
A Microkernel for a Mechanized Mathematics
System

William M. Farmer and Martin v. Mohrenschildt

Department of Computing and Software
McMaster University, 1280 Main Street West

Hamilton, Ontario L8S 4L7, Canada
{wmfarmer,mohrens}@mcmaster.ca

Abstract. A microkernel system is described that provides services for
creating and extending formal languages, theories, computations, deduc-
tions, and interpretations of one theory in another. In analogy to an
operating system microkernel, this microkernel is a platform for imple-
menting multiple logics and interpretations between logics. It is intended
to be the bottom layer of a mechanized mathematics system that sup-
ports the full mathematics process with the capabilities of both contem-
porary theorem proving systems and computer algebra systems.

Keywords: Theorem proving, computer algebra, logic implementations.

1 Introduction

Mathematics is a process of creation, exploration, and connection. It con-
sists of three intertwined activities:

1. Model creation. Mathematical models representing mathematical as-
pects of the world are created.

2. Model exploration. The models are explored by stating and proving
conjectures and by performing calculations.

3. Model connection. The models are connected to each other so that
results obtained in one model can be used in other models.

With the help of formal logic and the computer, many aspects
of the mathematics process can be mechanized. Mathematical models
and their constituents—entities such as numbers, functions, theorems,
proofs, etc. and mathematical operations used in proving, computing,
and connecting—can be represented and electronically stored as formal
objects. The formal operations can then be applied to the formal enti-
ties mechanically. By mechanizing parts of the mathematics process in
this way, the process as a whole can become easier to do and the results
produced can be more reliable.

1

A mechanized mathematics system (MMS) is a computer environment
for doing mathematics in which parts of the mathematics process have
been mechanized. An MMS is intended to support, improve, and automate
the mathematics process. There are two major types of MMSs today: the-
orem proving systems for proving conjectures and computer algebra sys-
tems for performing computations. Each type has its own strengths and
weaknesses. Theorem proving systems are based on well-defined logical
foundations, but are difficult to use and often cannot effectively perform
routine computations. Computer algebra systems are relatively fast and
easy to use but are not rigorously based and are narrow in scope. Neither
type supports the full mathematics process.

Theorem proving systems emphasize the conjecture proving part of
the mathematics process. Mathematical models are usually formalized
as axiomatic theories expressed in a formal logic. In nearly all theorem
proving systems the formal logic is fixed,1 and in many systems only
one axiomatic theory is supported. Very few systems provide support for
connecting axiomatic theories in the same logic,2 and there is currently
no system in which axiomatic theories expressed in different logics can
be formally connected. Relative to computer algebra systems, theorem
proving systems provide very poor support for performing computations.

With the exception of computation, computer algebra systems ignore
most parts of the mathematics process. Many systems only support com-
putations in one model, the model of complex arithmetic. There is usually
very little support for directing computations by assumptions or for ap-
plying in a concrete context results developed in more abstract contexts.
Conjecture proving, if it exists at all in a system, is something added on
as an afterthought.

An MMS that supports the full mathematics process and that is acces-
sible to a wide range of mathematics practitioners will revolutionize how
mathematics is learned and practiced. It will extend the mathematical
reach of engineers and scientists, allowing them to use more mathematics
in their work and to use it better. It will enable university students to
learn mathematics by actively participating in the mathematics process.
And it may even change the way mathematicians conduct research.

The development of an MMS that supports the full mathematics pro-
cess is one the leading problems today of the fields of automated reasoning

1 The most notable exception is the Isabelle generic theorem proving system [10] in
which conjecture proving can be performed in a broad range of logics.

2 The Ergo [9] and imps [4, 5] theorem proving systems allow theories to be connected
with each other via interpretations.

2

and symbolic computation. Such an MMS must include the capabilities
of both theorem proving and computer algebra systems.3 It must also
allow multiple logics, multiple theories in each logic, conjecture proving
and computation in each theory, and connections between theories so that
results developed in one theory can be shared with other theories both in
the same logic and in other logics.

This problem is analogous to the problem of how to develop an operat-
ing system on which programs written for different traditional operating
systems like Unix and Windows can run and interact. One approach is
to develop an operating system microkernel that provides only the most
essential services of an operating systems such as process management
and memory management. Traditional operating systems can then be
implemented as applications that run on top of the microkernel.

This paper presents a microkernel for a mechanized mathematics sys-
tem that is intended to support the full mathematics process. The micro-
kernel provides the functionality needed to implement one or more logics.
It consists of a number of different kinds of objects and a number of op-
erations for creating and extending the objects. The microkernel objects
and operations are organized into three “services”: the Language Service
for formal languages (defined in section 2), the Theory Service for theo-
ries and interpretations between theories (section 3), and the Derivation
Service for computations and deductions (section 4).

A microkernel implementation of a logic (defined in section 5) consists
of a specified class C of microkernel objects and a set O of operations for
creating and extending objects in C using the microkernel operations.
The microkernel is illustrated by a series of examples from the logic of
the hol theorem proving system [8]. Together, the examples indicate how
the hol logic can be implemented using the microkernel services.

In the future we plan to implement the microkernel and then use it
to implement a logic based on a set theory called stmm [?].

This paper employs the following two notational conventions: Let T =
(A,B, . . . , Z) be a tuple. Then (1) AT = A, BT = B, etc. and (2) Ti =
(Ai, Bi, . . . , Zi) for i ∈ {0, 1, 2, . . .}.

2 The Language Service

The Language Service enables formal languages, language transformers,
and assertions to be created as microkernel objects.
3 There have been a number of research efforts to merge, in one way or another,

computer algebra with computer theorem proving; see [1] for references.

3

2.1 Language Objects

A language object L is a tuple (T ,N , E , C) such that:

1. T is a set of expressions called the types of L.
2. N is a nonempty set of symbols called the names of L.
3. E is a nonempty set of expressions called the expressions of L.
4. C is a nonempty set of functions called the constructors of L. If T 6= ∅,

each constructor is a partial function c : N×T <ω×E<ω ⇀ E such that,
for all n ∈ N , ᾱ = 〈α1, . . . , αm〉 ∈ T <ω, and ē = 〈e1, . . . , em〉 ∈ E<ω,
if c(n, ᾱ, ē) is defined, it is an expression

[c̃(n, ᾱ, ē) : α]

where c̃ is a symbol that denotes the function c and α ∈ T . If T = ∅,
each constructor is a partial function c : N × E<ω ⇀ E such that, if
c(n, ē) is defined, it is the expression c̃(n, ē).

5. E is the smallest set of expressions closed under the members of C.

A language object L is intended to represent a formal typed language
(when T 6= ∅) or nontyped language (when T = ∅). Every expression of
L has a name (but a name such as no-name can be used for expressions
intended to be unnamed). The type of an expression e = [c̃(n, ᾱ, ē) :
α], written tp(e), is α. If L1 and L2 are language objects, then L1 is a
sublanguage of L2, written L1 ≤ L2, if E1 ⊆ E2.

Example 1. Let N tv be a fixed infinite set of symbols called the type
variable names of hol. A type structure of hol is a pair Ω = (N tc, a)
such that:

1. N tc is a set of symbols called the type constant names of Ω such that
{∗, ι,→} ⊆ N tc.

2. a : N tc → N is a total function that maps each type constant name
to its arity. a(∗) = a(ι) = 0 and a(→) = 2.

A type structure Ω = (N tc, a) determines a language object LΩ =
(∅,N t, E , C) where N t = N tv ∪N tc and C contains the constructors given
in Table 1.

For convenience, we employ the following abbreviations:

n for t-var(n, 〈〉).
(e1, . . . , em)n for t-const(n, 〈e1, . . . , em〉).
(e1 → e2) for (e1, e2)→. 2

4

c c̃ c is defined on (n, ē) ∈ N t × E<ω

type-variable t-var iff n ∈ N tv and ē = 〈〉
type-constant t-const iff n ∈ N tc and |ē| = a(n)

Table 1. hol Type Constructors

c c̃ c is defined on (n, ᾱ, ē) ∈ N × T <ω × E<ω tp(c(n, ᾱ, ē))

variable var only if ᾱ = 〈α〉 and ē = 〈〉 α

constant const only if ᾱ = 〈α〉 and ē = 〈〉 α

false F only if ᾱ = 〈〉 and ē = 〈〉 ∗
implication ⊃ only if ᾱ = 〈〉, ē = 〈e1, e2〉, and tp(e1) = tp(e2) = ∗ ∗
conjunction ∧ only if ᾱ = 〈〉 and the type of each member of ē is ∗ ∗
equivalence ' only if ᾱ = 〈〉 and ē = 〈e1, e2〉 ∗
conditional if only if ᾱ = 〈〉, ē = 〈e1, e2, e3〉, and tp(e1) = ∗ See note 1.

Notes:

1. If c(n, ᾱ, ē) is defined, its type will depend on the types of e2 and e3. For instance,
if tp(e2) = tp(e3) = α, then its type could be α or if tp(e2) and tp(e3) have a least
upper bound β in a partial order on the types, then its type could be β.

2. Notice that the constructors in the table are not fully specified.

Table 2. Constructors of a Normal Language Object

A language object L = (T ,N , E , C) is normal if:

1. There is a member of T , denoted by ∗, that is intended to be the type
of truth values.

2. no-name ∈ N .
3. C includes the constructors given in Table 2.

For convenience, we employ the following abbreviations:

var(n, α) for [var(n, 〈α〉, 〈〉) : α].
const(n, α) for [const(n, 〈α〉, 〈〉) : α].
F for [F(no-name, 〈〉, 〈〉) : ∗].
(e1 ⊃ e2) for [⊃(no-name, 〈〉, 〈e1, e2〉) : ∗].
¬e for (e ⊃ F).
T for ¬F.
∧(e1, . . . , en) for [∧(no-name, 〈〉, 〈e1, . . . , en〉) : ∗].
(e1 ' e2) for [' (no-name, 〈〉, 〈e1, e2〉) : ∗].
if(e1, e2, e3, α) for [if(no-name, 〈〉, 〈e1, e2, e3〉) : α].

Let L be a normal language object. A formula of L is an expression
e ∈ EL with tp(e) = ∗. A variable and a constant of L is an expres-

5

c c̃ c is defined on (n, ᾱ, ē) ∈ N × T <ω × E<ω tp(c(n, ᾱ, ē))

variable var iff n ∈ N v, ᾱ = 〈α〉, and ē = 〈〉 α

constant const iff n ∈ N c, ᾱ = 〈α〉, inst(α, t(n)), and ē = 〈〉 α

application @ iff n = no-name, ᾱ = 〈〉, ē = 〈e1, e2〉, and tp(e2)
tp(e1) = (α→ α′) and tp(e2) = α for α, α′ ∈ T

abstraction λ iff n = no-name, ᾱ = 〈〉, ē = 〈e1, e2〉, and tp(e1)→ tp(e2)
e1 is a variable

false F iff n = no-name, ᾱ = 〈〉, and ē = 〈〉 ∗
implication ⊃ iff n = no-name, ᾱ = 〈〉, ē = 〈e1, e2〉, and ∗

tp(e1) = tp(e2) = ∗
conjunction ∧ iff n = no-name, ᾱ = 〈〉, and ∗

the type of each member of ē is ∗
equivalence ' iff n = no-name, ᾱ = 〈〉, ē = 〈e1, e2〉, and ∗

tp(e1) = tp(e2)

conditional if iff n = no-name, ᾱ = 〈〉, ē = 〈e1, e2, e3〉, α
tp(e1) = ∗, and tp(e2) = tp(e3) = α

Notes:

1. inst(α, t(n)) means α is an instance of t(n) obtained by substituting types for the
type variables in t(n).

Table 3. Constructors of an hol Language Object

sion e ∈ EL such that, for some n ∈ NL and α ∈ T L, e = var(n, α)
and e = const(n, α), respectively. Variable binding constructors, such as
quantifiers and the operator for lambda abstraction, can be represented
by constructors that apply to variables.

Example 2. N v be a fixed infinite set of symbols called the variable names
of hol such that no-name ∈ N v. A signature of hol over a type structure
Ω is a pair ΣΩ = (N c, t) such that:

1. N c is a set of symbols called the constant names of ΣΩ such that N c

includes the names of constants of the hol theory LOG [8, p. 215].
2. t : N c → ELΩ is a total function that maps each constant name to its

type. t maps the names of the constants of LOG to their assigned types
[8, p. 215].

The signature ΣΩ determines an hol language object LΣΩ = (T ,N , E , C)
where T = ELΩ , N = N v ∪N c, and C contains the constructors given in
Table 3. It is easy to see that LΣΩ is a normal language object.

For convenience, we employ the following abbreviations:

e1(e2) for [@(no-name, 〈〉, 〈e1, e2〉) : α].
(λ e1 . e2) for [λ(no-name, 〈〉, 〈e1, e2〉) : α]. 2

6

2.2 Transformer Objects

A transformer object Π is a tuple (L1, L2, π) such that:

1. L1 and L2 are language objects called the source and target languages
of Π, respectively.

2. π is a total function from E1 to E2 called the transformer of Π.

Π resides in a language object L if L1, L2 ≤ L.
A transformer object is intended to represent an expression trans-

forming operation such as an evaluator, a simplifier, a rewrite rule, a rule
of inference, a decision procedure, or an interpretation of one language in
another. The notion of a transformer and machinery for defining trans-
formers that are sound in an axiomatic theory are introduced in [6].

2.3 Assertion Objects

An assertion object A of a normal language L is a tuple (n, k, ξ) such
that:

1. n is a symbol called the name of A.
2. k ∈ {0, 1, 2, 3} denotes the kind of A.
3. If k = 0, then ξ is a formula of L.
4. If k ∈ {1, 2, 3}, then ξ is a transformer object residing in L.

An assertion object A is intended to be used either as an axiom that is
assumed or as a theorem that is derived. An assertion object is formulaic
if it is of kind 0. A formulaic assertion object (n, 0, ϕ) is intended to assert
that ϕ is valid. An assertion object is transformational if it is of kind 1, 2,
or 3. A transformational assertion object (n, k,Π) where Π = (L1, L2, π)
is intended to assert that:

1. If k = 1, Π is computationally sound, i.e., e ' π(e) is valid for all
expressions e ∈ E1.

2. If k = 2, Π is deductively sound, i.e., e ⊃ π(e) is valid for all formulas
e ∈ E1.

3. If k = 3, Π is reductively sound, i.e., π(e) ⊃ e is valid for all formulas
e ∈ E1.

2.4 Language Service Operations

The Language Service contains operations to create language, transformer,
and assertion objects from their components, to create transformational
assertion objects from transformer objects and other transformational as-
sertion objects using transformer constructors (see [6]), and to apply a
transformer object to an expression of a language object.

7

3 The Theory Service

The Theory Service offers objects for representing axiomatic theories,
theorems, definitions, and interpretations between theories. The Theory
Service does not provide operations for creating and extending Theory
Service objects; these operations are provided by “logic implementations”
which are defined in section 5. The motivation for the kinds of objects
and their use in the Theory Service is discussed in [3].

3.1 Static Theory Objects

A static theory object T is a tuple (n,L, Γ, J) such that:

1. n is the name of a logic implementation (defined in section 5) called
the logic of T .

2. L is a normal language object called the language of L.
3. Γ is a set of assertion objects of L called the axioms of L.
4. J is an unspecified object called the justification of T .

A static theory object T is intended to represent an axiomatic theory
whose axioms are presented by assertion objects. The justification of T
is intended to prove that T represents an axiomatic theory of the logic
of T . If T1 and T2 are static theory objects, then T1 is a subtheory of T2,
written T1 ≤ T2, if n1 = n2, L1 ≤ L2, and Γ1 ⊆ Γ2.

Example 3. A static theory object of hol is a static theory object
(hol, L, Γ, J) such that L = LΣΩ where ΣΩ is a signature of hol, J is
empty, and Γ includes the following assertions:

1. For each axiom ϕ of the hol theory INIT [8, p. 218], an assertion
object of L of kind 0 that represents ϕ.

2. For each rule of inference R of the hol logic [8, pp. 212–213], an
assertion object of L of kind 2 that represents R as a deductively sound
transformer. A sequent {t1, . . . , tn} ` t in the hol logic is represented
by a formula ∧(t̂1, . . . , t̂n) ⊃ t̂ of L. 2

3.2 Theorem Objects

A theorem object H is a tuple (T,A, J) such that:

1. T is a static theory object.
2. A is an assertion object of LT .
3. J is an unspecified object called the justification of H.

8

The logic of H is the logic of T .
A theorem object H is intended to assert a formula or transformer in

the axiomatic theory represented by T . The justification of H is intended
to prove that the assertion represented by A holds in the axiomatic theory
represented by T .

Example 4. A theorem object of hol is theorem object (T,A, J) such that
T is a static theory object of hol, A = (n, 0, ϕ) is an assertion object of
LT , and J is a proof that ϕ is valid in T .

3.3 Definition Objects

A definition object D is a tuple (T, c, e, J) such that:

1. T is a static theory object.
2. c is a constant not in LT .
3. e is an expression of LT .
4. J is an unspecified object called the justification of D.

The logic of D is the logic of T .
A definition object D is intended to assert that the new constant c is

equivalent to the expression e. The justification of D is intended to prove
that the addition of the formula c ' e to the axiomatic theory represented
by T is conservative.

Example 5. A definition object of hol is a definition object (T, c, e, J)
such that T is a static theory object of hol, e contains no free variables
and all the type variables occurring in e also occur in tp(c), and J is
empty. A definition object of hol represents a constant definition of the
hol logic [8, p. 220].

3.4 Profile Objects

A profile object P is a tuple (T, e, J) such that:

1. T is a static theory object.
2. e is a formula not in LT .
3. J is an unspecified object called the justification of P .

The logic of P is the logic of T .
A profile object P is intended to assert that a set of new types and

expressions satisfies the properties specified by the formula e. The justi-
fication of P is intended to prove that the addition of the formula e to

9

the axiomatic theory represented by T is conservative. A profile object is
a generalization of a definition object that can be used to introduce new
types and expressions and new type and expression constructors and to
extend the domains of old type and expression constructors.

Example 6. A profile object of hol is a profile object that represents a
constant specification, a type definition, or a type specification of the hol

logic [8, pp. 222–232]. The details are left to the reader.

3.5 Dynamic Theory Objects

A dynamic theory object U is a tuple (n, T, σ,N , J) such that:

1. n is a symbol called the name of U .
2. T is static theory object called the base theory of U .
3. σ is a finite sequence of theorem, definition, and profile objects called

the event history of T . The logic of each member of σ is the logic of
T .

4. N is a finite set of names of other dynamic theory objects called the
principal subtheories of U . For each principal subtheory U ′ of U , the
logic of U ′ is the logic of T , the base theory of U ′ is a subtheory of T ,
and the event history of U ′ is a subsequence of σ.

5. J is an unspecified object called the justification of U .

The logic of U is the logic of T . If τ is an initial segment of σ, then τ
determines a static theory denoted as Tτ such that T ≤ Tτ . The static
theory object Tσ is called the current theory of U .

A dynamic theory object U is intended to represent an axiomatic
theory created by extending a base axiomatic theory with theorems, def-
initions, and profiles. The justification of U is intended to prove that the
axiomatic theory represented by the current theory of U is a conservative
extension of the axiomatic theory represented by the base theory of U .

3.6 Static Interpretation Objects

A static interpretation object Φ is a tuple (T1, T2,Π, J) such that:

1. Ti = (ni, Li, Γi, Ji) is a static theory object for i = 1, 2. T1 and T2 are
called the source and target theories of Φ, respectively.

2. Π = (L′1, L
′
2, π) is a transformer object such that Li ≤ L′i for i = 1, 2

called the interpretation of Φ.
3. J is an unspecified object called the justification of Φ.

10

The logic of Φ is the logic of T2. Φ is an intralogic interpretation if the
logics of T1 and T2 are the same and is an interlogic interpretation if the
logics of T1 and T2 are different.

A static interpretation Φ is intended to represent a interpretation
from one axiomatic theory in another. The justification of Φ is intended
to prove that the interpretation maps formulas valid in the source theory
to formulas valid in the target theory.

Example 7. Interpretations of one theory in another are not part of the
hol logic. However, a “homomorphic” notion of an hol interpretation
could be defined by lifting the standard first-order notion of an interpre-
tation to the hol logic. However, it would be problematic for an hol

interpretation to associate a type in the source theory with a proper sub-
type in the target theory as first-order interpretations do because such
an association would lead to partial functions, which are not directly
supported in the hol logic (see [2] for examples and further discussion).

3.7 Dynamic Interpretation Objects

A dynamic interpretation object Ψ is a tuple (n,U1, U2, τ1, τ2,Π, J) such
that:

1. n is a symbol called the name of Ψ .
2. Ui = (ni, Ti, σi,N i, Ji) is a dynamic theory object for i = 1, 2. U1 and
U2 are called the source and target theories of Ψ , respectively.

3. τi is an initial segment of σi for i = 1, 2.
4. (T1τ1, T2τ2,Π, J) is a static interpretation object called the current

interpretation of Ψ .

The logic of Ψ is the logic of U2.
A dynamic interpretation object Ψ is intended to represent an inter-

pretation of a conservative extension of one axiomatic theory in a conser-
vative extension of another axiomatic theory.

4 The Derivation Service

The Derivation Service enables computations and deductions to be repre-
sented that use the machinery of dynamic theory objects. The motivation
and use of the Derivation Service is discussed in [7].

11

Name Tuple Conditions

implication (1, N1, N2) N1, N2 are formulaic.

negation (2, N1, N2) N1, N2 are formulaic.

one-to-many (3, N, {N1, . . . , Nm}) N,N1, . . . , Nm are formulaic.

equivalence (4, N1, N2)

conditional
equivalence (5, N,N1, N2) N is formulaic.

free (6, N1, N2)

Table 4. Connector Objects

4.1 Node Objects

A node object N is a tuple (U, e) such that:

1. U is dynamic theory object.
2. e is an expression of the language of the current theory of U .

The logic of N is the logic of U . N is formulaic if e is a formula.
A node object N is intended to represent an expression in the context

of the axiomatic theory represented by the current theory of U .

4.2 Connector Objects

The six kinds of connector objects are given in Table 4. Each connector
object is a tuple consisting of a kind k ∈ {1, . . . , 6} and a collection of
node objects.

A connector object C is intended to record that its component node
objects are related in a certain way. An implication connector object
records that N1 logically implies N2. A negation connector object records
that N2 is the logical negation of N1. A one-to-many connector object
records that N is logically equivalent to the conjunction of N1, . . . , Nm.
An equivalence connector object records that N1 and N2 have the same
value. A conditional equivalence connector object records that N1 and N2

have the same value provided N holds. A free connector object records
that N1 and N2 are related in some unspecified way.

4.3 Derivation Graph Objects

A derivation graph object G is a tuple (n,N , C) such that:

1. n is the name of a logic implementation (defined in section 5) called
the logic of G.

12

2. N is a finite set of node objects N such that the logic of N is the logic
of G.

3. C is a finite set of connector objects that contain no node objects
outside of N .

A derivation graph object is intended to record a web of computations
and deductions. Sequences of node objects connected by (conditional)
equivalence connectors represent (conditional) computations, while trees
of formulaic node objects connected by implication, negation, one-to-
many, and equivalence connectors represent deductions.

4.4 Derivation Service Operations

The Derivation Service provides operations for creating each kind of
Derivation Service object and five derivation graph operations for adding
node objects and connector objects to derivation graph objects.

If U is a dynamic theory object whose current theory is (n,L, Γ, J)
and e is a formula of L, then U [e] is some dynamic theory object whose
current theory is (n′, L, Γ ∪ {(n′′, 0, e)}, J ′) for some symbols n′ and n′′.
U [e] represents the result of adding the formula e to U as a new axiom.

The five derivation graph operations are defined in Table 5. Each
operation takes a derivation graph object G = (n,N , C) and other objects
(the input objects) and returns a derivation graph object

G′ = (n,N ∪N ′, C ∪ C′)

obtained by adding a finite set N ′ of node objects (the output node
objects) and a finite set C′ of connector objects (the output connector
objects) to G.

Remark 1. In a logic implementation, a derivation graph object G can be
modified both by (1) applying derivation graph operations to G and (2)
applying operations of the logic implementation that extend the dynamic
theory objects contained in G.

5 Logic Implementations

A logic implementation Λ is a tuple (n, S,O) such that:

1. n is a symbol called the name of Λ.

13

Name Input Objects Output Objects

add-node N = (U, e) N

apply-transformer k N ′ = (U, π(e))
N = (U, e) ∈ N C = (6, N,N ′) if k = 0
Π = (L1, L2, π) C = (4, N,N ′) if k = 1

C = (1, N,N ′) if k = 2
C = (1, N ′, N) if k = 3

split-implication N = (U, e1 ⊃ e2) ∈ N N ′ = (U [e1], e2)
C = (4, N,N ′)

split-conjunction N = (U,∧(e1, . . . , em)) ∈ N Ni = (U, ei) for i = 1, . . . ,m
C = (3, N, {N1, . . . , Nm})

split-condition N = (U, if(e1, e2, e3, α)) ∈ N N1 = (U, e1)
N ′1 = (U,¬e1)
N2 = (U [e1], e2)
N3 = (U [¬e1], e3)
C1 = (5, N1, N,N2)
C2 = (5, N ′1, N,N3)
C3 = (2, N1, N

′
1)

Notes:

1. Π is a transformer residing in the language of the current theory of U .
2. k = 1, 2, or 3 means that Π is computationally sound, deductively sound, or

reductively sound, respectively, in the current theory of U . k = 0 means that
nothing is assumed about the soundness of Π in the current theory of U .

Table 5. The Derivation Graph Operations

2. S is a specification of the class of Theory Service objects that belong
to Λ. Λ is the logic of each Theory Service object belonging to Λ. S
may require that the Theory Service objects belonging to Λ include
certain specified justifications.

3. O is a set of operations for creating and extending microkernel ob-
jects using the microkernel operations. For example, O could include
operations for:

(a) Creating a Theory Service object belonging to Λ from its compo-
nents using the Language Service operations.

(b) Creating a formulaic assertion object belonging to Λ from a deriva-
tion graph (which proves the formula of the assertion object) be-
longing to Λ.

(c) Creating a transformational assertion object belonging to Λ from
a formulaic assertion object belonging to Λ in the style of imps

macetes [5] (see [6] for details and examples).

14

(d) Extending a dynamic theory object belonging to Λ by adding the-
orem, definition, and profile objects belonging to Λ to its event
history.

(e) Extending a dynamic interpretation object belonging to Λ by ex-
tending its current interpretation.

Example 8. A standard implementation of hol using the microkernel
would be a logic implementation (hol, S, O) such that:

1. S says that a Theory Service object belongs to the implementation
of hol iff it is a Theory Service object of hol as illustrated in the
examples of section 3.

2. O contains the kinds of operations listed above in (a), (b), and (d).

References

1. M. N. Dunstan, T. Kelsey, U. Martin, and S. Linton. Formal methods for extensions
to CAS. In J.M. Wing, J. Woodcock, and J. Davies, editors, FM’99—Formal
Methods, Volume II, volume 1709 of Lecture Notes in Computer Science, pages
1758–1777. Springer-Verlag, 1999.

2. W. M. Farmer. Theory interpretation in simple type theory. In J. Heering et al.,
editor, Higher-Order Algebra, Logic, and Term Rewriting, volume 816 of Lecture
Notes in Computer Science, pages 96–123. Springer-Verlag, 1994.

3. W. M. Farmer. An infrastructure for intertheory reasoning. In D. McAllester, edi-
tor, Automated Deduction—CADE-17, volume 1831 of Lecture Notes in Computer
Science, pages 115–131. Springer-Verlag, 2000.

4. W. M. Farmer, J. D. Guttman, and F. J. Thayer Fábrega. imps: An updated
system description. In M. McRobbie and J. Slaney, editors, Automated Deduction—
CADE-13, volume 1104 of Lecture Notes in Computer Science, pages 298–302.
Springer-Verlag, 1996.

5. W. M. Farmer, J. D. Guttman, and F. J. Thayer. imps: An Interactive Mathemat-
ical Proof System. Journal of Automated Reasoning, 11:213–248, 1993.

6. W. M. Farmer and M. v. Mohrenschildt. Transformers for symbolic computation
and formal deduction. In S. Colton, U. Martin, and V. Sorge, editors, CADE-17
Workshop on the Role of Automated Deduction in Mathematics, pages 36–45, 2000.

7. W. M. Farmer and M. v. Mohrenschildt. A unified framework for computer algebra
and theorem proving systems. 2001.

8. M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

9. R. Nickson, O. Traynor, and M. Utting. Cogito ergo sum—providing structured
theorem prover support for specification formalisms. In K. Ramamohanarao, ed-
itor, Proceedings of the Nineteenth Australasian Computer Science Conference,
volume 18 of Australian Computer Science Communications, pages 149–158, 1997.

10. L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes
in Computer Science. Springer-Verlag, 1994.

15

