
Security for Mobile Agents: Issues and Requirements
�

William M. Farmer, Joshua D. Guttman, and Vipin Swarup

The MITRE Corporation

202 Burlington Road

Bedford, MA 01730-1420

ffarmer,guttman,swarupg@mitre.org

Abstract

Mobile agents are processes which can autonomously
migrate to new hosts. Despite its many practical ben-
e�ts, mobile agent technology results in signi�cant
new security threats frommalicious agents and hosts.
The primary added complication is that, as an agent
traverses multiple hosts that are trusted to di�erent
degrees, its state can change in ways that adversely
impact its functionality. In this paper, we investigate
these new threats and develop a set of achievable se-
curity requirements for mobile agent systems.

1 Introduction

Currently, distributed systems employ models in
which processes are statically attached to hosts
and communicate by asynchronous messages or syn-
chronous remote procedure calls. Mobile agent tech-
nology extends this model by including mobile pro-
cesses, i.e., processes which can autonomously mi-
grate to new hosts. This basic idea results in numer-
ous bene�ts including exible, dynamic customiza-
tion of the behavior of clients and servers and robust
remote interaction over unreliable networks.

Threats, vulnerabilities, and countermeasures for
the currently predominating static distributed sys-
tems have been studied extensively; sophisticated dis-
tributed system security architectures have been de-
signed and implemented [11, 14]. These architectures
use the access control model, which provides a ba-
sis for secrecy and integrity security policies. In this
model, objects are resources such as �les, devices,
processes, and the like; principals are entities that
make requests to perform operations on objects. A
reference monitor is a guard that decides whether or
not to grant each request based on the principal mak-

�This work was supported by the MITRE-Sponsored Re-

search Program.

ing the request, the operation requested, and the ac-
cess rules for the object.

The process of deducing which principal made a
request is called authentication. In a distributed sys-
tem, authentication is complicated by the fact that a
request may originate on a distant host and may tra-
verse multiple machines and network channels that
are secured in di�erent ways and are not equally
trusted [11]. The process of deciding whether or
not to grant a request|once its principal has been
authenticated|is called authorization. The authenti-
cation mechanism underlies the authorization mecha-
nism in the sense that authorization can only perform
its function based on the information provided by au-
thentication, while conversely authentication requires
no information from the authorization mechanism.

Despite its many practical bene�ts, mobile agent
technology results in signi�cant new security threats
from malicious agents and hosts. The primary added
complication is that, as an agent traverses multiple
machines that are trusted to di�erent degrees, its
state can change in ways that adversely impact its
functionality.

In this paper, we will examine a few di�erent ways
of using mobile agents, with the aim of identifying
many of the threats and security issues which a mean-
ingful mobile agent security infrastructure must han-
dle. We will develop a set of security requirements
for mobile agent systems and will distinguish between
those that appear impossible, those that are achiev-
able with current technology, and those that might
be achievable with future work. We will not, in this
short paper, develop a security model which can meet
the achievable requirements, though we think it can
be done. See [6] for elements of such a model and
[4, 9, 13, 15, 16] for related work on mobile agent
security.

2 Mobile Agents

A mobile agent is a program that can migrate from
one networked computer to another while executing.
This contrasts with the client/server model where
non-executable messages traverse the network, but
the executable code remains permanently on the com-
puter it was installed on. Mobile agents have nu-
merous potential bene�ts. For instance, if one needs
to perform a specialized search of a large free-text
database, it may be more e�cient to move the pro-
gram to the database server rather than move large
amounts of data to the client program.

In recent years, several programming languages for
mobile agents have been designed. These languages
make di�erent design choices as to which components
of a program's state can migrate frommachine to ma-
chine. In Java [12], only program code can migrate;
no state is carried with the programs. In Obliq [2],
�rst-class function values (closures) can migrate; clo-
sures consist of program code together with an en-
vironment that binds variables to values or memory
locations. In Kali Scheme [3], again, closures can mi-
grate; however, since continuations [10, 8] are �rst-
class values, Kali Scheme permits entire processes
to migrate autonomously to new hosts. In Tele-
script [18], functions are not �rst-class values; how-
ever, Telescript provides special operations that per-
mit processes to migrate autonomously.

The languages also di�er in their approach to trans-
porting objects other than agents. When a closure or
process migrates, it can either carry along all the ob-
jects (mutable data) that it references or leave the ob-
jects behind and carry along network references to the
objects. Java does not address this issue since it per-
mits only program code to migrate. In Obliq, objects
remain on the node on which they were created and

mobile closures contain network references to these
objects; if object migration is desired, it needs to be
programmed explicitly by cloning objects remotely
and then deleting the originals. In Kali Scheme, ob-
jects are copied upon migration; this results in multi-
ple copies of the same objects; data consistency needs
to be programmed explicitly if it is desired. In Tele-
script, objects can either migrate or stay behind when
an agent that owns them migrates. However, if other
agents hold references to an object that migrates,
those references become invalid. Hence, programming
care is required to protect against dangling pointers.

In this paper, we adopt a fairly general model of
mobile agents. Agent interpreters run on individual
networked computers and communicate among them-
selves using host-to-host communication services. An
agent consists of code together with execution state.

The state includes a program counter, registers, envi-
ronment, recursion stack, and store. Agents execute
by being interpreted by agent interpreters.
Agents communicate among themselves by message

passing. In addition, agents can invoke a special asyn-
chronous \remote apply" operation that applies a clo-
sure to arguments on a speci�ed remote interpreter.
Remote procedure calls can be implemented with this
primitive operation and message passing. Agent mi-
gration and cloning can also be implemented with this
primitive operation, using �rst-class continuation val-
ues.

3 Two Examples

In this section, we will describe two examples. We
believe they are typical of many|though not of all|
of the ways that mobile agents can e�ectively be used.
We will try to draw out the most important security
issues that they raise, as a concrete illustration of the
problems of secure mobile agents.

Competing Airline Carriers. Consider a mobile
agent that visits the Web sites of several airlines
searching for a ight plan that meets a customer's
requirements. We focus on four hosts: a customer
host, a travel agency host, and two servers owned by
competing airlines, for instance United Airlines and
American Airlines, which we assume for the sake of
this example do not share a common reservation sys-
tem. The mobile agent is programmed by a travel
agency. A customer dispatches the agent to the
United Airlines server where the agent queries the
ight database. With the results stored in its environ-
ment, the agent then migrates to the American Air-
line server where again it queries the ight database.
The agent compares ight and fare information, de-
cides on a ight plan, migrates to the appropriate
airline host, and reserves the desired ights. Finally,
the agent returns to the customer with the results.

The customer can expect that the individual air-
lines will provide true information on ight schedules
and fares in an attempt to win her business, just as
we assume nowadays that the reservation information
the airlines provide over the telephone is accurate, al-
though it is not always complete.
However, the airline servers are in a competitive re-

lation with each other. The airline servers illustrates
a crucial principle: For many of the most natural and
important applications of mobile agents, we cannot
expect the participants to trust one another.
There are a number of attacks they may attempt.

For instance, the second airline server may be able

to corrupt the ight schedule information of the �rst
airline, as stored in the environment of the agent. It
could surreptitiously raise its competitor's fares, or it
could advance the agent's program counter into the
preferred branch of conditional code. As we will argue
in Section 4.1, cryptography does not help here either.
Thus, the mobile agent cannot decide its ight plan
on an airline host since the host has the ability to ma-
nipulate the decision. Instead, the agent would have
to migrate to a neutral host such as the customer's
host or a travel agency host, make its ight plan de-
cision on that host, and then migrate to the selected
airline to complete the transaction. This attack illus-
trates a principle: An agent's critical decisions should
be made on neutral (trusted) hosts.

A second kind of attack is also possible: the �rst
airline may hoodwink the second airline, for instance
when the second airline has a cheaper fare available.
The �rst airline's server surreptitiously increases the
number of reservations to be requested, say from two
to 100. The agent will then proceed to reserve 100
seats at the second airline's cheap fare. Later, le-
gitimate customers will have to book their tickets on
the �rst airline, as the second believes that its ight is
full. This attack suggests a third principle: Unchang-
ing components of the state should be sealed crypto-
graphically.

Distributed Intrusion Detection. Consider an
intrusion protection system that protects networked
computer systems from electronic attacks by collect-
ing audit data, detecting electronic attacks, and re-
sponding to suspected attacks. Mobile agents can be
used to dynamically alter the data being collected,
distribute the computation across the network, and
dynamically respond to suspected attacks. The po-
tential bene�ts of a mobile agent architecture include
greater exibility and improved performance.

In an ongoing project, we are designing a mobile
agent architecture where the network is partitioned
into one or more network domains. Each domain has
a protected computer running an interpreter that is
trusted by all agents within that domain. These inter-
preters trust each other to varying degrees depending
on the relationships between the domains. All other
interpreters run on untrusted computers that the in-
trusion protection system is trying to protect; hence
these interpreters cannot be trusted.

The agents of this system will require special privi-
leges to collect audit data and respond to attacks. At
the same time, the agents will need to be restricted
so that they cannot exceed their authority. An im-
portant aspect of this example is that the agents will

execute on untrusted hosts in a hostile environment.
In order to be e�ective, the system will require strong
security controls to protect both the intrusion detec-
tion system and the underlying computer infrastruc-
ture.

Numerous attacks, both inadvertent and deliber-
ate, are possible. Intruders can terminate or modify
the behavior of interpreters. They can inject their
own agents and can modify or trick legitimate agents
into performingmalicious tasks. They can spy on sen-
sitive data stored within agents, within interpreters,
and within communications between agents and in-
terpreters.

Consider a data collection agent that is dispatched
by a trusted interpreter, migrates to an untrusted
machine, collects process information from that host
(e.g., by running \ps" on a UNIX host), then mi-
grates back to the original interpreter to deposit the
collected information. If the network addresses of the
two interpreters are stored as state variables of the
agent, the second interpreter can switch the two ad-
dresses, reset the program counter, and return the
agent to the �rst interpreter. The agent will now
collect process information from the �rst interpreter
and return it to the second interpreter, thus providing
valuable information to an attacker. This attack il-
lustrates that a migrating agent can become malicious
by virtue of its state getting corrupted.

Ideally, we would like the interpreters to distin-
guish between agents of the intrusion detection sys-
tem and agents of attackers. The interpreters should
verify the integrity of agents and should execute legit-
imate agents correctly. The interpreters should pro-
vide agents with appropriate resources but prevent
harmful behavior. Agents should be able to commu-
nicate privately and restrict access to sensitive code
or data that they carry. Agents should execute cor-
rectly and completely; that is, agents should migrate
correctly to desired hosts, execute correctly on those
hosts, and should be recovered in the event of system
failure.

4 Security Goals

Security is a fundamental concern for a mobile agent
system. Harrison et al. [7] identify security as a \se-
vere concern" and regard it as the primary obstacle
to adopting mobile agent systems.

The operation of a mobile agent system will nor-
mally be subject to various agreements, whether de-
clared or tacit. These agreements may be violated,
accidently or intentionally, by the parties they are
intended to serve. A mobile agent system can also

be threatened by parties outside of the agreements:
they may create rogue agents; they may hijack exist-
ing agents; or they may commandeer interpreters.
There are a variety of desirable security goals for a

mobile agent system. Most of these concern the in-
teraction between agents and interpreters. The user
on behalf of whom an agent operates wants it to be
protected|to the extent possible|from malicious or
inept interpreters and from the intermediate hosts
which are involved in its transmission. Conversely, an
interpreter, and the site at which it operates, needs
to be protected from malicious or harmful behavior
by an agent.
Not all attractive goals can be achieved, however,

except in special circumstances. In the case of mobile
agents, one of the primary motivations is that they
allow a broad range of users access to a broad range of
services o�ered by di�erent|frequently competing|
organizations. Thus, in many of the most natural
applications, many of the parties do not trust each
other. In our opinion, some previous work (for in-
stance [16]) is vitiated by this fact: It assumes a de-
gree of trust among the participants which will not
exist in many applications of primary interest.
Nevertheless, the special cases may be of special

interest to some organizations. A large organization
like the United States Department of Defense might
set up a mobile agent system for inter-service use;
administrative and technical constraints might ensure
that the di�erent parties can trust each other in ways
that commercial organizations do not. In this paper,
however, we will focus on the more generic case, in
which there will be mistrust and attempts to cheat.
To emphasize the consequences of this choice, we

will �rst discuss putative security goals that we be-
lieve cannot be achieved in realistic cases. We will
then turn to the security services that can already
be supported by well-known techniques for security
in distributed systems. Finally, we will identify some
security goals that we believe can be achieved, but
not without novel additions to current distributed se-
curity mechanisms.

4.1 What is Impossible

Several apparently desirable security goals appear un-
achievable in the generic case we are focusing on.

Is an interpreter untampered? There appears
to be no reliable way to authenticate an interpreter.
For instance, suppose that one wants to determine
whether the interpreter running on a particular host
has been tampered with, in the sense that its text seg-
ment does not match a given executable image iden-

tically. In case the host is not running an operating
system that one trusts, there appears to be no way
to ensure this.1

In our context we can assume that many of the
hosts will be purchased and maintained by adver-
saries, or at least competitors. Then, �rst, the host is
unlikely to allow one to log in and inspect the mem-
ory of the running executable to do the comparison
by hand, so to speak. Second, a utility program run-
ning on that host to perform such comparisons on our
behalf could itself have been tampered with, leading
to a regress. Third, it is infeasible in general to deter-
mine, by sending test scripts, whether an interpreter
has been tampered with; the tampering has proba-
bly been designed to be unobtrusive, and to make a
di�erence only in odd but important circumstances.
Testing software is hard enough in a non-adversarial
context; bugs may survive lengthy testing even if they
were not designed to be hard to �nd.

Will an interpreter run an agent correctly?

Programs are merely a special kind of data, and
agents are merely itinerant programs with some ad-
ditional types of data attached. Because the agent is
essentially passive, there is no way to ensure that the
interpreter will execute the program in accordance
with the intended semantics of the program. More-
over, there is normally no way to check whether an
agent has been executed faithfully: If we knew what
result it would compute, we would not have needed
to send the agent.

It may sometimes be possible to determine heuris-
tically that an interpreter is cheating, by sending
agents whose results we believe we can predict ahead
of time. However, as we mentioned, clever cheaters
are apt to escape detection for a long time.

Will a host run an agent to completion? A
host may decide, for reasons of its own, to stop exe-
cution of an agent.

Will a host transmit an agent as requested? A
host may decide, for reasons of its own, not to trans-
mit an agent that requests to move, or alternatively,
to transmit it to the wrong destination. However,
with suitable public-key cryptographic support, it is
possible to ensure that a user is not tricked into think-
ing that a particular host was contacted if it was not.

1On the other hand, if one does have some assurance about

the host hardware and operating system, then one can ensure

that a valid version of a programwill be running [11, Section 6].

Can an agent's code and data be kept private?

Since an agent's code must be executed by a poten-
tially large group of interpreters, it must be readable
by all of them. Hence, there is little point in attempt-
ing to protect it by encryption. A similar point holds
for data carried by the agent that will be needed later
in its travels; if an agent will need to consult data in
its state at an interpreter that its sender does not
trust, then that data cannot be encrypted.

By contrast, data an agent has collected may be
encrypted with its sender's public key if the data will
not be examined again until the agent returns home.
If a host may be trusted to provide true data on a
particular subject, then this method may be used to
ensure no host visited later will be able to change the
results meaningfully.

If a pair of interpreters trust each other at least
to a limited extent, then they can choose a session
key for communications between themselves [11]. In
this case they can o�er link security to agents: agents
being transferred between those interpreters will be
transmitted in encrypted form.

Can an agent carry a key? For similar reasons,
an agent cannot carry its own key (or other secrets,
such as credit card numbers) in a form that can be
used on untrusted interpreters. Someone will peek.2

A secret such as a key can be carried in encrypted
form, but an interpreter must be entrusted with a
\master key" if the agent is to be able to use the
decrypted secret.

However, it appears undesirable to give an agent
an encrypted key even for use on trusted interpreters.
It is useless until we authenticate an interpreter and
distribute the master key on a secure channel, for
instance using the interpreter-to-interpreter encryp-
tion mentioned above. What point does it serve then
to have the agent carry an encrypted key? It seems
simpler and more robust to use the interpreter-to-
interpreter encryption itself, so long as the agent has
a name that the sender can tag the message with.
If the interpreter can be trusted with a master key,
then it can surely be trusted to give the name cor-
rectly over the secure channel.

2For this reason we expect, in the example of the airline

reservation system, that the agent will make a reservation

rather than an actual purchase. The purchase itself can be

handled more safely by having the sender separately engage

in an electronic purchase protocol. Such protocols require the

purchaser to be on-line|and to demonstrate possession of a

private key|as the transaction occurs, unlike mobile agents,

which can be active while their sender is o�-line.

For an overview of electronic purchase protocols, see

http://www.ini.cmu.edu/NETBILL/commerce.html.

Can agent-to-agent communication be kept

private? Similar considerations apply to agent-to-
agent communication. It seems pointless to give
agents keys so that they can have authenticated or
secret communication with other agents. That mech-
anism could work only while the agents are execut-
ing on trusted interpreters. And in that case, we
can use the simpler and more robust interpreter-to-
interpreter secure communication. The sending agent
passes data to its interpreter, which sends the data
through an encrypted channel to the interpreter exe-
cuting the receiving agent. The interpreters are then
trusted to identify the sender and recipient correctly,
and to protect the message by proper encryption.

Can an agent be distinguished from a clone?

Many mobile agent languages allow agents to clone
themselves. However, the system cannot reliably dis-
tinguish the original agent from its clone. This is
because agents do not carry keys. Thus, if the code
and data of the clone are to be authenticated, they
must have the same cryptographic checksum as the
original agent, as the private keys of the sender and
author are not available to construct new ones. Thus,
the code and signed data of the clone must be identi-
cal to the original. Thus, to distinguish them at all,
we must examine the unsigned portion of their state,
and there is no guarantee that these components have
not been tampered.

4.2 What is Easy

Some fundamental security goals can be achieved by
familiar techniques for distributed security.

Can the author and the sender of an agent be

authenticated? The identity of the author of the
program contained in an agent can be determined if
the author signs the code. Similarly, the sender of
an agent may make his identity known by signing the
program together with such other components of an
agent as will remain �xed through its travels.

Can we check the integrity of an agent's code?

Modi�cation of an agent's code can be detected by
checking the author's signature.

Can interpreters ensure agent privacy during

transmission? Unauthorized parties can be pre-
vented from reading sensitive information held by an
agent while it is in transit between two interpreters
if the interpreters are willing to encrypt it for trans-
mission.

Authorization: Can interpreters protect

themselves against agents? An interpreter (or
a remote resource manager) can decide if an agent
should have access to a resource by considering the
agent's author, program, user, and state. Some of
these items may be known to be worthy of a certain
degree of trust.

4.3 What is Possible but not Easy

Some security goals cannot be achieved via existing
approaches to security for distributed systems. Nev-
ertheless, it appears that they can be achieved by
developing special techniques for security in mobile
agents. We consider these areas to be the natural
context for research in mobile agent security.

We will group the issues into two classes: those
which allow an interpreter to evaluate the safety of
code that it is to execute, and those which allow an
interpreter to evaluate the safety of an agent's state.

Can we use a language in which all programs

are safe? One possibility is to develop \safe" lan-
guages, in which agents or mobile code have re-
stricted access to operations that a�ect the environ-
ment; Safe-Tcl is an example [1]. In this approach, an
incoming, untrusted piece of code is provided with a
subset of the language primitive operations; presum-
ably, anything that can be done with these is \safe
enough." This approach is reasonable in some con-
texts, although its exibility is limited.

Java [13] and Telescript [15] both use aspects of
their object oriented programming languages to allow
libraries to o�er a secure interface to incoming code.
The languages are complex, however, and widespread
review is only beginning [5]. Undoubtedly piecemeal
revisions will be needed, and more importantly, a
comprehensive understanding of the semantics of the
languages is called for. A good semantics should allow
a programmer to draw con�dent conclusions about
what possibilities are allowed by the interface he of-
fers.

Java also o�ers a byte-code veri�er [13]. This is in-
tended to check programs at load time. Java code is
compiled into an intermediate form called byte-code
before it is transmitted. The byte-code veri�er is in-
tended to assure an interpreter that a newly arrived
piece of byte-code|which may have been compiled
by a faulty or malicious compiler|satis�es the same
type-correctness properties that a correct compiler
would enforce. As far as we know, there has been
little independent analysis of its design or implemen-
tation.

Can a sender restrict his agents exibly? In
some applications, a sender wants his agent to run
with restricted authority in most cases, but with
greater authority in certain situations. For instance,
in the intrusion detection tool mentioned above, a
data-collection agent executing ps on an untrusted
UNIX system needs only ordinary privilege. How-
ever, when it returns to its home interpreter, the
agent must request privilege so that it can install
the newly gathered information into a protected
database. Thus, there must be a mechanism to allow
an agent to request di�erent levels of privilege de-
pending on its state (including its program counter).

Can an interpreter ensure that an agent is in a

safe state? Because a migrating agent can become
malicious if its state is corrupted, as in the case of the
intrusion detection ps agent, an interpreter may want
to execute a procedure to test whether an agent is in a
harmful state. However, the test must be application-
speci�c, which suggests that reputable manufacturers
of mobile agents may want to provide each one with
an appropriate state appraisal function to be used
each time an interpreter starts an agent. The code
to check the agent's state may be shipped under the
same cryptographic signature that protects the rest
of the agent's code, so that a malicious intermedi-
ary cannot surreptitiously modify the state appraisal
function.

Can a sender control which interpreters have

authority to execute an agent? If executing an
agent involves contacting other hosts, then an inter-
preter may have to authenticate that it is a legitimate
representative of the agent. The sender of an agent
may want to control which interpreters will be able
to succeed in authenticating themselves in this role.

5 Conclusion

Many of the most important applications of mobile
agents will occur in fairly uncontrolled, heterogeneous
environments. As a consequence, we cannot expect
that the participants will trust each other. More-
over, interpreters may disclose the secrets of visiting
agents, and may attempt to manipulate their state.

Existing techniques, intended for distributed sys-
tems in general, certainly allow substantial protection
within the broad outlines of these constraints. How-
ever, substantial investment in mobile agent systems
may await further work on new security techniques
speci�cally oriented toward mobile agents. These new

techniques, discussed in Section 4.3, focus on two ar-
eas. One is programming language support to im-
prove the safety of mobile code. The other is support
for tracking the state carried by mobile agents. With
advances in these areas, we believe that mobile agents
will be an important ingredient in producing secure,
exible distributed systems.

References

[1] N. S. Borenstein. Email with a mind of its own.
In ULPAA '94, 1994. ftp://ftp.fv.com/pub/

code/other/safe-tcl.tar.gz.

[2] L. Cardelli. A language with distributed
scope. In Proceedings of the 22nd ACM
Symposium on Principles of Program-
ming Languages, pages 286{298, 1995.
http://www.research.digital.com/SRC/Obliq/

Obliq.html.

[3] H. Cejtin, S. Jagannathan, and R. Kelsey.
Higher-order distributed objects. ACM Trans-
actions on Programming Languages and Sys-
tems, 17(5):704{739, September 1995. http://

www.neci.nj.nec.com:80/PLS/Kali.html.

[4] D. Chess, B. Grosof, C. Harrison, D. Levine,
C. Parris, and G. Tsudik. Itinerant agents
for mobile computing. IEEE Personal Commu-
nications Magazine, 2(5):34{49, October 1995.
http://www.research.ibm.com/massive.

[5] Drew Dean and Dan S.Wallach. Security aws in
the HotJava browser. Technical Report 95-501,
Department of Computer Science, 1995. URL
ftp://ftp.cs.princeton.edu/reports/1995/501.ps.Z.

[6] W. Farmer, J. Guttman, and V. Swarup. Se-
curity for mobile agents: Authentication and
state appraisal. In To appear in the Proceed-
ings of the European Symposium on Research in
Computer Security (ESORICS), Lecture Notes
in Computer Science, September 1996.

[7] C. G. Harrison, D. M. Chess, and A. Kershen-
baum. Mobile agents: Are they a good idea?
Technical report, IBM Research Report, IBM
Research Division, T.J. Watson Research Cen-
ter, Yorktown Heights, NY, March 1995. http://
www.research.ibm.com/massive.

[8] C. Haynes and D. Friedman. Embedding con-
tinuations in procedural objects. ACM Transac-
tions on Programming Languages and Systems,
9:582{598, 1987.

[9] IBM Corporation. Things that go bump in the
net. Web page at http://www.research.ibm.com/
massive, 1995.

[10] IEEE Std 1178-1990. IEEE Standard for the
Scheme Programming Language. Institute of
Electrical and Electronic Engineers, Inc., New
York, NY, 1991.

[11] B. Lampson, M. Abadi, M. Burrows, and
E. Wobber. Authentication in distributed sys-
tems: Theory and practice. ACM Transac-
tions on Computer Systems, 10:265{310, Novem-
ber 1992. http://DEC/SRC/research-reports/

abstracts/src-rr-083.html.

[12] Sun Microsystems. Java: Programming for
the internet. Web page available at http://

java.sun.com/.

[13] Sun Microsystems. HotJava: The security story.
Web page available at http://java.sun.com/doc/
overviews.html, 1995.

[14] J. G. Steiner, C. Neuman, and J. I. Schiller. Ker-
beros: An authentication service for open net-
work systems. In Proceedings of the Usenix Win-
ter Conference, pages 191{202, 1988.

[15] J. Tardo and L. Valente. Mobile agent secu-
rity and Telescript. In IEEE CompCon, 1996.
http://www.cs.umbc.edu/agents/ security.html.

[16] C. Thirunavukkarasu, T. Finin, and J. May-
�eld. Secret agents | a security architecture
for KQML. In CIKM Workshop on Intelligent
Information Agents, Baltimore, December 1995.

[17] T. D. Tock. An extensible framework for authen-
tication and delegation. Master's thesis, Univer-
sity of Illinois at Urbana-Champaign, Urbana,
IL, 1994. ftp://choices.cs.uiuc.edu/Papers/

Theses/MS.Authentication.Delegation.ps.Z.

[18] J. E. White. Telescript technology: Mobile
agents. In General Magic White Paper, 1996.
Will appear as a chapter of the book Soft-
ware Agents, Je�rey Bradshaw (ed.), AAAI
Press/The MIT Press, Menlo Park, CA.

