MONOID THEORY IN ALONZO:
A LITTLE THEORIES FORMALIZATION IN SIMPLE
TYPE THEORY

WiLriaM M. FARMER
McMaster University
wmfarmer@mcmaster.ca

DENNIS Y. ZVIGELSKY
McMaster University
yankovsd@mcmaster.ca

Abstract

Alonzo is a practice-oriented classical higher-order version of predicate logic
that extends first-order logic and that admits undefined expressions. Named
in honor of Alonzo Church, Alonzo is based on Church’s type theory, Church’s
formulation of simple type theory. The little theories method is a method for
formalizing mathematical knowledge as a theory graph consisting of theories as
nodes and theory morphisms as directed edges. The development of a mathe-
matical topic is done in the “little theory” in the theory graph that has the most
convenient level of abstraction and the most convenient vocabulary, and then
the definitions and theorems produced in the development are transported, as
needed, to other theories via the theory morphisms in the theory graph.

The purpose of this paper is to illustrate how a body of mathematical knowl-
edge can be formalized in Alonzo using the little theories method. This is done
by formalizing monoid theory — the body of mathematical knowledge about
monoids — in Alonzo. Instead of using the standard approach to formal math-
ematics in which mathematics is done with the help of a proof assistant and all
details are formally proved and mechanically checked, we employ an alternative
approach in which everything is done within a formal logic but proofs are not
required to be fully formal. The standard approach focuses on certification,
while this alternative approach focuses on communication and accessibility.

We would like to thank the referee for reviewing this paper and providing very helpful suggestions.

Vol. 12 No. 7 2025
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

FARMER AND ZVIGELSKY

1 Introduction

Formal mathematics is mathematics done within a formal logic. Formalization is the
act of expressing mathematical knowledge in a formal logic. One of the chief benefits
of formal mathematics is that a body of mathematical knowledge can be formalized
as a precise, rigorous, and highly organized structure. This structure records the
logical relationships between mathematical concepts and facts, how these concepts
and facts are expressed in a given theory, and how one theory is related to another.
Since it is based on a formal logic, it can be developed and analyzed using software.

An attractive and powerful method for organizing mathematical knowledge is
the little theories method [22]. A body of mathematical knowledge is represented in
the form of a theory graph [38] consisting of theories as nodes and theory morphisms
as directed edges. Each mathematical topic is developed in the “little theory” in
the theory graph that has the most convenient level of abstraction and the most
convenient vocabulary. Then the definitions and theorems produced in the develop-
ment are transported, as needed, from this abstract theory to other, usually more
concrete, theories in the graph via the theory morphisms in the graph.

The standard approach to formal mathematics focuses on certification: Mathe-
matics is done with the help of a proof assistant and all details are formally proved
and mechanically checked. We present in Section 2 an alternative approach to formal
mathematics, first introduced in [21], that focuses on two other goals: communica-
tion and accessibility. The idea is that everything is done within a formal logic but
proofs are not required to be fully formal and the entire development is optimized
for communication and accessibility. We believe that formal mathematics can be
made more useful, accessible, and natural to a wider range of mathematics practi-
tioners — mathematicians, computing professionals, engineers, and scientists who
use mathematics in their work — by pursuing this alternative approach.

The purpose of this paper is to illustrate how a body of mathematical knowledge
can be formalized in Alonzo [20], a practice-oriented classical higher-order logic
that extends first-order logic, using the little theories method and the alternative
approach to formal mathematics. Named in honor of Alonzo Church, Alonzo is based
on Church’s type theory [8], Church’s formulation of simple type theory [18], and
is closely related to Peter Andrews’ Qg [1]; Qg [17], a version of Qp with undefined
expressions; and LUTINS [13, 14, 15], the logic of the IMPS proof assistant [23, 24].
Unlike traditional predicate logics, Alonzo admits partial functions and undefined
expressions in accordance with the approach employed in mathematical practice
that we call the traditional approach to undefinedness [16]. Since partial functions
naturally arise from theory morphisms [15], the little theories method works best
with a logic like Alonzo that supports partial functions.

1854

MoNOID THEORY IN ALONZO

Alonzo has a simple syntax with a formal notation for machines and a compact
notation for humans that closely resembles the notation found in mathematical prac-
tice. The compact notation is defined by the extensive set of notational definitions
and conventions given in [20]. Alonzo has two semantics, one for mathematics based
on standard models and one for logic based on Henkin-style general models [32]. By
virtue of its syntax and semantics, Alonzo is exceptionally well suited for expressing
and reasoning about mathematical ideas and for specifying mathematical structures.
A brief overview of the syntax and semantics of Alonzo is given in Section 3. See [20)]
for a full presentation of Alonzo.

We have chosen monoid theory — the concepts, properties, and facts about
monoids — as a sample body of mathematical knowledge to formalize in Alonzo.
A monoid is a mathematical structure consisting of a nonempty set, an associative
binary function on the set, and a member of the set that is an identity element with
respect to the function. Monoids are abundant in mathematics and computing.
Single-object categories are monoids. Groups are monoids in which every element
has an inverse. And several algebraic structures, such as rings, fields, Boolean
algebras, and vector spaces, contain monoids as substructures.

Since a monoid is a significantly simpler algebraic structure than a group, monoid
theory lacks the rich structure of group theory. We are formalizing monoid theory
in Alonzo, instead of group theory, since it has just enough structure to adequately
illustrate how a body of mathematical knowledge can be formalized in Alonzo. We
will see that employing the little theories method in the formalization of monoid
theory in Alonzo naturally leads to a robust theory graph.

Alonzo is equipped with a set of mathematical knowledge modules (modules for
short) for constructing various kinds of mathematical knowledge units. For example,
it has modules for constructing “theories” and “theory morphisms”. A language (or
signature) of Alonzo is a pair L = (B,C), where B is a finite set of base types and C
is a set of constants, that specifies a set of expressions. A theory of Alonzo is a pair
T = (L,T') where L is a language called the language of T and T is a set of sentences
of L called the axioms of T. And a theory morphism of Alonzo from a theory T to
a theory T3 is a mapping of the expressions of T} to the expressions of T such that
(1) base types are mapped to types and closed quasitypes (expressions that denote
sets of values), (2) constants are mapped to closed expressions of appropriate type,
and (3) valid sentences are mapped to valid sentences.

Alonzo also has modules for constructing “developments” and “development
morphisms”. A theory development (or development for short) of Alonzo is a pair
D = (T,Z) where T is a theory and = is a (possibly empty) sequence of definitions
and theorems presented, respectively, as definition and theorem packages (see [20,
Section 12.1]). T is called the bottom theory of D, and T’, the extension of T' ob-

1855

FARMER AND ZVIGELSKY

tained by adding the definitions in = to 7', is called the top theory of D. We say that
D is a development of T. A development morphism from a development D; to a
development Ds is a partial mapping from the expressions of Dy to the expressions
of Dy that restricts to a theory morphism from the bottom theory of D; to the
bottom theory of Dy and that canonically extends to a theory morphism from the
top theory of D; to the top theory of Dy (see [20, Section 14.4.1]). Theories and
theory morphisms are special cases of developments and development morphisms,
respectively, since we identify a theory 7" with the trivial development (7 []).

The modules for constructing developments and development morphisms provide
the means to represent knowledge in the form of a development graph, a richer kind
of theory graph, in which the nodes are developments and the directed edges are
development morphisms. Alonzo includes modules for transporting definitions and
theorems from one development to another via development morphisms. The design
of Alonzo’s module system is inspired by the IMPS implementation of the little
theories method [22, 23, 24].

The formalization of monoid theory presented in this paper exemplifies an alter-
native approach to formal mathematics. We validate the definitions and theorems
in a development using traditional (nonformal) mathematical proof. However, we
extensively use the axioms, rules of inference, and metatheorems of 2l — the for-
mal proof system for Alonzo presented in [20] which is derived from Andrews’ proof
system for Qp [1] — in these traditional proofs. The proofs are not included in
the modules used to construct developments. Instead, they are given separately in
Appendix A.

We produced the formalization of monoid theory with just a minimal amount of
software support. We used the set of LaTeX macros and environments for Alonzo
given in [19] plus a few macros created specifically for this paper. The macros are for
presenting Alonzo types and expressions in both the formal and compact notations.
The environments are for presenting Alonzo mathematical knowledge modules. The
Alonzo modules are printed in brown color.

The overarching goal of this paper is to demonstrate that, using the little the-
ories method and the alternative approach to formal mathematics, mathematical
knowledge can be very effectively formalized in a version of simple type theory like
Alonzo. Specifically, we want to show the following:

1. How the little theories method can be used to organize mathematical knowl-
edge so that clarity is maximized and redundancy is minimized.

2. How formal libraries of mathematical knowledge that prioritize communica-
tion over certification can be built using the alternative approach to formal

1856

MoNOID THEORY IN ALONZO

mathematics with tools that are much simpler to learn and use than a proof
assistant.

3. How Alonzo is exceptionally well suited for expressing and reasoning about
mathematical ideas and for specifying mathematical structures in a direct and
natural manner.

The paper is organized as follows. We present in Section 2 the alternative ap-
proach to formal mathematics and argue that this kind of approach can better serve
the average mathematics practitioner than the standard approach. Section 3 gives a
brief presentation of the syntax and semantics of Alonzo. Sections 4-11 present de-
velopments of theories of monoids, commutative monoids, transformation monoids,
monoid actions, monoid homomorphisms, and monoids over real number arithmetic
plus some supporting developments. These developments have been constructed to
be illustrative; they are not intended to be complete in any sense. Sections 4-11
also present various development morphisms that are used to transport definitions
and theorems from one development to another. Section 12 shows how our formal-
ization of monoid theory can support a theory of strings. Related work is discussed
in Section 13. The paper concludes in Section 14 with a summary and some final
remarks. The definitions and theorems of the developments we have constructed are
validated by traditional mathematical proofs presented in Appendix A. Appendix B
contains some miscellaneous theorems needed for the proofs in Appendix A.

2 Alternative approach to formal mathematics

A formal logic (logic for short) is a family of languages such that:

1. The languages of the logic have a common precise syntaz.

2. The languages of the logic have a common precise semantics with a notion of
logical consequence.

3. There is a sound formal proof system for the logic in which proofs can be
syntactically constructed.

Examples of formal logics for mathematics are the various versions of first-order
logic, set theory, simple type theory, and dependent type theory.

There are five big benefits of formal mathematics, i.e., doing mathematics within
a formal logic.

1857

FARMER AND ZVIGELSKY

First, mathematics can be done with greater rigor. All mathematical ideas are
expressed and reasoned about in a theory T of a formal logic. Mathematical con-
cepts and statements are expressed as expressions and sentences of the language of
T. All of these expressions and sentences have a precise, unambiguous meaning.
The assumptions underlying the reasoning about the mathematical ideas are made
explicit as axioms of the theory. The theorems of theory are precisely defined as
the logical consequences of the axioms of the theory. And, finally, the theory is con-
structed so that it contains only the vocabulary and assumptions that are needed
for the task at hand; irrelevant details are abstracted away.

Second, conceptual errors can be systematically discovered. In formal mathe-
matics, all concepts and statements must be expressed in a language of a formal
logic that has a precise semantics. The process of expressing mathematical ideas in
a formal logic naturally leads to many conceptual errors being caught similarly to
how type errors are caught in a modern programming language by type checking.
Thus conceptual errors can be discovered systematically in formal mathematics in
a way that is largely not possible in traditional mathematics. As a result, formal
mathematics often yields a deeper understanding of the mathematics being explored
than traditional mathematics.

Third, mathematics can be done with software support. Since the languages of
a formal logic have a precise common syntax, the expressions and sentences of a
language can be represented as data structures. The expressions and sentences can
then be analyzed, manipulated, and processed via their representations as data struc-
tures. This, in turn, enables the study, discovery, communication, and certification
of mathematics to be done with the aid of software. Since the languages also have
a precise common semantics, there is a precise basis for verifying the correctness of
this software.

Fourth, results can be mechanically checked. Formal proofs can be represented as
data structures, and software can be used to check that one of these data structures
represents an actual proof in the formal proof system of the logic. Software can also
be used to help construct the formal proofs. Since the software needed to check
the correctness of the formal proofs is often very simple and easily verified itself, it
is possible to verify the correctness of the formal proofs with a very high level of
assurance.

Fifth, we can regard mathematical knowledge as a formal structure consisting
of a network of interconnected theories. A library of mathematical knowledge that
represents this formal structure can be built by creating theories, defining new con-
cepts, stating and proving theorems, and connecting one theory to another with
theory morphisms that map the theorems of one theory to the theorems of another
theory. The knowledge embodied in a structured library of this kind can be studied,

1858

MoNOID THEORY IN ALONZO

managed, searched, and presented using software.

The benefits of formal mathematics are huge. Greater rigor and discovering
conceptual errors have been principal goals of mathematicians for thousands of years.
Software support can greatly extend the reach and productivity of mathematics
practitioners. Mechanically checked results can drive mathematics forward in areas
where the ideas are poorly understood (often due to their novelty) or highly complex.
And mathematical knowledge as a formal structure can enable the techniques and
tools of mathematics and computing to be applied to mathematical knowledge itself.

The standard approach to formal mathematics, in which mathematics is done
with the help of a proof assistant and all details are formally proved and mechanically
checked, has three major strengths:

1. It achieves all five benefits of formal mathematics mentioned above.

2. All theorems are verified by machine-checked formal proofs. Thus there is a
very high level of assurance that the results produced are correct.

3. There are several powerful proof assistants available, such as HOL [29], HOL
Light [31], , Isabelle/HOL [48], Lean [10], Metamath/ZFC [39], Mizar [42],
and Rocq (formerly Coq) [54], that support the approach.

It also has two important weaknesses:

1. It prioritizes certification over communication. For the average mathematics
practitioner, communicating mathematical ideas is usually much more im-
portant than certifying mathematical results when the mathematics is well
understood.

2. It is not accessible to the great majority of mathematics practitioners. Having
to learn a strange logic and work with a complex proof assistant that utilizes
unfamiliar ways of expressing and reasoning about mathematics is very often
a bridge too far for the average mathematics practitioner.

We strongly believe, as an alternative to the standard approach, an approach
to formal mathematics is needed that focuses on two goals, communication and
accessibility, the weaknesses of the standard approach. To achieve these goals the
alternative approach should satisfy the following requirements:

R1. The underlying logic is fully formal and supports standard mathematical prac-
tice. Supporting mathematical practice makes the logic easier to learn and use
and makes formalization a more natural process.

1859

FARMER AND ZVIGELSKY

R2. Proofs can be traditional, formal, or a combination of the two. This flexibility
in how proofs are written enables proofs to be a vehicle for communication as
well as certification.

R3. There is support for organizing mathematical knowledge using the little theories
method. This enables mathematical knowledge to be formalized to maximize
clarity and minimize redundancy.

R4. There are several levels of supporting software. The levels can range from just
LaTeX support to a full proof assistant. The user can thus choose the level of
software support they want to have and the level of investment in learning the
software they want to make.

The alternative approach can achieve all five benefits of formal mathematics
mentioned above, but it cannot achieve the same level of assurance as the stan-
dard approach that the results produced are correct. This is because the alternative
approach prioritizes communication and accessibility over certification. Since most
mathematics practitioners are usually more concerned about communication and
accessibility than certification, the alternative approach is on average a better ap-
proach to formal mathematics than the standard approach. This is particularly true
for applications that involve well-understood mathematics, the kind of mathematics
that arises in mathematics education and routine applications. However, when the
certification of results is the most important concern, the standard approach will
often be a better choice than the alternative approach.

This paper employs an implementation of the alternative approach based on
Alonzo that satisfies the first three requirements and partially satisfies the fourth
requirement. Alonzo is a form of predicate logic, which is widely familiar to mathe-
matics practitioners. Moreover, it supports the reasoning instruments that are most
common in mathematical practice including functions, sets, tuples, and lists; math-
ematical structures; higher-order and restricted quantification; definite description;
theories and theory morphisms; definitional and other kinds of conservative exten-
sions; inductive sets; notational definitions and conventions, and undefined expres-
sions. Thus Alonzo satisfies R1 as well or better than almost any other logic.

R2 is satisfied by our implementation of the alternative approach since proofs can
be traditional or formal. Thus communication can be prioritized over certification
in proofs when the mathematics is well understood. In this paper, all the proofs are
traditional, but some make use of the axioms, rules of inference, and metatheorems
of 2, the proof system of Alonzo.

R3 is satisfied since Alonzo is equipped with a module system for organizing
mathematical knowledge using the little theories method.

1860

MoNOID THEORY IN ALONZO

Our implementation of the alternative approach provides only the simplest level
of software support: LaTeX macros for presenting Alonzo types and expressions
and LaTeX environments for presenting Alonzo modules. Other levels of software
support are possible; see the discussion in Chapter 16 of [20]. Alonzo has not been
implemented in a proof assistant, but since it is closely related to LUTINS [13, 14,
15], the logic of the IMPS proof assistant [23, 24], it could be implemented in much
the same way that LUTINS is implemented in IMPS. Thus R4 is only partially
satisfied now, but it could be fully satisfied with the addition of more levels of
software support.

The great majority of mathematics practitioners — including mathematicians
— are much more interested in communicating mathematical ideas than in formally
certifying mathematical results. Hence, the alternative approach — with support for
standard mathematical practice, traditional proofs, the little theories method, and
several levels of software — is likely to serve the needs of the average mathematics
practitioner much better than the standard approach. This is especially true when
the mathematical knowledge involved is well understood (such as monoid theory)
and certification via traditional proof is adequate for the purpose at hand.

In summary, we believe that the alternative approach is not a replacement for
the standard approach, but it would be more useful, accessible, and natural than
the standard approach for the vast majority of mathematics practitioners.

3 Alonzo

Alonzo is fully presented in [20]. Due to space limitations, we cannot duplicate the
entire presentation of Alonzo in this paper. Ideally, the reader should be familiar
with the syntax and semantics of Alonzo presented in Chapters 4-7; the proof system
for Alonzo presented in Chapter 8 and Appendices A-C; the tables of notational
definitions found in Chapters 4, 6, 11, and 13; the notational conventions presented
in Chapters 4 and 6; and the various kinds of (mathematical knowledge) modules
of Alonzo presented in Chapters 9, 10, 12, and 14. However, we will give in this
section a brief presentation of the syntax and semantics of Alonzo with most of the
text taken from Chapters 4-6 of [20].

3.1 Syntax

The syntax of Alonzo consists of “types” that denote nonempty sets of values and
“expressions” that either denote values (when they are defined) or denote nothing at
all (when they are undefined). We present the syntax of Alonzo types and expressions
with the compact notation, an “external” syntax intended for humans. The reader

1861

FARMER AND ZVIGELSKY

is referred to [20] for the formal syntax, an “internal” syntax intended for machines.
The compact notation for types and expressions is given below. Additional compact
notation is introduced using notational definitions and notational conventions. A
notational definition has the form

A stands for B,

where A and B are notations that present types or expressions; it defines A to be
an alternate — and usually more compact, convenient, or standard — notation for
presenting the type or expression that B presents. The meaning of A is the meaning
of B. The notational definitions are given in tables with boxes surrounding the def-
initions, and the notational conventions are assigned names of the form “Notational
Convention n”.

Let Spt, Svar, Scon be fixed countably infinite sets of symbols that will serve
as names of base types, variables, and constants, respectively. = We assume
that Spy contains the symbols A, B,C..., X,Y, Z, etc., Syar contains the symbols
a,b,c...,x,y,z, etc., and Seon contains the symbols A, B,C ..., X,Y, Z, etc., nu-
meric symbols, nonalphanumeric symbols, and words in lowercase sans sarif font.!
We will employ the following syntactic variables for these symbols as well as types
and expressions which are defined just below:

1. a, b, etc. range over Sp;.

2. f.g,hi j,k,m,n,u,v,w,x,y,z, etc. range over Sa.

3. ¢,d, etc. range over Scon.

4. «a, B,7,0, etc. range over types.

5. An,Ba,C,, ..., X4, Yo, Z,, etc. range over expressions of type a.

A type of Alonzo is a string of symbols defined inductively by the following
formation rules:

T1. Type of truth values: o is a type.
T2. Base type: a is a type.
T3. Function type: (a — () is a type.

T4. Product type: (a x [3) is a type.

1 An expression like “u, v, w, etc” means the set of symbols that includes u, v, and w, and all
possible annotated forms of u, v, and w such as v, v1, and w.

1862

MoNOID THEORY IN ALONZO

Let T denote the set of types of Alonzo. We assume o & Spy.

When there is no loss of meaning, matching pairs of parentheses in the compact
notation for types may be omitted (Notational Convention 1). We assume that
function type formation associates to the right so that, e.g., a type of the form

(@=(6—=7)

may be written more simply as « — § — v (Notational Convention 2).

A type a denotes a nonempty set D, of values. o denotes the set D, = B of the
Boolean (truth) values F and T. (o — () denotes some set D,_,g of (partial and
total) functions from D, to Dg. (a x) denotes the Cartesian product D,y =
D, x Dg. We will use base types to denote the base domains of mathematical
structures.

An expression of type o of Alonzo is a string of symbols defined inductively by
the following formation rules:

El. Variable: (x : «) is an expression of type a.

E2. Constant: c, is an expression of type a.

E3. Equality: (A, = Bg) is an expression of type o.

Ed. Function application: (F(,_5) As) is an expression of type f3.

E5. Function abstraction: (Ax : « . Bg) is an expression of type (a — f).

E6. Definite description: (Ix: a . A,) is an expression of type o where o # o.
E7. Ordered pair: (A,,Bg) is an expression of type (a x 3).

Let £ denote the set of expressions of Alonzo. A formula is an expression of type o,
and a sentence is a closed formula.

When there is no loss of meaning, matching pairs of parentheses in expres-
sions may be omitted (Notational Convention 3). We assume that function ap-
plication formation associates to the left so that, e.g., an expression of the form
((Ga—sp—syAq)Bg) may be written more simply as G,—3-y Ay Bg (Notational
Convention 4). When the type « of a constant c,, is known from the context of the
constant, we will very often write the constant as simply ¢ (Notational Convention
5). A variable (x : a) occurring in the body Bg of Ax : . Bg or in the body A, of
Ix:a. A, may be written as just x if there is no resulting ambiguity (Notational
Convention 6). So, for example, Ax : « . (x : a) may be written more simply as
Ax :«a.x. We will employ this convention for the other variable binders of Alonzo

1863

FARMER AND ZVIGELSKY

introduced later by notational definitions (Notational Convention 7). A variable
(x : @) occurring in Bz may be written as just x if the type « is known from the
context of the occurrence of (x : @) in Bg (Notational Convention 8). For example,
A, = (x: a) may be written as A, = x.

An expression of type « is always defined if &« = o and may be either defined
or undefined if a@ # o. If defined, it denotes a value in D,, the denotation of
«. If undefined, it denotes nothing at all. We will use constants to denote the
distinguished values of mathematical structures.

As previously defined, a language (or signature) of Alonzo is a pair L = (B,C)
where B is a finite set of base types and C is a set of constants c, where each base
type occurring in « is a member of B. A type « is a type of L if all the base types
occurring in « are members of B, and an expression A, is an expression of L if all
the base types occurring in A, are members of B and all the constants occurring
in A, are members of C. Let 7(L) C T denote the set of types of L and £(L) C &
denote the set of expressions of L. Notice that B and C may be empty, but 7 (L)
and £(L) are always nonempty since o € T (L).

3.2 Semantics

Let L = (B,C) be a language of Alonzo. We will now define the semantics of L.
A frame for L is a collection D = {D,, | @ € T(L)} of nonempty domains (sets)
of values such that:

F1. Domain of truth values: D, =B = {F, T}.

F2. Predicate domain: D,_, is a set of some total functions from D, to D, for

a€T(L).

F3. Function domain: D, is a set of some partial and total functions from D,

to Dg for o, B € T(L) with 5 # o.
F4. Product domain: Doxg = Do x Dg for a, 5 € T(L).

A predicate domain D,_,, is full if it is the set of all total functions from D, to
D,, and a function domain D,_,g with § # o is full if it is the set of all partial and
total functions from D, to Dg. The frame is full if D, is full for all a, 5 € T(L).
Notice that the only restriction on a base domain, i.e., D, for some a € B, is that it
is nonempty and that the frame is completely determined by its base domains when
the frame is full. An interpretation of L is a pair M = (D, 1) where D ={D,, | a €
T (L)} is a frame for L and [is an interpretation function that maps each constant

1864

MoNOID THEORY IN ALONZO

in C of type a to an element of D,. Notice that
({Da | a € B}, {I(ca) | ca € C})

is a mathematical structure. Hence an interpretation of a language defines (1) a
mathematical structure and (2) a mapping of the base types and constants of the
language to the base domains and distinguished values, respectively, of the mathe-
matical structure.

Let D = {Dy | a € T(L)} be a frame for L. An assignment into D is a
function ¢ whose domain is the set of variables of L such that ¢((x : a)) € D,, for
each variable (x : a) of L. Given an assignment ¢, a variable (x : o) of L, and
d € Dy, let p[(x : @) — d] be the assignment % in D such that ¥ ((x: «)) = d and
Y((y: B)) = p((y: B)) for all variables (y :) of L distinct from (x : «). Given an
interpretation M of L, let assign(M) be the set of assignments into the frame of M.

Let D ={D, | a € T(L)} be a frame for L and M = (D, I) be an interpretation
of L. M is a general model of L if there is a partial binary valuation function VM
such that, for all assignments ¢ € assign(M) and expressions C, of L, (1) either
VQPM (Cy) € Dy or Vﬁéw (C,) is undefined? and (2) each of the following conditions is
satisfied:

V1 VM((x: @) = o((x: a)).
V2. VM(c,) = I(cy).

M _ iy M - M : M _
V3. V2 (Aq = Ba) = Tif V) (A,) is defined, V)" (B,) is defined, and V" (A,) =

M : M — —
V" (Ba). Otherwise, V" (A, = B,) =F.

V. VM (Fasg A) = VI (Fasp) (VY (AL)) if VM(Fasyp) is defined, VM (AL) is
defined, and Vé\/I(Fng) is defined at Véw(Aa). Otherwise, Véw(Fng A, =

F if 8 =0 and VéW(FoHB A,) is undefined if 8 # o.

V5. V@M[(AX : . Bg) is the (partial or total) function f € D, such that, for

each d € D, f(d) = Vé\[‘éx:a),_)d}(BB) if Vé\[{xza),_)d}(B/g) is defined and f(d) is
undefined if V%x:a) —a)(Bp) is undefined.

V6. Vé\/[(lx ta. A,)is the d € D, such that V%X:Q)Hd](AO) = T if there is exactly
one such d. Otherwise, VSDM (Ix:a.A,) is undefined.

V7. Vé\/[((Aa,Bg)) = (V@M(Aa),chM(Bﬁ)) if Vé\/[(Aa) and ngw(Bg) are defined.
Otherwise, VM ((Aq, Bg)) is undefined.

*We write V' (C,) instead of V" (¢, C,).

1865

FARMER AND ZVIGELSKY

VM is unique when it exists. Vggw (Cy) is called the value of C, in M with respect
to ¢ when V(pM (C,) is defined. C, is said to have no value in M with respect to ¢
when Véw (C,) is undefined.

An interpretation M = (D, I) of L is a standard model of L if D is full. Every
standard model of L is a general model of L.

3.3 Additional compact notation

The compact notation for Alonzo types and expressions given above is extended
in [20] with a variety of operators, binders, and abbreviations. Equipped with this
additional compact notation, Alonzo becomes a practical logic in which mathemat-
ical ideas can be expressed naturally and succinctly. The compact notation that we
need in this paper from Chapter 6 of [20] is presented in Tables 1-8. To make the
notational definitions as readable as possible we have omitted matching parentheses
in the right-hand side of the definitions when there is no loss of meaning and it is
obvious where they should occur.

In Table 1, we present notation for the truth values and the standard Boolean
operators. The notation A, s, is an example of a pseudoconstant. It is not a real
constant of Alonzo, but it stands for an expression C, that can be used just like
a constant cy. Unlike a normal constant, A, o, and most other pseudoconstants
can be employed in any language. Thus they serve as logical constants. The same
symbols that are used to write constants are used to write pseudoconstants and
parametric pseudoconstants (which are defined below) (Notational Convention 9).

In Table 2, we present notation for binary operators. We will occasionally use
implicit notational definitions analogous to the notational definitions in Table 2 for
the infix operators <, >, and > corresponding to < for other weak order operators
such as C and C (Notational Convention 10).

In Table 3, we present notation for the universal and existential quantifiers. We
will usually write a sequence of universal quantifiers and a sequence of existential
quantifiers in a more compact form with a single quantifier (Notational Convention
11). Thus, for example,

Vx:a.Vy:a.Vz:0.A,
will be written as
VX, y:a,z:0.A,.

We will also use this form with quasitypes (which are introduced below) (Notational
Convention 12).

1866

MoNOID THEORY IN ALONZO

T, stands for (Az:o0.z)=(Az:0.x).
F, stands for (Az:0.T,) =(Ax:0.x).
No—so—so stands for Ax:o0.Ay:o0.

Ag:o—=0—0.9T,T,) =
(Ag:o—0—0.gzy).
(A, AB,) stands for Ay—o—0 Ay Bo.

= 000 stands for Az :o0.Ay:0.x=(zAvy).
(A, = B,) stands for =,,,5, A,B,.

o0 stands for Az :0.x2 = F,.

(mA,) stands for —,_, A,.

Vososo stands for Az :o0.Ay:o.-(—x A-y).

(A,VB,) stands for V,.,-0A,B,.

Table 1: Notational Definitions for Boolean Operators

(A, cB,) stands for coa—8AaBa O Claxa)—p (Aa, Ba).
(A, & B,) stands for A, = B,.

(A, # B,) stands for —(A, = B,).

(Aq < By) stands for (<gpsa—s0AaBa) A (Ay # B,).

(A, > B,) stands for B, < A,.

(A, > B,) stands for B, < A,.

(A, =B, =C,) standsfor (A, =DBy) A (B, =C,).

(A, cB,dC,) standsfor (A,cBy) A(B,dC,).

Table 2: Notational Definitions for Binary Operators

In Table 4, we present notation for expressions involving definedness. L, is a
canonical “undefined” formula. 1, is a canonical undefined expression of type a # o.
Ay is the empty function of type o« — 8 (where 3 # 0). (Ayl) and (A,T) assert
that the expression A, is defined and undefined, respectively. (A, ~ B,) asserts

(Vx:a.A,) standsfor (Az:a.T,)=(Ax:a.A,).
(I3x:a.A,) stands for —(Vx:a.-A,).

Table 3: Notational Definitions for Quantifiers

1867

FARMER AND ZVIGELSKY

Lo stands for F,.
La stands for Ix:a.x # x where a # o.
Apsp stands for Az :a . Llg where 8 # o.
(Anl) stands for A, = A,.
(A.T) stands for —(Aul).
(A, ~B,) stands for (AylV B.l) = A, =B,.
(Aq #B,) stands for —(A, ~ B,).
IF(A,,B,, C,) stands for (A, = B,) A (-A, = C,).
IF(As, Bo, Cq) stands for Iz:a.
(Ao =2z=By) AN (-A,=2=C,)

where a # o.

(A, — B, | C,) stands for IF(A,, Bg,C,).

Table 4: Notational Definitions for Definedness

that the expressions A, and B, are quasi-equal, i.e., they are both defined and equal
or both undefined. And (A, — B, | C,) is a conditional expression that denotes
the value of B, if A, holds and otherwise denotes the value of C,,.

The notation 1, is an example of a parametric pseudoconstant. It stands for an
expression C, where « is a parametric type with the syntactic variable « serving as a
parameter that can be freely replaced with any type. Thus 1 is polymorphic in the
sense that it can be used with expressions of different types by simply replacing the
syntactic variable oz with the type that is needed. A, 3 is similarly a parametric
pseudoconstant.

The notational definitions of IF(A,, B,, C,) and IF(A,, B,, C,) (where a # 0)
are (parameterized) abbreviations of the form

ABL,B"

aq? Qn

) stands for C

where A is a name, n > 0, and the syntactic variables Bém e ,Bal appear in the
expression C. A is written in uppercase sans sarif font to distinguish it from the
name of a constant or pseudoconstant (Notational Convention 13). We will always
assume that the bound variables introduced in C' are chosen so that they are not
free in B}ll, - ,Bil(Notational Convention 14). For example, the bound variable
(x : a) in the RHS of the notational definition of IF(A,, By, Cy) (where o # 0) in
Table 4 is chosen so that it is not free in A,, B,, or C,.

Since we can identify a set S C U with the predicate pg : U — B such that

a € S iff pg(a), we will introduce a power set type of a, i.e., a type of the subsets of

1868

MoNOID THEORY IN ALONZO

{a} stands for o — o.

(Aq € By,)) stands for By Ag.

(An € Byyy) stands for (A, € Byyy).

{x:a| A} stands for Ax:a. A,.

(/){a} stands for Ax:a. F,.

{ My stands for = (¢qy.

Ufa) stands for Az :a.T,.

n-a-SET stands for Azj:a. - . Ax,ia. AT
r=x1V---Vx=ux, wheren > 1.

{Al ... A"} stands for n-a-SET AL --- A" wheren > 1.

Clal—fat—o stands for Aa: {a}.Ab: {a}.
Vrx:a.x€a=x€b.

Ufa}—{a}—>{a} standsfor Xa:{a}.Ab:{a}.
{z:a|x€aVaxecb}.

N{a}—{a}>{a} standsfor Xa:{a}.Ab:{a}.
{z:a|x€anxecb}.

“fat—{a} stands for Aa:{a}.{r:a |z &a}.

A{a} stands for “{al—{a} A{a}.

\{al={a}—>{a} stands for Aa:{a}.Ab:{a}.anb.

Table 5: Notational Definitions for Sets

(o) stands for a.

(g X +-- X o) stands for (o x (ag X -+ X ap,)) where n > 2.
(Aq) stands for A,.

(AL,,...,A”) stands for (Al (AZ ,... Al)) wheren > 2.
fst(axg)—a stands for Ap:axpf.lz:a.3y:0.p=(z,y).
snd(ax8)—3 stands for Ap:axf.ly:f8.3z:a.p=(z,y).

Table 6: Notational Definitions for Tuples

a, as the type a — o of predicates on o. The compact notation for & — o is {a}.
We introduce this notation and compact notation for the common set operators in
Table 5. ®{a} and U,y are parametric pseudoconstants that denote the empty set
and the universal set, respectively, of the members in the domain of a.

We introduce notation for product types, tuples, and the accessors for ordered
pairs in Table 6.

1869

FARMER AND ZVIGELSKY

ido—a stands for Az : o . z.

dom 4 8)—{a} stands for A f:a— .
fo:al (Fo)l).

ran(a—p8)—{8} stands for Af:a—f.

{y:B|3z:a. fz=uy}.
TOTAL(Fo—p3) stands for Vo :oa. (Faog)l.

l(a=B)—>{a}>(amp) stands for A f:a— 8. As:{a}.
Axia.xesw fo| Lg.

(Fasplag,) stands for [(a—8){a}s(asp) Fass Afa)-

Table 7: Notational Definitions for Functions

Some convenient notation for functions is found in Table 7.

A quasitype within type o € T is any expression of type {a} = a — 0. A
quasitype Qq) denotes a subset of the domain denoted by . Thus quasitypes
represent subtypes and are useful for specifying subdomains of a domain. Unlike a
type, a quasitype may denote an empty domain. Notice that an expression A,_,
is simultaneously an expression of type a — o, an expression of type of {a}, and a
quasitype within type a. So A, (or Ag,y) can be used as a function, as a set,
and like a type as shown below.

In Table 8, we introduce various notations for using quasitypes in place of types.
Quasitypes can be used to restrict the range of a variable bound by a binder. For
example, (Ax : Q) - Bp) denotes the function denoted by Az : a . Bg weakly
restricted to the domain denoted by Qqq). Quasitypes can also be used to sharpen
definedness statements. For example, (Aq | Qgq}), read as A, ids defined in Qqqy,
asserts that the value of A, is defined and is a member of the set denoted by Qyqy-
(Q{a} — R{B}) is a quasitype within o« — (3 that denotes the function space from
the denotation of Q) to the denotation of Rygy, and (Qqy X Rygy) is a quasitype
within o X § that denotes the Cartesian product of the denotation of Q) and the
denotation of Ryg;.

4 Monoids

A monoid is a mathematical structure (m, -,) where m is a nonempty set of values,

: (m x m) — m is an associative function, and e € m is an identity element with
respect to -. Mathematics and computing are replete with examples of monoids such
as (N, +,0), (N, %,1), and (X*, +4, €) where ¥* is the set of strings over an alphabet

1870

MoNOID THEORY IN ALONZO

(Ax: Qqay - Bp) stands for Ax:a.(x € Qqay — Bg | Lg).
(Vx: Qqay - Bo) stands for Vx:a.(x € Q) = Bo).
(3x:Qqay - Bo) stands for 3Ix:a. (x € Qray A Bo).
(Ix:Qqay - Bo) stands for Ix:o. (x € Qo A Bo).

(Ao 1 Qay) stands for Anl A Aa € Qqay-

(Ao 1T Qgay) stands for —(Aq | Qqa})-
—{a}—{B}—>{a—B} stands for As:{a}.At:{8}.

{fra=p|Vz: .
(fz)l=>(xesnfazet)}
where 3 # o.
X {a}—={B}—{axB} stands for)\?: {a}. 2t| {8} .
p:ax
fSt(axﬁ)_mépe s A
snd(axﬁ)ﬁgpet}

(Qgay = 0) stands for {s: {a}|s C Qa1 }

P(Qay) stands for Qga} — 0.

(Qray = Rypy) stands for = (a} (s {amp Qray Risy
where 3 # o.

(o = Rypy) stands for Uyny — Rygy where 8 # o.

(Q{a} — B) stands for Q{a} — Uipy where B # o.

(Qay x Rygy) stands for X {a) ()~ (axs) Qa) Rysy

(o x Rygy) stands for Upay X Rygy.

(Qay x B) stands for Qqa} X Ugsy-

TOTAL-ON(F,_3,Qqa},Rysy) stands for Vaz:Qay . Faspsx) |l Rygy.

Table 8: Notational Definitions for Quasitypes

Y., ++ is string concatenation, and € is the empty string.

Table 9 defines some parametric pseudoconstants that we will need for monoids,
and Table 10 defines several useful abbreviations for monoids.

Let T = (L,T) be a theory® of Alonzo. Consider a tuple

(CCH F(axa)—)om Ea)

where (1) (, is either a type « of L or a closed quasitype Qqy of L and (2) F(4xa)—a
and E, are closed expressions of L. Let X, be the sentence

MONOID(M{qa}, F(axa)—sas Ea),

where MONOID is the abbreviation introduced by the notational definition given
in Table 10 and My, is Ugyy if (o is a and is Q,y otherwise. If T' F X,,
then (Ca, F(axa)—a> Ea) denotes a monoid (m,-,e) in 7. Stated more precisely,

3A theory of Alonzo and related notions are presented in Chapter 9 of [20].

1871

FARMER AND ZVIGELSKY

SEL-0P ((ax) —7)—(({ad x{BH—{1})
stands for
Afi(axB)—=y.Ap:{a} x {B}.
{z:y|Jx:fstp,y:sndp.z= f(x,y)}.
O((a=B)x (B—7))—(a—)
stands for
Ap:(a—= B)x(B—=7).Ax:a.(sndp) ((fstp) z).
(Famp 0 Ggoy)

stands for

O((a—B)x (B~ (a—y) Famsp Gar)-

®((a=p)xa)—=p

stands for

Ap:(a— B) x a. (fstp) (snd p).

Table 9: Notational Definitions for Monoids: Pseudoconstants

if T'E X,, then, for all general models M of T" and all assignments ¢ € assign(M),
(Car F(axa)—a> Ea) denotes the monoid

(Vgoj\/[<M{a})7VgoM<F(a><a)—>a>aVgéw<EC¥))‘

Thus we can show that (Ca, F(axa)—a> Ea) denotes a monoid in 7" by proving
T F X,. However, we may need general definitions and theorems about monoids to
prove properties in 7" about the monoid denoted by (Cas F(axa)—as Ea)- It would be
extremely inefficient to state these definitions and prove these theorems in 7' since
instances of these same definitions and theorems could easily be needed for other
triples in T', as well as in other theories, that denote monoids.

Instead of developing part of a monoid theory in T, we should apply the little
theories method and develop a “little theory” Ty,on of monoids, separate from 7', that
has the most convenient level of abstraction and the most convenient vocabulary for
talking about monoids. The general definitions and theorems of monoids can then be
introduced in a development* Dpon 0of Timon il @ universal abstract form. When these

“A development of Alonzo and related notions are presented in Chapter 12 of [20].

1872

MoNOID THEORY IN ALONZO

MONOID(M{Q}, F(aXa)_m, E.)
stands for

M{a}\l, A
Mia} # Dy
Flaxa)sa + Miay X Miqy) = Mgy A
E. | M{a} A
Va,y,z: My -
F(axa)—)a (177 F(axa)—)a (y7 Z)) = F(ozxa)—)a (F(axa)—>a (12, y)a Z) A
Vz: M{a} : F(axa)—>a (Ea7x) - F(axa)—>a (x7 Eoz) =T

COM-MONOID(M{q4}, F (axa)—a> Ea)
stands for
MONOID(M{4}; F(axa)—a) Ea) A
Va,y: Miay - Flaxa)sa (%, 9) = Flaxa)—a (¥, T)

MON-ACTION(M 4}, (4} F(axa)—ar Bas G(axg)—s)
stands for

|\/|ONO|D(].V.[{a}7 F(axa)—ma Ea> A
Sigpd A
Sisy # Dy N
Gaxp)s + Myay % Si5)) = Sy A
Vx,y : M{a}, S S{ﬁ} .
G(ax,@)—)ﬁ (1’, G(axﬁ)—n@ (ya S)) = G(axﬁ)%ﬁ (F(axa)—>a (l‘, y)7 S) A
Vs: S{ﬁ} . G(axﬁ)ﬁﬁ (Ea,S) = S.

1 2 1 1 2 2
MON_HOMOM(M{O[}7M{ﬁ}7F(aXa)—)a’Ea’F(IBXB)%ﬁ7Eﬁ’HO‘_>IB)
stands for
1 1 1
MONOID(M). Fio0)sas B2 A
MONOID(M?4,, F?y 51,5 E2) A

1 2

Va,y: M%a} .Huop (F:(laxa)%a (z,y)) = F%ﬂxﬁ)%ﬁ (Hospx,Hossgy) A
H, ;s E} — E2

Table 10: Notational Definitions for Monoids: Abbreviations

1873

FARMER AND ZVIGELSKY

definitions and theorems are needed in a development D, a development morphism?®
from Dy,on to D can be created and then used to transport the abstract definitions
and theorems in Dy,o, to concrete instances of them in D. The validity of these
concrete definitions and theorems in D is guaranteed by the fact that the abstract
definitions and theorems are valid in the top theory of Dy,o, and the development
morphism used to transport them preserves validity.

We can verify that (Ca, F(axa)—as Ea) denotes a monoid in T' by simply con-
structing an appropriate theory morphism ® from Ty, to 7. As a bonus, we can
use ® to transport the abstract definitions and theorems in Dy,o, to concrete in-
stances of them in a development of T" whenever they are needed. Moreover, we do
not have to explicitly prove that a particular property of (Ca, F(axa)—as> Ea), such
as X,, that holds by virtue of (Ca, F(axa)—as Ea) denoting a monoid is valid in 77
instead, we only need to show that there is an abstract theorem of Ty,,, that ®
transports to this property.

The following theory definition module defines a suitably abstract theory of
monoids named MON:

Theory Definition 4.1 (Monoids).

Name: MON.
Base types: M.

Constants: -y« €M

Axioms:
.Ve,y,z - M.xz-(y-2)=(x-y) 2z (- is associative).
2.Vz:M.e-z=x-e=z (e is an identity element with respect to -).

Notice that we have employed several notational definitions and conventions in the
axioms — including dropping the types of the constants — for the sake of brevity.
This theory specifies the set of monoids exactly: The base type M, like all types,
denotes a nonempty set m; the constant (MxM)—M denotes a function - : (mxm) —
m that is associative; and the constant ej; denotes a member e of m that is an
identity element with respect to -.

The following development definition module defines a development, named
MON-1, of the theory MON:

5A theory morphism and a development morphism of Alonzo are presented in Sections 14.3 and
14.4, respectively, of [20].

1874

MoNOID THEORY IN ALONZO

Development Definition 4.2 (Monoids 1).

Name: MON-1.
Bottom theory: MON.

Definitions and theorems:

Thml: MONO|D(U{M},~(MXM)_>M,GM)
(models of MON define monoids).

Thm2: TOTAL(:(arxar)—nr) (- is total).

Thm3: Ve: M. NVy: M.z -y=y-z=y)=x=e
(uniqueness of identity element).

Defl: submonoid(yn_,, =
As:{M} . s# Dy A (lsxs L (s X 8) = s)Ne€s (submonoid).

Thm4: Vs : {M} . submonoid s = MONOID(s, -|sxs, €)
(submonoids are monoids).

Thm5: submonoid {e} (minimum submonoid).
Thm6: submonoid Ugyp (maximum submonoid).
Def2: ~((’]P\’4><M)_>M =Ap: M x M. (sndp) - (fstp) (opposite of).

Thm7: Va,y,z: M .x P (y -°P z) = (z P y) P 2
(-°P is associative).

Thm8: Vz: M .e Pr=x-Pe=x
(e is an identity element with respect to -°P).

Def3: O({aryx{a})—{a} = SE-OP((nrx M) M) ({ My x {M})—>{M}) *
(set product).

Defd: E;ppy = {em} (set identity element).
Thm9: Vz,y,z: {M} . 20 (yo02)=(x0y) ®z (® is associative).

Thml0: Vz: {M} . EQzrx=20E=x
(E is an identity element with respect to ®).

1875

FARMER AND ZVIGELSKY

Set-OP (A1 x M)—s M)—(({M} x{M})—{M}) 1S an instance of the parametric pseudoconstant
Set—Op((aXﬁ)%,}/)H(({a}X{/3})%{7}) defined in Table 9.

Thml states that each model of MON defines a monoid. Thm2 states that the
monoid’s binary function is total (which is implied by the first axiom of MON).
Thm3 states that a monoid’s identity element is unique. Defl defines the notion of
a submonoid and Thm4-Thm6 are three theorems about submonoids. Notice that
‘|sxs, the restriction of - to s x s, denotes a partial function. Notice also that

Jsxs $ (s X 8) = s

in Defl asserts that s is closed under -|sxs since - is total by Thm2. Def2 de-
fines '((’]I\}XM)_)M, the opposite of -, and Thm7-Thm8 are key theorems about -°P.
Def3 defines Oaryxqmy)—{my, the set product on {M}; Defd defines Egppy, the
identity element with respect to ®; and Thm9-Thm10 are key theorems about ©.
These four definitions and ten theorems require proofs that show the RHS of each
definition (i.e., the definition’s definiens) is defined and each theorem is valid. The

proofs are given in Appendix A.

5 Transportation of definitions and theorems
Let T be a theory such that T'F X, where X, is the sentence
MONOID(M{QPF(QXQ)%OM Ea)?

and assume that D is some development of T (which could be T itself). We would
like to show how the definitions and theorems of the development MON-1 can be
transported to D.5

Before considering the general case, we will consider the special case when My,
is Ufqy, which denotes the entire domain for the type a, and F(,xq)—q and E, are
constants €(4xq)—a and d,. We start by defining a theory morphism from MON to
T using a theory translation definition module:

Theory Translation Definition 5.1 (Special MON to 7).

Name: special-MON-to-T'.
Source theory: MON.
Target theory: T.

Base type mapping:

SA transportation is presented in Subsection 14.4.2 of [20].

1876

MoNOID THEORY IN ALONZO

1. M — «.

Constant mapping:

L (mxM)—=M P Claxa)—a-

2. ey — dg.

Since special-MON-to-T is a normal translation”, it has no obligations of the first
kind by [20, Lemma 14.10] and two obligations of the second kind which are valid
in T by [20, Lemma 14.11]. It has two obligations of the third kind corresponding
to the two axioms of MON. T' F X, implies that each of these two obligations is
valid in T'. Therefore, special-MON-to-T" is a theory morphism from MON to T by
the Morphism Theorem [20, Theorem 14.16].%

Now we can transport the definitions and theorems of MON-1 to D via special-
MON-to-T" using definition and theorems transportation modules. For example,
Thm3 and Defl can be transported using the following two modules:

Theorem Transportation 5.2 (Transport of Thm3 to D).
Name: uniqueness-of-identity-element-via-special-MON-to-D.
Source development: MON-1.

Target development: D.
Development morphism: special-MON-to-T'.
Theorem:

Thm3: Vo M. Vy: M.z -y=y-x=y)=x=e¢
(uniqueness of identity element).

Transported theorem:
Thm3-via-special-MON-to-T":
Ve:a.Vy:a.zcy=ycrx=y)=>z=d

(uniqueness of identity element).

New target development: D’.

TA theory translation and a development translation of Alonzo are presented in Subsections
14.3.1 and 14.4.1, respectively, of [20].

8 An obligation of a theory translation and the Morphism Theorem are presented in Subsection
14.3.2 of [20].

1877

FARMER AND ZVIGELSKY

Definition Transportation 5.3 (Transport of Defl to D’).

Name: submonoid-via-special-MON-to-D’.
Source development: MON-1.

Target development: D’.

Development morphism: special-MON-to-T'.

Definition:

Defl: submonoid¢yn_,, =
As:i{M} . s# Dy A (lsxs L (s X s) = s)Ne€s (submonoid).

Transported definition:

Defl-via-special-MON-to-T": submonoid;,}_,, =
As:{a}.s# Dy Alclsxs L (s xs) = s)Ades (submonoid).

New target development: D”.

New development morphism: special-MON-1-to-D’.

We will next consider the general case when My, may be different from Uy
and F(qxq)—a and E, may not be constants. The general case is usually more
complicated and less succinct than the special case. We start again by defining a
theory morphism from MON to T using a theory translation definition module:

Theory Translation Definition 5.4 (General MON to 7).

Name: general-MON-to-T'.
Source theory: MON.
Target theory: T.

Base type mapping:

1. M — M{a}
Constant mapping:

L uxmy—m = Flaxa)sa-

2. ey — Ea.

1878

MoNOID THEORY IN ALONZO

Let general-MON-to-T' = (u,v). Then general-MON-to-T" has the following five
obligations (one of the first, two of the second, and two of the third kind):

1. ﬁ(U{M} #+ Q){M}) = ()\x : M{a} . TO) # ()\x : M{a} . FO).

2. U(-usan—m 3 Ugrxan—ay) =
F(axa)%a \L ()\$: (M{oc} X M{a}) — M{a} . TO).

3. ?(eM i U{M}) =E, | ()\.T : M{a} . To).

4. v(Vz,y,z: M.z (y-2)=(x-y) 2)=
Va,y,z: Mgy .
F(axa)—>a (z, F(axa)—)a (y,2)) = F(axa)—m (F(axa)—m (z,9), 2).

5. vWe:M.e-z=z-e=uzx)=
Va: M{a} . F(axa)%a (EOHI') = F(axa)ﬁa (:E? Ea) = Z.

A, = B, means the expressions denoted by A, and B, are identical.

T F X, implies that each of these obligations is valid in 7" as follows. The first
and second conjuncts of X, imply that the first obligation is valid in T" by part 3 of
[20, Lemma 14.9]. The first and third conjuncts imply that the second obligation is
valid in T by part 5 of [20, Lemma 14.9]. The first and fourth conjuncts imply that
the third obligation is valid in T" by part 5 of [20, Lemma 14.9]. And the fifth and
sixth conjuncts imply, respectively, that the fourth and fifth obligations are valid
in T'. Therefore, general-MON-to-T" is a theory morphism by the Morphism Theorem
[20, Theorem 14.16].

We can now transport, as before, the definitions and theorems of MON-1 to D
via general-MON-to-T" using definition and theorem transportation modules, but we
can also transport them using a group transportation module”. For example, Thm3
and Defl can be transported as a group using the following group transportation
module:

Group Transportation 5.5 (Transport of Thm3 and Defl to D).

Name: uniqueness-of-identity-element-and-submonoid-to-D.
Source development: MON-1.
Target development: D.

9This kind of module transports a set of definitions and theorems as a group in which order
does not matter. A group transportation has nothing to do with the algebraic structure called a

group.

1879

FARMER AND ZVIGELSKY

Development morphism: general-MON-to-T.

Definitions and theorems:

Thm3: Ve: M. NVy: M.z -y=y-z=y)=>x=e
(uniqueness of identity element).

Defl: submonoidyry_, =
As:i{M} . s # Dy A (lsxs L (s x8) = s)Ne€s (submonoid).

Transported definitions and theorems:

Thm3-via-general-MON-to-T"
Va: M{a} .
(Vy : M{a} : F(axm)%a (I y) - F((MXO/,)%(M (y'l) - y) =z =E,
(uniqueness of identity element).

Defl-via-general-MON-to-T": submonoid,}_,, =
AS: P(M{u}) .
s# (Ax: Mgy - Fp) A
(F(Q’Xa)%a"sXs 1 (" X ") — S) N
E, €s (submonoid).

New target development: D’

New development morphism: general-MON-1-to-D’.

The abbreviation P(My,;), which denotes the power set of My,,, is defined in
Table 8.

6 Opposite and set monoids

For every monoid (m,-,e), there is (1) an associated monoid (m,-°P,e), where
P is the opposite of -, called the opposite monoid of (m,-,e) and (2) a monoid
(P(m),®,{e}), where P(m) is the power set of m and ® is the set product on
P(m), called the set monoid of (m,-,e).

We will construct a development morphism named MON-to-opposite-monoid from
the theory MON to its development MON-1 that maps

(M, (MxM)—M> e)

1880

MoNOID THEORY IN ALONZO

to

(M7 '(()ZI\)/.IXM)—>M7 e)'

Then we will be able to use this morphism to transport abstract definitions and
theorems about monoids to more concrete definitions and theorems about opposite
monoids. Here is the definition of MON-to-opposite-monoid:

Development Translation Definition 6.1 (MON to Op. Monoid).

Name: MON-to-opposite-monoid.
Source development: MON.
Target development: MON-1.
Base type mapping:

1. M — M.

Constant mapping:

. 0P
Lo (axany—=n = (any— v

2. ep e

Since MON-to-opposite-monoid is a normal translation, it has no obligations of
the first kind by [20, Lemma 14.10] and two obligations of the second kind which
are valid in the top theory of MON-1 by [20, Lemma 14.11]. It has two obligations
of the third kind corresponding to the two axioms of MON. These two obligations
are logically equivalent to Thm7 and Thm8, respectively, in MON-1, and so these
two theorems are obviously valid in the top theory of MON-1. Therefore, MON-to-
opposite-monoid is a development morphism from MON to MON-1 by the Morphism
Theorem [20, Theorem 14.16].

We can now transport Thml via MON-to-opposite-monoid to show that opposite
monoids are indeed monoids:

Theorem Transportation 6.2 (Transport of Thml to MON-1).
Name: monoid-via-MON-to-opposite-monoid.
Source development: MON.

Target development: MON-1.

Development morphism: MON-to-opposite-monoid.

1881

FARMER AND ZVIGELSKY

Theorem:

Thml: MONO|D(U{M},'(A,M\J)%z\fj-/e/\ﬁ
(models of MON define monoids).

Transported theorem:

Thm1l (Thm1l-via-MON-to-opposite-monoid):
MONOID(Uy sy, -z)xfo)_)M, en) (opposite monoids are monoids).

New target development: MON-2.

Similarly, we will construct a development morphism named MON-to-set-monoid
from the theory MON to its development MON-2 that maps

(M, - (MxM)—s s €M)

to

({M}, Oy xqary)—{ay> Eqary)-

Then we will be able to use this morphism to transport abstract definitions and the-
orems about monoids to more concrete definitions and theorems about set monoids.
Here is the definition of MON-to-set-monoid:

Development Translation Definition 6.3 (MON to Set Monoid).

Name: MON-to-set-monoid.
Source development: MON.
Target development: MON-2.
Base type mapping:

1. M — {M}.
Constant mapping:

L (mxmy—m = OMyx{M})—{M}-

2. ey — E{]u}

1882

MoNOID THEORY IN ALONZO

Since MON-to-set-monoid is a normal translation, it has no obligations of the
first kind by [20, Lemma 14.10]. It has two obligations of the second kind. The
first one is valid in the top theory of MON-2 by part 4 of [20, Lemma 14.9] since
OM}x{M})—{m} beta-reduces by [20, Axiom A4] to a function abstraction which is
defined by [20, Axiom A5.11]. The second one is valid in the top theory of MON-2
by part 4 of [20, Lemma 14.9] since Ey,} is a function abstraction which is defined
by [20, Axiom A5.11]. It has two obligations of the third kind corresponding to the
two axioms of MON. These two obligations are Thm9 and Thm10, respectively, in
MON-2, and so these two theorems are obviously valid in the top theory of MON-2.
Therefore, MON-to-set-monoid is a development morphism from MON to MON-2 by
the Morphism Theorem [20, Theorem 14.16].

We can now transport Thm1l via MON-to-set-monoid to show that set monoids
are indeed monoids:

Theorem Transportation 6.4 (Transport of Thml to MON-2).

Name: monoid-via-MON-to-set-monoid.

Source development: MON.

Target development: MON-2.

Development morphism: MON-to-set-monoid.

Theorem:

Thml: MONO|D(U{M}7'(MxM)ﬂwfes\/)

(models of MON define monoids).
Transported theorem:

Thm12 (Thm1l-via-MON-to-set-monoid):
MONOID (U aryy, Oty x{amry)—{ys Eqary)

(set monoids are monoids).

New target development: MON-3.

7 Commutative monoids

A monoid (m, -, e) is commutative if - is commutative.
Let Y, be the formula

COM-MONOID(M 4}, F (0 xa) 50 Ea),

1883

FARMER AND ZVIGELSKY

where COM-MONOID is the abbreviation introduced by the notational definition
given in Table 10. Y, asserts that the tuple

(M{a}7 F(axa)—)cu Ea)

denotes a commutative monoid (m, -, e).

We can define a theory of commutative monoids, named COM-MON, by adding
an axiom that says - is commutative to the theory MON using a theory extension
module:

Theory Extension 7.1 (Commutative Monoids).

Name: COM-MON.
Extends MON.
New base types:
New constants:

New axioms:
3. Vo,y: M .x-y=y-x (- is commutative).

Then we can develop the theory COM-MON using the following development
definition module:

Development Definition 7.2 (Commutative Monoids 1).

Name: COM-MON-1.
Bottom theory: COM-MON.

Definitions and theorems:

Thm13: COM-MONOID(Uynsys *(nrx M) s €M)
(models of COM-MON define commutative monoids).

Def5: <yysmso=Ax,y:M.3z:M.x-2=1y (weak order).
Thmld: Vo : M.z <z (reflexivity).
Thmls: Va,y,z: M. (e <yAy<z)=zx<z (transitivity).

1884

MoNOID THEORY IN ALONZO

Thm13 states that each model of COM-MON defines a commutative monoid. Def5
defines a weak (nonstrict) order that is a pre-order by Thml4 and Thml5. We
could have put Def5, Thm14, and Thm15 in a development of MON since Thm14
and Thm15 do not require that - is commutative, but we have put these in COM-
MON instead since <p;_p7—o is more natural for commutative monoids than for
noncommutative monoids.

Since COM-MON is an extension of MON, there is an inclusion (i.e., a theory
morphism whose mapping is the identity function) from MON to COM-MON. This
inclusion is defined by the following theory translation definition module:

Theory Translation Definition 7.3 (MON to COM-MON).

Name: MON-to-COM-MON.
Source theory: MON.
Target theory: COM-MON.

Base type mapping:
1. M +— M.
Constant mapping:

L (MxM)y—M 7 (MxM)—M-

2. ey — e

We will assume that, whenever we define a theory extension 7" of a theory T, we
also simultaneously define the inclusion from 7" to T".

Since MON-to-COM-MON is an inclusion from MON to COM-MON, it is also a
development morphism from MON-3 to COM-MON-1 and the definitions and theo-
rems of MON-3 can be freely transported verbatim to COM-MON-1. In the rest of
the paper, when a theory 7" is an extension of a theory T and D is a development
of T', we will assume that the definitions and theorems of D are also definitions and
theorems of any trivial or nontrivial development of 7" without explicitly transport-
ing them via the inclusion from T to T” as long as there are no name clashes. This

assumption is given the name inclusion transportation convention in [20, Subsection
14.4.3).

1885

FARMER AND ZVIGELSKY

8 Transformation monoids

A very important type of monoid is a monoid composed of transformations of a
set. Let s be a nonempty set. Then (f,o,id), where f is a set of (partial or total)
functions from s to s,

o:((s—=s)x(s—s)) = (s—s)

is function composition, and id : s — s is the identity function, is a transformation
monoid on s if f is closed under o and id € f. It is easy to verify that every
transformation monoid is a monoid. If f contains every function in the function
space s — s, then (f,o,id) is clearly a transformation monoid which is called the
full transformation monoid on s. Let us say that a transformation monoid (f, o,id)
is standard if f contains only total functions. In many developments, nonstandard
transformation monoids are ignored, but there is no reason to do that here since
Alonzo admits undefined expressions and partial functions.

Consider the following theory ONE-BT of one base type:

Theory Definition 8.1 (One Base Type).

Name: ONE-BT.

Base types: S.

Constants:

Axioms:
We can define the notion of a transformation monoid in a development of this theory,
but we must first introduce some general facts about function composition. To

do that, we need a theory FUN-COMP with four base types in order to state the
associativity theorem for function composition in full generality:

Theory Definition 8.2 (Function Composition).
Name: FUN-COMP.
Base types: A, B,C,D.

Constants:

Axioms:

We introduce two theorems for function composition in a development of FUN-

COMP:

1886

MoNOID THEORY IN ALONZO

Development Definition 8.3 (Function Composition 1).

Name: FUN-COMP-1.
Bottom theory: FUN-COMP.

Definitions and theorems:

Thml6e: Vf:A—-B,g:B—-C,h:C —D.fo(goh)=(fog)oh
(o is associative).

Thm17 Vf . A — B. idA;)A o f - f o IdB—)B — f
(identity functions are left and right identity elements).

The parametric pseudoconstants o((q—g)x(8—))—(a—ry) a0d ida—q are defined in
Tables 9 and 7, respectively. The infix notation for the application of

O((a—B)x(B—7))—(a—)

is also defined in Table 9.
Next we define a theory morphism from FUN-COMP to ONE-BT:

Theory Translation Definition 8.4 (FUN-COMP to ONE-BT).

Name: FUN-COMP-to-ONE-BT.
Source theory: FUN-COMP.
Target theory: ONE-BT.

Base type mapping:

1.

2.

3.

4.

A— S.
B— S.
Cw—S.

Dw— S.

Constant mapping:

The translation FUN-COMP-to-ONE-BT is clearly a theory morphism by the
Morphism Theorem [20, Theorem 14.16] since it is a normal translation and FUN-
COMP contains no constants or axioms. So we can transport the theorems of FUN-
COMP-1 to ONE-BT via FUN-COMP-to-ONE-BT:

1887

FARMER AND ZVIGELSKY

Group Transportation 8.5 (Transport of Thm16-Thm17 to ONE-BT).

Name: function-composition-theorems-via-FUN-COMP-to-ONE-BT.
Source development: FUN-COMP-1.

Target development: ONE-BT.

Development morphism: FUN-COMP-to-ONE-BT.

Definitions and theorems:

Thml6e: Vf:A—-B,g:B—C, h:C—D.fo(goh)=(fog)oh

(o is associative).

Thml7: Vf:A—)B.idAHAOf:fOidBHB:f
(identity functions are left and right identity elements).

Transported definitions and theorems:

Thm18 (Thm16-via-FUN-COMP-to-ONE-BT):
Vfgh:S—S.fo(goh)=(fog)oh (o is associative).

Thm19 (Thm17-via-FUN-COMP-to-ONE-BT):
Vf:8—=8.idsssof=foidss=f

(ids_s is an identity element with respect to o).

New target development: ONE-BT-1.
New development morphism: FUN-COMP-1-to-ONE-BT-1.

We can obtain the theorem that all transformation monoids are monoids almost
for free by transporting results from MON-1 to ONE-BT-1. We start by creating the
theory morphism from MON to ONE-BT that maps

(M7 (MxM)—M> eM)

to
(8 = 8, 0((5558)x (S—8)) = (S—5) 1d55) :

Theory Translation Definition 8.6 (MON to ONE-BT).

Name: MON-to-ONE-BT.
Source theory: MON.

1888

MoNOID THEORY IN ALONZO

Target theory: ONE-BT.
Base type mapping:

1. M—S—S.

Constant mapping:

L (MxM)=M P O(S—5)x(5—55))—(S—S5)-

2. ey — idgﬁs.

The theory translation MON-to-ONE-BT is normal so that it has no obligations of
the first kind by [20, Lemma 14.10]. It has two obligations of the second kind. These
are valid in ONE-BT by part 4 of [20, Lemma 14.9] since o5, 5)x(5-5))—(5—s) and
ids_,s are function abstractions which are defined by [20, Axiom A5.11]. It has
two obligations of the third kind corresponding to the two axioms of MON. The
two obligations are Thm18 and Thm19, respectively, in ONE-BT-1, and so these two
theorems are obviously valid in the top theory of ONE-BT-1. Therefore, MON-to-
ONE-BT is a theory morphism from MON to ONE-BT by the Morphism Theorem
[20, Theorem 14.16].

We can transport Defl, the definition of submonoid(ys_,,, and Thm4, the theo-
rem that says all submonoids are monoids, to ONE-BT-1 via MON-to-ONE-BT by a
group transportation module:

Group Transportation 8.7 (Transport of Defl & Thm2 to ONE-BT-1).

Name: submonoids-via-MON-to-ONE-BT.
Source development: MON-1.

Target development: ONE-BT-1.
Development morphism: MON-to-ONE-BT.

Definitions and theorems:

Defl: submonoidyry_, =
As:{M} . s# Dy A (lsxs L (s X 8) = s)Ne€s (submonoid).

Thm4: Vs: {M} . submonoid s = MONOID(s, ‘|sxs, €)
(submonoids are monoids).

Transported definitions and theorems:

1889

FARMER AND ZVIGELSKY

Def6 (Defl-via-MON-to-ONE-BT): trans-monoid g_,5}—,, =
As:{S— S}.
s # Dis—sy A
(0((5=8)x(S=5))=(5=5)|sxs + (8 X 8) = 8) A
ids_g € s (transformation monoid).

Thm20 (Thm4-via-MON-to-ONE-BT):
Vs:{S— S}.
trans-monoid s = MONOID(s, 0((5,5)x (5-+5))—(S—9)| sxs, 1ds+5)
(transformation monoids are monoids).

New target development: ONE-BT-2.
New development morphism: MON-1-to-ONE-BT-2.

trans-monoid is a predicate that is true when it is applied to a set of functions of
S — S that forms a transformation monoid. Thm20 says that every transformation
monoid — including the full transformation monoid — is a monoid.

9 Monoid actions

A (left) monoid action is a mathematical structure (m, s, -, e, act) where (m, -, e) is
a monoid and act : (m X s) — s is a function such that

(1) x act (y act z) = (x - y) act z
for all x,y € m and z € s and
(2) eactz ==z

for all z € s. We say in this case that the monoid (m, -, e) acts on the set s by the
function act.
Let Z, be the formula

MON-ACTION(M/ay, S5} F(axa) sas Bas Gaxs)8);

where MON-ACTION is the abbreviation introduced by the notational definition
given in Table 10. Z, asserts that the tuple

(M{a}v S{ﬂ}a F(axa)ﬁav EOH G(axﬁ)ﬁﬂ)

denotes a monoid action (m, s, -, e, act).
A theory of monoid actions is defined as an extension of the theory of monoids:

1890

MoNOID THEORY IN ALONZO

Theory Extension 9.1 (Monoid Actions).

Name: MON-ACT.

Extends MON.

New base types: S.

New constants: act(j;xs)-s-
New axioms:

3. Va,y:M,s:S.zact (yacts)=(r-y)acts
(act is compatible with -).

4. Vs:S.eacts=s (act is compatible with e).

We begin a development of MON-ACT by adding the definitions and theorems
below:

Development Definition 9.2 (Monoid Actions 1).

Name: MON-ACT-1.
Bottom theory: MON-ACT.

Definitions and theorems:

Thm?21: MON_ACTION(U{]\J}v Uisys (MxM)—M: €M, 3Ct(MxS)as>
(models of MON-ACT define monoid actions).

Thm22: TOTAL(act(psx5)-ss) (act is total).
Def7: orbitg_,qsy =As:S.{t:S|3z: M.xacts=t} (orbit).
Def8: stabilizerg_,;ppy = As:S.{z: M|z acts=s} (stabilizer).

)
Thm23: Vs : .S . submonoid (stabilizer s) (stabilizers are submonoids).
Thm21 states that each model of MON-ACTION defines a monoid action. Thm22
says that act(yx) is total (which is implied by the third axiom of MON-ACTION).
Def7 and Def8 introduce the concepts of an orbit and a stabilizer. And Thm23 states
that a stabilizer of a monoid action (m,s,-,e,act) is a submonoid of the monoid
(m, -, e). The power of this machinery — monoid actions with orbits and stabilizers

— is low with arbitrary monoids but very high with groups, i.e., monoids in which
every element has an inverse.

1891

FARMER AND ZVIGELSKY

Monoid actions are common in monoid theory. We will present two important
examples of monoid actions. The first is the monoid action (m,m, -, e,-) such that
the monoid (m, -, e) acts on the set m of its elements by its function -. We formalize
this by creating the theory morphism from MON-ACT to MON that maps

(M, S, (Mrxar)—M> €M, aCt (A1 x S)—5)

to

(M, M, (Mx M)y—M> €M) " (Mx M)—M) :

Theory Translation Definition 9.3 (MON-ACT to MON).

Name: MON-ACT-to-MON.
Source theory: MON-ACT.
Target theory: MON.
Base type mapping:

1. M — M.

2. 85— M.

Constant mapping:

Lo (mxmy—m = (MxM)y—M-

2. ey — ey
3. act(arx$)—5 F (MxM)—M-

It is an easy exercise to verify, arguing as we have above, that MON-ACT-to-MON
is a theory morphism.

We can now transport Thm21 from MON-ACT to MON-3 via MON-ACT-to-MON
to show that the action of a monoid (m,-,e) on m by - is a monoid action:

Theorem Transportation 9.4 (Transport of Thm21 to MON-3).

Name: monoid-action-via-MON-ACT-to-MON.
Source development: MON-ACT.
Target development: MON-3.

1892

MoNOID THEORY IN ALONZO

Development morphism: MON-ACT-to-MON.

Theorem:

Thm21: MON’ACTION(U{]\J}a Uisys (MxM)—M> €M, aCt(MxS)%S)
(models of MON-ACT define monoid actions).

Transported theorem:

Thm24 (Thm21-via-MON-ACT-to-MON):

MON-ACTION (Uyary, Ugarys " (M x M)—M > €M) (M x M)—M)
(first example is a monoid action).

New target development: MON-4.

The second example is a standard transformation monoid (f, o,id) on s acting on
s by the function that applies a transformation to a member of s. (Note that all the
functions in f are total by virtue of the transformation monoid being standard.) We
formalize this example as a theory morphism from MON-ACT to ONE-BT extended
with a set constant that denotes a standard transformation monoid. Here is the
extension with a set constant Fyg_, 5} and two axioms:

Theory Extension 9.5 (One Base Type with a Set Constant).

Name: ONE-BT-with-SC.
Extends ONE-BT.
New base types:
New constants: Fig .

New axioms:

1. trans-monoid F (F forms a transformation monoid).

2. Vf:F.TOTAL(f) (the members of F are total functions).
And here is the theory morphism from MON-ACT to ONE-BT-with-SC that maps

(M, S, (Mrxar)—M> €M, aCt (A1 x $)—5)

to

(Fis—515 5, 0((5—8)x (5—8))—(S—8) [FxF» 155, ®((555)x $)—5|Fxs)

1893

FARMER AND ZVIGELSKY

Theory Translation Definition 9.6 (MON-ACT to ONE-BT-with-SC).

Name: MON-ACT-to-ONE-BT-with-SC.
Source theory: MON-ACT.

Target theory: ONE-BT-with-SC.
Base type mapping:

2. S— 5.

Constant mapping:

L (MxM)—>M P O((S—8)x(S—8))—(S—) [FxF-

2. ey —idss.
3. act(prxs)—s = .((S%S)XS)%S|FXS'

The parametric pseudoconstant e((s_,5)x5)—s|Fxs is defined in Table 9. It is a
straightforward exercise to verify, arguing as we have above, that MON-ACT-to-
ONE-BT-with-SC is a theory morphism.

We can now transport Thm21 from MON-ACT to ONE-BT-with-S via MON-ACT-
to-ONE-BT-with-SC to show that a standard transformation monoid (f,o,id) on s
acting on s by the function that applies a (total) transformation to a member of s
is a monoid action:

Theorem Transportation 9.7 (Trans. of Thm21 to ONE-BT-with-SC).
Name: monoid-action-via-MON-ACT-to-ONE-BT-with-SC.
Source development: MON-ACT.
Target development: ONE-BT-with-SC.
Development morphism: MON-ACT-to-ONE-BT-with-SC.

Theorem:

Thm?21: MON‘AC“ON(U{M}, Uisys " (MxM)—M:€M; 3Ct(MxS)—>S)
(models of MON-ACT define monoid actions).

Transported theorem:

1894

MoNOID THEORY IN ALONZO

Thm25 (Thm21-via-MON-ACT-to-ONE-BT-with-SC):
MON-ACTION(F (s, 1,
Ussy,

O((S—=8)x (5—9))—=(S—S)
ids—s,
‘((SﬁS)XS)ﬁS|F><S)

FxF,

(second example is a monoid action).

New target development: ONE-BT-with-SC-1.

10 Monoid homomorphisms

Roughly speaking, a monoid homomorphism is a structure-preserving mapping from
one monoid to another.
Let W, be the formula

MON-HOMOM (M}, M4y, Flosca)sar Bao Fiaxp) 50 B Hasg),

where MON-HOMOM is the abbreviation introduced by the notational definition
given in Table 10. W, asserts that the tuple
(1\/1104}7 M%B}’ F%axoz)—mﬂ Elw F%ﬁxﬁ)—)ﬂ’ E%’ Ha—>5)

denotes a mathematical structure (mi,mg,-1,e1,2,€2,h) where (mi,-1,e1) is a
monoid, (mg,-2,e2) is a monoid, and h : m; — mgy is a monoid homomorphism
from (mq,-1,e1) to (ma, -2, e2).

The notion of a monoid homomorphism is captured in the theory MON-HOM:

Theory Definition 10.1 (Monoid Homomorphisms).

Name: MON-HOM.
Base types: My, Ms.

Constants: (a7, x)My, €My (Mox My)—Mys €Mas DMy My -

Axioms:

I.Va,y,z2: My .x-(y-2)=(x-y) -z (*(M1xMy)— M, 18 associative).
2.Vx: M, .e-x=x-e==x (e, is an identity element).
3. Ve,y,z:My.z-(y-2)=(x-y)- 2 ((Mo x Mo)— M, 18 @ssociative).

1895

FARMER AND ZVIGELSKY

4. Vo :My.e-x=x-e=x (enr, is an identity element).
5. Va,y: My .h(x-y)=(hz)- (hy) (first homomorphism property).
6. hey, = e, (second homomorphism property).

har,—ar, denotes a monoid homomorphism from the monoid denoted by

(M1, (0 > M) =My > €M)

to the monoid denoted by

(M27 '(MQXMQ)—>M27 eMQ)'
Here is a simple development of MON-HOM:
Development Definition 10.2 (Monoid Homomorphisms 1).

Name: MON-HOM-1.
Bottom theory: MON-HOM.

Definitions and theorems:

Thm26:

MON-HOM(Uypz,3,
Ui,y
“(My x My)—M; s
SV
"(Max Ma)— Mo
eMs;
han—ar)

(models of MON-HOM define monoid homomorphisms).

Thm27: TOTAL(h]\[l_HwQ) (h]\,{]_>]\,12 is total).

There are embeddings (i.e., theory morphisms whose mappings are injective)
from MON to the two copies of MON within MON-HOM defined by the following
two theory translation definitions:

Theory Translation Definition 10.3 (First MON to MON-HOM).

Name: first-MON-to-MON-HOM.
Source theory: MON.

1896

MoNOID THEORY IN ALONZO

Target theory: MON-HOM.
Base type mapping:

1. M — M.
Constant mapping:

Lo (MxM)—M 7 (Myx My)—M; -

2. ey — ey -

Theory Translation Definition 10.4 (Second MON to MON-HOM).

Name: second-MON-to-MON-HOM.
Source theory: MON.

Target theory: MON-HOM.

Base type mapping:

1. M — M.

Constant mapping:

Lo (MxM)y=M 7 (Max M) Ma-

2. ep e,

An example of a monoid homomorphism from the monoid denoted by
(M, (At vr)—ns €M)

to the monoid denoted by

{M}, ©qmysfary) vy Eqary)

is the function that maps a member x of the denotation of M to the singleton {z}.
This monoid homomorphism is formalized by the following development morphism:

Development Translation Definition 10.5 (MON-HOM to MON).

Name: MON-HOM-to-MON-4.
Source development: MON-HOM.

1897

FARMER AND ZVIGELSKY

Target development: MON-4.
Base type mapping:

1. My — M.
2. My— {M}.
Constant mapping:

Lo (vyx M) =My FF (MxM)—M-

2. eny 7 M-

w

- (MgxMa)—My 7 ®({M}><{]\J})—>{M}-
4. eN, 7 E{]V[}-

D. hjwl—)]\/fz — Az M. {l’}

It is a straightforward exercise to verify that HOM-MON-to-MON-4 is a theory mor-
phism by the arguments we employed above.

We can now transport Thm26 from MON-HOM to MON-4 via MON-HOM-to-
MON-4 to show the example is a monoid homomorphism:

Theorem Transportation 10.6 (Transport of Thm26 to MON-4).

Name: monoid-action-via-MON-HOM-to-MON-4.
Source development: MON-HOM.

Target development: MON-4.

Development morphism: MON-HOM-to-MON-4.

Theorem:

Thm26:
MON-HOM (U, 3.
Uins}s
“(My x My)—M; s
S
“(Max Ma)— My
e,

has—)
(models of MON-HOM define monoid homomorphisms).

1898

MoNOID THEORY IN ALONZO

Transported theorem:

Thm28 (Thm26-via-MON-HOM-to-MON-4)
MON-HOM (U3,

Uty

“(MxM)—M>

eM;

OUMYx{M})—{ M}

E{ M}

Az M. {z}) (example is a monoid homomorphism).

New target development: MON-5.

11 Monoids over real number arithmetic

We need machinery concerning real number arithmetic to express some concepts
about monoids. For instance, an iterated product operator for monoids involves
integers. To formalize these kinds of concepts, we need a theory of monoids that
includes real number arithmetic. Chapter 13 of [20] presents COF, a theory of
complete ordered fields. COF is categorical in the standard sense (see [20]). That is,
it has a single standard model up to isomorphism that defines the structure of real
number arithmetic.

We define a theory of monoids over COF by extending COF with the language
and axioms of MON:

Theory Extension 11.1 (Monoids over COF).

Name: MON-over-COF.

Extends COF.

New base types: M.

New constants: (/i —ars €M-

New axioms:
19. Va,y,2: M.z - (y-2)=(x-y)- 2 (- is associative).
200 Vz:M.e-z=z-e=zx (e is an identity element).

We can now define an iterated product operator for monoids in a development

of MON-over-COF-1:

1899

FARMER AND ZVIGELSKY

Ng
<. 11 AM) stands for prodR_>R_>(R_>M)_>M
i=Mr MRNR()\i:R.AM).

Table 11: Notational Definition for Monoids: Iterated Product Operator

Development Definition 11.2 (Monoids over COF 1).

Name: MON-over-COF-1.
Bottom theory: MON-over-COF.

Definitions and theorems:

Def9: prodp s (rsn)—mr =
Vm,n:Zpy, g: Zigy > M. fmng=~
(m>n—el|l(fmn—-1)g)-(gn)) (iterated product).
Thm29: Vm : Zigy, g: Zgpy & M . (H (17) ~gm

(trivial product).

Thm30: Vm,k,n: Zipy, 9: Zigy > M.

k n n

m<k‘<n:><]_[gi>-< II gi): IT g7

=m i=k+1 i=m
(extended iterated product).

We are utilizing the notation for the iterated product operator defined in Table 11.
Z(gy is a quasitype defined in the development COF-dev-2 of COF found in [20]
that denotes the set of integers. (Zyg) is automatically available in MON-over-COF
by the inclusion transportation convention presented in Section 7.) Def9 defines
the iterated product operator, and Thm29 and Thm30 are two theorems about the
operator.

We can similarly define extensions of MON over COF. For example, here is a
theory of commutative monoids over COF and a development of it:

Theory Extension 11.3 (Commutative Monoids over COF).

Name: COM-MON-over-COF.
Extends MON-over-COF.

1900

MoNOID THEORY IN ALONZO

New base types:
New constants:

New axioms:

21. Ve,y: M .x-y=y-x (- is commutative).

Development Definition 11.4 (Com. Monoids over COF 1).
Name: COM-MON-over-COF-1.
Bottom theory: COM-MON-over-COF.

Definitions and theorems:
Thm3l: Vm,n: Zigy, g,h: Zigy — M .
(11 gi)- (1T hi)= TI (g9) - (hi)

=m =m =m

(product of iterated products).

Notice that this theorem holds only if - is commutative.
For another example, here is a theory of commutative monoid actions over COF
and a development of it:

Theory Extension 11.5 (Commutative Monoid Actions over COF).
Name: COM-MON-ACT-over-COF.
Extends COM-MON-over-COF.
New base types: S.
New constants: act(yxs)—s-

New axioms:

22. Vx,y:M,s:S.xact(yacts)=(r-y)acts
(act is compatible with -).

23. Vs:S.eacts=s (act is compatible with e).

Development Definition 11.6 (Com. Monoid Actions over COF 1).
Name: COM-MON-ACT-over-COF-1.
Bottom theory: COM-MON-ACT-over-COF.
Definitions and theorems:

Thm32: Va,y: M, s:S.xact (y act s) =y act (z act s)
(act has commutative-like property).

1901

FARMER AND ZVIGELSKY

sequences,,_, 5} stands for Ci\;} — B.
By stands for ~ sequences;,_, 5,
streams,_, 3} stands for {s: {(B8)) | TOTAL(s)}.
(8) stands for ~ streamsg,_,3y.
lists{a— 8} stands for {s: {(B) | In: Cj{va} VYm: CJ{\;} .
(sm)l & C5,0om(CE_on)}.
8] stands for lists{a_p3.
CONSE_, (amsB)— (e B) stands for Az :8.As: {(B) . An: Cf{\;} .
n=C%—z|s(CLan).
(Ag :: Ba_>5) stands for CONSG_; (- B)— (a—) AgB. 3.
nila—g stands for As_g.
[lasss stands for nila—g.
[Ag] stands for (A [], ,5)
[AL, ..., A%] stands for (Aj :: [AZ,...,A}]) wheren > 2.
len(a—g)—a stands for I1f:[8] — Cf;g .
f []a—)ﬁ =Ca A
Vx:8,s:[8].
f(z:s)=Cloasa(fs)(C5_,,C).
|Aa sl stands for lena—p)a Aasg.
F+(asp)s(asp)s(asp) stands for Tf:[8] = [6] = [B] .
Vi [Bl. fllaspgt=1tA
Ve:B,st:[8].fxus)t=(z: fst).

Table 12: Notational Definitions for Sequences

12 Monoid theory applied to strings

In this section we will show how the machinery of our monoid theory formalization
can be applied to a theory of strings over an abstract alphabet. A string over an
alphabet A is a finite sequence of values from A. The finite sequence s can be
represented as a partial function s : N — A such that, for some n € N, s(m) is
defined iff m < n.

In Table 12 we introduce compact notation for finite (and infinite) sequences
represented in this manner. The notation requires a system of natural numbers as
defined in Chapter 11 of [20]. We also introduce some special notation for strings in
Table 13.

The development COF-dev-2 of the theory COF presented in Chapter 13 of [20]
includes a system of natural numbers [20, Proposition 13.11]. Therefore, we can
define a theory of strings as an extension of COF plus a base type A that represents
an abstract alphabet:

1902

MoNOID THEORY IN ALONZO

(Xr=aYRoa) stands for Xp_4cat Yp_a.
(S{R—>A}T{R—>A}) stands for S{R—>A} set-cat T{R—>A}-

R .
(i—l?/;c AR_>A) stands for iter-catr_,r_y(R—(R—A))—(R—A)
o MgeNgr(Mi:R.Ag.,a).

Table 13: Notational Definitions for Monoids: Special Notation

Theory Extension 12.1 (Strings).

Name: STR.
Extends COF.
New base types: A.
New constants:

New axioms:

Since STR is an extension of COF, we can assume that STR-1 is a development
of STR that contains the 7 definitions of COF-dev-2 named as COF-Defl, ..., COF-
Def7 and the 22 theorems of COF-dev-2 named as COF-Thml, ..., COF-Thm22. We
can extend STR-1 as follows to include the basic definitions and theorems of strings:

Development Extension 12.2 (Strings 2).

Name: STR-2.
Extends STR-1.

New definitions and theorems:
Def10: stryr_, 4y = [A] (string quasitype).
Defll: epa =[lpa (empty string).

Defl2: cat((gsA)x(R—sA)—(RsA) = TH(R=A) 5 (RoA) (R A)

(concatenation).
Thm33: Vx :str.ex =ze=x (e is an identity element).
Thm34: Va,y,z :str. z(yz) = (zy)z (cat is associative).

1903

FARMER AND ZVIGELSKY

Def10-Def12 utilize the compact notation introduced in Table 12 and Thm33-Thm34
utilize the compact notation introduced in Table 13.

We can define a development translation from MON-over-COF to STR-2 as fol-
lows:

Development Translation Definition 12.3 (MON-over-COF to STR-2).

Name: MON-over-COF-to-STR-2.
Source development: MON-over-COF.
Target development: STR-2.

Base type mapping:

1. R— R.

2. M — Str{]_{ﬁ‘,\}.
Constant mapping:

1. OH — OH.

10. |UbHﬁ>{H}~>0 = |UbH*>{H}‘>0'

L1, - (prxar)y—m = CAt((R—A)x (R—A))—(R—A)-

12. epr — €p—a.

MON-over-COF-to-STR-2 has one obligation of the first kind for the mapped base
type M, which is clearly valid since stryr_, 4} is nonempty. MON-over-COF-to-STR-2
has 12 obligations of the second kind for the 12 mapped constants. The first 10 are
trivially valid. The last 2 are valid by Defl2 and Defll, respectively. And MON-
over-COF-to-STR-2 has 20 obligations of the third kind for the 20 axioms of MON-
over-COF. The first 18 are trivially valid. The last 2 are valid by Thm34 and Thm33,
respectively. Therefore, MON-over-COF-to-STR-2 is a development morphism from
the theory MON-over-COF to the development STR-2 by the Morphism Theorem
[20, Theorem 14.16].

The development morphism MON-over-COF-to-STR-2 allows us to transport def-
initions and theorems about monoids to the development STR-2. Here are five ex-
amples transported as a group:

1904

MoNOID THEORY IN ALONZO

Group Transportation 12.4 (Transport to STR-2).
Name: monoid-machinery-via-MON-over-COF-1-to-STR-2.
Source development: MON-over-COF-1.

Target development: STR-2.
Development morphism: MON-over-COF-to-STR-2.
Definitions and theorems:

Thml: MONO|D(U{M},-(MXM)HM7GM)
(models of MON define monoids).

Def3: O{aryx{ary)—{a} = SE-OP((nrx M) M) ({ My x {M})—{M}) *
(set product).

Def4: Eqpry = {em} (set identity element).

Thm12 (Thm1l-via-MON-to-set-monoid):
MONOID (U anyy, Oy x{my—{mys Eqary)

(set monoids are monoids).

Def9: prodr_,p s (roary—nr =
If : Z{R} — Z{R} — (Z{R} — M) — M.
Vm,n:Zipy, g Zigy > M. fmng~
(m>n—el|(fm(n—1)g)-(gn)) (iterated product).

Transported definitions and theorems:

Thm35 (Thm1l-via-MON-over-COF-to-STR-2):
MONOID(str{r s A}, Cat((R—sA)x (R—A))—(R—A)s ER—A)
(strings form a monoid).
Def13 (Def3-via-MON-over-COF-to-STR-2):
set-Cat({R—» A} x{R—A}) > {R—A} =
Set-OP(((R—A) x (R—A))—+(R—A))—(({R—A}x{R—A})+{R—A}) Cat
(set concatenation).
Defl4 (Def4-via-MON-over-COF-to-STR-2):
E(roay = {er—a} (set identity element).
Thm36 (Thm12-via-MON-over-COF-1-to-STR-2):

MONOID(P(str{r_.a}), set-cat({r A} x{R—>A})—{R—A}» E{r—4})
(string sets form a monoid).

1905

FARMER AND ZVIGELSKY

Def15 (Def9-via-MON-over-COF-1-to-STR-2):
iter-catg R (R (R—A))—(R—A) =
Vm,n:Zipy, 9: Zigy — (R—A) . fmng~
(m>nw—e|(fm(n—1)g)cat(gn))
(iterated concatenation).

New target development: STR-3.
New development morphism: MON-over-COF-1-to-STR-3.

Notation for the application of

set-Cat({R— A} x {R—A})—>{R—A}

and

iter-catg s R (R—(R—A))—(R—A)

are defined in Table 13.

13 Related work

As we have seen, a theory (or development) graph provides an effective architec-
ture for formalizing a body of mathematical knowledge. It is especially useful for
creating a large library of formal mathematical knowledge that, by necessity, must
be constructed in parallel by multiple developers. The library is built in parts by
separate development teams and then the parts are linked together by morphisms.
Mathematical knowledge is organized as a theory graph in several proof assistants
and logical frameworks including Ergo [44], IMPS [22, 24], Isabelle [5], LF [53],
MMT [52], and PVS [47]. Theory graphs are also employed in several software spec-
ification and development systems including ASL [57], CASL [3, 4], EHDM [55],
Hets [40], IOTA [41], KIDS [58], OBJ [27], and Specware [59].

Simple type theory in the form of Church’s type theory is a popular logic for
formal mathematics. There are several proof assistants that implement versions
of Church’s type theory including HOL [29], HOL Light [31], IMPS [23, 24], Is-
abelle/HOL [48], ProofPower [51], PVS [46], and TPS [2]. As we mentioned in
Section 1, the IMPS proof assistant is especially noteworthy here since it imple-
ments LUTINS [13, 14, 15], a version of Church’s type theory that admits undefined
expressions and is closely related to Alonzo.

1906

MoNOID THEORY IN ALONZO

In recent years, there has been growing interest in formalizing mathematics
within dependent logics. Several proof assistants and programming languages are
based on versions of dependent type theory including Agda [7, 45], Automath [43],
Epigram [11], F* [12], Idris [34], Lean [10], Nuprl [9], and Rocq [54]. So which type
theory is better for formal mathematics, simple type theory or dependent type the-
ory? This question has become hotly contested. We hope that the reader will see our
formalization of monoid theory in Alonzo as evidence for the efficacy of simple type
theory as a logical basis for formal mathematics. The reader might also be interested
in looking at these recent papers that advocate for simple type theory: [6, 49, 50].

Since monoid theory is a relatively simple subject, there have not been many
attempts to formalize it by itself, but there have been several formalizations of
group theory. Here are some examples: [26, 28, 35, 56, 60, 61].

There are two other important alternatives to the standard approach to formal
mathematics. The first is Tom Hales’ formal abstracts in mathematics project [25,
30] in which proof assistants are used to the create formal abstracts, which are for-
mal presentations of mathematical theorems without formal proofs. The second is
Michael Kohlhase’s flexiformal mathematics [33, 36, 37] initiative in which mathe-
matics is a mixture of traditional and formal mathematics and proofs can be either
traditional or formal. The alternative approach we offer is similar to both of these ap-
proaches, but there are important differences. The formal abstracts approach seeks
to formalize collections of theorems without proofs using proof assistants, while we
seek to formalize theory graphs with either traditional or formal proofs using sup-
porting software that can be much simpler than a proof assistant. The objective
of the flexiformal mathematics approach is to give the user the flexibility to pro-
duce mathematics with varying degrees of formality. In contrast, our approach is to
produce mathematics that is fully formal except for proofs.

14 Conclusion

The developments and development morphisms presented in Sections 4-12 form
the development graph Gpon shown in Figure 1. The development graph shows
all the development morphisms that we have explicitly defined (7 inclusions via
theory extension modules and 10 noninclusions via theory and development defini-
tion modules) plus an implicit inclusion from COM-MON to COM-MON-over-COF.
A development morphism that is an inclusion is designated by a < arrow and a
noninclusion is designated by a — arrow. There are many, many more useful devel-
opment morphisms that are not shown in G0, including implicit inclusions and a
vast number of development morphisms into the theory COF.

1907

FARMER AND ZVIGELSKY

COM-
MON-ACT-
over-COF-1

COM-MON-
over-COF-1

ONE-BT-
with-SC-1

Figure 1: The Monoid Theory Development Graph

The construction of Gy,op illustrates how a body of mathematical knowledge can
be formalized in Alonzo as a development graph in accordance with the little theo-
ries method and the alternative approach. Gyon could be extended to include other
mathematical concepts related to monoids such as categories. It could be incorpo-
rated in a development graph that formalizes a more extensive body of mathematical
knowledge. And it could also be used as a foundation for building a formalization
of group theory. This would be done by lifting each development D of a theory T
that extends MON to a development D’ of a theory T’ that extends a theory GRP
of groups obtained by adding an inverse operation to MON. The lifting of D to
D’ would include constructing inclusions from MON to GRP and from T to T” via

1908

MoNOID THEORY IN ALONZO

theory extensions.

The formalization of monoid theory we have presented demonstrates three things.
First, it demonstrates the power of the little theories method. The formalization is
largely free of redundancy since each mathematical topic is articulated in just one
development D, the development for the little theory that is optimal for the topic
in level of abstraction and choice of vocabulary. If we create a translation ® from
D to another development D’ and prove that ® is a morphism, then we can freely
transport the definitions and theorems of D to D’ via ®. That is, an abstract con-
cept or fact that has been validated in D can be translated to a concrete instance
of the concept or fact that is automatically validated in D’ provided the transla-
tion is a morphism. (This is illustrated by our use of the development morphism
MON-over-COF-to-STR-2 to transport definitions and theorems about monoids to
a development about strings.) As the result, the same concept or fact can appear
in many places in the theory graph but under different assumptions and involving
different vocabulary. (For example, the notion of a submonoid represented by the
constant submonoid/_,, defined in MON-1 appears in ONE-BT-2 as the notion of a
transformation monoid represented by the constant trans-monoid;s_,51,.) In short,
we have shown how the little theories method enables mathematical knowledge to
be formalized to maximize clarity and minimize redundancy.

Second, the formalization demonstrates that the alternative approach to formal
mathematics (with traditional and formal proofs) has two advantages over the stan-
dard approach (with only formal proofs): (1) communication is more effective since
the user has greater freedom of expression and (2) formalization is easier since the
approach offers greater accessibility. The standard approach is done with the help
of a proof assistant and all proofs are formal and mechanically checked. Proof assis-
tants are consequently very complex and notoriously difficult to learn how to use.
Traditional proofs are easier to read and write than formal proofs and are better
suited for communicating the ideas behind proofs. Moreover, since the alternative
approach does not require a facility for developing and checking formal proofs, it
can be done with software support that is much simpler and easier to use than a
proof assistant. (In this paper, our software support was just a set of LaTeX macros
and environments.)

Third, the formalization demonstrates that Alonzo is well suited for express-
ing and reasoning about mathematical ideas. The simple type theory machinery of
Alonzo — function and product types, function application and abstraction, definite
description, and ordered pairs — enables mathematical expressions to be formulated
in a direct and natural manner. It also enables almost every single mathematical
structure or set of similar mathematical structures to be specified by an Alonzo
development. (For example, the development ONE-BT-2 specifies the set of math-

1909

FARMER AND ZVIGELSKY

ematical structures consisting of a set S and the set S — S of transformations on
S.) The admission of undefined expressions in Alonzo enables statements involving
partial and total functions and definite descriptions to be expressed directly, nat-
urally, and succinctly. (For example, if M = (m,-,e) is a monoid, the operation
that makes a submonoid m’ C m of M a monoid itself is exactly what is expected:
the partial function that results from restricting - to m’ x m’.) And the notational
definitions and conventions employed in Alonzo enables mathematical expressions
to be presented with largely the same notation that is used mathematical practice.
(For example, Thm33: Vx : str . ex = ze = z, that states € is an identity element for
concatenation, is written just as one would expect it to be written in mathematical
practice.)

We believe that this paper achieves our overarching goal: To demonstrate that
mathematical knowledge can be very effectively formalized in a version of simple type
theory like Alonzo using the little theories method and the alternative approach to
formal mathematics. We also believe that it illustrates the benefits of employing the
little theories method, the alternative approach, and Alonzo in formal mathematics.

A Validation of definitions and theorems

Let D = (T, Z) be a development where T is the bottom theory of the development
and = = [Py,..., P,] is the list of definition and theorem packages of the develop-
ment. For each ¢ with 1 <1i < n, P; has the form (p,c,, Ay, 7) if P; is a definition
package and has the form P; = (p, A,,) if P; is a theorem package. Define Ty =T
and, for all ¢ with 0 < ¢ < n—1, define T;41 = T[P;41] if Pi1+1 is a definition package
and T;11 = T; if Pj4; is a theorem package. In the former case, 7 is a proof that
Al is valid in T;, and in the latter case, 7 is a proof that A, is valid in T;. These
proofs may be either traditional or formal. See Chapter 12 of [20] for further details.

The validation proofs for the definitions and theorems of a development are not
included in the modules we have used to construct developments and to transport
definitions and theorems. Instead, we give in this appendix, for each of the definitions
and theorems in the developments defined in Sections 4-12, a traditional proof that
validates the definition or theorem. The proofs are almost entirely straightforward.
The proofs extensively reference the axioms, rules of inference, and metatheorems
of 2, the formal proof system for Alonzo presented in [20]. These are legitimate to
use since 2 is sound by the Soundness Theorem [20, Theorem B.11].

1910

MoNOID THEORY IN ALONZO

A.1 Development of MON

(models of MON define monoids).

Proof of the theorem. Let T = (L,I') be MON. We must show
(%) T'F MONOID(Uyarys (M xM)—M> €M)

T'F U (1)
I'E U # Q){M} (2)
LE-xan—m 4 Upn < Upn) = Upn (3)
I'Een | Uy (4)
LEVry,z2:Unpp -7 (y-2)=(x-y)- 2 (5)
LEVz:Uppy.e-x=2 (6)
[' E MONOID(Ugry, (M x M)y—M> €M) (7)

(1) and (2) follow from parts 1 and 2, respectively, of Lemma B.1; (3) follows
from [20, Axiom Ab5.2] and parts 8-10 of Lemma B.1; (4) follows from [20,
Axiom A5.2] and part 8 of Lemma B.1; (5) and (6) follow from Axioms 1
and 2, respectively, of T" and part 5 of Lemma B.1; and (7) follows from (1)—
(6) and the definition of MONOID in Table 10. Therefore, (%) holds. O

Proof of the theorem. Let A, be

Va: M x M. ((rxm)—m @)

and T'= (L,T") be MON. TOTAL is the abbreviation introduced by the nota-
tional definition given in Table 7, and so TOTAL(-(arxar)—ns) stands for A,.
Thus we must show (x) T F A,.

F|=(J:-M><M)¢ (1)
F(z:MxM)=(fstz,snd x) (2)
F (fstz)] A (snd)] (3)
F (fstx) - ((fstz) - (sndx)) = ((fstx) - (fstz)) - (snd x) (4)
= ((fstz) - (sndz))) (5)
F ((uxan—u (fsta,sndx))] (6)
T'E A, (7)

1911

FARMER AND ZVIGELSKY

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) follows
from (1) and [20, Axiom A7.4] by Universal Instantiation [20, Theorem A.14];
(3) follows from (2) by [20, Axioms A5.5, A7.2, and A7.3]; (4) follows from (3)
and Axiom 1 of T' by Universal Instantiation [20, Theorem A.14]; (5) follows
from (4) by [20, Axioms A5.4 and A5.10]; (6) follows from (5) by notational
definition; and (7) follows from (6) by Universal Generalization [20, Theorem
A.30] using (2) and the fact that (x : (M x M)) is not free in T" since T" is a
set of sentences. O

3. Thm3: Ve M. Vy:M.x-y=y-x=y)=>zr=e¢
(uniqueness of identity element).

Proof of the theorem. Let A, be
Vy:M.(x: M) y=y-(x:M)=y
and T'= (L,T") be MON. We must show (x) TEVx: M .A, =z =e.

Fu{A,} Fel

FTU{AL}E (z: M)|

FT'Uu{A,}JE(x: M) -e=e-(x:M)=e

Fr'u{As}Fe-(z:M)=(z: M) -e=(z: M)

FTU{A}E(z: M) =e
F'EA,=(x:M)=e
I'eEVe: M. A, =>z=¢

w N

ot

A~~~ N /N /N /N /N
(=) e~
~— — — ~— S ~— —

7

(1) follows from constants always being defined by [20, Axiom A5.2]; (2) follows
from variables always being defined by [20, Axiom A5.1]; (3) follows (1) and
A, by Universal Instantiation [20, Theorem A.14]; (4) follows (2) and Axiom
2 of T' by Universal Instantiation; (5) follows from (3) and (4) by the Equality
Rules [20, Lemma A.13]; (6) follows from (5) by the Deduction Theorem [20,
Lemma A.50]; and (7) follows from (6) by Universal Generalization [20, The-
orem A.30] using the fact that (z : M) is not free in I' since I' is a set of
sentences. Therefore, (%) holds. O

4. Defl: submonoidsyn_,, =
As:{M} . s# Dy A (lsxs L (s X 8) = s)Ne€s (submonoid).

Proof that RHS is defined. Let A(yy—, be the RHS of Defl. We
must show that MON F Agyn_,,l. This follows immediately from function
abstractions always being defined by [20, Axiom A5.11]. O

1912

MoNOID THEORY IN ALONZO

5. Thmé: Vs : {M} . submonoid s == MONOID(s, -|sxs,€)
(submonoids are monoids).

Proof of the theorem. Let A, be
submonoid(s)
and T'= (L,I") be MON extended by Defl. We must show

() TEVs: {M}.A, = MONOID(S, |(sxs), €)-

FU{A}Fsanl

TU{A,} Es# @{M}

DU (A0} E ffoey L (5 % 8) = 5
F'u{A,}Fees

TU{A Eels

PU{A EVZ,y, 208 [(sxs) (T, |(sxs) (¥, 2))

\]

~~ I/~ —~ —~
(@4 w
~— ~— ~— ~— ~—

= [(sxs) (l(sxs) (2,9), 2) (6)
FU{AG EVZ s [(sxs) (&,3) = |(sxs) (x,€) =2 (7)
I'U{A,} E MONOID(s, | (s, €) (8)

I'E A, = MONOID(s, | (ss), €) 9)
LEVs:{M}.A,= MONOID(s,|(sxs),e) (10)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2), (3),
and (4) follow directly from Defl; (5) follows from [20, Axiom A5.2] and (4);
(6) and (7) follow from Thml, -|(sys) E “(mrxar)—nr, and the fact that -|(,.) is
total on s x s by Thm2; (8) follows from (1)—(3) and (5)—(7) by the definition
of MONOID in Table 10; (9) follows from (8) by the Deduction Theorem [20,
Theorem A.50]; and (10) follows from (9) by Universal Generalization [20,
Theorem A.30] using the fact that (s: {M}) is not free in I" since I is a set of
sentences. Therefore, (%) holds. O

6. Thmb: submonoid {e} (minimum submonoid).

Proof of the theorem. Let T = (L,I") be MON extended by Defl. We

1913

FARMER AND ZVIGELSKY

must show (%) 7' F submonoid {e}.

F'Eec{e} (1)
I'E{e} # 0oy (2)
F'Fe-e=e (3)
I'E -lfepxqer 4 (e} x {e}) = {e} (4)
I' E submonoid {e} (5)
(1) is trivial; (2) follows from (1) because {e} has at least one member; (3)
follows from Axiom 2 of T" by Universal Instantiation [20, Theorem A.14]; (4)

follows directly from (1), (3), and the fact that the only member of {e} is e;
and (5) follows from (1), (2), (4), and Defl. Therefore, (x) holds. O

7. Thm6: submonoid Uy, maximum submonoid).
{M}

Proof of the theorem. Let T'= (L,I') be MON extended by Defl. We
must show (x) T'F submonoid Uy pyy.

[' & MONOID(Ugarys (M x)= ©) (1)
T E Uiy # Oy Ae € Uy (2)
U'F v <uan $ Uy X Upay) = Uy (3)
I" & submonoid Uy sy (4)

(1) is Thml; (2) follows immediately from (1); (3) follows from (1) by part
12 of Lemma B.1; and (4) follows from (1), (2), (3), and Defl. Therefore, ()

holds. O
8. Def2: -(()]I\)/[XM)%M =Ap: M x M. (sndp) - (fstp) (opposite of -).
Proof that RHS is defined. Similar to the proof that the RHS of Defl is
defined. O

9. Thm7: Va,y,z: M . x P (y -°P 2) = (x -°P y) -°P 2
(-°P is associative).

Proof of the theorem. Let A, be
z P (y P z)=(z-Py) Pz

and T'= (L,I") be MON extended by Def2. We must show
(x) TEVx,y,2: M. A,.

1914

MoNOID THEORY IN ALONZO

10.

11.

Tk (z: MYLA(y: M)A (2: M)) (1)
I'E(z-y)-z=2(y) (2)
TE A, (3)
F'eve,y,z: M. A, (4)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) follows
from (1) and Axiom 1 of T' by Universal Instantiation [20, Theorem A.14] and
the Equality Rules [20, Theorem A.13]; (3) follows from Lemma B.2 and (2)
by repeated applications of Rule R2" [20, Lemma A.2] using (%) the fact that
(x: M), (y: M), and (z : M) are not free in I" since I' is a set of sentences;
and (4) follows from (3) by Universal Generalization [20, Theorem A.30] again
using (#*). Therefore (%) holds. O

Thm8: Vax : M .e Py =g Pe=yg

(e is an identity element with respect to -°P).

Proof of the theorem. Let A, be
e Pr=x-Pe=zg
and T'= (L,T") be MON extended by Def2. We must show

(x) TEVz: M. A,.

e(x:M)| (1)
F'Ezx-e=e-z==x (2)
TE A, (3)
TEVa: M. A, (4)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) follows
from (1) and Axiom 2 of T' by Universal Instantiation [20, Theorem A.14] and
the Equality Rules [20, Theorem A.13]; (3) follows from Lemma B.2 and (2)
by repeated applications of Rule R2' [20, Lemma A.2] using (x*) the fact that
(x : M) is not free in I' since I' is a set of sentences; and (4) follows from (3)
by Universal Generalization [20, Theorem A.30] again using (*x). Therefore
(%) holds. O

Def3: O myx{my)—{my = SEE-OP (M x M)— M)~ ({M}x {M})—{M}) *
(set product).

1915

FARMER AND ZVIGELSKY

12.

13.

Proof that RHS is defined. Let A({M}X{M})%{M} be the RHS of Def3. We
must show (x) MON F A ({anx{ar})—{am}d- Since constants are always defined
by [20, Axiom A5.2], A (anyx{a})—{am} beta-reduces to a function abstraction
by [20, Axiom A4]. Since every function abstraction is defined by [20, Axiom
A5.11], we have (%) by Quasi-Equality Substitution [20, Lemma A.2]. O

Def4: Eqary = {em} (set identity element).

Proof that RHS is defined. We must show (x) MON F {ea}]. Now {es}
stands for

Azy M . Az M.z =x1)(en).
Since constants are always defined by [20, Axiom A5.2], {exs} beta-reduces to
Ax:M.x=ey

by [20, Axiom A4]. Since every function abstraction is defined by [20, Axiom

A5.11], we have (x) by Quasi-Equality Substitution [20, Lemma A.2]. O
Thm9: Vz,y,z: {M} . 20 (y02)=(x0y) Oz (® is associative).
Proof of the theorem. Let T = (L,I") be MON extended by Def3. We
must show

() TEVz,y,z: {M} .20 (y0z) =0y O =

Pk (s (MLA G {MPLA (2 (M) 1)
F'Fzo(yoz) =

{d:M|Ja:xz,b:y,c:z.d=a-(b-c)} (2)
F'E(zoy) ©z=

{d:M|3Ja:z,b:y,c:z.d=(a-b)-c} (3)
FrEz0yo2)=(0y) Oz (4)
FEVze,y,z:{M} . 20y02)=x0y) Oz (5)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) and
(3) follow from (1) and Def3; (4) follows from (2) and (3) by Axiom 1 of T'; and
(5) follows from (4) by Universal Generalization [20, Theorem A.30] using the
fact that z, y, and z are not free in I' since I is a set of sentences. Therefore,
(%) holds. O

1916

MoNOID THEORY IN ALONZO

14.

15.

16.

Thml0: Vo : {M} ECzrz=20E=2
(E is an identity element with respect to ®).

Proof of the theorem. Let T'= (L,I') be MON extended by Def3 and
Def4. We must show

x)TEVz:{M} . EGz=20E=ux.

IE(z: {M})] (1)
I'FE| (2)
FrEE0xz={b:M|Ja:xz.b=e-a} (3)
F'Erz0E={b:M|Ja:xz.b=a-¢e} (4)
Fr'FEGzr=20E=z (5)
FEvVe:{M} EGQzr=20E==x (6)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) follows
from constants always defined by [20, Axiom A5.2]; (3) and (4) follow from
(1), (2), Def3, and Def4; (5) follows from (3) and (4) by Axiom 2 of T; and
(6) follows from (5) by Universal Generalization [20, Theorem A.30] using the
fact that « is not free in I" since I' is a set of sentences. Therefore, (x) holds. O

Thm11 (Thml-via-MON-to-opposite-monoid):

MONOID (U sy, '?]?4><M)—>M’ en) (opposite monoids are monoids).
Proof of the theorem. Let T be the top theory of MON-1. We must
show T' £ Thmll. We have previously proved (x) MON E Thml. & =
MON-to-opposite-monoid is a development morphism from MON to MON-1,

and so ® = (u,v) is a theory morphism from MON to 7. Thus (%) implies
T E v(Thml). Therefore, T'F Thm1l since Thm1l = v(Thml). O

Thm12 (Thml-via-MON-to-set-monoid):
MONOID(Uy(aryy, ©O((aryx {mp)— (> Eqar})

(set monoids are monoids).

Proof of the theorem. Similar to the proof of Thm1l. O

Development of COM-MON

(models of COM-MON define commutative monoids).

1917

FARMER AND ZVIGELSKY

Proof of the theorem. Let T = (L,I') be COM-MON. We must show

[' & MONOID (U sy, (M x M)— 0> €M) (1)
LEVz,y:Uppy -2 y=y-z (2)
(1) follows from MON < T and the fact that Thml is a theorem of MON;

and (2) follows from Axiom 3 of 7' and part 5 of Lemma B.1. Therefore,
(%) follows from (1), (2), and the notational definition of COM-MONOID given

in Table 10. u
2. Def5: <prspso=Ax,y:M.Jz: M.z 2=y (weak order).
Proof that RHS is defined. Similar to the proof that the RHS of Defl is
defined. O
3. Thmld: Vo : M .x <z (reflexivity).

Proof of the theorem. Let T = (L,I') be COM-MON extended by Def5.
We must show

(x) TEVz: M.z <zx.

LE (z: M)] (1)
F''e(x<z)~(Fz:M.zx-z=1x) (2)
FEz-e=x (3)
F'edz:M.z-z=2x (4)
Fr'Ezx<x (5)
FeEve:M.x<x (6)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) follows
from Defb and Extensionality [20, Axiom A3] using the Substitution Rule [20,
Theorem A.31] and Beta-Reduction [20, Axiom A4]; (3) follows from (1) and
Axiom 2 of T' by Universal Instantiation [20, Theorem A.14]; (4) follows from
(3) by Existential Generalization [20, Theorem A.51]; (5) follows from (2)
and (4) by Rule R2' [20, Lemma A.2]; and (6) follows from (5) by Universal
Generalization [20, Theorem A.30] using the fact that x is not free in I" since
' is a set of sentences. Therefore, (x) holds. O

1918

MoNOID THEORY IN ALONZO

4. Thmls: Vo,y,z: M. (z<yAy<z)=>zx <z (transitivity).

Proof of the theorem. Let A, be (z <yAy<z), B, bez- -u=y, and
C, be y - v = z (where these variables all have type M). Also let T = (L,T")
be COM-MON extended by Def5. We must show

(x)TEVz,y,z: M. A, =z <z

TU{B,,Cot E(x: M)LA(y: M)A (z: M)A (uw: M)A

(v: M) 1)
Fu{B,,CotE(r-u) - v==z (2)
FTUu{B,,C}E(x-u)-v=o-(u-v) (3)
Fru{B,,ClFz-(u-v)==z (4)
FTu{B,,CtEJw: M.z - w=z (5)
FU{BotE(y-v=2)=Fw: M.z - w=2) (6)
Tu{Bo)FEv: M.y v=2)=3w: M.z - w=z) (7)
FrE(x-u=y)=
(Bv:M.y-v=2)=Fw: M.z w=2)) (8)
FreEGu:M.z-u=y) =
(Bv:M.y-v=z2)=3w: M.z - w=z)) 9)
FrEz<y=(y<z=zx<z) (10)
A, =>x<z (11)
'eEve,y,z2: M. A, =>z<z (12)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) fol-
lows from B, and C, by the Equality Rules [20, Lemma A.13]; (3) follows
from Axiom 1 of T' by Universal Instantiation [20, Theorem A.14]; (4) fol-
lows from (2) and (3) by the Equality Rules [20, Lemma A.13]; (5) follows
from (1), (4), and Thm2 by Existential Generalization [20, Theorem A.51];
(6) and (8) follow from (5) and (7), respectively, by the Deduction Theorem
[20, Theorem A.50]; (7) and (9) follow from (6) and (8), respectively, by Exis-
tential Instantiation [20, Theorem A.52]; (10) follows from (1), (9), and Def5
by Beta-Reduction [20, Axiom A4] and Alpha-Conversion [20, Theorem A.18];
(11) follows from (10) by the Tautology Rule [20, Corollary A.46]; and (12) fol-
lows from (11) by Universal Generalization [20, Theorem A.30] using the fact
that x, y, and z are not free in I" since I is a set of sentences. Therefore, (x)
holds. O

1919

FARMER AND ZVIGELSKY

A.3 Development of FUN-COMP

1. Thml6: Vf: A— B, g: B—-C,h:C—D.fo(goh)=(fog)oh
(o is associative).

Proof of the theorem. Let A, be the theorem and T = (L,I") be
FUN-COMP. We must show (x) T F A,.

FE(f:A=B)lA(g:B—=>C)ANh:C—=D)|A(z:A)l (1)
L'E((fog)oh)z~h(g(fz)) (2)
L'E(fo(goh))z=h(g(fz)) (3)
LPE((fog)oh)z=(fo(goh))x (4)
I'EVaz:A. (fo(goh))z~((fog)oh)x (5)
I'Efo(goh)=(fog)oh (6)
TE A, (7)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) and
(3) both follow from (1), the definition of o in Table 9, function abstractions
are always defined by [20, Axiom A5.11], ordered pairs of defined components
are always defined by [20, Axiom A7.1], Beta-Reduction [20, Axiom A4], and
Quasi-Equality Substitution [20, Lemma A.2]; (4) follows from (2) and (3) by
the Quasi-Equality Rules [20, Lemma A.4]; (5) follows from (4) by Universal
Generalization [20, Theorem A.30] using the fact that z is not free in I' since
I' is a set of sentences; (6) follows from (5) by Extensionality [20, Axiom A3];
and (7) follows from (6) by Universal Generalization using the fact that f, g,
and h are not free in I since I is a set of sentences. Therefore, () holds. O

2. Thml7: Vf:A%B.idAHAOf:fOidBHBZf

(identity functions are left and right identity elements).

Proof of the theorem. Let A, be the theorem and T" = (L,T") be

1920

MoNOID THEORY IN ALONZO

FUN-COMP. We must show (x) T'F A,.

F'E(f:A—= B)lA(x:A)] (1)
FE(dasaofla~ fo (2)
FE(foidpup)x~ fx (3)
FeEvae:A.(dasgo flz~ fz (4)
FEVz:A.(foidp.p)r~ fx (5)
IEidasaof=Ff (6)
Tk foidpog=f (7)
I'Fidasaof=foidpup=f (8)
I'EA, 9)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) and (3)
both follow from (1), the definitions of id and o in Table 9, function abstractions
are always defined by [20, Axiom A5.11], ordered pairs of defined components
are always defined by [20, Axiom A7.1], Beta-Reduction [20, Axiom A4], and
Quasi-Equality Substitution [20, Lemma A.2]; (4) and (5) both follow from (2)
and (3), respectively, by Universal Generalization [20, Theorem A.30] using the
fact that « is not free in I' since I" is a set of sentences; (6) and (7) follow from
(4) and (5), respectively, by Extensionality [20, Axiom A3]; (8) follows from
(6) and (7) by the Equality Rules [20, Lemma A.13]; and (9) follows from (8)
by Universal Generalization using the fact that f is not free in I since I' is a
set of sentences. Therefore, (x) holds. O

A.4 Development of ONE-BT

1. Thm18 (Thm16-via-FUN-COMP-to-ONE-BT):
Vfgh:S—S.fo(goh)=(fog)oh (o is associative).

Proof of the theorem. Similar to the proof of Thm11. O

2. Thm19 (Thm17-via-FUN-COMP-to-ONE-BT):
Vf:S—=8.idsysof=foidsys=f
(ids—s is an identity element with respect to o).

Proof of the theorem. Similar to the proof of Thm1l. O

3. Def6 (Defl-via-MON-to-ONE-BT):
trans-monoid 5,510 =

As:{S—S}.

1921

FARMER AND ZVIGELSKY

A.5

s # Ds—sy A

TOTAL-ON(0((5-58)x (5-55))—(S—5) lsxs5 § X 8,8) A

ids_,g € s (transformation monoid).
Proof that RHS is defined. Let A%M}_m be the RHS of Defl, A%S_)S}_m

be the RHS of Def6, 77 be MON, and 75 be ONE-BT, the top theory of
ONE-BT-1. We must show 75 F A%S —8§}—ot- We have previously proved (%)

T E A%M}HOL MON-to-ONE-BT = (u,v) is a theory morphism from 77 to
T5. Thus (%) implies Ty F V(A%M}_mi,). Therefore, T5 F A%S%S}_mi since

A%S—)S}—m = V(A%M}—m)- U

. Thm20 (Thm4-via-MON-to-ONE-BT):

Vs:{S—S}.
trans-monoid s = MONOID(s, 0((5—.5)x (5=5))—(S—5) lsxs; ids—.5)
(transformation monoids are monoids).

Proof of the theorem. Similar to the proof of Thm11. O

Development of MON-ACT

. Thm21: MON-ACTION(Uary, Ugsy, *(Mx M)—M> €M ACt (M x $)—)

(models of MON-ACT define monoid actions).
Proof of the theorem. Let T = (L,I") be MON-ACT. We must show

() T'F MON-ACTION(U{ary, Ugsy, - (Mx i) — M €M, aCt (A1 x 5))

T = MONOID(Ugpy, (a1 by s a1 €11 (1)
Ik Uyl)
I'EUssy # 015y (3)
I'Fact(yxs)—ss + (Upy x Ugsy) = Ursy (4)
LEVz,y:Uppy, s: Uisy - wact (yacts) = (v - y) act s (5)
[EVs: Uy .eacts=s (6)
T = MON-ACTION(U{ 111, Ugsy (0 M) —s 0 » €M At (11 5)55) (7)

(1) follows from MON E Thm1l and MON < T’; (2) and (3) follow from parts 1
and 2, respectively, of Lemma B.1; (4) follows from [20, Axiom 5.2] and parts
8-10 of Lemma B.1; (5) and (6) follow from Axioms 3 and 4, respectively, of
T and part 5 of Lemma B.1; and (7) follows from (1)—(6) and the definition of
MON-ACTION in Table 10. Therefore, (x) holds. O

1922

MoNOID THEORY IN ALONZO

Thm22: TOTAL(act(arxs)—5) (act is total).
Proof of the theorem. Let T = (L,I') be MON-ACT.

TE TOTAL(aCt(MXS)HS)
follows from Axiom 3 of T' in the same way that T' F TOTAL(:(arxar)—nr)

follows from Axiom 1 of MON as shown in the proof of Thm2. O
. Def7: orbitg_,qsy =As: 5. {t:5|3x: M.xacts=t} (orbit).
Proof that RHS is defined. Similar to the proof that the RHS of Defl is
defined. O
. Def8: stabilizerg_,psy =As:S.{z: M |zacts=s} (stabilizer).
Proof that RHS is defined. Similar to the proof that the RHS of Defl is
defined. O
. Thm23: Vs : .S . submonoid (stabilizer s) (stabilizers are submonoids).

Proof of the theorem. Let T = (L,I') be MON-ACT extended by Def7
and Def8. We must show

(x) T EVs:S.submonoid (stabilizer s).

I'E(s:9)]

I'Femul

I' E (stabilizers) = {x : M | x act s = s}
I' E e € (stabilizer s)

I (stabilizer s) # Oypn

[\

N

A~~~ I/~ I/~
(@4 w
~— — — ~— ~—

[' ¥ +|(stabilizer s) x (stabilizer s) +

((stabilizer s) x (stabilizer s)) — (stabilizer s) (6)
I & (stabilizer s)] (7)
I' E submonoid (stabilizer s) =

(stabilizer s) # Dyany A

*| (stabilizer s) x (stabilizer s) +

((stabilizer s) x (stabilizer s)) — (stabilizer s) A

e € (stabilizer s) (8)
I E submonoid (stabilizer s) 9)
I'EVs:S. submonoid (stabilizer s) (10)

1923

FARMER AND ZVIGELSKY

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) follows
from constants always being defined by [20, Axiom A5.2]; (3) follows from Def8
by the Equality Rules [20, Lemma A.13] and Beta-Reduction [20, Axiom A4|
applied to (1) and the RHS of the result; (4) follows from (3) and Axiom 4 of
T; (5) follows immediately from (4); (6) follows from Thm2, (3), and Axiom 3
of T; (7) follows from (3) and [20, Axiom A5.4]; (8) follows from Defl by the
Equality Rules and Beta-Reduction applied to (7) and the RHS of the result;
(9) follows from (4), (5), (6), and (8) by the Tautology Rule [20, Corollary
A.46]; (10) follows from (9) by Universal Generalization [20, Theorem A.30]
using the fact that s is free in I because I is a set of sentences. Therefore, (*)
holds. O

5. Thm24 (Thm21-via-MON-ACT-to-MON):
MON-ACTION(U{ary, Uparys *(Mx M) Ms €M * (M x M)— M)
(first example is a monoid action).

Proof of the theorem. Similar to the proof of Thm11. O

A.6 Development of ONE-BT-with-SC

1. Thm25 (Thm21-via-MON-ACT-to-ONE-BT-with-SC):
MON-ACTION(F5_, 5},
Uysys
O((S=8)x (S—5))—(S—S) |[FxF
ids—s,
®((S—8)xS)—S|Fxs)
(second example is a monoid action).

Proof of the theorem. Similar to the proof of Thm11. O

A.7 Development of MON-HOM

1. Thm26:
MON-HOM (Uyyy, 3,
Uiz}
“(My x My)— M s
eM17
(Mg x Ma)—Ma >
€M>,

h Mi—Ma)
(models of MON-HOM define monoid homomorphisms).

1924

MoNOID THEORY IN ALONZO

Proof of the theorem. Let T = (L,T") be MON-HOM and A, be

MON_HOM(U{M1}7 U{Mg}: “(My X My)—My s €M1y " (Max Mz)—Mas

eM27 hM1~>M2)'

We must show (%) T'F A,,.

[' EF MONOID(Ugaz,}» (M x My)My €M7) (1)
I' E MONOID(U{as,}, (Mo x Ma) s Ma » €5) (2)
I'Ehan—as 3 Uiy = Uy 3)
LEVry:Uppy -h(z-y)=(hz)-(hy) (4)
I'EA, (5)

(1) and (2) follow similarly to the proof of Thml; (3) follows from [20, Ax-
iom 5.2] and parts 8 and 9 of Lemma B.1; (4) follows from Axiom 5 of 7" and
part 5 of Lemma B.1; (5) follows from (1)—(4), Axiom 6 of T', and the definition
of MON-HOM in Table 10. Therefore, (%) holds. O

Thm27: TOTAL(hM1_>M2) (hM1—>M2 is total).
Proof of the theorem. Let T = (L,I') be MON-HOM.

T E TOTAL(has, -as,)

follows from Axiom 5 of T' in the same way that T F TOTAL(-(arxn)—nm)
follows from Axiom 1 of MON as shown in the proof of Thm2. O

2. Thm28 (Thm26-via-MON-HOM-to-MON-4)

MON-HOM (U3,
Uiy
(MxM)—M>
€M,
“{M}x{M})—={M}>
E{M}7
hyv—iary) (example is a monoid homomorphism).

Proof of the theorem. Similar to the proof of Thm11. O

A.8 Development of MON-over-COF

1. Def9: prOdR—>R—>(R—>M)—>M =

1925

FARMER AND ZVIGELSKY

Vm,n:Zipy, g Zigy > M. fmng~
(m>n—el|(fm(n-—1)g)-(gn)) (iterated product).

Proof that RHS is defined. Let

Ao, =VYm,n:Zpy,9:Zgy > M. fmng~
(m>n—el(fm(n—1)g)-(gn)).
Suppose that two functions f; and f5 satisfy A,. It is easy to see that f; and

fo must be the same function based on the recursive structure of f in A,.
Thus, A, specifies a unique function, and so the RHS of Def9 is defined by

[20, Axiom A6.1]. O
2. Thm29: ¥m : Z(ny, 9 Zgry — M . (ﬁ gi) = gm

(trivial product).

Proof of the theorem. Let A, be the theorem and T = (L,I") be
COM-MON-over-COF extended with Def9. We must show (x) T F A,.

Let A be the set {m € Zypy,9 € Z{gy — M}.

TUAF (m:RLA(g: R — M)} (1)
ruar (1o = (o) am)
Pum:(nﬁlgi).gm:egm (3)
FUAIZet;;n:gm (4)
FUAIZ(ﬁgi):gm (5)

Fleio_m (6)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) and
(3) follow from (1) and Def9; (4) follows from Axiom 20 of T'; (5) follows from
(2), (3), and (4) by the Quasi-Equality Rules [20, Lemma A.4]; and (6) follows
from (5) by the Deduction Theorem [20, Theorem A.50] and by Universal
Generalization [20, Theorem A.30] using the fact that m and g are not free in
I" since I is a set of sentences. Therefore, (x) holds. O

1926

MoNOID THEORY IN ALONZO

3. Thm30: ‘v’m,k‘,n : Z{R}? qg: Z{R} — M .
k n n
m<k<n:>(.1_[gi)-(I1 gi)f:.Hgi
i=m i=k+1 1=m
(extended iterated product).

Proof of the theorem. Let A, be the theorem and T = (L,T") be
MON-over-COF extended by Defd. We must show (a) T'F A,,.

Let A be the set
{m S Z{R},k S Z{R},n S Z{R}7m <k< n}

We will prove

k n

mruar(Ile)- (11 o) = (1191

i=k+1

from all n > k by induction on the n.

Base case: n =k + 1. Then:
FTUAEm:RUNE:RIANMN:R)IAN(g:R— M)| (1)
k n k
FUA#(Hgi)~(Hgi>:<ng’)~gn (2)
i=m i=k+1 i=m
FUAIZ(f[gi)-gn:(f[gi) (3)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) follows
from n = k + 1 and Thm29; and (3) follows from n = k + 1, (1), and Def9.
Thus (b) holds by the Quasi-Equality Rules [20, Lemma A.4] when n = k + 1.

Induction step: n >k + 1 and assume

TUAE (igz) : (nf[l gi) ~ (Egz)

i=k+1

1927

FARMER AND ZVIGELSKY

Then:
FTUAEm:RUNE:RIANMN:R)IAN(g:R— M)] (1)
k n k n—1
FUA#(HQ@')~(Hgi):(ng’)~((Hgi>'gn) (2)
i=m i=k-+1 i=m i=k+1

k n—1 n—1
FUA!Z(Hgi)-((Hgi)-gn):(Hgi)-gn (3)

i=m i=k+1 i=m
FUA#(ﬁgi)-gn:(f[gi) (4)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) and
(4) follows from (1) and Def9; and (3) follows from Axiom 19 of 7" and the
induction hypothesis. Thus (b) holds by the Quasi-Equality Rules [20, Lemma
A 4] when n >k + 1.

Therefore, (b) holds for all n > k, and (a) follows from this by the Deduction
Theorem [20, Theorem A.50] and by Universal Generalization [20, Theorem
A.30] using the fact that m, k, n, and g are not free in I since I' is a set of
sentences. O

A.9 Development of COM-MON-over-COF

1. Thm31: VTn,n: Z{R},g,h: Z{R}—é M.
(I gi) - (1T hi) = II (99) - (hi)

1=m

(product of iterated products).

Proof of the theorem. Let A, be the theorem and T = (L,T') be
COM-MON-over-COF extended by Def9. We must show (a) T'F A,.

Let A be the set {n € Z(gy,g € Zypy — M}. We will prove

n n

FUAIZ(ng)-(th): (g1) - (hi)

I

(3

for all n by induction on the n.

1928

MoNOID THEORY IN ALONZO

Base case: n < m. Then:

TUAEMn:R)JA(g:R— M){ (1)
FUAIZ(ng)-(th): : (2)
FUAIZﬁ (gi) - ~e (3)

(1) follows from variables always being defined by [20, Axiom A5.1]; and
(2) and (3) follow from n < m, (1), and Def9. Thus (b) holds by Axiom
20 of T" and the Quasi-Equality Rules [20, Lemma A.4] when n < m.

Induction step: n > m and assume

n—1 n—1 n—1

TUAFE (1__[9@'> : (1_'[m') gl_‘[(g3) - (hi).
Then:

TUAEMm:R)JA(g: R— M)| (1)
FUA#(ﬁgz) (th):(hgz)-gn~<ﬁhi)-hn (2)
FUA#(ﬁgi) -gn - (1__[hi) -hn ~

(nl_:[lgz) : (ﬁlhi> -gn-hn (3)
FUA#(ﬁgi)-(ﬁlhi>-gn ~

(ﬁ(m) (hi)) - (gn - hn) (4)
ruAh(chqz)-(>)-<gn-hn>:f[(g7) - (i) (5)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) and
(5) follow from (1) and Def9; (3) follows from Axiom 21 of T’; and (4) follows
from the induction hypothesis. Thus (b) holds by the Quasi-Equality Rules
[20, Lemma A.4] when n > m.

1929

FARMER AND ZVIGELSKY

Therefore, (b) holds for all n, and (a) follows from this by the Deduction
Theorem [20, Theorem A.50] and by Universal Generalization [20, Theorem
A.30] using the fact that n and g are not free in I" since I is a set of sentences. O

A.10 Development of COM-MON-ACT-over-COF

1. Thm32: Y,y : M, s: S .z act (y act s) = y act (x act s)
(act has commutative-like property).

Proof of the theorem. Let A, be the theorem and 7" = (L,I') be
COM-MON-ACT-over- COF. We must show (x) T'F A,.

FE(x:MIA@y: MLA(s:S)] (1)
'Exzact(yacts) = (z-y)acts (2)
I'Eyact(zacts) = (y-z)acts (3)
F'ez-y=y- (4)
I'Eyact(zacts) = (x-y)acts (5)
I'E zact (y acts) = y act (z act s) (6)
Tk A, (7)

(1) follows from variables always being defined by [20, Axiom A5.1]; (2) and (3)
follow from (1) and Axiom 22 of T by Universal Instantiation [20, Theorem
A.14]; (4) follows from (1) and Axiom 21 of T' by Universal Instantiation;
(5) follows from (4) and (3) by Quasi-Equality Substitution [20, Lemma A.2];
(6) follows from (2) and (5) by the Equality Rules [20, Lemma A.13]; (7) follows
from (6) by Universal Generalization [20, Theorem A.30] using the fact that «,
y, and s are not free in I since I" is a set of sentences. Therefore, (x) holds. O

A.11 Development of STR

1. Defl0: strip_, 4y = [A] (string quasitype).

Proof that RHS is defined. Let T be the top theory of STR-1. We must
show (x) T E [A]]. Now [A] stands for

{s: {(A)) | Eln:CiVR} .Vm:Cf[R} .(sm)l & Caaomn}

based on the notational definitions in Table 12. Thus (%) holds because func-
tion abstractions are always defined by [20, Axiom A5.11]. O

1930

MoNOID THEORY IN ALONZO

2. Defll: epa=[]pa (empty string).

Proof that RHS is defined. Let T be the top theory of STR-1. We must
show (x) T'F []z 44- Now []p_, 4 stands for

Ar:R. 1y

based on the notational definitions in Tables 4 and 12. Thus (%) holds because
function abstractions are always defined by [20, Axiom A5.11]. O

Defl2: cat((r—sA)x(R—A4))>(R—>A) = TH(R—sA)>(R—>A)—(R—A)
(concatenation).

Proof that RHS is defined. Let T be the top theory of STR-1. We must
show

(%) T'F ++(R—A)—> (R A)—(R—A) -

The pseudoconstant ++ (4 8)—(a—g)—(a—g) 1S defined in Table 12. For all «
and B, +4(a—8)-s(a—p)—(a—sp) denotes the concatenation function for finite
sequences over the denotation of 5. Therefore, (x) holds. O
3. Thm33: Vo :str.ex =xe =z (€ is an identity element).
Proof of the theorem. LetT = (L,I) be the top theory of STR-1 extended
by Defl0-Defl2. We must show:
(a) TEVx:str.ex =x.
(b) TEVx:str.ze=uz.

Let A be the set {x € str}. Then:

TUAFer=ux (1)
FEVz:str.ex ==z (2)

(1) follows from x € str and Def12; and (2) follows from (1) by the Deduction
Theorem [20, Theorem A.50] and then by Universal Generalization [20, The-
orem A.30] using the fact that (x : R — A) is not free in I" since I is a set of
sentences. Therefore, (a) holds.

We will prove (¢) I' U A F ze = x by induction on the length of .

Base case: = is €. Then I' U A F ee = € is an instance of (1) above.

1931

FARMER AND ZVIGELSKY

Induction step: x is (a :: y) and assume I' U A F ye = y. Then:

FT'UAE (a:y)e=(a:: ye) (1)
FTUAE (a::ye)=(a:y) (2)
(1) follows from x € str and Defl2; and (2) follows from the induction hy-

pothesis and (1) by Quasi-Equality Substitution [20, Lemma A.2]. Thus
FTUAFE (a::y)e = (a:: y) holds by the Equality Rules [20, Lemma A.13].

Therefore (c) holds, and (b) follows from (c) by the Deduction Theorem |20,
Theorem A.50] and then by Universal Generalization [20, Theorem A.30] using
the fact that (z: R — A) is not free in I' since I is a set of sentences. O

4. Thm34: Vo, y,z :str. x(yz) = (xy)z (cat is associative).

Proof of the theorem. LetT = (L,I") be the top theory of STR-1 extended
by Defl0-Def12. We must show

(a) TEVx,y,z:str.x(yz) = (zy)z.
Let A be the set {z € str,y € str, z € str}. We will prove
(b)) TUAE z(yz) = (2y)z

by induction on the length of x.

Base case: x is €. Then:
FTUAE e(yz) = (yz) (1)
FTUAE (yz) = (ey)= (2)

(1) and (2) follow from Thm33. Thus I' U A F €(yz) = (ey)z holds by the
Equality Rules [20, Lemma A.13].

Induction step: x is (a :: w) and assume I' U A F w(yz) = (wy)z. Then:

FTUAE (a:w)(yz) =a: w(yz) (1)
FT'UAFa:w(yz) =a: (wy)z (2)
FT'uAFa: (wy)z = (a:wy)z (3)
FTUAE (a:wy)z=((a:w)y)z (4)

(1), (3), and (4) follow from = € str, y € str, and z € str and Defl2; and
(2) follows from the induction hypothesis. Thus

TUAFE (a:w)(yz) = ((a::w)y)z

MoNOID THEORY IN ALONZO

holds by the Equality Rules [20, Lemma A.13].

Therefore (b) holds, and (a) follows from (b) by the Deduction Theorem [20,
Theorem A.50] and then by Universal Generalization [20, Theorem A.30] using
the fact that (x : R— A), (y : R— A), and (2 : R — A) are not free in I'
since I' is a set of sentences. a

. Thm35 (Thm1-via-MON-over-COF-to-STR-2):

MONOID(str{r s A}, Cat((R—A)x (R—A))—s(R—+A), ER—A)
(strings form a monoid).

Proof of the theorem. Similar to the proof of Thml11. O

. Def13 (Def3-via-MON-over-COF-to-STR-2):
set-Cat({R A} x{R—A}) o {R—A} =
Set-OP((R—A)x (R—A))—(R—A))—(({R—A} x {R—A})—{R—A}) €at
(set concatenation).

Proof that RHS is defined. Similar to the proof that the RHS of Def6 is
defined. O

. Defl14 (Def4-via-MON-over-COF-to-STR-2):

E(roay = {€r—a} (set identity element).
Proof that RHS is defined. Similar to the proof that the RHS of Def6 is
defined. O

. Thm36 (Thm12-via-MON-over-COF-1-to-STR-2):
MONOID(P(str{r_.a}), set-cat({r A} x{R—A})—{R—A}» E{r—4})
(string sets form a monoid).

Proof of the theorem. Similar to the proof of Thm1l. O

. Def15 (Def9-via-MON-over-COF-1-to-STR-2):
iter-catr g (R (R—A))—>(R—A) =
If : Z{R} — Z{R} — (Z{R} — (R — A)) — (R — A) .
Vm,n: Zgy, 9: Zry > (R—A) . fmng~
(m>ne—e|(fmn—1)g)cat (gn))
(iterated concatenation).

Proof that RHS is defined. Similar to the proof that the RHS of Def6 is
defined. O

1933

FARMER AND ZVIGELSKY

B Miscellaneous theorems
Lemma B.1 (Universal Sets). The following formulas are valid:
1. Upayd-
2. Utay # 0oy
3. Vr:a.xeUy.
(Ax:a.Bg)=(Ax:Uiy - Bg).
5. (Vx:a.By) & (Vx: Uiy - By).
(Ix:a.B,) & (Fx: U - Bo).
(Ix:a.By) ~Ix:Uyy - By).
8 Anl & (AalUiny)
9. Utasgy = (Uta} = Ugsy)-
10. Utaxgy = (Uta} * Ugsy)-
11. Ugayy = P(Uiay)-
12. A(axpyoy = A(OtXB)%’le{a}XU{B}'
Proof The proof is left to the reader as an exercise. O
Lemma B.2. Let T' be MON extended by the definition Def2. The formula
Ay °P By~ By - Ay
is valid in T
Proof Let X, be
Ay - *By ~Buy - A,

N be a model of T, and ¢ € assign(N). Suppose that VéV(AM) or VéV(BM) is
undefined. Then clearly VX(X,) = T. Now suppose that V2 (Ay) and V)Y (Byy)
are defined. Then Vé\' (X,) = T by Def2. O

1934

MoNOID THEORY IN ALONZO

References

[1]
2]

P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. Springer, second edition, 2002.

P. B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfennig, and H. Xi. TPS: A
theorem-proving system for classical type theory. Journal of Automated Reasoning,
16:321-353, 1996.

E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Briickner, P. D. Mosses, D. Sannella,
and A. Tarlecki. CASL: the Common Algebraic Specification Language. Theoretical
Computer Science, 286:153-196, 2002.

S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an evolutionary formal
software-development using CASL. In D. Bert, C. Choppy, and P. D. Mosses, editors,
Recent Trends in Algebraic Development Techniques (WADT 1999), volume 1827 of
Lecture Notes in Computer Science, pages 73—88. Springer, 1999.

C. Ballarin. Locales: A module system for mathematical theories. Journal of Automated
Reasoning, 52:123-153, 2014.

A. Bordg, L. Paulson, and W. Li. Simple type theory is not too simple: Grothendieck’s
schemes without dependent types. Ezperimental Mathematics, 31:364-382, 2022.

A. Bove, P. Dybjer, and U. Norell. A brief overview of Agda — A functional language
with dependent types. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors,
Theorem Proving in Higher Order Logics (TPHOLs 2009), volume 5674 of Lecture
Notes in Computer Science, pages 73—78. Springer, 2009.

A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and
S. F. Smith. Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, 1986.

L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The Lean theorem
prover (system description). In A. P. Felty and A. Middeldorp, editors, Automated
Deduction — CADE-25, volume 9195, pages 378-388, 2015.

Epigram: Marking Dependent Types matter. http://www.e-pig.org/. Accessed on
3 January 2025.

F*. https://wuw.fstar-lang.org/. Accessed on 3 January 2025.

W. M. Farmer. A partial functions version of Church’s simple theory of types. Journal
of Symbolic Logic, 55:1269-91, 1990.

W. M. Farmer. A simple type theory with partial functions and subtypes. Annals of
Pure and Applied Logic, 64:211-240, 1993.

W. M. Farmer. Theory interpretation in simple type theory. In J. Heering, K. Meinke,
B. Moller, and T. Nipkow, editors, Higher-Order Algebra, Logic, and Term Rewriting
(HOA 1993), volume 816 of Lecture Notes in Computer Science, pages 96—123. Springer,
1994.

1935

FARMER AND ZVIGELSKY

[16]

[17]

[18]

[19]

[20]

[22]

[23]

[24]

W. M. Farmer. Formalizing undefinedness arising in calculus. In D. A. Basin and
M. Rusinowitch, editors, Automated Reasoning — IJCAR 2004, volume 3097 of Lecture
Notes in Computer Science, pages 475-489. Springer, 2004.

W. M. Farmer. Andrews’ type system with undefinedness. In C. Benzmiiller, C. E.
Brown, J. Siekmann, and R. Statman, editors, Reasoning in Simple Type Theory:
Festschrift in Honor of Peter B. Andrews on his 70th Birthday, volume 17 of Stud-
ies in Logic, pages 223—-242. College Publications, 2008.

W. M. Farmer. The seven virtues of simple type theory. Journal of Applied Logic,
6:267-286, 2008.

W. M. Farmer. LaTeX for Alonzo. https://imps.mcmaster.ca/doc/latex-for-alo
nzo.pdf, 2023 (revised 2024).

W. M. Farmer. Simple Type Theory: A Practical Logic for Ezpressing and Reason-
ing About Mathematical Ideas. Computer Science Foundations and Applied Logic.
Birkhéuser/Springer, second edition, 348 pp., 2025.

W. M. Farmer. Formal mathematics for the masses. In J. Blanchette, Davenport J,
P. Koepke, M. Kohlhase, A. Kohlhase, A. Naumowicz, D. Miiller, Y. Sharoda, and
C. Sacerdoti Coen, editors, Workshop Papers of the 1j/th Conference on Intelligent
Computer Mathematics (CICM 2021), volume 3377 of CEUR Workshop Proceedings.
CEUR-WS.org, 8 pp., 2023.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. Little theories. In D. Kapur, editor,
Automated Deduction — CADE-11, volume 607 of Lecture Notes in Computer Science,
pages 567-581. Springer, 1992.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An Interactive Mathematical
Proof System. Journal of Automated Reasoning, 11:213-248, 1993.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. The IMPS 2.0 User’s Manual. The
MITRE Corporation, 1998. Available at https://imps.mcmaster.ca/doc/imps-2.0
-manual.pdf.

Formal Abstracts. https://formalabstracts.github.io, 2022. Accessed on 3
January 2025.

F. Garillot. Generic Proof Tools and Finite Group Theory. PhD thesis, Ecole Poly-
technique X, 2011.

J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing
OBJ. In J. Goguen and G. Malcolm, editors, Software Engineering with OBJ: Algebraic
Specification in Action, volume 2 of Advances in Formal Methods, pages 3—167. Springer,
2000.

G. Gonthier, A. Mahboubi, L. Rideau, E. Tassi, and L. Théry. A modular formalisa-
tion of finite group theory. In K. Schneider and J. Brandt, editors, Theorem Proving
in Higher Order Logics (TPHOLs 2007), volume 4732 of Lecture Notes in Computer
Science, pages 86—101. Springer, 2007.

M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, 1993.

1936

MoNOID THEORY IN ALONZO

[30]

[31]

[41]

[42]

T. Hales. Formal abstracts in mathematics. In F. Rabe, W. M. Farmer, G. O. Passmore,
and Y. Abdou, editors, Intelligent Computer Mathematics (CICM 2018), volume 11006
of Lecture Notes in Computer Science, page xiii. Springer, 2018.

J. Harrison. HOL Light: An overview. In S. Berghofer, T. Nipkow, C. Urban, and
M. Wenzel, editors, Theorem Proving in Higher Order Logics (TPHOLs 2009), volume
5674 of Lecture Notes in Computer Science, pages 60—66. Springer, 2009.

L. Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15:81-91,
1950.

M. Iancu. Towards Flexiformal Mathematics. PhD thesis, Jacobs University Bremen,
2017.

Idris: A Language for Type-Driven Development. https://www.idris-lang.org/.
Accessed on 3 January 2025.

F. Kachapova. Formalizing groups in type theory. Computing Research Repository
(CoRR), abs/2102.09125, 2021.

M. Kohlhase. The Flexiformalist Manifesto. In A. Voronkov, V. Negru, T. Ida, T. Je-
belean, D. Petcu, S. M. Watt, and D. Zaharie, editors, 14th International Workshop
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2012), pages
30-35. IEEE Computer Society, 2012.

M. Kohlhase, T. Koprucki, D. Miiller, and K. Tabelow. Mathematical models as re-
search data via flexiformal theory graphs. In H. Geuvers, M. England, O. Hasan,
F. Rabe, and O. Teschke, editors, Intelligent Computer Mathematics (CICM 2017),
volume 10383 of Lecture Notes in Computer Science, pages 224-238. Springer, 2017.

M. Kohlhase, F. Rabe, and V. Zholudev. Towards MKM in the large: Modular repre-
sentation and scalable software architecture. In S. Autexier, J. Calmet, D. Delahaye,
P. D. F. Ton, L. Rideau, R. Rioboo, and A. P. Sexton, editors, Intelligent Computer
Mathematics (CICM 2010), volume 6167 of Lecture Notes in Computer Science, pages
370-384. Springer, 2010.

Metamath Proof Explorer Home Page. http://us.metamath.org/mpeuni/mmset.htm
1. Accessed on 3 January 2025.

T. Mossakowski, C. Maeder, and K. Liittich. The heterogeneous tool set. In O. Grum-
berg and M. Huth, editors, Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2007), volume 4424 of Lecture Notes in Computer Science, pages
519-522. Springer, 2007.

R. Nakajima and T. Yuasa, editors. The IOTA Programming System, volume 160 of
Lecture Notes in Computer Science. Springer, 1983.

A. Naumowicz and A. Kornitowicz. A brief overview of Mizar. In S. Berghofer, T. Nip-
kow, C. Urban, and M. Wenzel, editors, Theorem Proving in Higher Order Logics
(TPHOLs 2009), volume 5674 of Lecture Notes in Computer Science, pages 67—-72.
Springer, 2009.

R. P. Nederpelt, J. H. Geuvers, and R. C. De Vrijer, editors. Selected Papers on
Automath, volume 133 of Studies in Logic and the Foundations of Mathematics. North

1937

FARMER AND ZVIGELSKY

[47]
[48]

[49]

[51]
[52]

[53]

[54]
[55]
[56]

[57]

[58]

[59]

Holland, 1994.

R. Nickson, O. Traynor, and M. Utting. Cogito Ergo Sum — Providing structured
theorem prover support for specification formalisms. In K. Ramamohanarao, editor,
Proceedings of the Nineteenth Australasian Computer Science Conference (ACSC 1996),
volume 18 of Australian Computer Science Communications, pages 149-158, 1996.

U. Norell. Towards a Practical Programming Language based on Dependent Type The-
ory. PhD thesis, Chalmers University of Technology, 2007.

S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas. PVS: Combining speci-
fication, proof checking, and model checking. In R. Alur and T. A. Henzinger, editors,
Computer Aided Verification (CAV 1996), volume 1102 of Lecture Notes in Computer
Science, pages 411-414. Springer, 1996.

S. Owre and N. Shankar. Theory interpretations in PVS. Technical Report NASA /CR-
2001-211024, NASA, 2001.

L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in
Computer Science. Springer, 1994.

L. C. Paulson. Formalising mathematics in simple type theory. In S. Centrone, D. Kant,
and D. Sarikaya, editors, Reflections on the Foundations of Mathematics, volume 407
of Synthese Library, pages 437—453. Springer, 2019.

L. C. Paulson. Large-scale formal proof for the working mathematician — lessons
learnt from the ALEXANDRIA Project. Computing Research Repository (CoRR),
abs/2305.14407, 2023.

Proof Power. http://wuw.lemma-one.com/ProofPower/index/index.html. Accessed
on 3 January 2025.

F. Rabe and M. Kohlhase. A scalable module system. Information and Computation,
230:1-54, 2013.

F. Rabe and C. Schiirmann. A practical module system for LF. In J. Cheney and
A. Felty, editors, Proceedings of the Fourth International Workshop on Logical Frame-
works and Meta-Languages: Theory and Practice (LEMTP 2009), pages 40-48. ACM
Press, 2009.

The Rocq Prover. https://rocq-prover.org/. Formerly the Coq Proof Assistant;
accessed on 9 May 2025.

J. Rushby, F. von Henke, and S. Owre. An introduction to formal specification and
verification using EHDM. Technical Report SRI-CSL-91-02, SRI International, 1991.
D. M. Russinoff. A formalization of finite group theory. Computing Research Repository
(CoRR), abs/2205.13347, 2022.

D. Sannella and M. Wirsing. A kernel language for algebraic specification and imple-
mentation. In M. Karpinski, editor, Fundamentals of Computation Theory (FCS 1983),
volume 158 of Lecture Notes in Computer Science, pages 413-427. Springer, 1983.

D. R. Smith. KIDS: A knowledge-based software development system. IEEE Transac-
tions on Software Engineering, 16:483-514, 1991.

Y. V. Srinivas and R. Jiillig. Specware: Formal support for composing software. In

1938

MoNOID THEORY IN ALONZO

[61]

B. Moller, editor, Mathematics of Program Construction (MPC 1995), volume 947 of
Lecture Notes in Computer Science, pages 399-422. Springer, 1995.

X. Yu, A. Nogin, A. Kopylov, and J. Hickey. Formalizing abstract algebra in type
theory with dependent records. In 16th International Conference on Theorem Proving
in Higher Order Logics (TPHOLs 2003), Emerging Trends Proceedings, pages 13-27,
2013.

A. Zipperer. A Formalization of Elementary Group Theory in the Proof Assistant Lean.
PhD thesis, Carnegie Mellon University, 2016.

1939 Received 13 December 2024

