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Abstract. Partial functions can be easily represented in set theory as certain sets

of ordered pairs. However, classical set theory provides no special machinery for

reasoning about partial functions. For instance, there is no direct way of handling the

application of a function to an argument outside its domain as in partial logic. There

is also no utilization of lambda-notation and sorts or types as in type theory. This

paper introduces a version of von-Neumann-Bernays-Gödel set theory for reasoning

about sets, proper classes, and partial functions represented as classes of ordered

pairs. The underlying logic of the system is a partial first-order logic, so class-

valued terms may be nondenoting. Functions can be specified using lambda-notation,

and reasoning about the application of functions to arguments is facilitated using

sorts similar to those employed in the logic of the imps Interactive Mathematical

Proof System. The set theory is intended to serve as a foundation for mechanized

mathematics systems.

Keywords: Set theory, nbg, mechanized mathematics, theorem proving systems,

partial functions, undefinedness, sorts.

1. Introduction

Set theory is, at least among mathematicians, the most popular foun-
dation for mathematics. The reasons for its popularity are readily
apparent. It is based on two of the simplest and most familiar notions
in mathematics: set and membership. Since nearly all mathematical
concepts can be expressed in terms of set and membership, it is ex-
tremely expressive. And there is a first-order formalization of set theory,
Zermelo-Fraenkel (zf) set theory, which is widely used as a lingua
franca for mathematics.
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and Modality, eds., E. Thijsse, F. Lepage, and H. Wansing, special issue of Logica
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2 Farmer and Guttman

On the other hand, set theory has not been a popular foundation for
mechanized mathematics. A mechanized mathematics system (MMS) is
a computer environment that is intended to support and improve rigor-
ous mathematical activity. MMSs include mechanical theorem provers
and systems for specifying and verifying computer software and hard-
ware. Contemporary MMSs are based on a wide range of both special-
and general-purpose logical formalisms. Weak logics such as first-order
logic and its various sublogics are often chosen for ease of implemen-
tation, while type theories are often chosen for ease of use. Few MMSs
are based on standard formalizations of set theory. The exceptions
include:

1. The eves program verification system [5] based on zf.

2. M. Gordon’s augmentation of hol with zf axioms [15].

3. N. Megill’s Metamath proof verifier [18] based on zf.

4. The Mizar proof development system [27] based on Tarski-
Grothendieck set theory.

5. L. Paulson’s implementation of zf [24] in the Isabelle generic the-
orem prover [22].

6. A. Quaife’s formalization of von-Neumann-Bernays-Gödel set the-
ory [25] in the Otter resolution theorem prover [17].

The notions of function and application are at least as basic and
important in mathematics as the notions of set and membership. A
major issue in the design of an MMS is the kind of support the system
provides for reasoning about functions. The main deficiency of first-
order set theory as a logical basis for an MMS is certainly its lack of
support for functions. The logical machinery—operator symbols and
operator application—does not support higher-order or partial func-
tions, quantification over functions, or function abstraction. Although
(higher-order and partial) functions can be easily represented as certain
sets of ordered pairs, the set-theoretic machinery does not support
the direct manipulation of terms that denote functions. For example,
there is no built-in mechanism for directly applying a term denoting
a function to a term denoting an argument to the function to form
a new term; applications can only be represented verbosely with the
use of quantifiers or by introducing a special operator symbol that
denotes function application. There is also no facility for keeping track
of when an application of a function is defined and what kind of value
an application of a function may have when it is defined.
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A Set Theory with Support for Partial Functions 3

In contrast to set theory, type theory provides special machinery
for reasoning about higher-order functions which includes term con-
structors for function application and abstraction, and syntactic types
for managing the application of functions. This machinery is effec-
tive for reasoning about total functions, but it usually can only be
used to reason about partial functions in indirect and artificial ways.
lutins1 [6, 7, 8], a version of simple type theory with partial func-
tions, undefined terms, and subtypes called sorts, is exceptional in
this respect. As the logic of the imps Interactive Mathematical Proof
System [11, 12], it has proved to be highly effective for specifying and
reasoning about partial functions.

Our objective is to devise a formalization of set theory that would be
a suitable basis for mechanized mathematics. In line with this primary
goal, we would like the formalization to satisfy the following secondary
goals:

− The underlying logic should be based on the principles of classical
predicate logic.

− The set theory should be in the tradition of zf.

− There should be strong support for reasoning about partial func-
tions.

− The formalization should be amenable to implementation in an
MMS.

The paper presents a version of von-Neumann-Bernays-Gödel (nbg)
set theory called nbg∗. nbg is a well-known (first-order) set theory in
which variables range over both sets and proper classes. This means
that the universe of sets V can be defined as an individual constant in
nbg even though it is a proper class. Also functions from V to V , such
as the cardinality function, are first-class objects in nbg even when
they are proper classes. (A good introduction to nbg is found in [19].)

nbg is closely related to zf. nbg and zf share the same intuitive
model of the iterated hierarchy of sets. The nonlogical axioms of nbg

are very similar to those of zf; most of them are simply zf axioms
with some of the quantifiers restricted to sets. And there is a faithful
interpretation of zf in nbg [23, 26, 29], which implies that zf is consis-
tent iff nbg is consistent. However, nbg is finitely axiomatizable ([14]
and [19] present finite axiomatizations of nbg), while zf is not (see [16]
or [21] for a proof).

nbg∗ is derived as follows from nbg. First, the underlying logic
of nbg, ordinary first-order logic, is replaced with Partial First-Order

1 Pronounced as the word in French.
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4 Farmer and Guttman

Logic (pfol), a variant of first-order logic in which operator sym-
bols may denote partial functions and terms may be undefined. The
nonlogical axioms of nbg∗ are essentially the same as the nonlogical
axioms of the axiomatization of nbg given by K. Gödel in [14]. Next,
term constructors for function application and abstraction—like those
used in most type theories—are defined using the definite description
operator of pfol. Finally, a system of sorts—similar to the system of
sorts in lutins—is added for classifying terms.

The paper [10] presents a directly defined version of nbg∗ called
stmm and discusses the benefits stmm offers as a foundation for mech-
anized mathematics.

The rest of the paper is organized as follows. Section 2 contains
the syntax and semantics of pfol and a theorem that shows that
pfol extends but does not alter the conceptual framework of classical
first-order logic. A Hilbert-style axiomatic system for pfol which is
complete with respect to the semantics of pfol is given at the end of
this section. Section 3 presents an axiomatization of nbg in the form of
a pfol theory called Partial nbg (pnbg) and defines term constructors
for function application and abstraction. Section 4 introduces the no-
tion of a sort and defines nbg∗ as a combination of pnbg and a system
of sorts. The paper ends with a short conclusion in section 5.

2. Partial First-Order Logic

This section presents a variant of first-order logic called Partial First-
Order Logic (pfol) in which operator symbols may denote partial
functions and terms may be undefined. It is a formalization of what
we call the traditional approach to partial functions [9]. pfol is sim-
ilar to the partial logics proposed by R. Schock [28], T. Burge [3, 4],
M. Beeson [1, 2], and L. Monk [20].

2.1. Syntax

A variable of pfol is a member of a fixed infinite set V of symbols. A
language of pfol is a tuple (C,O,P) such that:

1. C is a set of individual constants.

2. O is a set of operator symbols, each with an assigned arity ≥ 1.

3. P is a set of predicate symbols, each with an assigned arity ≥ 1. P
contains the binary predicate symbol =.

4. V, C, O, and P are pairwise disjoint.
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A Set Theory with Support for Partial Functions 5

In the remainder of this section, let L = (C,O,P) be a language of
pfol.

A term and a formula of L are defined inductively by:

1. Each x ∈ V and a ∈ C is a term.

2. If x ∈ V and ϕ is a formula, then (I x . ϕ) is a term.

3. If o ∈ O is n-ary and t1, . . . , tn are terms, then o(t1, . . . , tn) is a
term.

4. If p ∈ P is n-ary and t1, . . . , tn are terms, then p(t1, . . . , tn) is a
formula.

5. If ϕ and ψ are formulas and x ∈ V , then ¬ϕ and (ϕ ⊃ ψ), and
(∀x . ϕ) are formulas.

The symbols ¬, ⊃, ∀, and I are the logical constants of pfol. The first
three are operators for negation, implication, and universal quantifi-
cation. The last one, I, is a definite description operator. A term or
formula is regular if it does not contain any occurrences of I. Regular
terms and formulas are the same as the terms and formulas of ordinary
first-order logic.

Parentheses in terms and formulas may be suppressed when meaning
is not lost, and sometimes we use the symbols [ and ] in place of paren-
theses. For convenience, we also employ the following abbreviations:

(s = t) for = (s, t).
(s 6= t) for ¬(s = t).
(ϕ ∧ ψ) for ¬(ϕ ⊃ ¬ψ).
(ϕ ∨ ψ) for ¬ϕ ⊃ ψ.
(ϕ ≡ ψ) for (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ).
(∃x . ϕ) for ¬(∀x . ¬ϕ).
(t↓) for ∃x . x = t

where x ∈ V and x does not occur in t.
(t↑) for ¬(t↓).
(s ' t) for (s↓ ∨ t↓) ⊃ s = t.
⊥ for Ix . x 6= x where x ∈ V.
if(ϕ, s, t) for Ix . (ϕ ⊃ x = s) ∧ (¬ϕ ⊃ x = t)

where x ∈ V and x does not occur in ϕ, s, or t.

t↓, t↑, and s ' t are read as “t is defined”, “t is undefined”, and “s
and t are quasi-equal”. ⊥ is a canonical undefined term, and if is an
if-then-else term constructor.

Let an expression of L be either a term or formula of L. “Free
variable”, “closed”, and similar notions are defined in the obvious way.
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A sentence is a closed formula. Given a formula ϕ, ϕ[x 7→ t] is the
result of simultaneously replacing each free occurrence of the variable
x in ϕ with the term t.

A theory of pfol is a pair T = (L,Γ) where L is a language of
pfol and Γ is a set of sentences of L. T is said to be over L and the
members of Γ are called the nonlogical axioms of T . (Γ need not be
closed under logical consequence.) T is regular if each sentence in Γ
is regular. Regular theories are the same as the theories of ordinary
first-order logic.

2.2. Semantics

A model for L is a pair M = (D, I) where D is a nonempty domain
(set) and I is a total function on C ∪ O ∪ P such that:

1. If a ∈ C, I(a) ∈ D.

2. If o ∈ O is n-ary, I(o) is a partial function from D × · · · × D (n
times) to D.

3. If p ∈ P is n-ary, I(p) is a total function from D×· · ·×D (n times)
to {t, f} (the domain of truth values). I(=) is the identity relation
on D.

M is regular if I(o) is a total function for each o ∈ O. Regular models
are the same as the models of ordinary first-order logic.

Let M = (D, I) be a model for L. A variable assignment into M is
a function which maps each x ∈ V to an element of D. Given a variable
assignment A into M, x ∈ V, and d ∈ D, let A[x 7→ d] be the variable
assignment A′ into M such A′(x) = d and A′(y) = A(y) for all y 6= x.

Define V = VM to be the binary function such that the following
conditions are satisfied for all variable assignments A into M and all
expressions of L:

1. If t ∈ V, then VA(t) = A(t).

2. If t ∈ C, then VA(t) = I(t).

3. Let t = Ix . ϕ. If there is a unique d ∈ D such that VA[x 7→d](ϕ) = t,
then VA(t) = d; otherwise VA(t) is undefined.

4. Let t = o(t1, . . . , tn). If VA(t1), . . . , VA(tn) are defined
and I(o) is defined at 〈VA(t1), . . . , VA(tn)〉, then VA(t) =
I(o)(VA(t1), . . . , VA(tn)); otherwise VA(t) is undefined.

5. Let ϕ = p(t1, . . . , tn). If VA(t1), . . . , VA(tn) are defined, then
VA(ϕ) = I(p)(VA(t1), . . . , VA(tn)); otherwise VA(ϕ) = f.
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A Set Theory with Support for Partial Functions 7

6. Let ϕ = ¬ϕ′. If VA(ϕ′) = f, then VA(ϕ) = t; otherwise VA(ϕ) = f.

7. Let ϕ = ϕ′ ⊃ ϕ′′. If VA(ϕ′) = t and VA(ϕ′′) = f, then VA(ϕ) = f;
otherwise VA(ϕ) = t.

8. Let ϕ = ∀x . ϕ′. If VA[x 7→d](ϕ
′) = t for all d ∈ D, then VA(ϕ) = t;

otherwise VA(ϕ) = f.

For an expression E, VM
A (E) is called the value of E in M with respect

to A (when it is defined). Notice that VM
A is a partial valuation function

on terms but a total valuation function on formulas. A term t of L is
defined in M with respect to A if its value VM

A (t) is defined. If M
is regular, VM

A is a total valuation function on regular terms. Hence
regular terms are always defined in regular models.

A formula ϕ of L is valid in M if VM
A (ϕ) = t for every variable

assignment A into M. Let T = (L,Γ) be a theory. A model for T is a
model for L in which each ϕ ∈ Γ is valid. A formula ϕ is valid in T in
the partial sense, written T |=par ϕ, if it is valid in each model for T .
A formula ϕ is valid in T in the regular sense, written T |=reg ϕ, if it
is valid in each regular model for T .

2.3. The Elimination Theorem

The machinery in pfol for partial functions and undefined terms—
the operator symbols and the I operator—is purely a convenience; it
extends but does not alter the conceptual framework of classical first-
order logic. In fact, as we will soon see, any theory of pfol can be
translated into a logically equivalent theory of ordinary first-order logic
by eliminating the use of operator symbols and I.

THEOREM 2.1. (Elimination Theorem). For every theory T = (L,Γ),
there is a regular theory T ∗ = (L∗,Γ∗) and a translation from each
formula ϕ of L to a regular formula ϕ∗ of L∗ such that

T |=par ϕ iff T ∗ |=reg ϕ
∗.

Moreover, T ∗ = T if L contains no operator symbols and T is regular,
and ϕ∗ = ϕ if ϕ contains no operator symbols and is regular.

Proof. The first step of the proof is to eliminate operator symbols by
replacing them with predicate symbols that denote their graphs.

Assume L = (C,O,P) and define L∗ = (C, ∅,P∪{po : o ∈ O}) where
po 6∈ P and po is (n + 1)-ary if o is n-ary for all o ∈ O and po1

6= po2

for all o1, o2 ∈ O. For each n-ary o ∈ O, define Uo to be the formula

∀x1 . . . ∀xn∀y1∀y2 .

po(x1, . . . , xn, y1) ∧ po(x1, . . . , xn, y2) ⊃ y1 = y2.
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8 Farmer and Guttman

Uo says that po is the graph of a (partial) n-ary function.
Consider the following rewrite rule:

R1 p(s1, . . . , o(t1, . . . , tn), . . . , sm) ⇒
∃ y . po(t1, . . . , tn, y) ∧ p(s1, . . . , y, . . . , sm)

where p ∈ P ∪ {po : o ∈ O}, o ∈ O, and y does not occur in

p(s1, . . . , o(t1, . . . , tn), . . . , sm).

Let ϕ be a formula of L. Define the transformation T1 as follows. If
ϕ contains no operator symbols, then T1(ϕ) = ϕ. Otherwise, T1(ϕ) is
the result of applying R1 to ϕ so that the first occurrence of an operator
symbol in ϕ is eliminated. Let ϕ′ be the result of repeatedly applying
T1 to ϕ until all operator symbols have been eliminated. Notice the ϕ′

is well-defined since each application of R1 reduces by one the number
of occurrences of operator symbols in ϕ. ϕ′ is clearly a formula of L∗.

Define T ′ = (L∗,Γ′) where

Γ′ = {ϕ′ : ϕ ∈ Γ} ∪ {Uo : o ∈ O}.

By a straightforward argument,

T |=par ϕ iff T ′ |=par ϕ
′

for all formulas ϕ of L.
The second step is to eliminate I.
Consider the following rewrite rule:

R2 p(s1, . . . , (Ix . ψ), . . . , sm) ⇒
∃y . ψ[x 7→ y] ∧ (∀z . ψ[x 7→ z] ⊃ z = y) ∧ p(s1, . . . , y, . . . , sm)

where p ∈ P ∪ {po : o ∈ O}, ψ is regular, y does not occur in

p(s1, . . . , (I x . ψ), . . . , sm),

y 6= z, and z does not occur in ψ.
Given a formula ϕ of L∗. Define the transformation T2 as follows.

If ϕ is regular, then T2(ϕ) = ϕ. Otherwise, T2(ϕ) is the result of
applying R2 to ϕ so that the first occurrence of I in ϕ, that is in a
term of the form Ix . ψ where ψ is regular, is eliminated. Let ϕ• be the
result of repeatedly applying T2 to ϕ until all occurrences of I have
been eliminated. Notice that ϕ• is well-defined since each application
of R2 reduces by one the number of occurrences of I in ϕ. ϕ• is clearly
a regular formula of L∗.

Define T ∗ = (L∗,Γ∗) to be the regular theory where

Γ∗ = {ϕ• : ϕ ∈ Γ′}.
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It follows from the semantics of I that

T ′ |=par ϕ iff T ∗ |=par ϕ
•

for all formulas ϕ of L∗.
Since L∗ contains no operator symbols,

T ∗ |=par ϕ iff T ∗ |=reg ϕ

for all formulas ϕ of L∗. For ϕ of L, define ϕ∗ = (ϕ′)•. This completes
the proof. 2

2.4. An Axiomatic System

The following axiom schemas together with the rules of modus ponens
and generalization constitute a Hilbert-style axiomatic system for L
which is complete with respect to the semantics of pfol given in the
previous subsection.

PFOL1 ϕ ⊃ (ψ ⊃ ϕ).

PFOL2 [ϕ ⊃ (ψ ⊃ θ)] ⊃ [(ϕ ⊃ ψ) ⊃ (ϕ ⊃ θ)].

PFOL3 (¬ϕ ⊃ ¬ψ) ⊃ (ψ ⊃ ϕ).

PFOL4 (∀x . ϕ ⊃ ψ) ⊃ (ϕ ⊃ ∀x . ψ) where x is not free in ϕ.

PFOL5 [(∀x . ϕ) ∧ t↓] ⊃ ϕ[x 7→ t] where t is free for x in ϕ.

PFOL6 ∀x . x = x.

PFOL7 s ' t ⊃ (ϕ ⊃ ϕ∗) where ϕ∗ is the result of replacing one
occurrence of s in ϕ by an occurrence of t, provided that the occurrence
of s is not a variable immediately after ∀ or I.

PFOL8 x↓ where x ∈ V.

PFOL9 a↓ where a ∈ C.

PFOL10 (Ix . ϕ)↓ ≡ [∃x . ϕ ∧ (∀ y . ϕ[x 7→ y] ⊃ y = x)] where y does
not occur in ϕ.

PFOL11 (I x . ϕ)↓ ⊃ ϕ[x 7→ (Ix . ϕ)] where (Ix . ϕ) is free for x in
ϕ.

PFOL12 [t1↑ ∨ · · · ∨ tn↑] ⊃ o(t1, . . . , tn)↑ where o ∈ O is n-ary.
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10 Farmer and Guttman

PFOL13 [t1↑ ∨ · · · ∨ tn↑] ⊃ ¬p(t1, . . . , tn) where p ∈ P is n-ary.

Modus Ponens From ϕ ⊃ ψ and ϕ infer ψ.

Generalization From ϕ infer ∀x . ϕ.

A very important property of pfol, which is a consequence of
PFOL7, is that undefined terms are indiscernible. This means that
an undefined term in a formula can be replaced by any other undefined
term without changing the meaning of the formula. pfol has this
property by virtue of being a “logic of definedness” in contrast to a
“logic of existence” (see [13] for a discussion of this distinction).

3. Partial NBG

We present in this section an axiomatization of nbg (with choice) in
the form of a pfol theory called Partial nbg (pnbg). Our axiomati-
zation will be very similar to the finite axiomatization of nbg given by
K. Gödel in [14]. It will be easy to define in pnbg term constructors
for function application and abstraction using the definite description
operator of pfol.

3.1. An Axiomatization of NBG

Let L0 = (∅, ∅, {=,∈}) where ∈ is a binary predicate symbol which is
intended to denote the membership relation. It is possible to axiomatize
nbg as a regular theory of pfol over L. However, pnbg will take full
advantage of the partial functions machinery of pfol; it will be a theory
over an expansion of L0.

We begin by defining the following abbreviations:

(s ∈ t) for ∈ (s, t).
(s 6∈ t) for ¬(s ∈ t).
∀x : p . ϕ for ∀x . p(x) ⊃ ϕ.
∃x : p . ϕ for ∃x . p(x) ∧ ϕ.
Ix : p . ϕ for Ix . p(x) ∧ ϕ.
2x1, . . . , xn : p . ϕ for 2x1 : p . . .2xn : p . ϕ.

Here p is a unary predicate symbol and 2 is ∀ or ∃.
We now list the 32 axioms of pnbg. The first 16 of them are defi-

nitions, sentences which define new symbols in terms of old symbols.
The remaining 16 are the “proper” axioms.
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We define two new predicate symbols C and V . C(x) says “x is a
class”, and V (x) says “x is a set”, i.e., a class which is the member of
some other class. They are defined by the following axioms:

PNBG1 (Definition of C) ∀x . C(x) ≡ (x = x).

PNBG2 (Definition of V ) ∀x . V (x) ≡ ∃ y . x ∈ y.

In the rest of this subsection we will use the variables a, b, c to denote
classes and w, x, y, z to denote sets.

The next fourteen axioms define additional operator and predicate
symbols.

PNBG3 (Definition of Pair) ∀ a, b : C . {a, b} '
[Ix : V . V (a) ∧ V (b) ∧ ∀ y : V . y ∈ x ≡ (y = a ∨ y = b)].

PNBG4 (Definition of Singleton) ∀ a : C . {a} ' {a, a}.

PNBG5 (Definition of Ordered Pair) ∀ a, b : C . 〈a, b〉 '
{{a}, {a, b}}.

PNBG6 (Definition of Ordered Triple) ∀ a, b, c : C . 〈a, b, c〉 '
〈a, 〈b, c〉〉.

PNBG7 (Definition of Subset) ∀ a, b : C . a ⊆ b ≡
(∀x : V . x ∈ a ⊃ x ∈ b).

PNBG8 (Definition of Proper Subset) ∀ a, b : C . a ⊂ b ≡
(a ⊆ b ∧ a 6= b).

PNBG9 (Definition of Emptiness) ∀ a : C . empty(a) ≡
∀x : V . x 6∈ a.

PNBG10 (Definition of Univocal) ∀ a : C . univocal(a) ≡
[∀x, y, z : V . (〈x, y〉 ∈ a ∧ 〈x, z〉 ∈ a) ⊃ y = z].

PNBG11 (Definition of Function) ∀ a : C . function(a) ≡
[univocal(a) ∧ ∀x : V . x ∈ a ≡ (∃ y, z : V . x = 〈y, z〉)].

PNBG12 (Definition of Intersection) ∀ a, b : C . a ∩ b '
[I c : C . ∀x : V . x ∈ c ≡ (x ∈ a ∧ x ∈ b)].

PNBG13 (Definition of Complement) ∀ a : C . a '
[I b : C . ∀x : V . x ∈ b ≡ x 6∈ a].
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12 Farmer and Guttman

PNBG14 (Definition of Domain) ∀ a : C . domain(a) '
[I b : C . ∀x : V . x ∈ b ≡ (∃ y : V . 〈x, y〉 ∈ a)].

PNBG15 (Definition of Sum Class) ∀ a : C . sum(a) '
[I b : C . ∀x : V . x ∈ b ≡ (∃ y : V . x ∈ y ∧ y ∈ a)].

PNBG16 (Definition of Power Class) ∀ a : C . power(a) '
[I b : C . ∀x : V . x ∈ b ≡ x ⊆ a].

The first two proper axioms of pnbg are:

PNBG17 (Extensionality) ∀ a, b : C . (∀x : V . x ∈ a ≡ x ∈ b) ⊃
a = b.

PNBG18 (Pairing) ∀x, y : V . {x, y}↓.

The next group of axioms specify the existence of certain classes:

PNBG19 (Membership Class) ∃ a : C . ∀x, y : V . 〈x, y〉 ∈ a ≡
x ∈ y.

PNBG20 (Intersection) ∀ a, b : C . (a ∩ b)↓.

PNBG21 (Complement) ∀ a : C . a↓.

PNBG22 (Domain) ∀ a : C . domain(a)↓.

PNBG23 (Direct Product) ∀ a : C . ∃ b : C . ∀x, y : V . 〈x, y〉 ∈ b ≡
x ∈ a.

PNBG24 (Permutation 1) ∀ a : C . ∃ b : C . ∀x, y : V .
〈x, y〉 ∈ b ≡ 〈y, x〉 ∈ a.

PNBG25 (Permutation 2) ∀ a : C . ∃ b : C . ∀x, y, z : V .
〈x, y, z〉 ∈ b ≡ 〈y, z, x〉 ∈ a.

PNBG26 (Permutation 3) ∀ a : C . ∃ b : C . ∀x, y, z : V .
〈x, y, z〉 ∈ b ≡ 〈x, z, y〉 ∈ a.

The next four axioms specify the existence of certain sets:

PNBG27 (Infinity) ∃x : V . ¬empty(x) ∧
[∀ y : V . y ∈ x ⊃ (∃z : V . z ∈ x ∧ y ⊂ z)].

PNBG28 (Sum Set) ∀x : V . V (sum(x)).
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PNBG29 (Power Set) ∀x : V . V (power(x)).

PNBG30 (Replacement) ∀ a : C . univocal(a) ⊃
[∀x : V . ∃ y : V . ∀ z : V . z ∈ y ≡ (∃w : V . w ∈ x ∧ 〈w, z〉 ∈ a)].

The last two axioms are the axiom of foundation and the axiom of
global choice:

PNBG31 (Foundation) ∀ a : C . ¬empty(a) ⊃
[∃x : V . x ∈ a ∧ ∀ y : V . ¬(y ∈ x ∧ y ∈ a)].

PNBG32 (Global Choice) ∃ a : C . function(a) ∧
[∀x : V . ¬empty(x) ⊃ (∃ y : V . y ∈ x ∧ 〈x, y〉 ∈ a)].

Notes:

1. {a, b} and 〈a, b〉 are undefined whenever a is not a set or b is not a
set.

2. In Gödel’s axiomatization of nbg in [14], 〈x, y〉 represents a map-
ping of y to x; in our axiomatization it represents a mapping of x
to y.

3. Axiom PNBG23 says that, for all classes a, the direct product a×V
is a class, where V is the class of all sets.

4. It is an exercise in [19, p. 164] that the first permutation axiom,
PNBG24, follows from axioms PNBG22, PNBG23, PNBG25, and
PNBG26.

5. The axiom of foundation, PNBG31, is dispensable and could be
replaced with an “antifoundation” axiom.

6. The axiom of global choice, PNBG32, implies the axiom of local
choice (as given, for example, in [19]).

Let Lpnbg = (∅,Opnbg,Ppnbg) be L0 plus the operator and predi-
cate symbols defined in axioms PNBG1, . . . ,PNBG16, and let Γpnbg =
{PNBG1, . . . ,PNBG32}. Then pnbg = (Lpnbg,Γpnbg).

3.2. Function Application and Abstraction

The following abbreviations introduce term constructors for (unary)
function application and abstraction:

f [a] for I b . function(f) ∧ 〈a, b〉 ∈ f .
(λx . t) for I g . function(g) ∧

[∀x . if(V (x) ∧ V (t), g[x] = t, g[x]↑)].
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14 Farmer and Guttman

Here f, a, t are terms, x is a variable, b does not occur in f or a, g 6= x,
and g does not occur in t. Terms of the form f [a] and (λx . t) are called
applications and abstractions, respectively.

The following abbreviation provides notation for a function over a
restricted domain:

(λx : p . t) for λx . if(p(x), t,⊥).

Here x is a variable, p is a unary predicate symbol, and t is a term.

4. NBG∗: Partial NBG plus Sorts

A sort is a syntactic object intended to denote a nonempty domain
of values. In this section we will add a system of sorts to pnbg for
classifying terms, particularly terms that denote partial functions. More
precisely, we will define a new logic called nbg∗ in which a theory is an
extension of pnbg plus a sort system. A sort system in nbg∗ will be
similar to a sort system in lutins in both structure and use.

4.1. Sort Systems

The set of sort symbols built from a set S of atomic sort symbols will
be the set Ω(S) defined below.

Let S be a set of symbols. Ω(S) is the set defined by:

1. S ⊆ Ω(S).

2. If α, β ∈ Ω(S), then α ⇀ β ∈ Ω(S).

A sort of the form α ⇀ β is intended to denote the domain of partial
functions from the domain denoted by α to the domain denoted by β.

Given a total function f : S → Ω(S), �f is the smallest binary
relation on Ω(S) such that:

1. If α ∈ S, then α �f f(α).

2. �f is reflexive, i.e., for all α ∈ Ω(S), α �f α.

3. �f is transitive, i.e., for all α, β, γ ∈ Ω(S), if α �f β and β �f γ,
then α �f γ.

4. If α1 �f α2 and β1 �f β2, then α1 ⇀ β1 �f α2 ⇀ β2.

�f is noetherian if every ascending sequence of members of Ω(S),

α1 �f α2 �f α3 �f · · · ,
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is eventually stationary, i.e., there is some m such that αi = αm for all
i ≥ m. If �f is noetherian, then �f is obviously antisymmetric (i.e.,
for all α, β ∈ Ω(S), if α �f β and β �f α, then α = β). Hence, �f is a
partial order if it is noetherian.

A sort system of nbg∗ is a pair (A, ξ) where A is a set of symbols
with C,V ∈ A and ξ is a total function from A to Ω(A) such that:

1. For all α ∈ A, ξ(α) = α iff α = C.

2. �ξ is noetherian.

We will see later why �ξ must be noetherian instead of just a partial
order.

A sort of (A, ξ) is any member of Ω(A). The sorts in A and Ω(A)\A
are called atomic sorts and compound sorts, respectively. The enclosing
sort of α ∈ A is the sort ξ(α). The least upper bound of α and β,
written αtξ β, is the least upper bound of α and β in the partial order
�ξ. (The least upper bound of two sorts is not always defined.) The
maximal sorts in �ξ are C plus the compound sorts formed from C
alone.

A function sort is either a compound sort or an atomic sort α such
that α �ξ β for some compound sort β ∈ Ω(A). The range sort of a
function sort α, written ran(α), is defined as follows: if α = β ⇀ γ, then
ran(α) = γ; otherwise, ran(α) = ran(ξ(α)). (We leave it as an exercise
to the reader to verify that the notion of a range sort is well-defined.)

4.2. Syntax and Semantics

A language of nbg∗ is a tuple (C,O,P ,A, ξ, σ) such that:

1. (C,O,P) is a language of pfol with Opnbg ⊆ O and Ppnbg ⊆ P.

2. (A, ξ) is a sort system.

3. σ : V ∪ C → Ω(A) is total function such that

Vα = {x ∈ V : σ(x) = α}

is infinite for all α ∈ Ω(A).

In the remainder of this section, let L = (C,O,P ,A, ξ, σ) be a language
of nbg∗.

The terms and formulas of L are exactly the same as the terms and
formulas of the pfol language (C,O,P). Define L̃ to be the following
language of pfol:

(C,O,P ∪ {pα : α ∈ Ω(A)})
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16 Farmer and Guttman

where pC = C, pV = V , pα is a unary predicate symbol not in P for all
α ∈ Ω(A) \ {C,V}, and pα 6= pβ for all α, β ∈ Ω(A). For an expression

E of L, let Ẽ be the expression of L̃ obtained by replacing each “I x”
and “∀x” in E with “Ix : pσ(x)” and “∀x : pσ(x)”, respectively.

Given a model M = (D, I) for L̃ and α ∈ Ω(A), let Dα be the
domain of all d ∈ D such that I(pα)(d) = t.

A model for L is a model M = (D, I) for L̃ such that:

1. For all α ∈ Ω(A), Dα is nonempty.

2. For all α, β ∈ Ω(A), if α �ξ β, then Dα ⊆ Dβ.

3. DC = D.

4. For all α, β ∈ Ω(A),

∀ f . pα⇀β(f) ≡
[function(f) ∧ [∀ a, b . f [a] = b ⊃ (pα(a) ∧ pβ(b))]]

is valid in M.

5. I(a) ∈ Dσ(a) for all a ∈ C.

One can easily construct a model for L by appealing to the fact that
�ξ is noetherian.

Let M = (D, I) be a model for L. A variable assignment A into M
respects L if A(x) ∈ Dσ(x) for all x ∈ V. Define UM to be the binary
function such that, for all variable assignments A into M that respect
L and all expressions E of L,

UM
A (E) = VM

A (Ẽ).

A formula ϕ of L is valid in M if UM
A (ϕ) = t for every variable

assignment A into M that respects L. We thus see that a sort denotes
a nonempty domain of classes, and that the assignment of sorts to
variables and individual constants defined by σ restricts the values that
the variables and individual constants may have in a model.

A theory of nbg∗ is a pair T = (L,Γ) where L is a language of
nbg∗ and Γ is a set of sentences of L with the property that, for each
ϕ ∈ Γpnbg, there is some ψ ∈ Γ such that ψ̃ is alpha-equivalent to
ϕ (i.e., ψ̃ converts to ϕ by renaming variables). Let T = (L,Γ) be a
theory of nbg∗ . A model for T is a model for L in which each ϕ ∈ Γ
is valid. A formula ϕ of L is valid in T , written T |= ϕ, if it is valid in
each model for T , and is universally valid, written |= ϕ, if it is valid
in each theory T ′ = (L,Γ′) of nbg∗.

nbg-star.tex; 10/02/2005; 12:45; p.16



A Set Theory with Support for Partial Functions 17

The following theorem is an immediate consequence of the previous
definitions:

THEOREM 4.1. For every theory T = (L,Γ) of nbg∗, there is a theory

T̃ of pfol over L̃ such that

T |= ϕ iff T̃ |=par ϕ̃

for all sentences ϕ of L. Moreover, T̃ is an extension of pnbg (renam-
ing variables if necessary).

4.3. Sorts Assigned to Terms

Sorts serve two purposes. The first, which we have seen above, is to
restrict the value that a variable or individual constant may have in
a model. The second is to indicate what range of value a term has,
provided it is defined. This is achieved by extending σ to all the terms
of L. Then, for example, if the sort α is assigned to a term t, the value
of t would be in the domain denoted by α, provided t is defined.

The sort of a term t, written σ̄(t), is defined by:

1. σ̄(a) = σ(a) if a ∈ V ∪ C.

2. σ̄(I x . ϕ) = σ(x).

3. σ̄(o(t1, . . . , tn)) = C if o ∈ O.

In order to take advantage of this assignment of sorts to terms, we
must control what sorts are assigned to the terms formed by the term
constructors we have introduced. Therefore, we introduce the following
modified abbreviations:

⊥α for Ix . x 6= x where σ(x) = α.
if(ϕ, s, t) for Ix . (ϕ ⊃ x = s) ∧ (¬ϕ ⊃ x = t)

where x does not occur in ϕ, s, or t and

σ(x) =

{
σ̄(s) tξ σ̄(t) if this is defined
C otherwise

f [a] for I b . function(f) ∧ 〈a, b〉 ∈ f
where b does not occur in f or a and

σ(b) =

{
ran(σ̄(f)) if σ̄(f) is a function sort
V otherwise

(λx . t) for I g . function(g) ∧
[∀x . if(V (x) ∧ V (t), g[x] = t, g[x]↑)]
where g 6= x, g does not occur in t, and
σ(g) = σ(x) ⇀ σ̄(t).
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18 Farmer and Guttman

Let us also introduce the following new abbreviations:

(t ↓ α) for ∃x . x = t

where σ(x) = α and x does not occur in t.
(t↓) for (t ↓ σ̄(t)).
(α � β) for ∀x . (x ↓ β) where σ(x) = α.
〈α〉 for Ix . ∀ y . [y ∈ x ≡ (y ↓ α)]

where σ(x) = σ(y) = C.

Here t is a term and α and β are sorts. (t ↓ α), which is read as “t is
defined in α”, asserts that t has a value in the domain denoted by α.
(t↓), which as before is read as “t is defined”, asserts that t has a value
in the domain denoted by its assigned sort. α� β, which is read as “α
is a subsort of β”, asserts that each member of the domain denoted by
α is a member of the domain denoted by β. 〈α〉 is a term that, if it is
defined, denotes the same class denoted by α.

The following statements are true for all terms t and sorts α, α1,
α2, β, β1, β2, γ:

1. |= (t ↓ C) ≡ C(t).

2. |= (t ↓ V) ≡ V (t).

3. |= (t ↓ α) ⊃ t↓.

4. |= t↓ ≡ (t ↓ C).

5. |= α� C.

6. |= α� β provided α �ξ β.

7. |= (α� β ∧ β � γ) ⊃ α� γ.

8. |= (α1 � β1 ∧ α2 � β2) ⊃ α1 ⇀ α2 � β1 ⇀ β2.

9. |= 〈α〉↓ ⊃ α� V.

10. |= α ⇀ β � V ⇀ V.

11. |= [(〈α〉 ↓ V) ∧ (〈β〉 ↓ V)] ⊃ (〈α ⇀ β〉 ↓ V).

4.4. Alternate Syntaxes

The syntax for expressions of L given above has two small shortcom-
ings. First, all occurrences of a variable must be assigned the same
sort, even when the occurrences are in completely separate expressions.
Second, one must have knowledge of σ to understand the meaning of
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an expression. These shortcomings can be avoided by using a different
syntax in which the assignment of sorts to variables is specified directly
within an expression.

One way of doing this is to tag each occurrence of a variable or
individual constant with a sort. (A variable x tagged with a sort α, for
example, might be written as xα or xα.) Then there would be no need
for σ, and different occurrences of the same variable could be tagged
with different sorts. For example, the formula that says the variable
x of sort α denotes an element in the domain denoted by β could be
written in this syntax as

∃ yβ . yβ = xα.

This kind of syntax lacks the shortcomings described above, but it
is more verbose (since every occurrence of a variable or individual
constant would be tagged with a sort).

Another possibility is to assign sorts to bound variables where they
are bound and to free variables at the beginning of an expression using
a pseudo variable binder 3. (σ would be used only to assign sorts
to individual constants.) For example, the previous formula would be
written as

3x : α . ∃ y : β . y = x.

This syntax doesn’t have any of the shortcomings mentioned above,
but it does admit ambiguous expressions such as

3x : α . ∀x : β . x = x.

But there are various ways to deal with such expressions.

4.5. Individual Constants vs. Operator Symbols

A function can be represented in nbg∗ by either an individual con-
stant or an operator symbol. Individual constants can represent only
functions which are classes, that is, functions which map sets to sets.
Operator symbols can represent functions which map classes to classes,
which includes functions which are classes.

These two modes of representation, however, do not have equal
status in nbg∗. Individual constants are terms, but operator symbols
are not terms and thus predicate symbols and other operator symbols
can not be applied to them. Instead of being a defect of nbg∗, this
dichotomy between individual constants and operator symbols reflects
the natural division between the different roles functions play in math-
ematics. A function that is to be reasoned about—such as a function
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that maps real numbers to real numbers—is usually a class; it can be
represented as an individual constant that has the full status of a term.
A function that is only to assist in forming assertions—such as the
function that maps a class of ordered pairs to its domain—may not be
a class; it can be represented as a operator symbol that can be used to
form terms but is not a term itself.

It would be easy to assign sorts to operator and predicate symbols
in addition to variables and individual constants (see [7]). We have not
done this for the sake of simplicity. One would certainly want the sort
mechanism to support the full apparatus of terms in an implemented
version of nbg∗.

5. Conclusion

We have presented a formalization of set theory called nbg∗ which has
the following characteristics:

− It is based on ideas and principles that are very familiar from
mathematics practice.

− It has the same expressive power as zf.

− It has the same convenient machinery for reasoning about func-
tions as lutins.

− It can be implemented and used in much the same way that
lutins is implemented and used in imps.

We believe that, by virtue of these characteristics, nbg∗ is well-suited
to serve as a foundation for mechanized mathematics systems.
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