
Between them, Professors William Farmer and Jacques Carette have years of
experience in building theorem proving and symbolic computation systems. Now, they
are focusing their skills on developing a revolutionary mechanised mathematics system

To begin, could you outline the central
objectives of the MathScheme project?
What do you hope to achieve?

WF: Our principal objective is to revolutionise
how people learn and practice mathematics by
developing an integrated system of computer-
based tools for a wide range of mathematical
activities, that are accessible to a wide range
of practitioners. Unlike many similar projects,
our principal non-objective is to change how
people learn and practice mathematics. In
other words, we want to provide computerised
support for all aspects of the process of
doing mathematics, but without imposing
a preferred workflow onto practitioners. We
want to greatly increase the efficiency of users
of mathematics.

There is a powerful synergy between
computation and deduction. How have
computer algebra systems and theorem
proving systems helped to break this synergy?

JC: Most computations (like solving the
roots of a polynomial or computing an
integral) rely on established algorithms –
but those algorithms have preconditions
on their applicability. Thus, to use these
algorithms, one must first prove that
the situation at hand satisfies those
preconditions. Similarly, certain (difficult)
proofs could be made significantly simpler
if certain computations (such as factoring
polynomials over exotic number fields)
could just ‘be done’. And of course, in larger
applications of mathematics, there tends
to be a continual back-and-forth between
computation and deduction. Remarkably,
today, there is no single system that allows
this. Current systems, which are extremely
good at what they do, focus quite singularly
on one half of this (important!) combination
of computation and deduction.

How will algorithmic mathematics and
axiomatic mathematics be integrated into
a single system? Could you outline a typical
biform theory?

WF: Biform theories are actually quite simple:
they just happen to contain the declarative
aspects of a mathematical theory (its main
axioms, definitions, concepts, etc.), as well
as the algorithms that make such a theory
effective. Instead of keeping the definition
of ‘integration’ and the main properties
of integrals completely separate from the
computation of integrals (numerically or
in closed-form), we put this information
together. The reason this has not been
done before is that these two aspects turn
out to live in very different conceptual
frameworks, which are frequently presented
in incompatible ways – something that
undergraduate mathematics professors tend
to scrupulously hide from their students.
Quite a lot of work is needed to have
theories of mathematics where proofs and
computations co-exist peacefully.

What kinds of software systems are going
to be created to support the application
of mathematics? What methodologies
will be used in this development?

JC: We are experimenting with a range
of options. The scale of a single, new and
all-encompassing system is too large for
our team to take on. Thus, we are building
a small, core system with a novel method
of communication with other systems
(‘trustable communication’) to enable our
system to understand and trust results
computed by other software.

We have developed a series of conceptual
and software products which represent our
approach. Without going into technical

details, we have developed Chiron,
syntax frameworks, biform theories, the
MathScheme language and its library,
realms and trustable communication.
We have also used, as well as invented,
a lot of techniques in metaprogramming
(programmes which manipulate
programmes) throughout our framework.

Are there any further applications of the
software system that will be developed?
Where will it be used in the academic and
commercial environments?

WF: We are working closely with many
of our McMaster colleagues on software
certification, a more flexible notion
than pure software verification. We see
fruitful applications of MathScheme to
the production of correct-by-construction
software. Of course, we are also very
interested in applications to mathematics
education. Eventually, we see ourselves
broadening to more areas of application in
mathematics.

Finally, what has been your greatest
achievement on the project thus far?
Have you made any breakthroughs?

JC: Probably our greatest achievement
is our continued agreement: we come
from rather different backgrounds and yet
have worked together for 10 years already
towards a common goal, never wavering.
We do not think in terms of breakthroughs;
our aim is to revolutionise a domain by
giving it entirely new tools (think of how
the advent of power tools in replacement
of hand tools changed the construction
industry). We are progressing, doggedly and
purposefully, towards our objective. We re-
use all the good ideas that we can, and we
invent ‘in anger’ when we must.

Mechanising
mathematics

 20 InTernATIonAl INNOvATION

PR
O

fE
SS

O
RS

 W
Il

lI
AM

 f
AR

M
ER

 &
 JA

CQ
U

ES
 C

AR
ET

TE

Sound MATHeMATICS IS essential in
all modern technological developments.
As increasingly complex systems are built,
mathematical reasoning becomes more
difficult and prone to errors – especially within
software systems. Mechanised mathematics
systems (MMSs) are software systems that
support the mathematics process by providing
tools for performing computation, proof and
other kinds of mathematical reasoning. They
have the potential to revolutionise the design,
implementation and analysis of complex,
sophisticated software systems.

Presently two major types of MMSs exist:
computer algebra systems and computer
theorem proving systems. Computer algebra
systems provide algorithms for symbolic
computation and, whilst being relatively
fast and easy to use, they are not rigorous,
trustworthy nor broad in scope. Computer
theorem proving systems provide tools for
creating formal proofs. Although they are based
on well-defined logical foundations and can
support a wide range of mathematics, they
are difficult to use and often lack the specific
knowledge needed to perform many routine
computations. This artificial division between

the two types of systems has broken the synergy
that working mathematicians leverage between
deduction and computation. There needs to be
a renewed effort to reunite these interactions
within a single framework if significant advances
to mechanised mathematics are to be made.

InTegrATIng deduCTIon
And CoMPuTATIon

MathScheme is a long-term project taking
place at McMaster University in Ontario with
the aim of producing such a framework. led
by Professors Jacques Carette and William
farmer, the MathScheme team is developing
tools, techniques and eventually a new system,
in which formal deduction and symbolic
computation are tightly integrated. Whilst
previous attempts to conjoin such systems
have produced disappointing results, farmer
explains that their approach is different: “We
are convinced that it can only be done in a
new system which is aimed at supporting the
full range of mathematical activities, while
leveraging all that has been learned until
now regarding each of the separate tasks”.
Part of MathScheme’s approach is to create a
core system with ‘trustable communication’

capabilities, allowing it to understand and
trust results computed by other software,
thereby exploiting existing libraries of
mechanised mathematics.

However, the MathScheme approach does more
than just integrate axiomatic and algorithmic
mathematics. “We also leverage the structure
inherent in mathematical knowledge; that
mathematics itself has a rich mathematical
structure is well-known, but this has not been
seriously used as part of the architecture of
any mechanised mathematics system,” Carette
enthuses. furthermore, the team understands
that the users of their new system will range from
advanced developers to pure end-users. System
developers normally make compromises,
hoping for a one-size-fits-all solution, while the
MathScheme developers have planned from
the start to have a multi-faceted system that is
geared towards various usage scenarios.

Therefore, MathScheme’s first goal is to develop
a formal framework that allows mathematical
knowledge to be represented both declaratively
using axioms and procedurally using algorithms,
and it will provide a style of mathematical
reasoning in which computation and deduction

As software systems become increasingly complex, novel mechanised
mathematics systems are required to develop and analyse them. A group at
McMaster university in Ontario develops such systems to advance capabilities

MathScheme

 WWW.RESEARCHMEdIA.EU 21

PROfESSORS WIllIAM fARMER & JACQUES CARETTE

are intertwined. The second project goal is to
design and implement an MMS based on this
framework that will provide services for building
formal languages, theories, computations,
deductions and mappings between theories – all
the services that are necessary for mechanising the
mathematics process.

MATHSCHeMe lAnguAge And lIbrAry

The team has already developed several
techniques; some that lay the theoretical
foundations of their framework and others that
are implementation techniques. Specifically, their
techniques rely on biform theories and Chiron – an
expressive, general-purpose logic for mechanising
mathematics. Two of the implementations the
team is working on are the MathScheme language
and MathScheme library.

The MathScheme language is a cross between
a programming language and a language for
mathematical knowledge capture. It has a user-
orientated, high-level syntax (unlike Chiron)
influenced by the team’s previous work on high-
level theories. “It has been designed to feel quite
familiar, even though it has some rather novel
semantics,” Carette adds.

The MathScheme library, on the other hand, is
the group’s current repository of mathematical
knowledge, which they are expanding to
incorporate computer science, and is written in
the MathScheme language. It is an experimental
formalisation of the theories of abstract algebra,
basic data-structures and structured type
constructors. The library is organised by the tiny
theories method in which knowledge is distributed
over a network of theories that are built up one
concept at a time. Much of the structure of the
library resides in theory morphisms instead of in
the theories themselves. “We have an expander (to
see what our theories correspond to in traditional
notation), a type-checker, pretty-printing facilities
similar to Chiron’s, as well as an experimental
translator to Chiron,” Carette explains. “The
library plays a key role, as it embodies the
most concrete form of our ideas.” Current
work is first focusing on leveraging the
structure already present in the library
to automatically generate as much
information as possible using
meta-programming techniques,
rather than implementing
all of this by hand, as
is traditionally done.
Eventually, the library will
form a network of biform
theories interconnected
by theory morphisms.

 IMProvIng eFFICIenCy In MATHeMATICS

Carette and farmer have many years of experience
in building theorem-proving and symbolic
computation systems. As farmer reflects: “We
were not interested in merely building a ‘better’
system; that would be too easy. We wanted to build
something which would clearly be recognised as
a ‘next generation’ system”. They have thus spent
a great deal of time on methodological aspects;
analysing what they see as the strengths and
weaknesses of current systems, especially when
it comes to fundamental design decisions as well
as methodology. “In particular, a lot of current
systems make false choices between certain things,
such as trading off correctness for efficiency, or vice
versa,” Carette asserts.

The application areas for MathScheme’s products
are wide-ranging but the team expects that the
first uses will be in software engineering (for
building dependable software) and in mathematics
education. Ultimately, Carette and farmer see the
tools and systems they are developing as a means
to an end; they are passionate that their research is
aimed at improving people’s efficiency, rather than
being centred on any given technology.

MATHSCHeMe: MeCHAnISIng
THe MATHeMATICS ProCeSS

obJeCTIveS

• To develop software systems that support
the process people use to create, explore,
connect, and apply mathematics

• To significantly advance mechanised
mathematics

• To produce a single framework in which
formal deduction and symbolic computation
are tightly integrated and develop tools and
techniques to support this approach

Key CollAborATorS

Michael Kohlhase, Jacobs University

Florian rabe, Jacobs University

FundIng

Natural Sciences and Engineering Research
Council of Canada

ConTACT

Professor William M Farmer

department of Computing and Software
McMaster University
1280 Main Street West
Hamilton, Ontario l8S 4K1
Canada

T +1 905 525 9140 x 27039
e wmfarmer@mcmaster.ca

WIllIAM M FArMer is Professor and
Chair of the department of Computing
and Software at McMaster University
in Hamilton, Ontario. He holds a Phd
in mathematics from the University
of Wisconsin-Madison. Before joining
McMaster in 1999, he conducted research in
computer science for 12 years at The MITRE
Corporation in Bedford, Massachusetts
and taught computer science for two years
at St Cloud State University in St Cloud,
Minnesota. His primary research interests
are applied logic, computer support for
mathematical reasoning, and rigorous
methods in software development.

JACqueS CAreTTe is Associate Professor
in the department of Computing and
Software at McMaster University. He holds
a Phd in mathematics from the Université
de Paris-Sud. Before joining McMaster in
2002, he worked for 11 years at Maplesoft
Inc in Waterloo, Ontario on all aspects of
the Maple computer algebra system. His
primary research interests are the building
of mechanised mathematics systems,
metaprogramming, programming languages
and game design.

The application areas for
MathScheme’s products are wide-

ranging but the team expects
that the first uses will be in

software engineering (for building
dependable software) and in

mathematics education

 22 InTernATIonAl INNOvATION

InTellIgenCe

