

4



rather than “will” since complex commands may contain branches or be data
dependent. Thus databases explicitly mentioned in σ may not be accessed,
while databases not explicitly mentioned may be. While we assume for the
sake of our framework that supp(σ) is given, determining sharp values of
the support of σ would probably be difficult in practice and one would be
forced to conservative estimates.

A contract c with importer Oi and exporters Oj1 , . . . , Ojn specifies a set
of (positive) access statements

+(Ok, σ)

where:

• Ok is the importer or any one of the exporters.

• If Ok is the importer, then supp(σ) ⊆ {Di, Dj1 , . . . , Djn , di,c} but
supp(σ) 6= {Di}.

• If Ok is an exporter, then supp(σ) = {di,c} or supp(σ) = {Dk, di,c}.

It is understood that each member of Ok will only have access to those com-
mands in L to which it is explicitly granted access by c, with the exception
that it may, of course, execute any statement that involves only Dk. All
basic and compound statements to be allowed must be explicitly specified
in c, and no additional combining is allowed. Notice that, if a contract c
contains an access statement +(Ok, σ), then Ok as well as each Oj , such
that Dj ∈ supp(σ) or dj,c ∈ supp(σ), must be a party to c. While in a real
implementation it will be important to develop a language to conveniently
specify these sets of statements, it is best for now to think of these sets as
being given extensionally. Also, the set of access statements specified by a
contract is allowed to be infinite. (We discuss a language for specifying sets
of access statements in §9.)

Using commands σ in access statements +(Ok, σ) provides more flexi-
bility than replacing σ with tables or attributes. Suppose, for example, we
have some natural notion of subcommand in L (e.g., τ is a subcommand of
σ if τ occurs in σ and τ is itself a command) and the contract c stipulates
+(Ok, σ). It will not generally be the case that c will also stipulate +(Ok, τ)
where τ is a subcommand of σ.

It is also possible to specify more finely who exactly in an organization is
allowed to execute a particular command σ by using roles or even personal
IDs. Since facilities for using this technique are not specific to federated

5



database systems, we will assume that they are provided by L itself, and we
will not consider this matter further in our general remarks.

We now state the minimal requirements for L. In addition to provid-
ing standard delete and update capabilities, we require that L have three
different kinds of “select” commands:

(1) Select read only permits viewing via an operation that is trusted
not to copy or pass information to other untrusted operations.

(2) Select create permits the creation of a table in some dk (but not
necessarily full access to it).

(3) Select own permits the creation of a table in some Dk (with full access
to it).

This is the entire Basic Framework. Notice that we do not provide for
obligations in a contract. How then do we achieve the effects for which
obligations and their associated actions were intended? First, obligations
to take certain actions may be incorporated directly into L. For example,
L may provide the means to construct a command that updates an audit
log each time it is called, thereby satisfying a given auditing obligation.
Second and most important, passive obligations concerning the sharing and
protection of imported data are handled by the compartmentalized (in the
nontechnical sense) way that data is stored.

Since the effectiveness of contracts will depend to a great extent on the
underlying framework which “hardwires” certain safeguards, rather than
just on the terms of individual contracts, it is worth reiterating the frame-
work in the special case of a single exporter. Let us assume we have a
contract c between importer Oi and exporter Oe. Then c will specify cer-
tain access statements +(Oi, σ) and +(Oe, τ) where supp(σ) ⊆ {Di, De, di,c}
but supp(σ) 6= {Di}, and supp(τ) = {di,c} or supp(τ) = {De, di,c}.

• Oi will be explicitly allowed certain accesses to De and di,c, possibly
in conjunction with Di.

• Oe will be explicitly allowed certain accesses to di,c, possibly in con-
junction with De.

• (Oi and Oe are always allowed full access to Di and De, respectively.)

6



3 Contract Interactions

We wish to consider how contracts written in our framework can interact
with one another. Before doing so, let us return to a more intuitive level
to see how contracts, unconstrained by our framework, might interact. Two
contracts are in conflict when one requires a certain action and the other
prohibits it. That is, one contract contains an obligation and the other
a prohibition which directly clash. A logically weaker form of interaction
between contracts, which we call an impingement , occurs when one contract
permits an action and the other prohibits it.

Since the Basic Framework contains neither explicit obligations nor ex-
plicit prohibitions, there is no possibility of conflict or impingement under
this definition—at least at some formal level. This state of affairs warrants
further investigation since one would intuitively expect the possibility of
conflicts and certainly impingements. While the Basic Framework has no
facility for specifying particular prohibitions, it does provide the structural
prohibition governing di,c. However, since this prohibition is rigidly enforced
and can never be overridden, it cannot be the cause of impingements. Later
in the Full Framework (given in §6) we will introduce an explicit facility
for specifying prohibitions, and this will indeed introduce the possibility of
impingements.

While the Basic Framework, as well as the Full Framework to follow, do
not offer a separate category of obligations, they do allow us to simulate the
effect of having obligations, if L is sufficiently rich. Imagining obligations
as separate entities, one would naturally think of granting access rights
contingent upon the guarantee to fulfill certain obligations. For example, an
exporter might grant an importer unlimited access to a certain command
provided that the importer recorded each use in some audit log. In our
approach the exporter would instead grant the importer unlimited access
to a command which itself executed both the desired command and the log
entry. A good analogy here is the distinction between a rental car company
requiring that a car is always driven less than 65 miles per hour and the
company installing a governor in the car to physically prevent the car from
being driven over 65 miles per hour while requiring no cooperation on the
part the driver.

What obligations can be effectively built into L is an important open
question which we will not pursue in this paper.

There is a related phenomenon which should not be confused with con-
flicts and impingements. It is possible for commands of L authorized under

7



different contracts to “bump into each other.” That is, the effect of execut-
ing one command may depend on previous executions of other commands.
For that matter, two commands authorized under the same contract could
bump into each other. More generally, it might be difficult to understand
the behavior of a single command of L, especially if L is rich. The point is
that this problem is attributable to L itself and is not exacerbated by the
contracts in force.

4 Implementation Strategy

An important virtue of the framework is that there is an obvious and
straightforward method for implementing it. One just places a guard be-
tween the user and the database system that permits and prohibits the
execution of commands in L in accordance with the contracts in force. The
objective is to make the guard simple and easy to understand. If, for each
contract c in force, there is an algorithm which determines the membership
in the set of +(O, σ) for c, then a guard can easily be constructed by com-
bining these algorithms. Of course, a general algorithm may or may not
take into account the state of a database and even the real world. We will
be interested in the case when the set of +(O, σ) is decidable (in the sense
of computability theory) for each contract c. Then, not only is there is an
algorithm for testing which commands can be executed, but in addition the
algorithm defines a specific immutable set which does not depend on the
state of any database or the real world.

Recall that under the framework accesses are granted absolutely. How-
ever, much as how obligations can be simulated within the commands of L as
discussed above, conditional access privileges can be simulated by granting
access (absolutely) to a command in L which incorporates the conditional.
For example, instead of granting access to some command σ on weekends
only, one could grant unconditional access to a command τ which would
first check the day of the week (assuming that is available in the database)
and then execute σ if it is a weekend day and otherwise return an error
message. In fact, using this approach may allow one to effectively capture a
conditional access that one could not expect to capture otherwise. Suppose
that we wished to grant access only to commands that run for less than one
second. It is probably not feasible to precompute what these commands
would be. Instead, we would have a command that would run along with a
clock that would cut off after one second and return an error message.

8



There is a possible confusion which we wish to avoid. The language
L should be thought of as fixed. When one organization requests access
to some (simple) command and another organization only grants access to
some related (complicated) command which might involve extra tests, etc.,
this does not mean that L has changed. Both the requested and granted
commands are commands in L. We are not suggesting that L be modified
to accommodate such fine points, but rather that L is expressive enough in
the first place to capture these fine points as they arise.

5 Examples

We pause to give examples of how the framework could be used to create
some small, but interesting contracts.

5.1 Hospital/Research Example

A hospital is willing to give access to its records to some research organiza-
tion which is allowed to use this data for scientific purposes only. Together
the parties write a contract to this effect, which we call c.

Suppose there is a table called Hospital patient records in the hospi-
tal’s database Dhos. The research organization is permitted by c to make a
copy of the table Hospital patient records in dres,c using a Select create
command. Let us call this table Research patient records. There are two
reasons for this choice. First, the research organization wishes to freeze a
particular state of Hospital patient records, while the original copy in Dhos

is “live” and will be constantly evolving. Second, the research organization
should not be given full access to this table, and in particular, should not
be allowed to extract anything “personal” concerning it. Finally, c permits
the research organization to execute certain “statistical” type commands of
L on Research patient records.

To expand upon this example, let us suppose that the research orga-
nization has similar contracts with many other hospitals. These contracts
allow the insertion of the results of statistical commands into a table in Dres.
The contents of this table are not considered to be of a confidential nature
by the respective hospitals, and so the research organization is given full
control of this table. Notice that by the principles of the framework the re-
search organization does not have permission to execute any command that
simultaneously involves more than one of the corresponding dres,c.

9



Here is a variation on this example. In this version the research organi-
zation is permitted to use a Select own command to create a table in Dres

over which it has thus complete control. Forming this table involves having
access to Hospital patient records which presumably includes an attribute
for the name of the patient. The created table, however, does not include
this attribute but only the social security number, which is also presum-
ably included in Hospital patient records. This table is deemed sufficiently
anonymous to require no further protection, but it contains enough infor-
mation to identify patients across hospitals. (We are tacitly assuming that
there is no facility for obtaining a person’s name from his social security
number and that it is infeasible to infer a person’s name from his social
security number or other data in his hospital record.)

5.2 Airline/Travel Agent Example

FBN Airlines maintains a database that includes two tables. The first,
FBN flight info, contains entries for each flight number and date, giving,
among other information, the number of seats available at each price. The
second, FBN reservations, has a listing for each flight reservation, giving the
flight number, date, name of the traveler, price, etc. In particular, there is a
column in this table for the booker of the reservation. For security reasons,
that column takes values which are, in effect, passwords known only within
the booking agency that did the booking.

FBN Airlines enters into the following contract with each independent
travel agency with which it does business. In these contracts, FBN is the
exporter and the individual travel agents are importers. A travel agent may
execute commands of L to read any of the information in the first table,
with the exception of those entries concerning spaces held for free flights for
frequent flier participants, which may only be accessed by FBN personnel.

A travel agent may insert a reservation in the second table, corresponding
to any of the available seats he can see in the first table. He may copy such
a reservation back into his own main local database so that he has easier
access to it and can use it for his own records. He may also modify or delete
a reservation in the second table so long as he is the original booking agent.
It is not feasible to misuse the booking agent column since we are assuming
that these values are closely held within the particular agencies, and because
only certain values will be accepted under that attribute.

Naturally, some sort of transaction discipline is required to keep the two
tables properly coordinated. However, this is handled as usual and is not a

10



concern of the contract. Notice that there is no need for di,c databases.

5.3 Juvenile Record Example

There are two organizations: the Drug Enforcement Agency (DEA) and
the Attorney General (AG). From the point of view of this contract (called
c), DEA is the importer and AG is the exporter. Among the tables in
DAG there are AG case recs (with attributes case #, person id, person type,
active status, and investigator id) and AG persons (with attributes per-
son id, name, phone #, address, birth year, birth month, birth date, and
juvenile status). DEA is allowed to execute a command that will transfer
the data from AG case recs into a new table DEA case recs (with attributes
case #, person id, person type, active status, and investigator id) in dDEA,c.
However, the investigator id column will initially be left null and the DEA
will not have access to this column in AG case recs. It is intended that
the DEA will insert its own investigators’ IDs in this column. The DEA
is also allowed to execute a command that will transfer all the data from
AG persons into a new table DEA persons in dDEA,c.

According to certain regulations, when juvenile offenders reach the age
of 18, their case records are to be deleted if they have no current open
criminal case. The AG is required by law to seal the records of such indi-
viduals. Following our parsimony principle, exactly how the AG makes this
determination is not essential to the contract. The only concern relevant to
the contract is that certain deletions take place on the required records in
dDEA,c. This can be implemented in a number of different ways. For ex-
ample, AG could be granted access to the necessary delete commands. AG
might perform such deletions manually or, perhaps, install a trigger in DAG

that would perform the deletions when required. Even more autonomously,
one could imagine that each time DEA transfers a record the same command
installs a trigger in the DEA database to monitor these deletions. Just what
method would actually be followed would be specified in the contract.

5.4 Producer-Consumer

This is a little example without a story to make a small point that might
otherwise go unnoticed. A contract c is written between an importer Oi and
an exporter Oe. Under this contract Oe gets full access to di,c including write
privileges. Oi has certain access privileges to di,c but no access privileges
to De directly. Thus the data is “pumped” by the exporter to the importer

11



rather than “sucked” from the exporter by the importer. The database di,c
plays the role of a shared buffer between De and Di.

6 The Full Framework: Relinquishing Rights

Under the Basic Framework presented above, an organization Ok maintains
the right to execute any command σ ∈ L such that supp(σ) = {Dk}. In
addition, Ok may be granted the privilege to execute some commands with
other support. In the real world, the value of certain information is directly
related to the fact that the information is not widely known. Quite often
the potential danger of promulgating this kind of information only becomes
significant when that information can be combined with some other infor-
mation. As a result, an organization Oi may wish to control the access of
another organization Oj to information that Oi does not control. For such
purposes, we offer a primitive statement

−(O, σ)

which says an organization O may not execute the command σ. We call
these negative access statements. We now present the Full Framework.

A contract in the Full Framework may contain both positive and negative
access statements. The positive access statements are used in the same way
as in the Basic Framework. The negative statements are used to revoke an
access right either voluntarily by the recipient or by any of the holders of
resources on which the command depends. More precisely, a negative access
statement −(Ok, σ) may only be used in a contract c in the following three
ways:

(1) Ok is a party to c and supp(σ) = {Dk}. In this case, Ok relinquishes
its intrinsic right to execute σ.

(2) Ok is a party to c and supp(σ) 6= {Dk}. In this case, Ok relinquishes
its right to execute σ, even if it should be granted this right. It is not
required that each organization with a database in supp(σ) be a party
to c.

(3) Oj is a party to c and Dj ∈ supp(σ) or dj,c′ ∈ supp(σ) for some
contract c′. In this case, Ok need not be a party to c and Oj agrees
not to grant Ok the right to execute σ. It is not required that each
other organization with a database in supp(σ) be a party to c.

12



Observe that, though we have separated cases (1) and (2), they are
similar. Notice that negative access statements −(Ok, σ) may appear in
a contract c only if either Ok is a party to c or, for some party Oj to c,
Dj ∈ supp(σ) or dj,c′ ∈ supp(σ) for some contract c′. Also, in cases (2) and
(3), there may be organizations Oi with Di ∈ supp(σ) that are not a party
to c. This is in contrast to the awarding of access rights which requires the
consent of all interested parties.

6.1 Monogamy

Two organizations Om and Of decide to canonize their exclusivity in sharing
information. They enter into a pact consisting of two contracts cm and cf .
Om is the importer and Of is the exporter in cm. In cm, Om is granted
full access rights to Df . In addition, Om renounces its right to award any
access rights to Dm to any organization other than Of . That is, Om agrees
not to be an exporter in any other contract. There is no need for dm,c in
this contract. The contract cf is completely analogous to cm with m and
f interchanged. We will discuss how these contracts might be formalized
later.

We could also imagine a more stringent form of monogamy in which Om
also agrees not to be an importer in any other contract, and Of does the
same.

7 More about Conflicts and Impingements

While the Full Framework is still not subject to conflicts (since there are
still no obligations), it is clearly subject to impingements (as defined in §3).
Let us suppose that a web of contracts already exists and some members of
the federation are in the process of negotiating a new contract. They have
arrived at a putative contract. They would like to be able to accomplish the
following:

Detection. Determine if the putative contract creates any impinge-
ments with any of the existing contracts.

Identification. If so, identify the causes of the impingements.

Privacy. Do this with a minimal amount of sharing of contractual
information.

13



Recall that we are always operating under the following defaults:

• Access by Ok to a command σ where supp(σ) = Dk is assumed, and
can only be relinquished explicitly by a contract to which Ok is a party.

• Access to any dk,c is limited to the parties to c and only as explicitly
granted by c.

• Access by Ok to a command σ can only be relinquished contractually
by Ok or by some Oj where Dj ∈ supp(σ), or dj,c ∈ supp(σ) for some
contract c.

Let c be a contract between an importer Oi and some set of exporters.
Related to the notion of impingement are two weaker types of impingement
that involve only a single contract. (A bona fide impingement requires two
distinct contracts.) The first occurs when c contains a statement of the
form −(Ok, σ) where supp(σ) = {Dk}. The second occurs when c contains
statements +(Oi, σ) and −(Oi, σ). While these interactions do not repre-
sent contract violations, they might occur inadvertently as a result of a
misunderstanding of a contract specification, and so should be checked for
carefully.

Genuine impingements that result from c can occur only if one of the
following four cases holds:

(1) c grants +(Oi, σ).

(a) For some other contract c′ to which Oi is a party, c′ stipulates
−(Oi, σ). (Oi can detect this impingement by looking at the
contracts to which it is a party.3)

(b) There is some other contract c′ and some organization Ok with
k 6= i such that c′ stipulates −(Oi, σ), Ok is a party to c′, and
Dk ∈ supp(σ) or dk,c′′ ∈ supp(σ) for some contract c′′. Notice
that Ok must also be a party to c and that, if dk,c′′ ∈ supp(σ),
c′′ = c. (Ok can detect this impingement by looking at the con-
tracts to which it is a party.)

(2) c stipulates −(Oi, σ).
3We are tacitly assuming here that there is a feasible algorithm that, given a contract

c′ 6= c, will decide whether c′ stipulates −(Oi, σ).

14



(a) Oi is a party to c and, for some other contract c′, c′ grants
+(Oi, σ). Notice that Oi must also be a party to c′. (Oi can
detect this impingement by looking at the contracts to which it
is a party.)

(b) There is some other contract c′ and some organization Ok with
k 6= i such that c′ grants +(Oi, σ), Ok is a party to c, and Dk ∈
supp(σ) or dk,c′′ ∈ supp(σ) for some contract c′′. Notice that Ok
must also be a party to c′ and that, if dk,c′′ ∈ supp(σ), c′′ = c′.
(Ok can detect this impingement by looking at the contracts to
which it is a party.)

Observe that we seem to have achieved the privacy goal already. Specif-
ically, all impingements can be revealed by each organization examining
those contracts to which it is a party. In particular, when a new contract
is being contemplated, any resulting impingements can be detected in this
way by the parties to that contract. We call this the Localization Property.

Before proceeding to the detection and identification goals, we introduce
some convenient notation. Given a contract c, we define two sets S+

c and
S−c as follows:

S+
c = {(O, σ) : +(O, σ) is stipulated by c}.

S−c = {(O, σ) : −(O, σ) is stipulated by c}.

Also, let Ic1,c2 = S+
c1∩S

−
c2 . Typically, these sets will be infinite and specified

intentionally. How they will be specified is the concern of the contract
language, which we discuss in §9 below.

As we have observed above, an impingement occurs when S+
c1 ∩ S

−
c2 6= ∅

for two distinct contracts c1 and c2. (If c1 = c2 we are considering the weaker
types of impingement mentioned above.) Thus, determining whether or not
an impingement occurs is equivalent to determining if S+

c1 ∩ S
−
c2 = ∅ for all

distinct contracts c1 and c2.
To understand the rest of this section requires some familiarity with

computability and automata theory (as, e.g., presented in [1]). Notice first
that, if we require that each S+

c and S−c is decidable, then each intersection
Ic1,c2 will also be decidable. (This only means that there is some algorithm
which, given a pair (O, σ), will determine whether or not it is a member
of Ic1,c2 .) However, the question of whether or not an intersection Ic1,c2 is
empty is, in general, undecidable.

15



Let us suppose instead that I = Ic1,c2 is specified as a context-free
language (in the sense of Chomsky). It is well known that determining
whether or not such an I is empty is decidable [1, Theorem 6.6]. Thus, the
assumption that I is always context-free would satisfy the detection goal.
Moreover, it would satisfy the identification goal as well, since we would
have a context-free representation, i.e., a BNF, for I which would allow us
to visualize the members of I.

We seem to have uncovered a satisfactory condition on I. In order to
achieve our objective we must translate this condition back to conditions
on S+

c1 and S−c2 . The most obvious approach, requiring all S+
c and S−c to

be context free, is not adequate since the intersection of two context free
languages is not context free in general [1, Theorem 6.4]. However, the
intersection of a context-free language L1 with a regular language L2 is
context free, and there is a simple algorithm for constructing a context-free
specification from the given specifications for L1 and L2 [1, Theorem 6.5].

Since we must consider all intersections, we must require that all the S+
c

are context free and all the S−c2 are regular, or vice versa. We have not given
serious consideration to which option is preferable.

8 Warranties

So far all of our contracts have traded only in access rights to commands of
L. Little has been said about the semantic significance of those commands.
If an importer were paying an exporter for certain access rights, it would be
only natural for the importer to want some sort of guarantee that when he
executed a command the results of doing so would be what he expected. As
a simple example, if an importer who had subscribed to some stock trading
database were to execute a command like

price(IntPap, current)

it would get the current price of a single share of International Paper stock
(whatever “current” is determined to mean). More generally, we now con-
sider contracts in which the exporter provides a warranty concerning the
semantic significance, relative to the external world, of executing various
commands against its database. There are two aspects of semantics that we
have in mind, though the distinction between them is not always completely
clear. The first involves the semantics of L in the sense of programming
language semantics. The second involves the meaning of the data in par-
ticular databases in the sense of its significance in the external world. It is

16



this second aspect that we intend to consider here. We imagine the first as
being the subject of the “standards committee” of the federation and not to
be considered on a contract-by-contract basis.

8.1 Library Example

An organization O has a contract with a library L for library services. These
include certain remote accesses to the library’s databaseDL. O can check the
holdings (what L owns) and availability (what currently is in the library) of
particular items in L. L guarantees that the commands intended for these
purposes actually provide the correct information. Specifically, L might
agree to update its table of holdings on a daily basis and agree to update
the availability attribute of an item before allowing it to leave the library. In
addition, members of O may reserve items through DL, provided of course
that they are available. In particular, if the library accepts such a reservation
through DL, it guarantees that the item will not be checked out by anyone
else until the reservation expires and that the item was part of its holdings.
(O might want L to guarantee that the item is actually in the library and
can be found, but this is more difficult to guarantee.)

8.2 Conflicts

In order for L to make good on its guarantees, it will have to update DL in a
timely manner so that it faithfully reflects the current contents of the library.
In addition, it will need to employ some kind of transaction discipline, espe-
cially if access is to be allowed to more than one user at a time. It may be
that L does not do this correctly, and this would result in a violation of the
contract. However, there is no question of a conflict of contracts here since
there is only one contract after all. One can, however, find contract conflict
situations of a very simple kind. Suppose that an exporter gives access to
the same command on its database to two different importers. Suppose also
that the exporter guarantees that this command means “X” to one importer
and guarantees that it means “Y” to the other importer. If these meanings
are incompatible, then there is a sense that these two contracts are in con-
flict. However, we do not regard this as a conflict in the same sense as we
have been discussing above. There is no question of resolving conflicting
goals at execution time. The command has been implemented in a certain
way, and thus the command must violate either one or both of the contracts.

17



8.3 Comparison

In the actual world of federated database systems, warranties of this kind
could be very important. However, the concerns they introduce are very
different from those presented by the Basic or Full Frameworks, which are
themselves quite similar. In negotiating a contract c under the Basic or Full
Framework, the parties naturally take into account semantics in both of the
aspects we have mentioned above. But the actual contract c itself should
be thought of as specifying only syntactic constraints. For that reason we
have available the relatively simple implementation strategy presented in §4.
Conversely, because this strategy is available, it is important to have these
contracts “computer readable” in some sense so that we can actually take
advantage of the implementation strategy. In the case of warranties, it is
the semantic constraints themselves that would appear in the warranty. We
have no general strategy for enforcing such constraints, which should not be
surprising given the difficulty of handling semantic constraints in an single
unfederated database system. Therefore, there is less need to capture such
warranties in computer-readable form, at least at present.

We imagine a full federated database contract consisting of two parts.
The first part would correspond to a contract in the Full Framework and
could be thought of as an input to the guard of the implementation strategy.
The second part, which would correspond to the warranty and which might
be expressed less formally, would serve as a guide to implementors and offer
legal protection to the parties of the contract.

9 Remarks on the Languages

Underlying everything we have discussed above is a database query language
L. Remember that L serves as a parameter in the framework, and changes
to L should not necessitate changes to the framework.

There is a second language Lc about which we have said much less. This
is the language specifically designed for writing contracts. For the most part
this language will be used for describing sets of positive and negative access
statements. A typical statement of Lc might express that the exporter will
not grant access rights to any command of L involving the table “cabal”
to any organization that is not on a certain list. If warranties are also to
be used with the framework, Lc will need statements to express them, but
these statements are likely to be quite different from the statements of Lc

associated with the Full Framework. As yet, we have not given much thought

18



to the construction of Lc, but one would want to have such a language
in order to make the writing of complex contracts practical. The main
purpose of Lc is to make it easy to capture useful subsets of L commands and
collections of organizations in the federation, and to facilitate the detection
of conflicts between access statements.

In order to appreciate one of the issues that Lc should address, we return
to the monogamy example (see §6.1). Suppose we try to formalize the
requirement that Om is not allowed to be the exporter in any contract. One
might try to formalize this by considering the set of all statements −(Ox, σ)
where x 6∈ {m, f} and σ is any command. This would be a solution to
the problem, albeit a long-winded one, provided the federation remained
static. Suppose that, when new commands are added or new organizations
join the federation, the monogamy agreement is intended to apply to these
as well. Then the above will not be sufficient. The analogous problem
with positive access statements might be encountered as Dm and Df grow.
What is needed here is some facility in Lc for writing schemas in the logical
sense (such as the schema for mathematical induction). These schemas
would involve variables and constants that would range over entities such
as organizations, commands, tables, command constructors etc. While the
intention of the contract is fixed when it is written, the extensional meaning
of the contract may change over time. Even if one did not choose to include
such dynamic schemas in Lc, one certainly would want as a minimum some
notion of a static schema in Lc. In fact, that is the point of Lc.

There is a particular construct that might be included in Lc to achieve
some of the effect of schemas. It would assert that some organizations’
positive accesses would be limited to a certain set of commands. This would
allow us to express directly what would amount to a schema of negative
access statements.

While our observations in §7 on detecting impingements will still apply
to the interpretation of contracts at any fixed time, it is possible to construct
contracts using dynamic schemas which do not impinge when they are writ-
ten, but which would impinge were the federation to change appropriately.
As a result one should be careful as to if and how dynamic schemas should
be used.

For practical reasons one would also want still another language layer.
Because of contract requirements, when a user wishes to execute some simple
command, he may in fact have to execute a much more complicated com-
mand that surrounds the simple command with various tests and actions. It
would probably be unrealistic and unnecessary to burden the average user

19



of the database with all these details. One could instead create a language
Li to act as an interface to the real database language L. Li would provide
convenient syntactic mechanisms for selecting commands. For example, in
the case described above it would provide the average user with a command
that looked like the simple command he had in mind, but which really in-
voked a more complicated command. As a result the user is spared some of
the burden of conforming to the contracts. We imagine that the different
members of the federation might have their own interface languages, which
would be strongly determined by the contracts at hand.

10 Final Remarks

Some readers may find our framework a spartan one. For example, we do
not have a certain class of active obligations, and so in particular, we do not
need to be concerned with whether the carrying out of an obligation would
be in violation of some other contract. Allowing restrictions and obligations
to combine in an unstructured way leads to a very complicated semantics
for contracts for which it is not clear how to create a convenient abstraction
barrier. In order to get an idea of the sorts of issues that would need to be
addressed, consider the following.

Suppose an action is taken that activates several different contracts and
requires tests or actions from a number of them. In what order are these tests
or actions to be scheduled? In what environments are the tests or actions
scheduled later to be executed? In the current environment, or in the one in
existence when the activity was first required? What if one action negates
the condition for another action that was originally true? Of course, just
dealing with the first test or action may itself instigate still other activities.
Cascading problems are possible in which, rather than contradicting one
another, contracts may interact to generate an infinite sequence of actions.
All these problems would be compounded with the difficulty of dealing with
distributed databases and concurrent users.

Suppose it were possible to develop a framework that settles all these
issues, as well as many yet to be anticipated. Then, it would, in general,
be necessary to be cognizant of these details in order to understand the real
meaning of a contract. We feel that this would be an undesirable situa-
tion, reminiscent of the worst aspects of low-level Prolog programming. We
consider it a very significant point that our framework is, in some sense,
immune from this problem. Suppose, for the sake of argument, that L was

20



either enhanced or replaced by another language L′. Further suppose that
L′ was improperly designed so that the meaning of certain expressions was
either difficult or even impossible to determine in certain situations. Nat-
urally, this incomprehensibility would be inherited by contracts written in
our framework. However, it is not further compounded by our framework,
and one certainly could not hope to do better than this. The approach we
have taken provides an abstraction barrier between our framework and the
underlying database language L. The latter serves as a parameter in the
framework, that we can freely change without modifying the framework.
What the framework assumes about L is minimal. Obviously, this is a de-
sirable quality of the architecture.

Under our framework the effect of a command does not depend upon the
contracts in force except to the extent that they control access to the com-
mand. In addition, one can understand the effect of a contract in isolation
independently from any other contracts. With unconstrained combinations
of actions and obligations, it is impossible to understand the effect of a sin-
gle contract in isolation. Even more strikingly, in order to predict the effect
of even a single database command, one would need to take into account all
the contracts in force.

In the foreword we mentioned three criteria against which our frame-
work should be measured. These may be described as, expressivity, imple-
mentability, and understandability. We feel that the framework we have
presented above is at least satisfactory with respect to the second and third.
More empirical evidence will be required to determine how well it does
against the first.

References

[1] Hopcroft, J. E., and J. D. Ullman, 1979, Introduction to Automata The-
ory, Languages, and Computation, Addison-Wesley.

[2] Sheth, A. P., and J. A. Larson, 1990, “Federated database systems for
managing distributed, heterogeneous, and autonomous systems,” ACM
Computing Surveys, Vol. 22, pp. 183–236.

21



Acknowledgments

This work was supported by the MITRE-Sponsored Research program under
the Secure Federated Data Management project. Mark Nadel presented part
of the paper at a special session entitled “Applied Logic” at the 101st Annual
Meeting of the American Mathematical Society held 4–7 January 1995 in
San Francisco, California.

22


