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Abstract

In the “little theories” version of the axiomatic method, different
portions of mathematics are developed in various different formal ax-
iomatic theories. Axiomatic theories may be related by inclusion or by
theory interpretation. We argue that the little theories approach is a
desirable way to formalize mathematics, and we describe how imps, an
Interactive Mathematical Proof System, supports it.

1 Introduction

In this paper, we will argue in favor of implementing a particular version
of the axiomatic method in mechanical theorem provers. By the axiomatic
method we mean the practice of reasoning logically from a set of sentences
in a formal language. Such a set of sentences is called an axiomatic theory.1

For instance, Peano arithmetic and the theory of an ordered field are familiar
axiomatic theories.
∗Supported by the MITRE-Sponsored Research Program. Presented at the 11th Inter-
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Published in: D. Kapur, ed., Automated Deduction—CADE-11, Lecture Notes in Com-
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1Thus, in our usage, a theory amounts to a set of axioms in a specified formal language.
The word “theory” is also frequently used to mean a set of sentences closed under logical
consequence. The latter usage allows one to speak, for instance, of different axiomati-
zations of the same theory. However, for our purposes it is convenient to focus on the
axioms, and to express the idea of alternative axiomatizations by saying that two theories
have the same consequences.
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There are two contrasting ways of using the axiomatic method, both
well established in modern mathematical practice. We will refer to them as
the “big theory” version and the “little theories” version. In the big theory
version, we select a powerful and highly expressive set of axioms, with the
property that any model of these axioms will contain all the objects that
will be of interest to us. Logical derivation from these powerful axioms will
allow us to prove our theorems about these objects, so all of the reasoning
can be carried out within this single theory. Zermelo-Fraenkel set theory is
frequently used by mathematicians for this purpose.

In the little theories version of the axiomatic method, a number of the-
ories will be used in the course of developing a portion of mathematics.
Different theorems will be proved in different theories, depending on the
amount of structure required. For instance, one theorem may be true in any
arbitrary topological space, while another may hold only in a metric space.
Theorems are proved in a particular theory by logical derivation from the
axioms available in that theory.

The goal of this paper is to demonstrate the usefulness of the little the-
ories approach in mechanized reasoning. In addition, we will indicate how
imps, an Interactive Mathematical Proof System [9], supports the approach.

We will not focus on logical issues related to the little theories approach,
including its use of theory interpretations. On the contrary, the logic of
theory interpretations is well understood, and a version for the particular
logic we use is available in [8]. Interpretations have been effectively used
in the logical literature since at least the 1950’s [27], and in mathematics
for much longer. Indeed, this makes interpretations especially attractive
to us. Our overall goal in imps is to mechanize traditional tools of classi-
cal mathematical reasoning, partly because they are understood by a wide
range of potential users, and partly because their intellectual power has been
demonstrated over a long period of time.

1.1 Little Theories in Mathematics: An Example

The utility of the little theories approach in mathematics is largely due to
the power that theory interpretations provide. A theory interpretation is a
syntactic translation between the languages of two theories which preserves
theorems. That is, if a formula is a theorem of the source theory, then its
image is a theorem of the target theory. To establish that a translation is
a theory interpretation, one must show that the source theory axioms are
translated to target theory theorems, together with some additional obliga-
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tions that depend on the details of the logical context. Theory interpreta-
tions are used in two crucial ways in the little theories approach:

• To reuse theorems of the source theory in the target theory;

• To establish the consistency of the source theory relative to the target
theory. As a special case, to establish that a formula ϕ is independent
of a theory T , one may show that both T ∪ {ϕ} and T ∪ {¬ϕ} are
consistent.

A theory interpretation from a source theory T to a target theory T ′ also
allows us to infer a relation between models of the theories. Namely, given an
arbitrary model of T ′, the interpretation tells us how to select a subdomain
and distinguished values that furnish a model of T .

Partly because of its usefulness for establishing consistency and inde-
pendence, the little theories approach has become a deeply entrenched way
of organizing mathematical knowledge. For instance, in the introduction to
The Foundations of Geometry [19], Hilbert wrote that one of his aims was:

to bring out as clearly as possible the significance of the different
groups of axioms and the scope of the conclusions to be derived
from the individual axioms.

This expresses one of the major themes of modern mathematics, which aims
to determine not just which mathematical statements are true, but also
which assumptions are needed to deduce them.

The Foundations of Geometry illustrates how the axiomatic method can
serve as an organizing principle in examining an axiomatization for Eu-
clidean geometry. The goal of the book is to study relations of independence
among subsets of the axioms, in combination with two crucial theorems,
namely Pascal’s theorem and Desargues’s theorem. As a tool, Hilbert also
considers a number of algebraic theories, primarily the theory of an ordered
field.

A simple example of a theory interpretation is given in §§15, 17, where
certain line segments are shown to form an ordered field with appropriately
chosen operations. In this particular case, we are not concerned with an
independence proof; instead, Hilbert introduces the theory interpretation so
that he can use the familiar algebraic theorems to carry out computations in
the course of giving geometrical proofs. The interpretation guarantees that
the results of the algebraic computation will be sound in the geometrical
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context. This illustrates theorem reuse, in the helpful case of equations and
conditional equations.2

In these cases, Hilbert makes no reference to any particular model of ei-
ther theory (in the usual semantic sense). In some other cases, his language
is more ambiguous, and he appears to be working within a specific model
(for instance, the reals). However, he is explicit about the algebraic axioms
his construction actually relies on, and emphasizes that the theory has de-
numerable models (see, for instance, §9). Thus, these other cases could be
easily recast into a terminology in which we are unambiguously concerned
with theory interpretations.

1.2 Little Theories in Mechanized Reasoning

Quite apart from the intellectual appeal of fine-grained knowledge about the
logical power of particular axioms, and the relations among them, the little
theories approach has two important practical advantages for mechanized
reasoning.

• It allows the use of minimal axiomatizations for specific groups of
theorems. This ensures maximal generality of reuse for the results,
through interpretation into other theories, or through direct inclusion
in larger theories.

When equipped with procedures that can construct the great majority
of the interpretations needed, an interactive theorem prover can offer
the user great power in applying previously proved theorems across a
wide range of new theories.

• The hand-crafted framework of a little theory allows theorems to be
written in simpler forms. Cues suggesting the applicability of partic-
ular lemmas or other techniques are easier to identify.

Moreover, the work of establishing the applicability of a whole group
of theorems can be carried out once and for all, and then encoded in
a theory interpretation. The theory interpretation then serves as a
“license” authorizing us to use them repeatedly in the future.

The first of these advantages will be discussed primarily in Section 2. The
second will be the focus of Section 3. Section 4 discusses the big theory

2See Section 2.3 for a mechanism in imps implementing a similar kind of reuse. For
a more elaborate use of theory interpretations in Hilbert, see for instance [19, §§24–26,
28–29], where he exploits a whole sequence of theory interpretations.
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approach. We will argue that the little theory approach does not create a
disadvantage when we may want to use a powerful theory like ZF. Moreover,
we will point out some cases in which this is desirable. In Section 5, we will
present a substantial piece of mathematics as it appears in the little theory
approach; this example has been developed with the interactive theorem
prover imps.

1.3 Previous Work; IMPS

In spite of its utility, the little theories version of the axiomatic method lies
off the main path of previous work in mechanized theorem proving.

The little theories idea is, however, a familiar ingredient in work on spec-
ification languages, probably first introduced by Burstall and Goguen [2].
It was a central tenet of work on Clear [3, 4], and it was also a motivat-
ing idea in Larch [16]. The idea is also an ingredient in more recent work
on logical frameworks [18]. In the logical frameworks context, however, it
appears in an unusual guise in which not just theories but also logics may
be combined. It is not clear whether this additional generality will prove to
be a benefit in practical use, as it may impede the process by which users
develop strong and reliable semantic intuitions. Moreover, a single familiar
logic, such as simple type theory, suffices to formalize conveniently a wide
range of problems.

There has also been some work on supporting little theories in mecha-
nized theorem proving. Sannella and Burstall undertook to implement some
of the ideas of Clear in an extended version of lcf [24]. However, according
to the the published description, theory interpretation and parameterized
theories had not yet been implemented [24, pp. 384, 389]. Although obj [14]
incorporates a translation (“view”) mechanism, the user is responsible for
deciding whether the translation is in fact a theory interpretation: obj itself
makes no attempt to prove the images of the source theory axioms. More-
over, because of obj’s equational logic, its usefulness as a theorem prover
is, in our opinion, highly restricted. Curiously, the Larch Prover lp [12]
does not give strong support for the little theories approach: there is only
one theory available in the prover at a time, and thus theory interpretations
cannot be used in proofs. E. Gunter [15] has made a start on implementing
little theories within hol.

So far as we know, imps, an Interactive Mathematical Proof System, is
the first interactive theorem prover to have been designed from the start to
support little theories. Moreover, imps implements a strong logic—rather
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than the weak systems generally used in algebraic specification languages—
that is suited to expressing and proving sophisticated mathematical state-
ments. One example, a simple inverse function theorem for Banach spaces,
is presented in Section 5.

For a general description of imps, see [9, 10]. Examples of imps proofs are
found in [11, 10]. All of the examples given below (except where explicitly
noted) represent material we have developed using imps.

All concept formulation, calculation, and inference in imps is performed
with respect to a formal logic that is a version of simple type theory. The
logic, called lutins

3, provides strong support for specifying and reasoning
about partial (and total) functions, and is equipped with a system of types
and subtypes. Types and subtypes are collectively called sorts.

The treatment of partial functions in lutins is studied in [7], while the
treatment of sorts and interpretations is the subject of [8]. For a detailed
presentation of the syntax and semantics of lutins, see [17].

A language is built in imps from a signature—a list of sort and constant
declarations. A theory consists of a language L plus a set of axioms (i.e.,
sentences of L). Theories are the basic units in imps for specifying mathe-
matical objects and concepts and for organizing automated deduction.

2 Theory Interpretations and Theorem Reuse

The notion of an interpretation of one axiomatic theory in another is a
fundamental concept of mathematics and logic. As we mentioned in the
introduction, this notion is formalized using certain syntactic translations
that are known in logic as “theory interpretations” [6, 25]. Intuitively, a
theory interpretation from T to T ′ specifies one of the (possibly many)
ways of embedding T in T ′, while preserving theorems.

Logicians have used theory interpretations to prove metamathematical
properties about theories, particularly consistency, decidability, and unde-
cidability. The classic work of Tarski, Mostowski, and Robinson [27], for ex-
ample, illustrates how theories can be proved undecidable by means of theory
interpretation. References on theory interpretations include [23, 26, 28, 29].

3Pronounced as the word in French.
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2.1 Theory Interpretations in IMPS

The notion of a theory interpretation in lutins is similar to the standard
notion in first-order logic (see [6, 25]). However, since lutins admits partial
functions and subtypes, the notion in lutins is necessarily more compli-
cated. A precise definition of a lutins theory interpretation is given in [8].

In brief, a lutins translation from a theory T to a theory T ′ is spec-
ified by a pair (µ, ν) of functions—where µ maps the sorts of T to sorts,
sets, or unary predicates of T ′ and ν maps the constants of T to expres-
sions of T ′—which satisfy certain syntactic conditions. The translation is a
homomorphism I from the expressions of the source theory to the expres-
sions of the target theory, i.e., I(c(e1, . . . , en)) = c(I(e1), . . . , I(en)), where
c(e1, . . . , en) is a compound expression composed of a logical constant c and
n subexpressions e1, . . . , en.4 Every translation I from T to T ′ determines
a set of formulas in the target theory called obligations, which includes I(θ)
for each axiom θ of T . By the Interpretation Theorem for lutins [8], if
each obligation of I is a theorem of T ′, then I translates each theorem of T
to a theorem of T ′, i.e., I is a theory interpretation.

2.2 Theorem Reuse in Mathematics

Mathematicians commonly use a kind of informal theory interpretation for
reusing theorems. A result about an abstract theory, such as a group, will be
applied to a more concrete theory such as a field, by (for instance) observing
that multiplication over the nonzero elements has the structure of a group.

In the the little theories version of the axiomatic method, mathematical
reasoning is distributed over a network of theories linked to one another via
theory interpretations. These theory interpretations provide the means to
“transport” a theorem from the theory it was proved in to any number of
other theories. For instance, the theorem that a sequence of points converges
to at most one limit can be proved once in a theory of an abstract metric
space and then applied to a sequence of reals, to a sequence of points in a
normed space, and so on.

Similarly, a theory of an abstract monoid (that is, an associative operator
⊕ with an identity e), taken together with the integers as an additional type,
allows one to define an iterated monoid summation operator

∑
such that

4When µ maps sorts to sets or unary predicates, expressions beginning with variable
binders such as ∀ or λ must be “relativized.” For example, if I maps a sort α to a unary
predicate ϕ on a sort β, then I(∀x:α.ψ) = ∀x:β.ϕ(x) ⊃ I(ψ).
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∑j
k=i f = e for j < i, and

∑j
k=i f = (

∑j−1
k=i f)⊕f(j) otherwise. Facts derived

in this theory can then be applied to a large class of iterated operators, in-
cluding the normal numerical sum and product operators. Many interesting
facts about algorithms can be developed in this general framework [1].

Another very useful technique is to interpret a theory into itself or one of
its subtheories. For example, many similar theorems about algebraic groups
are just different instantiations of a particular abstract theorem about group
actions [20, pp. 71–79]. The abstract theorem ϕ can be proved in a theory
A of an abstract group action, which includes a theory B of an abstract
group as a subtheory, and then the various instantiations can be obtained
by transporting ϕ from A to B via appropriate interpretations.

Sometimes, this second technique provides proofs by symmetry or dual-
ity. For instance, the duality of points and lines in projective geometry can
be formalized by observing that the translation that interchanges them is
an interpretation. Having done so, we can prove a theorem in one form and
then immediately infer that its dual is also a theorem.5

2.3 Theorem Reuse in IMPS

Although theory interpretations can be used in imps in several different
ways, theorem reuse is certainly the most important application. An imps

user can build translations, verify that they are theory interpretations, and
transport theorems with them as desired. The development of a portion of
mathematics in imps will usually involve several theories and a great many
theory interpretations, most of which are quite simple. However, building
theory interpretations can be distracting or burdensome, especially in the
midst of a proof. If the user were responsible for explicitly creating all these
theory interpretations, it would be very difficult to concentrate on the major
task at hand.

Consequently, the great majority of the theory interpretations needed
by the imps user are built by software without user assistance. In addition,
when hand-crafted interpretations have been added by the user, the system
can retrieve the right one in most situations.

There are about a half dozen mechanisms in imps that automatically
find, extend, or create theory interpretations. Of these the most useful is
a kind of polymorphic matching called translation matching , which allows
for inter-theory matching of expressions. An expression e in a theory T ′

5This example has not been done in imps, but several other examples of proof by
symmetry have been formalized in imps using interpretations.
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translation matches a pattern expression p in a theory T if there is a theory
interpretation I from T to T ′ and a substitution σ such that σ(I(p)) = e.
The translation matching algorithm works in imps as follows. First, the
variables and constants in p are matched with subexpressions of e yielding
a “sort association list” and a “constant association list.” If the entries of
these lists are compatible with each other (e.g., no constant is associated
with two distinct expressions), imps will try to find a theory interpretation
defined by (µ, ν) such that the sort and constant association lists specify
subfunctions of µ and ν, respectively. If that fails, imps will try to build
a theory interpretation directly from the two association lists. If a theory
interpretation I is obtained and e matches I(p) in the ordinary sense, then
σ is just the substitution which matches the expressions.

Translation matching is employed in several kinds of machinery in imps

for theorem reuse. For example, when theorems about generic objects like
sets and sequences are of appropriate form to be used as rewrite rules, imps

uses translation matching to automatically create the theory interpretations
and substitutions needed to apply them whenever relevant in the course of
simplification.

A collection of theorems can be applied as conditional rewrite rules in an
organized way in imps using extremely simple procedures called macetes6.
The exact behavior of an elementary macete (built from a particular theo-
rem) depends on the syntactic form of the theorem. In the central case of
a theorem of the form ∀~x . ϕ1 ∧ . . . ∧ ϕn ⊃ s = t, the elementary macete
replaces matches to s by the corresponding matches to t, if the instances of
the ϕi can be recognized to be true. Compound macetes may be constructed
from elementary and other kinds of atomic macetes using a small number
of very simple combining forms. For instance, the repeat form takes a list
of macetes and applies them repeatedly until they are no longer applica-
ble. A small number of special atomic macetes allow the user to intersperse
beta-reduction, definition expansion, and calls to the simplifier [10].

A transportable macete, like an elementary macete, is another kind of
atomic macete that is built from a theorem. They are used, when working
in a theory T , to apply theorems that reside outside of T . The mechanism
is similar to that for elementary macetes except that translation matching
is used instead of ordinary matching.

6Macete, in Portuguese, means a chisel, or in informal usage, a clever trick.
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3 Controlling Theorem Provers

The axiomatic theory is a natural unit to use in organizing and guiding the
behavior of a theorem prover. In this section we will discuss several ways
that information is gathered around an axiomatic theory in order to control
the behavior of imps.

3.1 Expressing Theorems in Simple Form

There is frequently an advantage to expressing facts in a simple form, as
they can then be used by a theorem prover in some special way in the course
of computing with expressions. For instance, equations and biconditionals
can be used as (unconditional) rewrite rules in the course of simplification.
Within the logical framework we use, there are two ways that the little
theories approach aids in recasting facts in the simplest syntactic form.

First, a theorem that in pure logic would take the form
∧
i<n ϕi ⊃ ψ

may be written in the form ψ in any axiomatic theory whose axioms include
(or entail) the formulas ϕi. Naturally, in order to apply the theorem in a new
theory under some translation (possibly the identity translation), one must
check that the translations of the assumptions ϕi are in fact satisfied. This
requirement amounts to proving that the translation is an interpretation.

Although the work of discharging these obligations must still be done,
there is often an advantage to this approach. For, the interpretation itself
can be treated in the theorem proving program as a data object, so that
once it has been certified, all the theorems of the source theory may be
made available. Similarly, the interpretation as a data object makes it easy
to avoid proving the same conditions repeatedly when a theorem (or group
of related theorems) are to be applied many times.

Second, the lutins logic supports subtypes called sorts. For instance,
in our theory of arithmetic, the natural numbers and integers are subtypes
of the reals. In an axiomatic theory that involves a subtype σ of some type
τ , ∀x : σ . ψ(x) can replace ∀y : τ . ϕ(y) ⊃ ψ(y), where ϕ is the unary
predicate corresponding to membership in the subtype σ. As before, this is
no magic way to eliminate work: given a term t, we must ensure that t is
defined with a value in the sort σ. Although this is semantically similar to
discharging the assumption ϕ(t), a theorem prover may be equipped with
algorithms to resolve questions of this form effectively.

imps gains considerably from a range of algorithms for these “sort de-
finedness” assertions. They use information extracted from theorems, such
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as that σ is closed under particular functions. They frequently reduce the
assertion that a complicated term t is defined with a value in σ to a few
assertions about small subterms. If these in turn are not discharged by the
simplifier, they may be presented to the user for proof.

3.2 Simplification and Decision Procedures

Many theorem provers use efficient algorithms, exploiting facts about partic-
ular operators, either to simplify expressions or to decide formulas in some
syntactic class. These hand-coded procedures, which we will call processors,
may be far more efficient than applying basic inferences to derive the same
conclusion.

However, the same algorithm is often sound for a range of theories, so
long as they satisfy a number of presuppositions. Suppose a number of
formal symbols, such as + and ∗, or ⊕ and ⊗, represent operations the
algorithm might be applied to. The processor can then generate a number
of concrete formulas representing presuppositions for the manipulations that
it will perform. For instance, these presuppositions might assert that the
operators are associative and satisfy a distributive property. The simplifier
for that theory can soundly call the processor if these presuppositions are
theorems.

Moreover, a processor may be installed with subsets of the possible op-
erations, so that a processor for simplifying polynomials in a field can be
installed in a commutative ring (with unit) simply by not supplying a di-
vision operator. Alternatively, some properties of an operator may be op-
tional: a processor designed for a commutative ring may be applied to a
non-commutative ring simply by stipulating that the multiplication may
not commute. The code of the processor must of course be written so that
these optional choices make sense.

imps allows a user to tailor such a processor for his theory with no need
to write code. For instance, if a theory of bitstrings is needed, it is trivial to
instantiate an existing algebraic processor to provide efficient simplification
for expressions involving the bitstring operations. The theory is the natural
unit for this sort of theorem proving aid.
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4 Relation to the Big Theory Approach

It might be thought that there is also a disadvantage to the little theories
approach. Namely, in some situations we may want to use a “big theory” like
ZF as a context to reason about structures satisfying different properties.
Naturally, set theories can also be treated within imps. But, if we do so,
can we make use of theorems that we have proved using the little axiomatic
theories that characterize these structures?

In fact, we do not sacrifice the opportunity to use a “big theory” in con-
nection with results proved using the little theories approach. For instance,
suppose that we have a collection of theorems we have proved in a theory
M of monoids. M asserts of the constants e and ⊕ that e is an identity
for ⊕, and that ⊕ is associative. Within the chosen big theory B, define a
ternary relation monoid between a set, an object, and a binary function by
the condition:

monoid(s, x, f)=df
x ∈ s

∧ ∀z . z ∈ s ⊃ f(z, x) = f(x, z) = z

∧ ∀z0, z1, z2 . z0, z1, z2 ∈ s ⊃ f(z0, f(z1, z2)) = f(f(z0, z1), z2)

Suppose we can establish a formula of the form monoid(s0, x0, f0), possibly
relative to some assumptions {ϕ1, . . . , ϕn}. Then we will want to apply the
theorems of M (under these assumptions) to the structure that 〈s0, x0, f0〉
represents.

Context Theory Interpretations. To see how this can be accomplished,
consider the syntactic translation I that sends the domain to s0, the constant
e to x0, and the operator ⊕ to f0. I is unlike the most usual notion of
interpretation in two ways:

• The expressions s0, x0 and f0 may involve free variables, so that the
image of a closed expression under I need not be closed;

• If the set of assumptions {ϕ1, . . . , ϕn} is non-empty, then the images
of the monoid axioms under I may not be theorems of B.

Although I is not properly a theory interpretation, it is what we call a con-
text theory interpretation from M to B relative to the “context” [22, 10]
containing the assumptions {ϕ1, . . . , ϕn}. Context theory interpretations
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are used in imps in much the same as way as ordinary theory interpreta-
tions, so long as our position in a proof licenses us to use the assumptions
{ϕ1, . . . , ϕn}. In the case at hand, they justify citing the theorems of M in
reasoning about s0, x0 and f0.

Context theory interpretations greatly extend the power of the little
theories approach. As a consequence, a commitment to the little theories
approach need entail no reduplication of effort when structures within ZF
are of interest.7

Proving Consistency. An objection is often raised to the free use of
axiomatic theories in the formal verification of software or hardware. All
but the most sophisticated users will introduce axioms that are wrong, and
sometimes even inconsistent.

Naturally, no formal method can prevent a user from writing a spec-
ification that does not accurately reflect his intent. For instance, if the
specification is to be built up by means of a sequence of definitions within a
fixed big theory, the user may select the wrong definitions, and may some-
times even define unsatisfiable predicates. Then, although his theorems will
be truths of the formal system he is working within, their content will not
correspond to his intuitive understanding.

While the little theories approach does not prevent a user from doing
stupid things, it is by no means worse off than the alternative. An inter-
pretation I from T to T ′ will allow us to assure ourselves that a theory
T is consistent, if T ′ is a well-established theory trusted to be consistent.
Moreover, a theory interpretation also conveys more information. The user
may have a conception of what sort of structures ought to satisfy T . The
interpretation I gives him a way of isolating, within any structure satisfying
T ′, a structure satisfying T . If these structures can not be made to look
as he expects, then he has reason to think he has got the formulation of T
wrong.

This method is by no means limited to formal methods, as it is also
commonly used in giving relative consistency proofs in standard mathemat-

7Indeed, the big theories approach is particularly useful when a theorem concerns an
arbitrary family of structures rather than a collection of a fixed number of structures.
Since, within ZF, any family of structures is simply represented as another set, ZF is an
advantageous framework for the reasoning.

By contrast, in case a theorem concerns some fixed number of structures of some kind,
such as three arbitrary metric spaces, imps provides a convenient mechanism for synthe-
sizing a suitable theory.
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ical practice. For instance, the consistency of the Generalized Continuum
Hypothesis with ZF is sometimes proved in essentially this way (see, for
instance, [21]).8 In this case, both T and T ′ happen to be the same theory,
namely ZF.

5 Example

In this section we discuss an imps proof which exemplifies a number of advan-
tages of the little theories approach. Our example is a well-known “inverse
function theorem” (Theorem 1 below) for a mapping from a Banach space
into itself which is near the identity (see [5, §10.1]). We begin by describing
the sophisticated network of interrelated theories used in the proof.

5.1 The Network of Theories

The theories are constructed step-by-step using theory extension and the-
ory instantiation (as recommended in [13]), beginning from a few general
mathematical theories:

• A theory of an abstract ring.

• A theory of an abstract module over a ring.

• A theory of an abstract metric space (denoted M).

• A theory of real arithmetic (formalized as a complete ordered field).

From these theories we build a number of other theories and interpretations:

• A theory of an abstract real vector space is obtained by instantiating
the ring of the module theory with the field of real numbers via the
obvious interpretation from the module theory to the theory of real
arithmetic.

• A theory of an abstract normed space is built as an extension of the
real vector space theory by adding a new constant (denoted ‖ · ‖)
together with axioms which characterize this constant as a norm.

• A theory interpretation (denoted Φ) from the metric space theory M
to the normed space theory is specified by interpreting the distance

8This example has not been done in imps.
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function of M as the function (x, y) 7→ ‖x− y‖ and the sort of points
of M as the sort of points of the normed space.

• Using Φ, the definitions in M of constants such as “open”, “con-
nected”, and “complete” are transported to the normed space theory.

• A theory of an abstract Banach space (denoted B) is formed by adding
an axiom that says the propositional constant complete-normed-space
holds.

Thus, this one theory B, in which the theorem will be stated and proved,
illustrates a variety of ways that theories can be built in imps.

5.2 The Theorem and Its Proof

Before stating the theorem we make some preliminary definitions.
We will use the symbols P and d to denote the sort of points and distance

function in the metric space theory M, and V and ‖ ‖ to denote the sort
of vectors and norm in the Banach space theory B. A partial function
ϕ : P→ P is a contraction with modulus c < 1 if, for all x, y in the domain
of ϕ, d(ϕ(x), ϕ(y)) < c · d(x, y). For a ∈ P and r ∈ R, B(a, r) and B̄(a, r)
denote, respectively, the open and closed balls with center a and radius r. As
illustrated above, these definitions can be readily transported via Φ to the
normed space theory and thus to B. Given a partial function ϕ : V → V,
fϕ : V→ V is the partial function x 7→ x+ ϕ(x), provided ϕ(x) is defined.

Theorem 1 Let ϕ : V → V be a contraction whose domain is open. Then
the range of fϕ is itself open.9

The key idea behind the proof of this result is the following classical
theorem of abstract analysis attributed to Banach:

Theorem 2 (Contraction Principle) A contraction on a complete met-
ric space has a unique fixed point.

The Contraction Principle is proved in imps in the theoryM. The proof
is very similar to the standard textbook proof. From the perspective of
machine-aided deduction, this proof is noteworthy for two reasons: First it

9From this conclusion, it is easy to show that the mapping is also a homeomorphism
(i.e., that it is continuous with a continuous inverse).
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involves reasoning at various levels of abstraction; secondly, it uses widely
different proof techniques. Specifically, the proof uses definitions and prop-
erties naturally stated in a theory of an abstract metric space at the same
time that it uses assorted facts about the real numbers. Some of these
facts, such as the convergence to zero of rn as n → ∞ (which follows from
Bernoulli’s inequality) involve the order, metric, and algebraic structure of
the real numbers. Other pertinent facts have a purely algebraic nature, such
as the geometric series formula,

q∑
j=p

rj =
rp · (1− rq−p+1)

1− r
,

which holds provided 0 ≤ p ≤ q and r 6= 0, 6= 1. Bernoulli’s inequality and
the geometric series formula are in turn proved using induction and algebraic
and order properties of the reals.

The proof of Theorem 1 requires the following two lemmas:

Lemma 1 Suppose the metric space (P, d) is complete; a ∈ P; r ∈ R with
0 ≤ r; ϕ : P→ P is a contraction with modulus c that is defined on B̄(a, r);
and d(a, ϕ(a)) < r · (1− c). Then ϕ has a fixed point in B̄(a, r).

Lemma 2 Suppose a ∈ V, r ∈ R with 0 ≤ r, and ϕ : V → V is a
contraction with modulus c that is defined on B̄(a, r). Then

B(fϕ(a), r · (1− c)) ⊆ fϕ(B̄(a, r)).

Proof of Theorem 1 in imps. First, Lemma 1 is stated and proved in
M as follows. For technical convenience, a new theoryM′ is constructed by
adding individual constants a and r of sort P and R, respectively, and the
axiom 0 ≤ r to M. A version θ of Lemma 1 is formulated in M′ by taking
a and r in the statement of the lemma to be individual constants instead
of universally quantified variables. θ is derived in M′ from an appropriate
instantiation of the Contraction Principle. The instantiation is obtained by
transporting the Contraction Principle fromM toM′ via the interpretation
which interprets the sort P as B̄(a, r) and the distance function d as the
restriction of d to B̄(a, r). To get a version of Lemma 1 in M, in which a
and r are universally quantified variables, θ is transported from M′ to M
via a context interpretation that is created automatically by imps.
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Next, Lemma 1 is transported to B via the interpretation Φ defined
above. Lemma 2 is derived in B from the translation of Lemma 1 by un-
folding the definition of open set and then performing, in a straightforward
manner, some user-directed logical reasoning.

Finally, Theorem 1 follows from Lemma 2 by a straightforward proof in
B.2

Another theorem which can be proved with a technique similar to the one
we have outlined here is the Picard-Lindelöf existence theorem for ordinary
differential equations (see [5]). Its proof involves an application of the Con-
traction Principle to a space of continuous functions on an interval. Much
of this proof (which involves the construction of a large network of theories)
has already been carried out by Robert Givan using the imps system.

6 Conclusion

Mathematics of any complexity requires a mixture of strikingly different
kinds of reasoning. For instance, the proof of the Contraction Principle
depends on the numerical properties of the reals, such as the geometric
series formula, as well as using induction on integers and the much more
abstract properties of a metric space. A sequence of points must be built up
by applying a second order iteration operator to the contractive mapping,
and an ε/δ argument must be given to show that the sequence is Cauchy.
Algebra, ordering properties, and many lemmas must be used to compute
with the various subgoals that arise. The proof illustrates what Wittgenstein
called the “motley of mathematics.”

Little theories provide a way of organizing this variety both at the im-
plementation level and at the conceptual level.
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