
An Infrastructure for Intertheory Reasoning?

William M. Farmer

Department of Computing and Software
McMaster University

1280 Main Street West
Hamilton, Ontario L8S 4L7

Canada

wmfarmer@mcmaster.ca

2 May 2000

Abstract. The little theories method, in which mathematical reason-
ing is distributed across a network of theories, is a powerful technique
for describing and analyzing complex systems. This paper presents an
infrastructure for intertheory reasoning that can support applications
of the little theories method. The infrastructure includes machinery to
store theories and theory interpretations, to store known theorems of a
theory with the theory, and to make definitions in a theory by extending
the theory “in place”. The infrastructure is an extension of the interthe-
ory infrastructure employed in the imps Interactive Mathematical Proof
System.

1 Introduction

Mathematical reasoning is always performed within some context, which includes
vocabulary and notation for expressing concepts and assertions, and axioms and
inference rules for proving conjectures. In informal mathematical reasoning, the
context is almost entirely implicit. In fact, substantial mathematical training is
often needed to “see” the context.

The situation is quite different in formal mathematics performed in logical
systems often with the aid of computers. The context is formalized as a math-
ematical structure. The favored mathematical structure for this purpose is an
axiomatic theory within a formal logic. An axiomatic theory, or theory for short,
consists of a formal language and a set of axioms expressed in the language. It
is a specification of a set of objects: the language provides names for the objects
and the axioms constrain what properties the objects have.

Sophisticated mathematical reasoning usually involves several related but
different mathematical contexts. There are two main ways of dealing with a
? Presented at the 17th International Conference on Automated Deduction (CADE-

17), Pittsburgh, PA, USA, June 2000. Published in: D. McAllester, ed., Automated
Deduction—CADE-17, Lecture Notes in Computer Science, Vol. 1831, pp. 115–131,
Springer-Verlag, 2000.

1

multitude of contexts using theories. The big theory method is to choose a highly
expressive theory—often based on set theory or type theory—that can represent
many different contexts. Each context that arises is represented in the theory or
in an extension of the theory. Contexts are related to each other in the theory
itself.

An alternate approach is the little theories method in which separate contexts
are represented by separate theories. Structural relationships between contexts
are represented as interpretations between theories (see [4, 19]). Interpretations
serve as conduits for passing information (e.g., definitions and theorems) from
abstract theories to more concrete theories, or indeed to other equally abstract
theories. As a result, the big theory is replaced with a network of theories—
which can include both small compact theories and large powerful theories. The
little theories approach has been used in both mathematics and computer science
(see [10] for references). In [10] we argue that the little theories method offers
important advantages for mechanized mathematics. Many of these advantages
have been demonstrated by the imps Interactive Mathematical Proof System [9,
11] which supports the little theories method.

A mechanized mathematics system based on the little theories method re-
quires a different infrastructure than one based on the big theory method. In the
big theory method all reasoning is performed within a single theory, while in the
little theories method there is both intertheory and intratheory reasoning. This
paper presents an infrastructure for intertheory reasoning that can be employed
in several kinds of mechanized mathematics systems including theorem provers,
software specification and verification systems, computer algebra systems, and
electronic mathematics libraries. The infrastructure is closely related to the in-
tertheory infrastructure used in imps, but it includes some capabilities which are
not provided by the imps intertheory infrastructure.

The little theories method is a major element in the design of several software
specification systems including ehdm [18], iota [16], kids [20], obj3 [12], and
Specware [21]. The intertheory infrastructures of these systems are mainly for
constructing theories and linking them together into a network. They do not sup-
port the rich interplay of making definitions, proving theorems, and “transport-
ing” definitions and theorems from one theory to another needed for developing
and exploring theories within a network.

The Ergo [17] theorem proving system is another theorem proving system be-
sides imps that directly supports the little theories method.1 Its infrastructure
for intertheory reasoning provides full support for constructing theories from
other theories via inclusion and interpretation but only partial support for de-
veloping theories by making definitions and proving theorems. In Ergo, theory
interpretation is static: theorems from the source theory of an interpretation can
be transported to the target theory of the interpretation only when the inter-
pretation is created [14]. Theory interpretation is dynamic in the intertheory
infrastructure of this paper (and of imps).

1 Many theorem proving systems indirectly support the little theories methods by
allowing a network of theories to be formalized within a big theory.

2

The rest of the paper is organized as follows. The underlying logic of the
intertheory infrastructure is given in section 2. Section 3 discusses the design
requirements for the infrastructure. The infrastructure itself is presented in sec-
tion 4. Finally, some applications of the infrastructure are described in section 5.

2 The Underlying Logic

The intertheory infrastructure presented in this paper assumes an underlying
logic. Many formal systems, including first-order logic and Zermelo-Fraenkel set
theory, could serve as the underlying logic. For the sake of convenience and
precision, we have chosen a specific underlying logic for the infrastructure rather
than treating the underlying logic as a parameter. Our choice is Church’s simple
theory of types [3], denoted in this paper by C.

The underlying logics of many theorem proving systems are based on C. For
example, the underlying logic of imps (and its intertheory infrastructure) is a
version of C called lutins [5, 6, 8]. Unlike C, lutins admits undefined terms,
partial functions, and subtypes. By virtue of its support for partial functions and
subtypes, many theory interpretations can be expressed more directly in lutins

than in C [8].
We will give now a brief presentation of C. The missing details can be filled

in by consulting Church’s original paper [3] or one of the logic textbooks, such
as [1], which contains a full presentation of C. We will also define a number
of logical notions in the context of C including the notions of a theory and an
interpretation.

2.1 Syntax of C

The types of C are defined inductively as follows:

1. ι is a type (which denotes the type of individuals).
2. ∗ is a type (which denotes the type of truth values).
3. If α and β are types, then (α→ β) is a type (which denotes the type of total

functions that map values of type α to values of type β).

Let T denote the set of types of C.
A tagged symbol is a symbol tagged with a member of T . A tagged symbol

whose symbol is a and whose tag is α is written as aα. Let V be a set of tagged
symbols called variables such that, for each α ∈ T , the set of members of V
tagged with α is countably infinite. A constant is a tagged symbol cα such that
cα 6∈ V.

A language L of C is a set of constants. (In the following, let a “language”
mean a “language of C”.) An expression of type α of L is a finite sequence of
symbols defined inductively as follows:

1. Each aα ∈ V ∪ L is an expression of type α.
2. If F is an expression of type α → β and A is an expression of type α, then
F (A) is an expression of type β.

3

3. If xα ∈ V and E is an expression of type β, then (λxα . E) is an expression
of type α→ β.

4. If A and B are expressions of type α, then (A = B) is an expression of
type ∗.

5. If A and B are expressions of type ∗, then ¬A, (A ⊃ B), (A∧B), and (A∨B)
are expressions of type ∗.

6. If xα ∈ V and E is an expression of type ∗, then (∀xα . E) and (∃xα . E)
are expressions of type ∗.

Expressions of type α are denoted by Aα, Bα, Cα, etc. Let EL denote the set of
expressions of L. “Free variable”, “closed expression”, and similar notions are
defined in the obvious way. Let SL denote the set of sentences of L, i.e., the set
of closed expressions of type ∗ of L.

2.2 Semantics of C

For each language L, there is a set ML of models and a relation |= between
models and sentences of L. M |= A∗ is read as “M is a model of A∗”. Let L
be a language, A∗ ∈ SL, Γ ⊆ SL, and M ∈ ML. M is a model of Γ , written
M |= Γ , if M |= B∗ for all B∗ ∈ Γ . Γ logically implies A∗, written Γ |= A∗, if
every model of Γ is a model of A∗.

2.3 Theories

A theory of C is a pair T = (L, Γ) where L is a language and Γ ⊆ SL. Γ serves
as the set of axioms of T . (In the following, let a “theory” mean a “theory of C”.)
A∗ is a (semantic) theorem of T , written T |= A∗, if Γ |= A∗. T is consistent if
some sentence of L is not a theorem of T . A theory T ′ = (L′, Γ ′) is an extension
of T , written T ≤ T ′, if L ⊆ L′ and Γ ⊆ Γ ′. T ′ is a conservative extension of T ,
written T � T ′, if T ≤ T ′ and, for all A∗ ∈ SL, if T ′ |= A∗, then T |= A∗.

The following lemma about theory extensions is easy to prove.

Lemma 1. Let T1, T2, and T3 be theories.

1. If T1 ≤ T2 ≤ T3, then T1 ≤ T3.
2. If T1 � T2 � T3, then T1 � T3.
3. If T1 ≤ T2 ≤ T3 and T1 � T3, then T1 � T2.
4. If T1 � T2 and T1 is consistent, then T2 is consistent.

2.4 Interpretations

Let T = (L, Γ) and T ′ = (L′, Γ ′) be theories, and let Φ = (γ, µ, ν) where γ ∈ T
and µ : V → V and ν : L→ EL′ are total functions.

For α ∈ T , Φ(α) is defined inductively as follows:

1. Φ(ι) = γ.
2. Φ(∗) = ∗.
3. If α, β ∈ T , then Φ(α→ β) = Φ(α)→ Φ(β).

4

Φ is a translation from L to L′ if:

1. For all xα ∈ V, µ(xα) is of type Φ(α).
2. For all cα ∈ L, ν(cα) is of type Φ(α).

Suppose Φ is a translation from L to L′. For Eα ∈ EL, Φ(Eα) is the member
of EL′ defined inductively as follows:

1. If Eα ∈ V, then Φ(Eα) = µ(Eα).
2. If Eα ∈ L, then Φ(Eα) = ν(Eα).
3. Φ(Fα→β(Aα)) = Φ(Fα→β)(Φ(Aα)).
4. Φ(λxα . Eβ) = (λΦ(xα) . Φ(Eβ)).
5. Φ(Aα = Bα) = (Φ(Aα) = Φ(Bα))
6. Φ(¬E∗) = ¬Φ(E∗).
7. Φ(A∗ 2 B∗) = (Φ(A∗) 2 Φ(B∗)) where 2 ∈ {⊃,∧,∨}.
8. Φ(2xα . E∗) = (2Φ(xα) . Φ(E∗)) where 2 ∈ {∀,∃}.

Φ is an interpretation of T in T ′ if it is a translation from L to L′ that maps
theorems to theorems, i.e., for all A∗ ∈ SL, if T |= A∗, then T ′ |= Φ(A∗).

Theorem 1 (Relative Consistency). Suppose Φ be an interpretation of T in
T ′ and T ′ is consistent. Then T is consistent.

Proof. Assume Φ = (γ, µ, ν) is an interpretation of T in T ′, T ′ is consistent,
and T is inconsistent. Then F∗ = (∃xι . ¬(xι = xι)) is a theorem of T , and so
Φ(F∗) = (∃µ(xι) . ¬(µ(xι) = µ(xι))) is a theorem of T ′, which contradicts the
consistency of T ′.2

The next theorem gives a sufficient condition for a translation to be an in-
terpretation.

Theorem 2 (Interpretation Theorem). Suppose Φ is a translation from L
to L′ and, for all A∗ ∈ Γ , T ′ |= Φ(A∗). Then Φ is an interpretation of T in T ′.

Proof. The proof is similar to the proof of Theorem 12.4 in [6].2

3 Design Requirements

At a minimum, an infrastructure for intertheory reasoning should provide the
capabilities to store theories and interpretations and to record theorems as they
are discovered. We present in this section a “naive” intertheory infrastructure
with just these capabilities. We then show that the naive infrastructure lacks
several important capabilities. From these results we formulate the requirements
that an intertheory infrastructure should satisfy.

5

3.1 A Naive Intertheory Infrastructure

We present now a naive intertheory infrastructure. In this design, the state of
the infrastructure is a set of infrastructure objects. The infrastructure state is
initially the empty set. It is changed by the application of infrastructure opera-
tions which add new objects to the state or modify objects already in the state.
There are three kinds of infrastructure objects for storing theories, theorems,
and interpretations, respectively, and there are four infrastructure operations
for creating the three kinds of objects and for “installing” theorems in theories.

Infrastructure objects are denoted by boldface letters. The three infrastruc-
ture objects are defined simultaneously as follows:

1. A theory object is a tuple T = (n,L, Γ,Σ) where n is a string, L is a language,
Γ ⊆ SL, and Σ is a set of theorem objects. n is called the name of T and is
denoted by [T]. (L, Γ) is called the theory of T and is denoted by thy(T).

2. A theorem object is a tuple A = ([T], A∗, J) where T = (n,L, Γ,Σ) is a
theory object, A∗ ∈ SL, and J is a justification2 that thy(T) |= A∗.

3. An interpretation object is a tuple I = ([T], [T′], Φ, J) where T and T′

are theory objects, Φ is a translation, and J is a justification that Φ is an
interpretation of thy(T) in thy(T′).

Let S denote the infrastructure state. The four infrastructure operations are
defined as follows:

1. Given a string n, a language L, and Γ ⊆ SL as input, if, for all theory objects
T′ = (n′, L′, Γ ′, Σ′) ∈ S, n 6= n′ and thy(T) 6= thy(T′), then create-thy-obj
adds the theory object (n,L, Γ, ∅) to S; otherwise, the operation fails.

2. Given a theory object T ∈ S, a sentence A∗, and a justification J as input,
if A = ([T], A∗, J) is a theorem object, then create-thm-obj adds A to S;
otherwise, the operation fails.

3. Given two theory objects T,T′ ∈ S, a translation Φ, and a justification J as
input, if I = ([T], [T′], Φ, J) is an interpretation object, then create-int-obj
adds I to S; otherwise, the operation fails.

4. Given a theorem object A = ([T], A∗, J) ∈ S and a theory object T′ =
(n′, L′, Γ ′, Σ′) ∈ S as input, if thy(T) ≤ thy(T′), then install-thm-obj replaces
T′ in S with the theory object (n′, L′, Γ ′, Σ′∪{A}); otherwise, the operation
fails.

2 The notion of a justification is not specified. It could, for example, be a formal proof.

6

3.2 Missing Capabilities

The naive infrastructure is missing four important capabilities:

A. Definitions Suppose we would like to make a definition that the constant
is zeroι→∗ is the predicate (λxι . xι = 0ι) in a theory T stored in a theory object
T = (n,L, Γ,Σ) ∈ S. The naive infrastructure offers only one way to do this:
create the extension T ′ = (L′, Γ ′) of T , where L′ = L ∪ {is zeroι→∗} and

Γ ′ = Γ ∪ {is zeroι→∗ = (λxι . xι = 0ι)},

and then store T ′ in a new theory object T′ by invoking create-thy-obj. If
is zeroι→∗ is not in L, T and T ′ can be regarded as the same theory since T �T ′

and is zeroι→∗ can be “eliminated” from any expression of L′ by replacing every
occurrence of it with (λxι . xι = 0ι).

Definitions are made all the time in mathematics, and thus, implementing
definitions in this way will lead to an explosion of theory objects storing theories
that are essentially the same. A better way of implementing definitions would be
to extend T to T ′ “in place” by replacing T in T with T ′. The resulting object
would still be a theory object because every theorem of T is also a theorem of
T ′.

This approach, however, would introduce a new problem. If an interpretation
object I = ([T], [T′], Φ, J) ∈ S and thy(T) is extended in place by making a def-
inition cα = Eα, then the interpretation Φ would no longer be an interpretation
of T in T ′ because Φ(cα) would not be defined.

There are three basic solutions to this problem. The first one is to auto-
matically extend Φ to an interpretation of T in T ′ by defining Φ(cα) = Φ(Eα).
However, this solution has the disadvantage that, when an expression of T con-
taining cα is translated to an expression of T ′ via the extended Φ, the expression
of T will be expanded into a possibly much bigger expression of T ′.

The second solution is to automatically transport the definition cα = Eα
from T to a T ′ via Φ by making a new definition of the form dβ = Φ(Eα) in
T ′ and defining Φ(cα) = dβ . The implementation of this solution would require
care because, when two similar theories are both interpreted in a third theory,
common definitions in the source theories may be transported multiple times to
the target theory, resulting in definitions in the target theory that define different
constants in exactly the same way.

The final solution is to let the user extend Φ by hand whenever it is necessary.
This solution is more flexible than the first two solutions, but it would impose a
heavy burden on the user. Our experience in developing imps suggests that the
best solution would be some combination of these three basic solutions.

B. Profiles Suppose we would like to make a “definition” that the constant
a non zeroι has a value not equal to 0ι in a theory T stored in a theory object
T = (n,L, Γ,Σ) ∈ S. That is, we would like to add a new constant a non zeroι
to L whose value is specified, but not necessarily uniquely determined, by the

7

sentence ¬(a non zeroι = 0ι). More precisely, let T ′ = (L′, Γ ′) where L′ = L ∪
{a non zeroι} and

Γ ′ = Γ ∪ {¬(a non zeroι = 0ι)}.

If a non zeroι is not in L and the sentence (∃xι . ¬(xι = 0ι)) is a theorem of T ,
then T � T ′.

We call definitions of this kind profiles.3 A profile introduces a finite number
of new constants that satisfy a given property. Like ordinary definitions, profiles
produce conservative extensions, but unlike ordinary definitions, the constants
introduced by a profile cannot generally be eliminated. A profile can be viewed
as a generalization of a definition since any definition can be expressed as a
profile.

Profiles are very useful for introducing new machinery into a theory. For ex-
ample, a profile can be used to introduce a collection of objects plus a set of
operations on the objects—what is called an “algebra” in mathematics and an
“abstract datatype” in computer science. The new machinery will not compro-
mise the original machinery of T because the resulting extension T ′ of T will be
conservative. Since T ′ is a conservative extension of T , any reasoning performed
in T could just as well have been performed in T ′. Thus the availability of T ′

normally makes T obsolete.
Making profiles in the naive infrastructure leads to theory objects which store

obsolete theories. The way of implementing definitions by extending theories in
place would work just as well for profiles. As with definitions, extending theories
in place could cause some interpretations to break. A combination of the second
and third basic solutions to the problem given above for definitions could be
used for profiles. The first basic solution is not applicable because profiles do
not generally have the eliminability property of definitions.

C. Theory Extensions Suppose that S contains two theory objects T and
T′ with thy(T) ≤ thy(T′). In most cases (but not all), one would want every
theorem object installed in T to also be installed in T′. The naive infrastructure
does not have this capability. That is, there is no support for having theorem
objects installed in a theory object to automatically be installed in preselected
extensions of the theory object. An intertheory infrastructure should guarantee
that, for each theory object T and each preselected extension T′ of T, every
theorem, definition, and profile installed in T is also installed in T′.

D. Theory Copies The naive infrastructure does not allow the infrastructure
state to contain two theory objects storing the same theory. As a consequence, it
is not possible to add a copy of a theory object to the infrastructure state. We will
see in section 5 that creating copies of a theory object is a useful modularization
technique.

3 Profiles are called constant specifications in [13] and constraints in [15].

8

3.3 Requirements

Our analysis of the naive intertheory infrastructure suggests that the intertheory
infrastructure should satisfy the following requirements:

R1 The infrastructure enables theories and interpretations to be stored.

R2 Known theorems of a theory can be stored with the theory.

R3 Definitions can be made in a theory by extending the theory in place.

R4 Profiles can be made in a theory by extending the theory in place.

R5 Theorems, definitions, and profiles installed in a theory are automatically
installed in certain preselected extensions of the theory.

R6 An interpretation of T1 in T2 can be extended in place to an interpretation
of T ′1 in T ′2 if Ti is extended to T ′i by definitions or profiles for i = 1, 2.

R7 A copy of a stored theory can be created and then developed independently
from the original theory.

The naive infrastructure satisfies only requirements R1 and R2. The imps

intertheory infrastructure satisfies all of the requirements except R4 and R7.

4 The Intertheory Infrastructure

This section presents an intertheory infrastructure that satisfies all seven require-
ments in section 3.3. It is the same as the naive infrastructure except that the
infrastructure objects and operations are different. That is, the infrastructure
state is a set of infrastructure objects, is initially the empty set, and is changed
by the application of infrastructure operations which add new objects to the
state or modify objects already in the state. As in the naive infrastructure, let
S denote the infrastructure state.

4.1 Objects

There are five kinds of infrastructure objects. The first four are defined simulta-
neously as follows:

1. A theory object is a tuple T = (n,L0, Γ0, L, Γ,∆, σ,N) where:
(a) n is a string called the name of T. It is denoted by [T].
(b) L0 and L are languages such that L0 ⊆ L. L0 and L are called the base

language and the current language of T, respectively.
(c) Γ0 ⊆ SL0 and Γ ⊆ SL with Γ0 ⊆ Γ . The members of Γ0 and Γ are

called the base axioms and the current axioms of T, respectively.
(d) Γ ⊆ ∆ ⊆ {A∗ ∈ SL : Γ |= A∗}. The members of ∆ are called the known

theorems of T, and ∆ is denoted by thms(T).

9

(e) σ is a finite sequence of theorem, definition, and profile objects called
the event history of T.

(f) N is a set of names of theory objects called the principal subtheories of
T. For each [T′] ∈ N with T′ = (n′, L′0, Γ

′
0, L
′, Γ ′,∆′, σ′,N ′), L′0 ⊆ L0,

Γ ′0 ⊆ Γ0, L′ ⊆ L, Γ ′ ⊆ Γ , ∆′ ⊆ ∆, and σ′ is a subsequence of σ.
The base theory of T is the theory (L0, Γ0) and the current theory of T,
written thy(T), is the theory (L, Γ).

2. A theorem object is a tuple A = ([T], A∗, J) where:
(a) T is a theory object with thy(T) = (L, Γ).
(b) A∗ ∈ SL. A∗ is called the theorem of A.
(c) J is a justification that Γ |= A∗.

3. A definition object is a tuple D = ([T], cα, Eα, J) where:
(a) T is a theory object with thy(T) = (L, Γ).
(b) cα is a constant not in L.
(c) Eα ∈ EL. cα = Eα is called the defining axiom of D.
(d) J is a justification that Γ |= O∗ where O∗ is (∃xα . xα = Eα) and xα

does not occur in Eα.4 O∗ is called the obligation of D.
4. A profile object is a tuple P = ([T], C, Eβ , J) where:

(a) T is a theory object with thy(T) = (L, Γ).
(b) C = {c1α1

, . . . , cmαm} is a set of constants not in L.
(c) Eβ = (λx1

α1
· · ·λxmαm . B∗) where x1

α1
, . . . , xmαm are distinct variables.

Eβ(c1α1
) · · · (cmαm) is called the profiling axiom of P.

(d) J is a justification that Γ |= O∗ where O∗ is (∃x1
α1
· · · ∃xmαm . B∗). O∗ is

called the obligation of P.

An event object is a theorem, definition, or profile object.
Let T ≤ T′ mean thy(T) ≤ thy(T′) and T � T′ mean thy(T) � thy(T′). T is

a structural subtheory of T′ if one of the following is true:

1. T = T′.
2. T is a structural subtheory of a principal subtheory of T′.

T is a structural supertheory of T′ if T′ is a structural subtheory of T.
For a theory object T = (n,L0, Γ0, L, Γ,∆, σ,N) and an event object e whose

justification is correct, T[e] is the theory object defined as follows:

1. Let e be a theorem object ([T′], A∗, J). If T′ ≤ T, then

T[e] = (n,L0, Γ0, L, Γ,∆ ∪ {A∗}, σˆ〈e〉,N);

otherwise, T[e] is undefined.
2. Let e be a definition object ([T′], cα, Eα, J). If T′ ≤ T and cα 6∈ L, then

T[e] = (n,L0, Γ0, L ∪ {cα}, Γ ∪ {A∗},∆ ∪ {A∗}, σˆ〈e〉,N)

where A∗ is the defining axiom of e; otherwise, T[e] is undefined.
4 In C, Γ |= (∃xα . xα = Eα) always holds and so no justification is needed, but in

other logics such as lutins a justification is needed since Γ |= (∃xα . xα = Eα) will
not hold if Eα is undefined.

10

3. Let e be a profile object ([T′], C, Eβ , J). If T′ ≤ T and C ∩ L = ∅, then

T[e] = (n,L0, Γ0, L ∪ C, Γ ∪ {A∗},∆ ∪ {A∗}, σˆ〈e〉,N)

where A∗ is the profiling axiom of e; otherwise, T[e] is undefined.

An event history σ is correct if the justification in each member of σ is correct.
For a correct event history σ, T[σ] is defined by:

1. Let σ = 〈〉. Then T[σ] = T.
2. Let σ = σ′ˆ〈e〉. If (T[σ′])[e] is defined, then T[σ] = (T[σ′])[e]; otherwise,

T[σ] is undefined.

Let the base of T, written base(T), be the theory object

(n base, L0, Γ0, L0, Γ0, Γ0, 〈〉, ∅).

T is proper if the following conditions are satisfied:

1. Its event history σ is correct.
2. thy(T) = thy(base(T)[σ]).
3. thms(T) = thms(base(T)[σ]).

Lemma 2. If T is a proper theory object, then A∗ is a known theorem of T iff
A∗ is a base axiom of T or a theorem, defining axiom, or profiling axiom of an
event object in the event history of T.

Proof. Follows immediately from the definitions above.

Theorem 3. If T is a proper theory object, then base(T) � T.

Proof. Since T is proper, the event history σ of T is correct and thy(T) =
thy(base(T)[σ]). We will show base(T) � T by induction on |σ|, the length of σ.

Basis. Assume |σ| = 0. Then thy(T) = thy(base(T)) and so base(T) � T is
obviously true.

Induction step. Assume |σ| > 0. Suppose σ = σ′ˆ〈e〉. By the induction hy-
pothesis, base(T) � base(T)[σ′]. We claim base(T)[σ′] � (base(T)[σ′])[e]. If e
is a theorem object, then clearly thy(base(T)[σ′]) = thy((base(T)[σ′])[e]) and
so base(T)[σ′] � (base(T)[σ′])[e]. If e is a definition or profile object, then
base(T)[σ′] � (base(T)[σ′])[e] by the justification of e. Therefore, base(T) � T
follows by part (2) of Lemma 1. 2

We will now define the fifth and last infrastructure object: An interpretation
object is a tuple I = ([T], [T′], Φ, J) where:

1. T is a theory object called the source theory of I.
2. T′ is a theory object called the target theory of I.
3. Φ is a translation.
4. J is a justification that Φ is an interpretation of thy(base(T)[σ]) in

thy(base(T′)[σ′]) where σ and σ′ are initial segments of the event histories
of T and T′, respectively.

11

4.2 Operations

The infrastructure design includes ten operations.
There are operations for creating the infrastructure objects:

1. Given a string n, a language L, a set Γ of sentences, and theory objects
Ti = (ni, Li0, Γ

i
0, L

i, Γ i,∆i, σi,N i) ∈ S for i = 1, . . . ,m as input, let
(a) L′0 = L1

0 ∪ · · · ∪ Lm0 .
(b) Γ ′0 = Γ 1

0 ∪ · · · ∪ Γm0 .
(c) L′ = L1 ∪ · · · ∪ Lm.
(d) Γ ′ = Γ 1 ∪ · · · ∪ Γm.
(e) ∆′ = ∆1 ∪ · · · ∪∆m.
(f) σ′ = σ1ˆ · · · ˆσm.
If

T = (n,L ∪ L′0, Γ ∪ Γ ′0, L ∪ L′, Γ ∪ Γ ′, Γ ∪∆′, σ′, {[T1], . . . , [Tm]})

is a theory object and n 6= [T′] for any theory object T′ ∈ S, then create-thy-obj
adds T to S; otherwise, the operation fails.

2. Given a theory object T ∈ S, a sentence A∗, and a justification J as input,
if A = ([T], A∗, J) is a theorem object, then create-thm-obj adds A to S;
otherwise, the operation fails.

3. Given a theory object T ∈ S, a constant cα, an expression Eα, and a jus-
tification J as input, if D = ([T], cα, Eα, J) is a definition object, then
create-def-obj adds D to S; otherwise, the operation fails.

4. Given a theory object T ∈ S, a set C of constants, an expression Eβ , and
a justification J as input, if P = ([T], C, Eβ , J) is a profile object, then
create-pro-obj adds P to S; otherwise, the operation fails.

5. Given two theory objects T,T′ ∈ S, a translation Φ, and a justification J as
input, if I = ([T], [T′], Φ, J) is an interpretation object, then create-int-obj
adds I to S; otherwise, the operation fails.

There are operations for installing theorem, definition, and profile objects in
theory objects:

1. Given a theorem object A = ([T0], A∗, J) ∈ S and a theory object T1 ∈ S,
if T0 ≤ T1, then install-thm-obj replaces every structural supertheory T of
T1 in S with T[A]; otherwise, the operation fails.

2. Given a definition object D = ([T0], cα, Eα, J) ∈ S and a theory object
T1 ∈ S, if T0 ≤ T1 and T[D] is defined for every structural supertheory
T of T1 in S, then install-def-obj replaces every structural supertheory T of
T1 in S with T[D]; otherwise, the operation fails.

3. Given a profile object P = ([T0], C, Eβ , J) ∈ S and a theory object T1 ∈ S,
if T0 ≤ T1 and T[P] is defined for every structural supertheory T of T1

in S, then install-pro-obj replaces every structural supertheory T of T1 in S
with T[P]; otherwise, the operation fails.

12

There are operations to extend an interpretation object and to copy a theory
object:

1. Given an interpretation object I = ([T], [T′], Φ, J) ∈ S, a translation Φ′, and
a justification J ′ as input, if Φ′ extends Φ and I′ = ([T], [T′], Φ′, J ′) is an
interpretation object, then extend-int replaces I in S with I′; otherwise, the
operation fails.

2. Given a string n and a theory object

T = (n′, L0, Γ0, L, Γ,∆, σ,N) ∈ S

as input, if n 6= [T′] for any theory object T′ ∈ S, then create-thy-copy adds
the theory object

T′ = (n,L0, Γ0, L, Γ,∆, σ,N)

to S; otherwise, the operation fails.

The infrastructure operations guarantee that the following theorem holds:

Theorem 4. If the justification of every event object in S is correct, then:

1. Every object in S is a well-defined theory, theorem, definition, profile, or
interpretation object.

2. Every theory object in S is proper.
3. Distinct theory objects in S have distinct names.

Some remarks about the intertheory infrastructure:

1. Theory and interpretation objects are modifiable, but event objects are not.
2. The event history of a theory object records how the theory object is con-

structed from its base theory.
3. The theory stored in a theory object T extends all the theories stored in the

principal subtheories of T.
4. Theorem, definition, and profile objects installed in a theory T in S are

automatically installed in every structural supertheory of T in S.
5. The infrastructure allows definitions and profiles to be made in a theory

object T both by modifying T using install-def-obj and install-prof-obj and
by creating an extension of T using create-thy-obj.

6. By Theorem 2, if Φ is a translation from thy(T) to thy(T′) which maps the
base axioms of T to known theorems of T′, then Φ is an interpretation of
thy(T) in thy(T′).

7. The interpretation stored in an interpretation object is allowed to be incom-
plete. It can be extended as needed using extend-int.

13

5 Some Applications

5.1 Theory Development System

The intertheory infrastructure provides a strong foundation on which to build a
system for developing axiomatic theories. The infrastructure operations enable
theories and interpretations to be created and extended. Many additional opera-
tions can be built on top of the ten infrastructure operations. Examples include
operations for transporting theorems, definitions, and profiles from one theory
to another and for instantiating theories.

Given a theorem object A = ([T0], A∗, J0) installed in T ∈ S and an interpre-
tation object I = ([T], [T′], Φ, J) ∈ S as input, the operation transport-thm-obj
would invoke create-thm-obj and install-thm-obj to create a new theorem object
([T′], Φ(A∗), J ′) and install it in T′. The justification J ′ would be formed from
J0 and J .

Given a constant dβ , a definition object D = ([T0], cα, Eα, J) installed in
T ∈ S , and an interpretation object I = ([T], [T′], Φ, J) ∈ S as input, if Φ(α) =
β and dβ is not in the current language of T′, the operation transport-def-obj
would invoke create-def-obj and install-def-obj to create a new definition object
([T′], dβ , Φ(Eα), J ′) and install it in T′; otherwise, the operation fails. The justi-
fication J ′ would be formed from J0 and J . An operation transport-pro-obj could
be defined similarly.

Given theory objects T,T′ ∈ S and an interpretation object I =
([T0], [T′0], Φ, J) ∈ S as input, if T0 ≤ T and T′0 ≤ T′, the operation
instantiate-thy would invoke create-thy-obj to create a new theory object T′′ and
create-int-obj to create a new interpretation object I′ = ([T], [T′′], Φ′, J) such
that:

– T′′ is an extension of T′ obtained by “instantiating” T0 in T with T′. How
T′ is cemented to the part of T outside of T0 is determined by Φ. The
constants of T which are not in T0 may need to be renamed and retagged
to avoid conflicts with the constants in T′.

– Φ′ is an interpretation of thy(T) in thy(T′′) which extends Φ.

For further details, see [7].
This notion of theory instantiation is closely related to the notion of theory

instantiation proposed by Burstall and Goguen [2]; in both approaches a theory
is instantiated via an interpretation. However, in our approach, any theory can
be instantiated with respect to any of its subtheories. In the Burstall-Goguen ap-
proach, only “parameterized theories” can be instantiated and only with respect
to the explicit parameter of the parameterized theory.

14

5.2 Foundational Theory Development System

A theory development system is foundational if every theory developed in the
system is consistent relative to one or more “foundational” theories which are
known or regarded to be consistent. Since the operations for installing theorems,
definitions, and profiles in a theory always produce conservative extensions of the
original theory by Theorem 3, these operations preserve consistency. Therefore,
a foundational theory development system can be implemented on top of the
infrastructure design by simply using a new operation for creating theory objects
that is successful only when the theory stored in the object is consistent relative
to one of the foundational theories.

The new operation can be defined as follows. Suppose T∗ is a foundational
theory. Given a string n, a language L, a set Γ of sentences, theory objects
T1, . . . ,Tm ∈ S, a translation Φ, and a justification J as input, if J is a justifi-
cation that Φ is an interpretation of T = (L, Γ) in thy(T∗), the new operation
would invoke create-thy-obj on (n,L, Γ, {[T1], . . . , [Tm]}) to create a theory ob-
ject T and then invoke create-int-obj on ([T], [T∗], Φ, J) to create an interpreta-
tion object I; otherwise the operation fails. If the operation is successful and J
is correct, then thy(T) would be consistent relative to thy(T∗) by Theorem 1.

5.3 Encapsulated Theory Development

Proving a theorem in a theory may require introducing several definitions and
proving several lemmas in the theory that would not be useful after the theorem
is proved. Such “local” definitions and lemmas would become logical clutter in
the theory. One strategy for handling this kind of clutter is to encapsulate local
development in a auxiliary theory so that it can be separated from the devel-
opment of the main theory. The infrastructure design makes this encapsulation
possible.

Suppose that one would like to prove a theorem in a theory stored in theory
object T using some local definitions and lemmas. One could use create-thy-copy
to create a copy T′ of T and create-int-obj to create a interpretation object I
storing the identity interpretation of thy(T′) in thy(T). Next the needed local
definitions and lemmas could be installed as definition and theorem objects in
T′. Then the theorem could be proved and installed as a theorem object in T′.
Finally, the theorem could be transported back to T using the interpretation
stored in I. The whole local development needed to prove the theorem would
reside in T′ completely outside of the development of T.

A different way to encapsulate local theory development is used in the ACL2
theorem prover [15].

5.4 Sequent-Style Proof System

A goal-oriented sequent-style proof system can be built on top of the intertheory
infrastructure. A sequent would have the form T → A∗ where T is a theory
object called the context and A∗ is a sentence in the current language of T

15

called the assertion. The system would include the usual inference rules of a
sequent-style proof system plus rules to:

– Install a theorem, definition, or profile into the context of a sequent.
– Transport a theorem, definition, or profile from a theory object to the context

of a sequent.

Some of the proof rules, such as the deduction rule, would add or remove axioms
from the context of a sequent, thereby defining new theory objects. The proof
rules for the rules of universal generalization (∀-introduction) and existential
instantiation (∃-elimination) would be implemented by installing a profile in the
context of a sequent.

A sentence A∗ in the current language of a theory object T would be proved as
follows. create-thy-copy would be used to create a copy T′ of T and create-int-obj
would be used to create a interpretation object I storing the identity interpreta-
tion of thy(T′) in thy(T). Then the sequent T′ → A∗ would be proved, possibly
with the help of local or imported definitions and lemmas. The contexts created
in the course of the proof would be distinct supertheories of T′. A theorem or
definition installed in a context appearing in some part of the proof would be
available wherever else the context appeared in the proof.

When the proof is finished, A∗ would be installed as a theorem object in T′.
The theorem could be then transported back to T using the interpretation stored
in I. The theory objects needed for the proof—T′ and its supertheories—would
be separated from T and the other theory objects in S.

Acknowledgments

Many of the ideas in this paper originated in the design and implementation of
imps done jointly by Dr. Joshua Guttman, Dr. Javier Thayer, and the author.

References

1. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. Academic Press, 1986.

2. R. Burstall and J. Goguen. The semantics of Clear, a specification language. In
Advanced Course on Abstract Software Specifications, volume 86 of Lecture Notes
in Computer Science, pages 292–332. Springer-Verlag, 1980.

3. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.

4. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.
5. W. M. Farmer. A partial functions version of Church’s simple theory of types.

Journal of Symbolic Logic, 55:1269–91, 1990.
6. W. M. Farmer. A simple type theory with partial functions and subtypes. Annals

of Pure and Applied Logic, 64:211–240, 1993.
7. W. M. Farmer. A general method for safely overwriting theories in mechanized

mathematics systems. Technical report, The mitre Corporation, 1994.

16

8. W. M. Farmer. Theory interpretation in simple type theory. In J. Heering et al.,
editor, Higher-Order Algebra, Logic, and Term Rewriting, volume 816 of Lecture
Notes in Computer Science, pages 96–123. Springer-Verlag, 1994.

9. W. M. Farmer, J. D. Guttman, and F. J. Thayer Fábrega. imps: An updated system
description. In M. McRobbie and J. Slaney, editors, Automated Deduction—CADE-
13, volume 1104 of Lecture Notes in Computer Science, pages 298–302. Springer-
Verlag, 1996.

10. W. M. Farmer, J. D. Guttman, and F. J. Thayer. Little theories. In D. Kapur, ed-
itor, Automated Deduction—CADE-11, volume 607 of Lecture Notes in Computer
Science, pages 567–581. Springer-Verlag, 1992.

11. W. M. Farmer, J. D. Guttman, and F. J. Thayer. imps: An Interactive Mathemat-
ical Proof System. Journal of Automated Reasoning, 11:213–248, 1993.

12. J. A. Goguen and T. Winkler. Introducing obj3. Technical Report sri-csl-99-9,
sri International, August 1988.

13. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

14. N. Hamilton, R. Nickson, O. Traynor, and M. Utting. Interpretation and instantia-
tion of theories for reasoning about formal specifications. In M. Patel, editor, Pro-
ceedings of the Twentieth Australasian Computer Science Conference, volume 19
of Australian Computer Science Communications, pages 37–45, 1997.

15. M. Kaufmann and J S. Moore. Structured theory development for a mechanized
logic. Available at http://www.cs.utexas.edu/users/moore/publications/

acl2-papers.html, 1999.
16. R. Nakajima and T. Yuasa, editors. The iota Programming System, volume 160

of Lecture Notes in Computer Science. Springer-Verlag, 1982.
17. R. Nickson, O. Traynor, and M. Utting. Cogito ergo sum—providing structured

theorem prover support for specification formalisms. In K. Ramamohanarao, ed-
itor, Proceedings of the Nineteenth Australasian Computer Science Conference,
volume 18 of Australian Computer Science Communications, pages 149–158, 1997.

18. J. Rushby, F. von Henke, and S. Owre. An introduction to formal specification and
verification using ehdm. Technical Report sri-csl-91-02, sri International, 1991.

19. J. R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.
20. D. Smith. kids: A knowledge-based software development system. In M. Lowry and

R. McCartney, editors, Automating Software Design, pages 483–514. MIT Press,
1991.

21. Y. Srinivas and R. Jullig. Specware: Formal support for composing software. In
Proceedings of the Conference on Mathematics of Program Construction, 1995.

17

