
The MathScheme Library: Some Preliminary

Experiments⋆

Jacques Carette, William M. Farmer, Filip Jeremic, Vincent Maccio,
Russell O’Connor, and Quang M. Tran⋆⋆

Department of Computing and Software
McMaster University

Hamilton, Ontario, Canada

7 June 2011

Abstract. We present some of the experiments we have performed to
best test our design for a library for MathScheme, the mechanized mathe-
matics software system we are building. We wish for our library design to
use and reflect, as much as possible, the mathematical structure present
in the objects which populate the library.

1 Introduction

The mission of mechanized mathematics is to develop software systems
that support the process people use to create, explore, connect, and apply
mathematics. The objective of the MathScheme project [10] is to develop
a new approach to mechanized mathematics in which computer theo-
rem proving and computer algebra are merged at the lowest level. Our
short-term (2–3 years) goal is to develop a framework, with supporting
techniques and tools, for tightly integrating formal deduction and sym-
bolic computation. The long-term (7–10 years) goal is build a mechanized
mathematics system based on this framework.

A critical component of any mechanized mathematics system is a large
library of formalized mathematics. We believe such a library should be
constructed from modular units representing theories and theory mor-
phisms. The library should be equipped with powerful methods for build-
ing complex knowledge structures by combining and relating theories and
theory morphisms. It should include mathematical knowledge expressed
both declaratively (using axioms) and constructively (using algorithms).

⋆ Published in: A. Asperti, J. Davenport, W. M. Farmer, F. Rabe, and J. Urban, eds.,
Conference on Intelligent Computer Mathematics Work-in-Progress Papers Proceed-

ings, Technical Report UBLCS-2011-04, pp. 10–22, University of Bologna, 2011. This
research was supported by NSERC.

⋆⋆ {carette,wmfarmer,jeremif,tranqm}@mcmaster.ca, vincentmaccio@gmail.com,
roconnor@theorem.ca.

2

And it should equally serve users who want to explore and apply the
knowledge in the library and developers who want to organize and ex-
pand the knowledge in the library.

The design process for the MathScheme Library is being driven by a
number of key ideas motivated by lessons learned from previous endeavors
(ours as well as other’s):

1. Abstract Theories. Abstract axiomatic theories, such as the familiar
theories of abstract algebra, can be highly interrelated and, as a result,
an unsophisticated formalization of abstract axiomatic theories will
become bloated with redundancy as it grows larger. Can the tiny

theories method, in which mathematical knowledge is organized as
a network of theories built up one concept at a time, be used to
systematically eliminate the harmful forms of this redundancy?

2. Concrete Theories. A concrete theory, as opposed to an abstract ax-
iomatic theory, is a description of a specific mathematical structure
and often serves as a basis for computation. Can concrete theories
be developed using the same techniques as for developing abstract
axiomatic theories?

3. Applied Universal Algebra. Universal algebra includes many useful al-
gebraic constructions that can be applied to a wide variety of math-
ematical structures. Can these constructions be formalized uniformly
as operations on theories?

4. Biform Theories. A biform theory [5] is a combination of an axiomatic
theory and an algorithmic theory. Can biform theories uniformly re-
place axiomatic theories in libraries of formalized mathematics?

5. Theory Implementations and Interfaces. An implementation is a the-
ory whose concepts and facts are divided into primitive and derived,
while an interface to an implementation is a theory that contains
some of the concepts and facts of the implementation but ignoring
their status with respect to being primitive or derived. Can a library
of theories be organized so that some theories are interfaces to several
implementations and every implementation has one or more inter-
faces?

6. High-Level Theories. A high-level theory [1] is a high-level environ-
ment for reasoning and computation that is analogous to a high-level
programming language. Can high-level theories be built on top of a
networks of abstract axiomatic theories and concrete theories?

Although these key ideas seem to be sound in theory, they have not
been sufficiently tested in practice. In particular, it is not exactly clear

3

how they should be implemented to meet the requirements of a “real” sys-
tem. For this reason we are conducting a series of design-and-implement
experiments to learn how to best incorporate these ideas into the Math-
Scheme Library. We are particularly interested in exploring the impact
these ideas can have on the scalability of contemporary libraries of for-
malized mathematics. In this work-in-progress paper, we report on ex-
periments dealing with the first three ideas: abstract theories, concrete
theories, and applied universal algebra.

We are working on making the details of these experiments available;
details will soon appear on the project’s web site [10].

2 Abstract Theories

As is quite well-known, the axiomatic theories of Algebra are highly in-
terrelated. Theories in other areas of mathematics also seem to be quite
structured, but they have been subject to less intense classification work.
The question is, what is needed to build up a sufficiently rich library of
algebraic theories, while minimizing the human labor needed to create
and, at the same time, maximize sharing between theories?

For example, we know that a Field is a commutative Ring which is
also a Division Ring. Similarly, a Ring combines a non-unital ring (often
called a Rng) with a SemiRing. Can these relations be used in the explicit
construction of an algebra hierarchy, in a way which is both semantically
meaningful as well as labor-saving? We strongly believe that the answer
is a resounding “yes”.

2.1 The ideas

We needed to test whether the relations between axiomatic theories could
be leveraged in a useful way in building a (large) library of mathematics.
We needed to understand exactly which relations could be used (rather
than being shown to exist) in the building of the library.

We reasoned that the most important relation, even though it is in fact
the simplest, is that of inclusion at the level of theory presentations. In
other words, even though we are (eventually) interested in the semantics
of theories, it is at the level of the syntax where we can gain the most, at
least from the point of view of building up a library of abstract theories.

A second idea to test is that of tiny theories: each separate concept
should occur once and only once in the library source code, even though
the semantic concept may well be pervasive. For example, the concept of
a binary operation being commutative should occur only once.

4

2.2 The experiment

To pick up on the example of Field and Ring, our library source contains
the statements

Ring := combine Rng , SemiRing over Semirng
F i e ld := combine Divis ionRing , CommutativeRing over Ring

defining Ring and Field respectively.1 But where does a Ring structure
really come from? More precisely, where do a (multiplicative) semigroup
and an (additive) monoid first “cross” to form the core of a ring? By
combing through sufficiently detailed algebra textbooks, one encounters
the notion of a left near semiring which seems to fit the bill. And indeed,
we define

LeftNearSemir ingo id := combine Semigroup , AdditiveMonoid
over Car r i e r

LeftNearSemir ing := LeftNearSemir ingo id extended by {
axiom l e f t D i s t r i b u t i v e ∗ + : l e f t D i s t r i b u t i v e ((∗) , (+)) ;
axiom l e f t 0 : l e f t A n n i h i l a t i v e ((∗) , 0)

}

where the LeftNearSemiringoid2 is a pure combination of a Semigroup and
an AdditiveMonoid which share the same Carrier set and nothing else. A
LeftNearSemiring then adds two axioms, left distributivity of ∗ over + and
that 0 is a left annihilator for ∗. Note how this second definition does not
in fact properly obey the rules of tiny theories: it introduces two concepts
at once. We have thus discovered that there are in fact two intermediate
algebraic structures in between a LeftNearSemiringoid and a LeftNearSemiring.

But what is a LeftNearSemiring? Figure 1 shows a more “classical” pre-
sentation of this theory. It shows a carrier type U, a constant 0, and
two operations ∗ and + over that carrier type, and the six axioms of a
LeftNearSemiring. We call the theory in Figure 1 the expanded version of the
LeftNearSemiring theory (defined above). This expanded version is what we
are interested in specifying, but not what we want to enter (as a human):
this would be incredibly tiresome as well as error-prone to do for even a
small number of theories. We are flabbergasted that this is nevertheless
essentially how it is done in all current large libraries of mathematics,
either for theorem proving purposes or for computer algebra.

1 The semantics will be described later on, we hope the syntax is sufficiently evocative
to not need a detailed explanation at this moment.

2 This is our name for this structure; we could not find another name in the literature.

5

LeftNearSemir ing := Theory {
U : type ;
∗ : (U, U) −> U;
+ : (U, U) −> U;
0 : U;
axiom r i g h t I d e n t i t y + 0 := f o ra l l x : U. x + 0 = x ;
axiom l e f t I d e n t i t y + 0 := f o ra l l x : U. 0 + x = x ;
axiom l e f t D i s t r i b u t i v e ∗ + :=

f o ra l l x , y , z : U. x ∗ (y + z) = (x ∗ y) + (x ∗ z) ;
axiom l e f t 0 := f o ra l l x : U. 0 ∗ x = 0 ;
axiom a s s o c i a t i v e + :=

f o ra l l x , y , z : U. (x + y) + z = x + (y + z) ;
axiom a s s o c i a t i v e ∗ :=

f o ra l l x , y , z : U. (x ∗ y) ∗ z = x ∗ (y ∗ z)}

Fig. 1. LeftNearSemiring theory presentation

Significantly more difficult was building the “base” of this theory3

hierarchy. Figure 2 shows the first few lines. The reason this was difficult
was that it took a certain amount of time to convince ourselves that
we really needed that many “trivial” theories in order to later reap the
benefits of this extreme modularization.

At the root of this network is the empty theory containing no concepts
(e.g., types or operations), although the full internal logic of the system
is implicitly present in the Empty theory. A theory called Carrier extends
the empty theory adding a universe type U. Theories can be extended in
multiple ways. One extension of Carrier called Pointed adds a constant e

of type U. Another extension of Carrier called Magma adds a binary func-
tion * of type (U,U) −> U, which it “gets” from BinaryOperation through
a renaming. Other extensions adds axioms to the theory. For example,
the theory called Semigroup adds to Magma an associative axiom for *. Each
extension defines an inclusion at the level of theory presentations, from
the smaller theory into the larger. At the level of the theories themselves,
the induced theory morphisms are considerably more complex.

Using this process of building algebraic theories, we have built up 201
(presentations of) theories, including BooleanAlgebra, Diod, KleeneAlgebra,
MoufangLoop, OrthomodularLattice, Quandle, StarSemiring and VectorSpace, and
a large network of morphisms relating these theories to each other.

3 Strictly speaking, these are all theory presentations rather than theories, but we will
address this point later.

6

Empty := Theory {}
Car r i e r := Empty extended by { U : type }
PointedCarr i e r := Car r i e r extended by { e : U }
UnaryOperation := Car r i e r extended by { prime : U −> U }
PointedUnarySystem :=

combine UnaryOperation , Po intedCarr i e r over Car r i e r
DoublyPointed := PointedCarr i e r extended by { e2 : U }
BinaryOperation := Car r i e r extended by { ∗∗ : (U,U) −> U }
Magma := BinaryOperation [∗∗ |−> ∗]
Car r i e rS := Car r i e r [U |−> S]
Mul t iCar r i e r := combine Carr ie r , Carr i e rS over Empty
UnaryRelation := Car r i e r extended by { R : U ?}
BinaryRelat ion := Car r i e r extended by { R : (U,U)? }
InvolutiveUnarySystem := UnaryOperation extended by {

axiom i n v o l u t i v e p r i m e :
f o ra l l x : domain (prime) . prime (prime x) = x

}
Semigroup := Magma extended by {

axiom a s s o c i a t i v e ∗ : a s s o c i a t i v e ((∗)) }

Fig. 2. Base of theory hierarchy

2.3 The method

We have a formal grammar for the MathScheme language, as well as a
notion of how certain terms expand. The underlying semantics is based
on the category of presentations of multi-sorted theories (over the logic
Chiron [6, 7]), where theory morphisms are induced by signature map-
pings. In other words, for theories T and S, T → S if there is a renaming
ρ of T such that ρ(T) ⊂ S, where inclusion is with respect to intensional
equality of all components of a theory. extended by and renaming (see
the definition of Magma in Figure 2) induce the obvious morphisms. A
statement like combine A,B over T then means the pushout of the induced
diagrams, where it is assumed that we can infer the morphism from T to
A, and T to B.

We have code which implements these constructions. More precisely,
we have a base language of theories (very classical) as well as theory
combinators. These combinators are “theory constructions”, which can
be “expanded” according to the (informal) semantics above. Figure 1
shows the actual result of expanding LeftNearSemiring.

7

2.4 The results

This particular experiment is our most successful. Both ideas (that it is
at the level of the syntax of theory presentations where there is the most
reuse, and that to achieve this every concept should be presented only
once) really have proven themselves. What we did discover, however, is
that we focused too much on theories, and that the most important struc-
ture is really present in the theory morphisms induced by our construc-
tions. We are currently conducting further experiments based on this new
knowledge.

It is important to note that our claims to novelty (if any) are largely on
the engineering aspects of our library: while the underlying ideas are old,
we have not found anyone who has pursued these ideas as systematically
as we have, nor to the scale which we have. A significant part of our
infrastructure work was forced upon us because of the scope of our library.

3 Concrete Theories

A concrete theory is often known as a structure. While most abstract
theories admit many models (even up to isomorphism), concrete theo-
ries are those which by construction admit a single model (again, up to
isomorphism).

3.1 The ideas

Basically we wanted to see if the same ideas that we used for abstract
theories also worked for concrete theories. Certainly many concrete theo-
ries are well-known to be parametric, but what other structure could we
leverage?

3.2 The experiment

While the most fundamental concrete theories are the empty theory and
the Unit theory (of a singleton carrier set), the first important, non-trivial
concrete theory has multiple names: 2, bit, and bool. One of the simplest
presentations of this theory can be given in our language as

Bit Base := Empty extended by {
Inductive b i t

| 0 : b i t
| 1 : b i t

}

8

It should be noted that 0 and 1 here are simply identifiers, and carry no
special meaning to the system. It is also possible to give an axiomatic
presentation of the same theory, viz.

Bit Base Abst ract := Empty extended by {
b i t : type

1 : b i t
0 : b i t
axiom : f o ra l l b : b i t . b = 1 or b = 0
axiom : not(1=0)

}

which is isomorphic to the previous theory. We prefer the first (more
functional) presentation as we get the axioms “for free” by the definition
of an inductive type in the underlying logic.

Here too we try to follow the same principle as before, which is to
try to augment each of our (concrete) theories with a single concept at a
time. This also makes reuse much simpler. For example, we may wish to
define a concrete function and between bits. (It is named bit and so as to
not clash with the and from the internal logic).

Bit And := Bit Base extended by {
b i t and : (b i t , b i t) −> b i t ;
b i t and (x , y) = case x of {

| 0 −> 0
| 1 −> y

}
}

As can be seen, the language provides pattern-matching for inductive
types. A more comfortable theory of bits would combine more operations,
as indicated by our “basic” Bit theory:

Bit := combine Bit And , Bit Or , Bit Not ,
B i t Imp l i e s , Bit Xor , Bit Xnor over Bit Base

These pieces, via renaming, augmented with additional operators (like
modal operators) can also be used for creating various logics.

We can proceed in the same manner for a theory for characters, and
similar enumerative theories. In essentially the same way, we can also
define the natural numbers, following the classical definition of Peano4.

What seems next, at least for computer scientists, would be a theory of
finite sequences of bits (words). Experience tells us that the proper way to
do this first involves creating polymorphic theories for (finite) sequences.
A sequence is just a (total) function from nat (seen as a countable linear

4 Naturally these natural numbers will only be used in proofs and properties. We will
need a better representation for actual computations.

9

order) to a set. A finite sequence can be modeled in at least four different
ways: as a restriction of a sequence to an initial segment (of nat), as
a partial sequence guaranteed total on an initial segment, as a (total)
function on an initial segment, or as a list of elements.

In other words, a sequence is not quite a concrete theory, as the above
models are not entirely equivalent. We can get one concrete version by
specializing the theory of lists to bits:

L i s t := Car r i e r extended by {
Inductive l i s t

n i l : l i s t
cons : U −> l i s t −> l i s t ;

}
Bi tCar r i e r := instance Bit Base of Car r i e r via [b i t |−> U]
B i t L i s t := combine List , B i tCar r i e r over Car r i e r

An instance encodes a non-inferable arrow, which is needed to make the
combine (pushout) work properly.

We could similarly instantiate the other models, and each has ad-
vantages and disadvantages. Ultimately, all four should be available (and
proven equivalent), but at this point we needed to make a choice.

In reality, we would not form the BitList theory as an instance of just
the carrier, but rather from a (conservative) extension with convenience
functions like length, map, zipWith, etc. added. Similarly, we would really
want to combine an enriched List with an enriched Bit theory to form a
“useful” theory of finite bit strings.

We have developed theories for a variety of data-structures (trees,
graphs, lists, stack, queue, dequeue, multiset, functional maps, etc.), var-
ious kinds of numbers, some machine-oriented types, as well as some algo-
rithms over these. For example, we have a model of the SHA 256 algorithm
specified (constructively).

3.3 The method

The work was done in a different manner: rather than immediately start
with tiny theories, we started with more classical axiomatizations (as
found in a variety of textbooks) for the various structures. The hope was
that we could then “see” the relations between structures, and perform
stepwise abstractions from our (large) theories into a network of tiny
theories.

We also started out by writing a lot of the theories in a rather rela-
tional (axiomatic) style, and only realized part way through that most

10

of these also admitted purely functional, fully constructive axiomatiza-
tions. As these are easier to leverage, as well as being more appropriate
for concrete theories, some rewriting was necessary.

3.4 The results

While we have been working on building concrete theories for two years, it
is safest to call this experiment as being fully in-progress. We have rewrit-
ten most of our library of concrete theories twice now — and will likely do
so again. We keep finding new ways to express these theories which nicely
factor out common components. However, the kinds of commonalities we
find seem to be of a somewhat different kind than that present in abstract
theories. Thus we need different tools to capture these relations.

Particularly intriguing is that sometimes the very same semantics
(classical constructions in category theory, in particular colimits) is best
specialized into a number of different features, rendered with quite dif-
ferent syntax. Concrete theories are “instances” of abstract theories, and
we are still trying to fully leverage the consequences of this.

We have definitely learned that concrete theories need to be defined
constructively. This is not entirely obvious: every textbook specification

of a stack contains axioms which are not functional. It is easy to for-
get that a stack is an abstract data type, and so should be treated as
an abstract theory. But, unfortunately, the abstract theories of classical
abstract data types have yet to be classified into an organized whole, as
have the abstract theories of mathematics. We are working on this.

The kind of parametricity we offer is essentially that of ML modules
(see List in section 3). This is suboptimal, as we know that List could be
made “parametrically polymorphic”. For concrete theories, this makes no
effective difference, but we are nevertheless unhappy with this.

4 Applied Universal Algebra

Universal Algebra is the study of algebraic theories, rather than algebraic
structures themselves. In other words, rather than studying groups, it is
the theory of groups which is studied. Seen another way, it is the study
of presentations of theories, which is exactly what we have been dealing
with in the previous two experiments.

What universal algebra brings is a uniform view of these as well as
a number of constructions. Of course, category theory does the same in
a more general setting. But for our purposes, it is the more “concrete”
constructions of universal algebra which more readily bears fruit.

11

4.1 The ideas

We know that some constructions apply “uniformly” to most algebraic
structures. For example, for single-sorted algebras, there is a uniform
notion of homomorphism between them. Thus, rather than trying to have
a human write what a T homomorphism is for > 200 theories T , we
hoped that we could automatically derive this from a presentation of T .
Similarly, we should be able to derive some notion of a sub-T -theory,
direct product, etc.

Furthermore, as we are in a setting where we have access to syntax

as well as semantics, we can hope to derive the language of a theory
automatically. We wanted to explore if this was in fact feasible, as well
as see what other constructions we could automate.

4.2 The experiment

We chose to implement the following constructions:

1. The construction of a type whose values represent the models of an
arbitrary input theory. As is done elsewhere, these are encoded as
dependently-typed records (i.e., telescopes).

2. The construction of the “term algebra” of a theory, as an inductive
type.

3. Automatically defining the concept of homomorphism of an arbitrary
input theory.

4. Automatically defining the concept of substructure of an arbitrary
input theory.

Examples will illustrate these ideas better than formal definitions. The
declaration

type semigroup = TypeFrom(Semigroup)

in the context of a Theory means (i.e., is expanded to)

type semigroup = {U: type , ∗ : (U,U)−>U,
a s s o c i a t i v e ∗ : ProofOf (f o ra l l x , y , z : U.

(x ∗ y) ∗ z = x ∗ (y ∗ z))}

where Semigroup was defined in section 2.

Obtaining the term algebra of a theory is just as simple:

MonoidTerm := Theory { type MTerm = &Monoid }

denotes the inductive term

12

MonoidTerm := Theory {
type MTerm = data X .

#e : X |
#∗ : (X, X) −> X

}

MTerm is then exactly the set of free terms over the language of Monoids.
We can then see associativity as an equation between two values of MTerm.

We can continue in the same way for homomorphism. We have that

SemigroupH := Homomorphism(Semigroup)

means (expands to)

SemigroupH := Theory {
type SemiGroupType = TypeFrom(SemiGroup) ;
A, B : SemiGroupType ;
f : A.U −> B.U;
axiom p r e s ∗ : f o ra l l x , y :A.U . f (x A.∗ y) = f (x) B.∗ f (y) ;

}

In other words, as expected, given two Semigroups, a homomorphism
is a function between their carrier sets which preserves multiplication. In
general, it is a function between carrier sets which preserves all operations,
including nullary operations, i.e., constants.

Lastly, a substructure is one where a subset of the carrier set of a
structure itself carries the structure. For example,

SubSemigroup := Substructure (Semigroup)

means (expands to)

SubSemigroup := Theory {
type SemiGroupType = TypeFrom(SemiGroup) ;
A : SemiGroupType ;
V : type ;
axiom V <: A.U;
axiom p r e s ∗ : f o ra l l x , y :V . de f ined−in (x A.∗ y , V)

}

where <: denotes subtyping and defined−in is a definedness predicate, com-
ing from the underlying logic. When A.U (and thus V) is a set, this is just
set membership.

4.3 The method

Implementing each of these transformations turns out to be quite straight-
forward. Each turns out to be a simple traversal of the structure of a
theory which maps each component in a precise manner to the target.

13

The only difficulty is actually to decide on a what form each concept (ho-
momorphism, substructure, etc) should take. Once this choice is made,
the examples above give sufficient information to extrapolate the imple-
mentation. Given general enough traversal combinators, these are all less
than 10 lines of Objective Caml code to implement (the combinators are
OCaml versions of the Haskell package Multiplate [11]).

4.4 The results

The efficiency savings are quite significant: we can automatically obtain
definitions for the above 4 concepts for all of our theories, > 200 of them,
at a single stroke. Furthermore, if we decide to make a change to the
details of how we want, say, substructures handled, we only have to change
our generator. When we define new structures, we do not have to worry
about defining homomorphisms, substructure, etc. for them — these are
all automatically derived for us.

Our method does highlight something frequently encountered in a for-
malization context: textbook presentations of certain concepts frequently
omit “obvious” axioms. For example, we correctly generate

axiom : f o ra l l x , y : V . f (h + h) = h(x) +’ h(y) ;
axiom : f o ra l l a : F . f o ra l l x : V . h(a∗x) = a∗h(x) ;
axiom : f o ra l l x : V . h(−x) = −h(x) ;
axiom : h (0) = O’ ;
axiom : h (1) = 1 ’ ;

for specifying a homomorphism of F -vector spaces, while textbooks will
all too often only mention the first two axioms.

5 Work of Influence

The amount of related work is enormous, and even properly reviewing the
work which has had a clearly identifiable influence on us would more than
double the length of this paper. We will restrict ourselves to highlighting
a few items which have had a significant impact on our work.

Some influences are obvious: the first author has learned heavily from
the successes and failures of Maple, while IMPS [8] served the same pur-
pose for the second author. Further afield, the work of Douglas Smith[14,
15] on specification morphisms and the use of categorical constructions
in specifications should be clearly visible.

We have looked at quite a few libraries of mathematics, and we should
in particular mention those of CASL [3] and Axiom [9] as well as the

14

Wikipedia page [16] as sources of inspiration. The wikipedia page gave us
the right scope to aim for, and CASL and Axiom’s libraries, while nice,
also convinced us that too naive an approach would take way too much
human effort to achieve our goals.

Last but not least, D. Parnas’s ideas on modularization and infor-
mation hiding [12] and E. Dijkstra’s on separation of concerns [4] are
pervasive to our approach. The root of our use of generative techniques
as applied to mathematical software [2] actually finds its roots in Parnas’s
ideas on Program Families [13].

6 Conclusion

We knew that there was a lot of structure present in the theories of math-
ematics. But the principal lesson learned from this work is that “a lot” is a
serious understatement. More significantly, this structure can be directly
leveraged for the practical purposes of building a large library of mathe-
matics at a reasonable cost of human effort. The resulting “source code”
is both readable and rather small in size, even though the information it
captures, in expanded form, is dauntingly large.

We learned that there is also some “higher order” structure in these
theories: we can see duplication in our current library because we are
“replaying” the same constructions on top of different starting theories.
We are currently working on capturing this structure present at the level
of graphs of theories. We actually stopped adding new theories to our
library as we found that a large number of them should have already been
present if we had features for working with graphs of theory constructions.

We also learned that there is still a fair amount of classification work
which needs to be done on the “theories of computer science”. We have
gotten frequent glimpses of structure as rich as that known in mathemat-
ics, but we have not found these ideas in the literature.

Some theories are partly concrete and partly abstract: polynomials
over an arbitrary Ring are probably the best known example. More subtly,
polynomials are sometimes treated as syntactic entities, while other times
they are treated more semantically (if your representation for polynomials
R[x] contains x, it is syntactic). We are still perplexed by this.

References

1. J. Carette and W. M. Farmer. High-level theories. In A. Autexier et al., editor,
Intelligent Computer Mathematics, volume 5144 of Lecture Notes in Computer

Science, pages 232–245. Springer-Verlag, 2008.

15

2. Jacques Carette and Oleg Kiselyov. Multi-stage programming with functors and
monads: Eliminating abstraction overhead from generic code. Sci. Comput. Pro-

gram., 76(5):349–375, 2011.
3. CoFI (The Common Framework Initiative). Casl Reference Manual. LNCS Vol.

2960 (IFIP Series). Springer-Verlag, 2004.
4. Edsger W. Dijkstra. On the role of scientific thought. In Selected Writings on

Computing: A Personal Perspective, pages 60–66. Springer-Verlag, 1982.
5. W. M. Farmer. Biform theories in Chiron. In M. Kauers, M. Kerber, R. R.

Miner, and W. Windsteiger, editors, Towards Mechanized Mathematical Assistants,
volume 4573 of Lecture Notes in Computer Science, pages 66–79. Springer-Verlag,
2007.

6. W. M. Farmer. Chiron: A multi-paradigm logic. In R. Matuszewski and A. Za-
lewska, editors, From Insight to Proof: Festschrift in Honour of Andrzej Trybulec,
volume 10(23) of Studies in Logic, Grammar and Rhetoric, pages 1–19. University
of Bia lystok, 2007.

7. W. M. Farmer. Chiron: A set theory with types, undefinedness, quotation, and
evaluation. SQRL Report No. 38, McMaster University, 2007. Revised 2011.

8. W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An Interactive Mathe-
matical Proof System. Journal of Automated Reasoning, 11:213–248, 1993.

9. Richard D. Jenks and Robert S. Sutor. AXIOM: The Scientific Computation

System. Springer-Verlag, 1992.
10. MathScheme Web Site. http://www.cas.mcmaster.ca/research/mathscheme/.
11. Russell O’Connor. Functor is to lens as applicative is to biplate: Introducing

multiplate. CoRR, abs/1103.2841, 2011.
12. David Lorge Parnas. On the criteria to be used in decomposing systems into

modules. Commun. ACM, 15(12):1053–1058, 1972.
13. David Lorge Parnas. On the design and development of program families. IEEE

Trans. Software Eng., 2(1):1–9, 1976.
14. Douglas R. Smith. Constructing specification morphisms. Journal of Symbolic

Computation, 15:5–6, 1993.
15. Douglas R. Smith. Mechanizing the development of software. In M. Broy and

R. Steinbrueggen, editors, Calculational System Design, Proceedings of the NATO

Advanced Study Institute, pages 251–292. IOS Press, Amsterdam, 1999.
16. Wikipedia “List of algebraic structures” (retrieved May 2011).

http://en.wikipedia.org/wiki/List of algebraic structures.

