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1 The Nature of Mathematics

Like Janus, mathematics has two faces. One face is a huge body of knowledge
assembled over thousands of years. The other face is a process by which math-
ematical knowledge is obtained. Mathematics education has traditionally em-
phasized the first face of mathematics. Students are taught many mathematical
facts, but they are rarely taught what the mathematics process is and how to
employ it. As a consequence, engineers and scientists today often do not know
how to do mathematics, and the population as a whole does not understand
what mathematics is and does not appreciate its importance in today’s world.

The mathematics process is both a creative and explorative process. Models
about the mathematical content of the world are created by defining mathe-
matical structures and concepts, and the models are explored by performing
calculations and stating and proving conjectures. The process is the most im-
portant face of mathematics. It is the fountainhead from which mathematical
knowledge flows and a central component of the infrastructure that makes to-
day’s technological and informational world possible.

Every mathematics student needs to learn the mathematics process. Of
course, the best way to learn it is to practice it. But high school and univer-
sity students are given little chance to experience the full process of creating
and exploring mathematics. Instead, they are taught merely about byproducts
of the process—facts and calculations separated from the process which made
them. Many mathematics educators feel that trying to teach students to learn
the mathematics process is unproductive, and accordingly, they have argued, for
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example, that mathematical proof should be deemphasized in, or even eliminated
from, the standard mathematics curriculum.

It is true that most people find it difficult to do mathematics. All mathematics
creation and exploration is performed in some context, which includes vocabulary
and notation for expressing concepts and assertions, and assumptions and rules
for governing calculation and proof. In ordinary (informal) mathematics, the
context is almost entirely implicit and often substantial mathematical expertise
and training is needed to “see” it. The average person is often not able to see it.
In other words, most people, if they do mathematics at all, they do it blind.

2 Interactive Mathematics Laboratories

An interactive mathematics laboratory (iml) is a computer system with a set
of integrated tools designed to facilitate the mathematics process. It is a formal
environment where the mathematical context is fully explicit. It is an interactive
environment where the user can create and explore mathematics. And it is a
mechanized environment where the system can perform many functions useful
to the user.

An iml would provide the following services to mathematics students as well
as to engineers, scientists, and mathematicians:

1. Context Management. An iml would keep track of the context the user is
working in. The definitions and assumptions in force would be explicit. The
user would have the freedom to examine the contents of the context and
to modify, extend, or switch the context as desired. The rules of rigorous
reasoning would be effectively encoded in an iml, and the system would
check the soundness of the operations performed by the user. Consequently,
the “rules of the game” would be apparent to the user, and all attempts to
make unfounded conclusions would be immediately identified.

2. Mathematics Library. An iml would have access to a large library of
electronically stored mathematics organized as a network of axiomatic the-
ories. The mathematical information in the library would be dynamically
represented, and so requested information could be generated on the fly. It
would include both algorithmic and axiomatic mathematics. The theories
would be linked via theory interpretations [7, 23] which would serve as con-
duits through which information from one theory could be “transported” to
another theory [2]. This would enable the library to offer multiple views of
the same mathematics.

3. Creation. An iml would facilitate the creation of mathematical ideas and
objects, including mathematical models, definitions, conjectures, proofs, pro-
grams, notation, axiomatic theories, and links between theories. The user
could start from scratch or build on the work of others. The creations could
be added to the theory library, and if desired, made available to the public.
This facility could be used by students to learn how mathematics is created.

4. Exploration. An iml would provide the ability to “browse” the theory
library in sophisticated ways. For example, the user could ask to see all
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the different ways of defining a continuous function and then explore what
impact these different definitions have on the basic development of calculus.
A user could ask what a certain complex expression reduces to in some
particular algebraic theory. After choosing a well-known theorem, a user
could ask for other theorems in other theories that are generalizations of it.
And a user could study a selected proof to whatever level of detail is desired.

5. Mathematical Proof. An iml would support the development of math-
ematical proofs. Proof is what separates mathematics from all other dis-
ciplines; it is the prime instrument of the creative/explorative process of
mathematics. iml-produced proofs would be both humanly comprehensible
like the informal proofs of mathematicians and mechanically manipulatable
like the formal proofs of logicians. An iml would offer a new kind of proof
that is easier to understand and to construct.

6. Calculation. Like a computer algebra system, an iml would be able to per-
form calculations using both symbolic and numeric computation. However,
unlike a contemporary computer algebra system, an iml would perform its
calculations within a rigorous logical framework and could perform context-
directed calculations [12]. Moreover, many calculations could be performed
in a “transparent” mode in which the steps of the calculation would be visible
to the user.

7. Automated Deduction. Automated deduction would be utilized system-
atically in an iml, particularly to handled low-level details. This would allow
the user to focus her reasoning on the key aspects of a problem and let the
system handle the more routine aspects. The level of automated deduction
could be controlled, which would be particularly important for students. For
each student, an iml would establish a demarcation between what is routine
and what is key. The system would largely handle what is routine, while
the student, with only limited help from the system, would be responsible
for what is key. The frontier between what is routine and what is key—and
what is automated and what is not–would be moved forward as the student
mastered new concepts and techniques.

8. Organizational Support. An iml would automatically handle the lion’s
share of the organizational concerns and the drudgework involved in doing
mathematics. For example, mathematics often involves long, sometimes te-
dious, threads of reasoning that are very difficult to keep track of with only
the help of pencil and paper and one’s memory. Good organizational support
provided by a machine would allow the user to concentrate more fully on the
key concepts and techniques being studied or applied. It would also enable
students to work on more realistic and better focused problems.

9. Notational Freedom. Since an iml manipulates and stores mathematics
represented in a precise, formal manner, it would be easy to display the
mathematics using multiple notations. The user could choose whatever no-
tation she preferred, and mathematics developed by one user in one notation
could be viewed by another user in another notation.

An iml which could offer these kinds of services would have the potential
to transform how people do mathematics, and in particular, how students learn
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mathematics. An iml would greatly extend their mathematical reach, allowing
them to learn more mathematics by being able to do more mathematics.

3 Related Technology

imls do not exist today. However, a substantial portion of the technology needed
for building an iml can be found in contemporary mechanized mathematics sys-
tems. Computer algebra systems, such as Axiom [15], Macsyma [16], Maple [4],
and Mathematica [24], offer a rich collection of techniques for performing sym-
bolic computations. Theorem proving systems, such as Automath [19], Coq [1],
eves [6], hol [14], imps [10, 11], Isabelle [20], Mizar [22], nqthm [3], Nuprl [5],
Otter [17], and pvs [21], have much of technology that an iml needs, but they
are more narrow in scope than an iml and are very difficult to use without a
fairly deep understanding of formal mathematics.

These systems are a significant step toward an iml. They demonstrate the
feasibility of an iml and the impact an iml could have on mathematics practice.
They also demonstrate that the usefulness of an iml will depend at least as
much on good system design and user interface software as on good logical and
deductive machinery.

4 Obstacles

The potential benefits of an iml are great, but the obstacles that stand in the
way of developing an iml and making it part of mathematics practice are also
great. The following are some of the major obstacles:

1. Development Cost. The cost of developing an effective iml that is acces-
sible to ordinary students would be very high, on the order of several million
U.S. dollars. A development team for an iml would require funding for an
extended period of time and would need a wide range of expertise in areas
including mathematics, logic, automated deduction, symbolic computation,
human-computer interaction, and mathematics education.

2. Mathematics Community. The mathematics community has largely ig-
nored the field of mechanized mathematics. Although many mathematicians
use computer algebra systems, only a small fraction of mathematicians are
actively involved in developing or applying theorem proving systems. Their
knowledge and leadership, however, is essential for the development and de-
ployment of an iml. They need to be in the vanguard, not on the sidelines.

3. Accessibility. Contemporary theorem proving systems are only accessible
to highly sophisticated users—typically people who have graduate degrees in
computer science or mathematics. The impact of mechanized mathematics
on mathematics education will only be marginal until systems are made
available that are usable by and useful to ordinary mathematics students.
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4. Division between Theorem Proving and Computer Algebra. An iml

requires the capabilities offered by both theorem proving systems and com-
puter algebra systems. These systems are at different ends of the mechanized
mathematics spectrum, and the communities that work on developing them
communicate with each other very little. In an iml, theorem proving and
computer algebra must be integrated.

5. Mathematics Library. An effective iml needs a well-endowed mathematics
library. A great deal of mathematics would have to be carefully formalized,
mechanized, documented, and interrelated. The development of the library
would be a huge task, and there is no consensus in the mathematics and
automated deduction communities for how the library should be organized
and constructed.

6. System Design. To be effective, the various subsystems of an iml (e.g., user
interface, logic, prover, calculator, and theory development facility) must
be highly integrated like the component systems of an automobile. System
developers in the field of mechanized mathematics have relatively limited
experience in the kind of system design needed for an iml.

7. Underlying Logic. The great majority of contemporary theorem proving
systems are based either on simple logics which are too inexpressive or on
type theories which are too esoteric for most typical mathematics practi-
tioners. To be successful, an iml needs an underlying logic which is highly
expressive, familiar to users, and well understood by developers. We have
proposed a logic called stmm [8, 9] that is intended to serve as a foundation
for mechanized mathematics. stmm is a version of von-Neumann-Bernays-
Gödel (nbg) set theory [13, 18] with convenient machinery for reasoning with
undefinedness and partial functions.

5 Proposal

It will take a tremendous effort to make the idea of an iml into a reality. It
is highly unlikely that one organization or research group could overcome the
obstacles given above sufficiently to develop an iml by itself. On the other hand,
the potential benefits of an iml for mathematics education are immeasurable.

We propose that the automated deduction community should make the de-
velopment of an iml for mathematics education its foremost goal and should
seek support for the pursuit of this goal from both the mathematics research
and mathematics education communities. The fulfillment of this goal would rev-
olutionize mathematics education, making it possible for many more people to
learn, do, and appreciate mathematics. It would also convincingly demonstrate
that automated deduction is a valuable and important technology for our society.
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description. In M. McRobbie and J. Slaney, editors, Automated Deduction—CADE-
13, volume 1104 of Lecture Notes in Computer Science, pages 298–302. Springer-
Verlag, 1996.

11. W. M. Farmer, J. D. Guttman, and F. J. Thayer. imps: An Interactive Mathemat-
ical Proof System. Journal of Automated Reasoning, 11:213–248, 1993.

12. W. M. Farmer, J. D. Guttman, and F. J. Thayer. Contexts in mathematical
reasoning and computation. Journal of Symbolic Computation, 19:201–216, 1995.
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