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Abstract

This paper describes a method for formally analyzing numerical programs
and a software system that implements the method. The software system
translates a purely functional Pre-Scheme program that manipulates ma-
chine integers into a representation in the imps Interactive Mathematical
Proof System. The correctness of the Pre-Scheme program is analyzed by
stating and proving conjectures about the imps representation using the imps

theorem proving facility.
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1 Introduction

This paper describes a method for formally analyzing numerical programs
and a software system that implements the method. By a numerical program
we mean one which uses numerical datatypes such as machine integers or
floating-point reals. A formal analysis of a program means the investigation
of a representation of the program as some mathematical object, such as a
lambda expression, in a formal mathematical theory. The representation is
created in a formal theory so that we can state and prove properties of the
program using conventional mathematical techniques with the assistance of
a mechanized mathematics system. In particular, we can attempt to produce
a machine-checked proof that the program computes an abstractly specified
mathematical function, or is within certain bounds of that function.

An enormous number of commonly used, practical programs perform
computations involving numerical datatypes—for example, programs for
computing solutions of all sorts of equations (algebraic equations, differ-
ential equations), for computing transforms (Fourier, Laplace, Mellin), and
for real-time control. Though much is known about such programs in a
practical sense, a precise mathematical analysis of even a simple numerical
program is very difficult for the following reasons:

• Commonly used numerical datatypes are approximations of familiar
mathematical objects such as the ring of integers or the field of real
numbers.

• The operations on these numerical datatypes may have overflow (or
underflow). Moreover, common algebraic laws, such as the associative
law, may not be valid.

• The programs themselves may compute mathematical objects or ap-
proximations thereof requiring a large amount of mathematical ma-
chinery to specify.

• The mathematical formalization of how the computed solutions of a
problem approximate the abstractly defined solution is usually itself
more difficult than the theory of the exact solution.

The basic idea of our method is to write a numerical program in the Pre-
Scheme programming language [9] and then translate it into a representation
in the imps Interactive Mathematical Proof System [2] so that conjectures
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concerning the correctness of the program can be investigated with the help
of imps. The representation of the Pre-Scheme program in imps is based on
the standard for numerical datatypes proposed by M. Payne, C. Schaffert,
and B. Wichmann [8]. We have produced a software system that implements
the method for purely functional Pre-Scheme programs that manipulate just
machine integers. Restricting our attention to machine integers allowed us to
demonstrate our method while avoiding the complexity of more sophisticated
numerical datatypes such as the floating-point reals. In subsequent work,
we would like to extend our system to handle purely functional Pre-Scheme
programs that manipulate both machine integers and floating-point reals.

The paper is organized as follows. Some background on the Pre-Scheme
programming language and the imps system is given in section 2 and sec-
tion 3, respectively. The imps theory of machine arithmetic, which is used
as the basis for representing numerical Pre-Scheme programs, is discussed in
section 4; the complete specification of the theory is presented in appendix A.
Section 5 describes the software that translates a numerical Pre-Scheme pro-
gram into an imps representation. Several examples of how the method is
employed are given in section 6; the details of the examples are presented
in appendices B, C, D, E, and F. Section 7 contains some final remarks.

2 Pre-Scheme

Pre-Scheme is a programming language invented by R. Kelsey [6] and J. Rees
which is intended for systems programming. Its syntax is essentially the
same as the syntax of Scheme so that Pre-Scheme programs can be run
and debugged as if they were ordinary Scheme programs. Its semantics is
also very similar to the semantics of Scheme; the semantics of both Scheme
and Pre-Scheme can be defined succinctly by means of denotational seman-
tics [5, 9]. Pre-Scheme can be executed using only a C-like run-time system,
in which, for example, there is no run-time type checking and no garbage
collection.

Our software system uses a version of Pre-Scheme called vlisp Pre-
Scheme that was developed and implemented under MITRE’s vlisp

project [4]. The compiler for vlisp Pre-Scheme, which is written in Scheme,
was verified under vlisp [7]. vlisp Pre-Scheme has over 50 standard primi-
tive operators, including the following operators for machine arithmetic: =,
<, <=, >, >=, +, *, -, abs, quotient, and remainder.1

1The primitive operator - is overloaded: it represents subtraction when it has two
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Compilation is performed in two main stages. The first stage translates
a vlisp Pre-Scheme program into a language called Simple Pre-Scheme by
expanding derived syntax, changing bound variables, and applying a series
of meaning-refining transformations.2 Simple Pre-Scheme is a sublanguage
of vlisp Pre-Scheme with the following two properties:

(1) Each Simple Pre-Scheme program has a very restricted syntactic form.
In particular, a Simple Pre-Scheme program has exactly one occur-
rence of letrec which is at the top level, and lambda expressions may
occur only as initializers in letrec bindings or in the operator position
of a procedure call. (The lambda construct in Pre-Scheme is used to
create a procedure, while the letrec construct is used to define a list
of local procedures that may be mutually recursive.)

(2) Each Simple Pre-Scheme program is strongly typed.

These two properties make it easy to compile Simple Pre-Scheme programs
into machine code. This first step of the compiler will not succeed on all
vlisp Pre-Scheme programs, and hence, the compiler does not accept the
entire vlisp Pre-Scheme language.

The second stage translates a Simple Pre-Scheme program either into C
or into assembly language for a MIPS computer architecture.

3 IMPS

imps is a mathematical reasoning environment that is intended to support
traditional mathematical techniques and styles of practice. The system con-
sists of a database of mathematics (represented as a network of axiomatic
theories linked by theory interpretations) and a collection of tools for ex-
ploring, applying, extending, and communicating the mathematics in the
database. One of the chief tools is a facility for interactively developing
formal proofs. The imps theory library currently contains significant por-
tions of logic, algebra, and analysis with over 1100 replayable proofs. The
imps logic is a version of simple type theory which admits partial functions,
undefined terms, and subtypes. The imps system is available without fee
under the terms of a public license.

arguments and negation when it has one argument.
2In particular, each expression of the form -x is replaced with the expression (- 0

x). As a consequence, we can assume that in Simple Pre-Scheme programs the primitive
operator - always represents subtraction, and not negation.
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Several aspects of imps makes it especially well suited as an environment
in which to analyze numerical programs:

(1) imps supports the little theories version of the axiomatic method [1].
Hence numerical objects can be formalized as members of abstract
numerical datatypes, and one formalization can be related to an alter-
native formalization by means of theory interpretation.

(2) imps contains a well developed theory of the real numbers called H-O-
Real-Arithmetic (which is essentially the theory of a complete ordered
field with the integers and the rational numbers specified as substruc-
tures of the real numbers). The theory Machine-Arithmetic (described
in section 4) is an extension of H-O-Real-Arithmetic.

(3) In the imps logic, types are allowed to have subtypes. (Types and
subtypes are called collectively sorts.) Hence a numerical datatype
can be formalized in imps as a subsort of one of the sorts in H-O-Real-
Arithmetic. For example, the type of machine integers is formalized
in Machine-Arithmetic as a subsort of Z, the sort of integers in H-O-
Real-Arithmetic. This allows the objects of a numerical datatype to
be thought of as ordinary abstract mathematical objects, such as the
real numbers.

(4) imps admits partial functions and undefined terms. Hence operations
on numerical objects can be formalized in imps as partial functions.
This reduces questions about overflow to questions about definedness—
for which imps has special machinery.

(5) In imps one can define a system of functions to be the least fixed point
(with respect to the subfunction ordering) of a corresponding system of
monotone functionals. This notion of mutual recursion is semantically
the same as the notion of the letrec construction in Pre-Scheme.

4 The IMPS Theory of Machine Arithmetic

Machine-Arithmetic is a formalization in imps of the axiomatization of ma-
chine integers proposed in [8]. (Appendix A contains a TEX presentation
of the imps file which defines Machine-Arithmetic.) Machine-Arithmetic is
an extension of the imps theory H-O-Arithmetic, so that it contains all the
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ordinary machinery of real arithmetic. Its base language consists of the lan-
guage of H-O-Arithmetic plus the following two constants of sort Z which are
intended to denote, respectively, the largest and smallest machine integers:

(1) maxint.

(2) minint.

Its axioms consist of the axioms of H-O-Arithmetic plus the following two
statements about maxint and minint:

(1) 0 < maxint.

(2) minint = −maxint.3

An atomic sort named int is defined in Machine-Arithmetic to be the set
of all integers which lie inclusively between minint and maxint. The sort
int is intended to denote the collection of machine integers. Notice that,
since minint and maxint are not fully specified, what is a machine integer
in Machine-Arithmetic is also not fully specified.

For each standard primitive for machine arithmetic in Simple Pre-
Scheme, a corresponding constant is defined in Machine-Arithmetic (see
Table 1). These constants are defined to be the ordinary predicates and
functions of H-O-Real-Arithmetic restricted to int. Thus, they are unde-
fined outside of int. Several basic lemmas about these constants are proved
in the file defining Machine-Arithmetic.

5 The Pre-Scheme-to-IMPS Translator

The Pre-Scheme-to-imps Translator is a procedure named ps-to-imps which
“compiles” a purely functional vlisp Pre-Scheme program P that manipu-
lates machine integers into an imps representation consisting of:

(1) An extension T of the theory Machine-Arithmetic (described in sec-
tion 4) specified by a set of imps def-forms. (A def-form is a syntactic
form for specifying an imps entity. For more information, see [3].)

(2) An expression E in T specified by a view-expr form which is intended
to represent the body of P .

3Alternate specifications of minint are given in [8]. We have chosen to specify minint as
the negation of maxint because it yields the simplest and most elegant theory of machine
integers.
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Simple Pre-Scheme Primitive imps Constant
= =ma

< <ma

<= <=ma

> >ma

>= >=ma

+ +ma

* ∗ma

- subma

abs absma

quotient divma

remainder modma

Table 1: Defined Constants in Machine-Arithmetic.

More precisely, ps-to-imps takes two arguments:

(1) An input file containing the Pre-Scheme program P .

(2) An output file in which is put the list of def-forms that specify T and
E.

We believe that, taken together the imps theory T and the expression E
faithfully represent the Pre-Scheme program P , but we have not written
down a proof of this claim.

The final product of ps-to-imps, the list of def-forms placed in the
output file, is generated in three stages. The first stage translates P into a
Simple Pre-Scheme program P ′. This stage is exactly the same as the first
stage of the vlisp Pre-Scheme compiler. The second stage extracts from P ′

a certain list L of information. Then the third stage translates L into the list
D of def-forms given in the imps sexp (s-expression) syntax. ps-to-imps
is written in the T programming language, but some of its subprocedures
are written in Scheme. In particular, the first two stages of ps-to-imps are
performed by procedures written in Scheme.

D contains, in order, the following def-forms:

(1) A def-language form that defines a language named Machine-
Arithmetic-Language-Extension. This language contains the language
of theory Machine-Arithmetic plus the following constants:
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(a) A constant with a name of the form unspecifiedn for each ex-
pression in P ′ of the form (if #f #f) or (set! I E).

(b) A constant of sort int with the name zeroma, plus mma, or
minus nma for each numerical constant 0, -m, or n, respectively,
in P ′.

(2) A def-theory form that defines a theory named Machine-Arithmetic-
Language-Extension. This theory contains the language Machine-
Arithmetic-Language-Extension, the theory Machine-Arithmetic, and
the following axioms:

(a) zeroma = 0 if zeroma is a constant of Machine-Arithmetic-
Language-Extension.

(b) plus mma = m if plus mma is a constant of Machine-Arithmetic-
Language-Extension.

(c) minus nma = −n if minus nma is a constant of Machine-
Arithmetic-Language-Extension.

Notice that these axioms constrain the values that the primitive con-
stants minint and maxint may have.

(3) A def-recursive-constant form corresponding to the bindings of the
single letrec expression in P ′.

(4) A view-expr form corresponding to the body of the single letrec ex-
pression in P ′.

6 Examples

This section contain five examples of machine integer Pre-Scheme programs
that were analyzed using the machinery described in the previous sections.
Each example was carried out as follows. A vlisp Pre-Scheme program was
written in a file program.scm. Next the following command was executed
in a UNIX shell:

ps-to-imps program.scm program.t

Then a formal analysis of the program was performed in imps within the
theory specified by the def-forms that were put in program.t. And, finally,
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the def-forms and results of the analysis (i.e., definitions, theorems, proofs,
etc.) were placed in an imps file. Appendices B, C, D, E, and F contain a
TEX presentation of the imps file for each example, respectively.

6.1 Even and Odd Testers

6.1.1 The Pre-Scheme Program

(define (even-nn x) (if (zero? x) 1 (odd-nn (- x 1))))

(define (odd-nn x) (if (zero? x) 0 (even-nn (- x 1))))

(even-nn 77)

6.1.2 Discussion

This program defines by mutual recursion two procedures even-nn and
odd-nn which test for whether a natural number (represented as a machine
integer) is even and odd, respectively. When the test succeeds, 1 is returned,
and when the test fails, 0 is returned. The final command tests whether 77
is even. Notice that even-nn and odd-nn returns an overflow error when
they are applied to a negative machine integer.

In our analysis of the program, we prove that:

(1) (even-nn n) terminates without an error iff n is an nonnegative ma-
chine integer.

(2) (odd-nn n) terminates without an error iff n is an nonnegative ma-
chine integer.

(3) (even-nn n) returns 1 iff n is an even nonnegative machine integer.

(4) (odd-nn n) returns 1 iff n is an odd nonnegative machine integer.

(5) (even-nn n) returns 1 iff (odd-nn n) returns 0.

(6) (odd-nn n) returns 1 iff (even-nn n) returns 0.
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6.2 Recursive Factorial Function

6.2.1 The Pre-Scheme Program

(define (fact n)
(if (zero? n)

1
(if (positive? n)
(* n (fact (- n 1))))))

(fact 4)

6.2.2 Discussion

This program defines by direct recursion a procedure fact which computes
the factorial function on the natural numbers (represented as machine in-
tegers). The final command computes the factorial of 4. Notice that fact
returns an overflow error when it is applied to a negative machine integer.

In our analysis of the program, we prove that, if (fact n) terminates
without an error, then it returns n!.

6.3 Iterative Factorial Function

6.3.1 The Pre-Scheme Program

(define (fact-loop n a)
(if (positive? n)

(fact-loop (- n 1) (* n a))
a))

(define-integrable (fact n)
(fact-loop n 1))

(fact 4)

6.3.2 Discussion

This program defines by tail recursion a procedure fact which computes the
factorial function on the natural numbers (represented as machine integers).
(Since fact is defined by tail recursion, it executes in constant space; i.e.,
it is an iterative procedure.) The final command computes the factorial of
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4. Notice that fact returns 1 when it is applied to a nonpositive machine
integer.

In our analysis of the program, we prove that, if (fact-loop n a) ter-
minates without an error, then it returns (n!) ∗ a.

6.4 Fibonacci Function

6.4.1 The Pre-Scheme Program

(define (fib-1 n)
(if (= n 0)

1
(+ (fib-1 (- n 1)) (fib-2 (- n 1)))))

(define (fib-2 n)
(if (= n 0)

0
(fib-1 (- n 1))))

(fib-1 1)

6.4.2 Discussion

This program defines by mutual recursion two procedures fib-1 and fib-2.
The procedure fib-1 computes the fibonacci sequence on the natural num-
bers represented as machine integers. We prove that, if (fib-1 n) termi-
nates without an error, then it returns the nth fibonacci number.

6.5 Greatest Common Denominator

6.5.1 The Pre-Scheme Program

(define (gcd_scm u v)
(if (and (<= 0 v) (<= 0 u))

(if (= u 0)
v
(if (= v 0)

u
(gcd_scm v (remainder u v))))))

(gcd_scm 6 7)
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6.5.2 Discussion

This example illustrates the strong interplay between abstract mathemati-
cal concepts and concrete numerical programs. The program defines a pro-
cedure gcd scm which computes the greatest common divisor of a pair of
machine integers. In our analysis of the program we prove that, if (gcd scm
m n) terminates without error whenever m,n are nonnegative machine in-
tegers, and that it returns the greatest common divisor of m,n.

The greatest common divisor of two integers a, b is defined as the unique
positive generator of the set of integer combinations ra+ sb. A generator of
a set is an element c of the set such that every other element is a multiple
(positive or negative) of c, and moreover, the set contains only multiples of c.
This definition is adopted because it is closer to the traditional mathematical
approach which defines divisibility in terms of ideals. We prove in imps

that this definition is equivalent with a number of other characterizations,
including the characterization as the largest positive integer which divides
both a and b.

7 Conclusion

We believe that the work described in this paper is a good first step toward
a useful system for formally analyzing numerical programs. The following
are the main advantages of our method:

• The translation from Pre-Scheme to imps is completely automated.

• The formal analysis of a numerical Pre-Scheme program is performed
using imps, a state-of-the-art theorem proving system.

• The numerical datatypes are represented directly as “subtypes” of or-
dinary abstract mathematical datatypes such as real number arith-
metic. This makes it possible to apply the results of traditional math-
ematics wherever they are needed.

• Questions about overflow in numerical Pre-Scheme programs are re-
duced to questions about the definedness of imps expressions. imps

has been specifically designed to facilitate reasoning about definedness.

• After a Pre-Scheme numerical program is analyzed and shown to be
correct, it can be translated into either C or assembly language. More-
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over, the software that translates Pre-Scheme into assembly language
has been verified (see [7]).

• Although the examples we tested were very simple, the method will
scale up to larger and more complex examples.

There are also a couple of fairly obvious disadvantages of our method:

• The object programs must be written in Pre-Scheme.

• The Pre-Scheme programs must be purely functional, i.e., they are not
allowed to modify the values of variables.

We think that, for the sake of better software assurance, many software
developers would be willing to live with these disadvantages, especially since
Pre-Scheme is very similar to C.

A major disadvantage of the implementation of our method is that it
cannot handle Pre-Scheme programs that manipulate floating-point reals.
Since most interesting and commonly used numerical programs do manipu-
late floating-point reals, our implementation would be much more useful if
it could support floating-point reals. Our plan for the future is extend our
implementation to handle Pre-Scheme programs that manipulate both ma-
chine integers and floating-point reals. Fortunately, there is no conceptual
obstacle to this task. However, it is a nontrivial task since the numerical
datatype of floating-point reals is much more complicated than the numeri-
cal datatype of machine integers.

The task would involve three subtasks:

• Add new primitive operators to vlisp Pre-Scheme for handling
floating-point reals.

• Formulate an imps theory of floating-point arithmetic (that would
be an extension of Machine-Arithmetic), closely following the Payne-
Schaffert-Wichmann proposed standard [8].

• Extend the Pre-Scheme-to-imps translator to handle purely functional
vlisp Pre-Scheme programs that manipulate both machine integers
and floating-point reals.

Most of the work will be involved in the first two subtasks; the last subtask
will be relatively easy.

Once the implementation is ready to handle floating-point reals, software
developers will have a very useful tool for formally analyzing numerical pro-
grams. As far as we know, there is no comparable tool available today.
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Component theory: h-o-real-arithmetic
Top level axioms:

maxint-is-positive 0 < maxint.

minint-is-negative-maxint minint = −maxint.

Figure 1: Components and axioms for machine-arithmetic

A The File for Machine-Arithmetic

(load-section number-theory)

(include-files
(files
(imps /theories/machine-arithmetic/ma-presentation)))

Language A.1 (mach-arith-language)
Embedded language: h-o-real-arithmetic
Constants: maxint : Z
minint : Z

Theory A.2 (machine-arithmetic)
Language: mach-arith-language
Component Theories and Axioms: See Figure 1.

Theorem A.3 (minint-is-negative)
Theory: machine-arithmetic
minint < 0.

(proof

(

(apply-macete-with-minor-premises minint-is-negative-maxint)

simplify

))
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Sort Definition A.4 (int)
Theory: machine-arithmetic
[ i : Z 7→

conjunction
• minint ≤ i
• i ≤ maxint ].

Definition A.5 (= ma)
Theory: machine-arithmetic
[x, y : int 7→

x = y ].

Definition A.6 (¡ ma)
Theory: machine-arithmetic
[x, y : int 7→

x < y ].

Definition A.7 (¡= ma)
Theory: machine-arithmetic
[x, y : int 7→

x ≤ y ].

Definition A.8 (¿ ma)
Theory: machine-arithmetic
[x, y : int 7→

x > y ].

Definition A.9 (¿= ma)
Theory: machine-arithmetic
[x, y : int 7→

x ≥ y ].

(def-script closed-on-int-2 0
(
sort-definedness
direct-inference
(case-split ("#(xx_0,int) and #(xx_1,int)"))
simplify
(simplify-antecedent "with(p:prop,p);")
))
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(def-script unfold-ma-defined-expression 1
(
direct-inference
(unfold-single-defined-constant-globally $1)
(case-split ("#(x,int) and #(y,int)"))
simplify
(simplify-antecedent "with(p:prop,p);")
))

Lemma A.10 (Anonymous-14)
Theory: machine-arithmetic
[x, y : int 7→

conditionally, if x+ y ↓ int
• then x+ y
• else ⊥int ] ↓ [int× int ⇀ int].

Definition A.11 (+ ma)
Theory: machine-arithmetic
[x, y : int 7→

conditionally, if x+ y ↓ int
• then x+ y
• else ⊥int ].

Theorem A.12 (unfold-defined-expression%+ ma)
Theory: machine-arithmetic
∀x, y : Z s. t. +ma (x, y) ↓,

+ma (x, y) = x+ y.

(proof

(

(unfold-ma-defined-expression +_ma)

))

Lemma A.13 (Anonymous-15)
Theory: machine-arithmetic
[x, y : int 7→

conditionally, if x · y ↓ int
• then x · y
• else ⊥int ] ↓ [int× int ⇀ int].
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Definition A.14 (* ma)
Theory: machine-arithmetic
[x, y : int 7→

conditionally, if x · y ↓ int
• then x · y
• else ⊥int ].

Theorem A.15 (unfold-defined-expression%* ma)
Theory: machine-arithmetic
∀x, y : Z s. t. ∗ma (x, y) ↓,
∗ma (x, y) = x · y.

(proof

(

(unfold-ma-defined-expression *_ma)

))

Lemma A.16 (Anonymous-16)
Theory: machine-arithmetic
[x, y : int 7→

conditionally, if x− y ↓ int
• then x− y
• else ⊥int ] ↓ [int× int ⇀ int].

Definition A.17 (sub ma)
Theory: machine-arithmetic
[x, y : int 7→

conditionally, if x− y ↓ int
• then x− y
• else ⊥int ].

Theorem A.18 (unfold-defined-expression%sub ma)
Theory: machine-arithmetic
∀x, y : Z s. t. subma(x, y) ↓,

subma(x, y) = x− y.
(proof

(

(unfold-ma-defined-expression sub_ma)

))
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Lemma A.19 (unary-int-function-lemma)
Theory: machine-arithmetic
∀f : R ⇀ R implication
• ∀x : Z conjunction
◦ |f(x)| ≤ |x|
◦ implication
� f(x) ↓
� f(x) ↓ Z

• [x : int 7→
f(x) ] ↓ [int ⇀ int].

Lemma A.20 (binary-int-function-lemma)
Theory: machine-arithmetic
∀f : R×R ⇀ R implication
• ∀x, y : Z conjunction
◦ |f(x, y)| ≤ |x|
◦ implication
� f(x, y) ↓
� f(x, y) ↓ Z

• [x, y : int 7→
f(x, y) ] ↓ [int× int ⇀ int].

Theorem A.21 (int-minus-lemma)
Theory: machine-arithmetic
∀x : int − x ↓ int.

(proof

(

direct-and-antecedent-inference-strategy

(cut-with-single-formula "#(x,int)")

(incorporate-antecedent "with(p:prop,p);")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

(apply-macete-with-minor-premises minint-is-negative-maxint)

simplify

))

Lemma A.22 (Anonymous-17)
Theory: machine-arithmetic
[x : int 7→

− x ] ↓ [int ⇀ int].

17



Definition A.23 (- ma)
Theory: machine-arithmetic
[x : int 7→

− x ].

Lemma A.24 (Anonymous-18)
Theory: machine-arithmetic
[x : int 7→
|x| ] ↓ [int ⇀ int].

Definition A.25 (abs ma)
Theory: machine-arithmetic
[x : int 7→
|x| ].

Theorem A.26 (maxint-division-lemma)
Theory: machine-arithmetic
∀a : int, b : Z s. t. ¬(b = 0),
a/b ≤ maxint.

(proof

(

(cut-with-single-formula

"forall(a:int,b:zz,0<b implies a/b<=maxint)")

(block

(script-comment "‘cut-with-single-formula’ at (0)")

direct-and-antecedent-inference-strategy

(case-split ("0<b"))

simplify

(block

(script-comment "‘case-split’ at (2)")

(force-substitution "a/b" "(-a)/(-b)" (0))

(block

(script-comment "‘force-substitution’ at (0)")

(backchain "with(p:prop,forall(a:int,b:zz,p));")

simplify

(block

(script-comment "‘backchain’ at (1)")

(cut-with-single-formula "#(a,int)")

(incorporate-antecedent "with(a:int,#(a,int));")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

(apply-macete-with-minor-premises minint-is-negative-maxint)
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simplify))

simplify))

(block

(script-comment "‘cut-with-single-formula’ at (1)")

direct-and-antecedent-inference-strategy

(apply-macete-with-minor-premises

fractional-expression-manipulation)

(cut-with-single-formula "maxint<=maxint*b")

(move-to-sibling 1)

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(cut-with-single-formula "0<=maxint*(b-1)")

simplify

simplify)

(block

(script-comment "‘cut-with-single-formula’ at (0)")

(cut-with-single-formula "a<=maxint")

simplify

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(cut-with-single-formula "minint <= a and a <= maxint")

(apply-macete-with-minor-premises

int-in-quasi-sort_machine-arithmetic))))

))

Theorem A.27 (minint-division-lemma)
Theory: machine-arithmetic
∀a : int, b : Z s. t. ¬(b = 0),

minint ≤ a/b.

(proof

(

direct-and-antecedent-inference-strategy

(apply-macete-with-minor-premises minint-is-negative-maxint)

(cut-with-single-formula "(-a)/b<=maxint")

simplify

(block

(script-comment

"node added by ‘cut-with-single-formula’ at (1)")

(apply-macete-with-minor-premises maxint-division-lemma)

(cut-with-single-formula "#(a,int)")

(incorporate-antecedent "with(a:int,#(a,int));")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

(apply-macete-with-minor-premises minint-is-negative-maxint)
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simplify)

))

Theorem A.28 (int-division-lemma)
Theory: machine-arithmetic
∀a : int, b : Z s. t. ¬(b = 0),

div(a, b) ↓ int.

(proof

(

direct-and-antecedent-inference-strategy

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

beta-reduce-repeatedly

(unfold-single-defined-constant-globally div)

(apply-macete-with-minor-premises floor-not-much-below-arg)

direct-and-antecedent-inference-strategy

(apply-macete-with-minor-premises minint-division-lemma)

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (1)")

(cut-with-single-formula "floor(a/b)<=a/b and a/b<=maxint")

simplify

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(apply-macete-with-minor-premises floor-below-arg)

(apply-macete-with-minor-premises maxint-division-lemma)))

))

Lemma A.29 (Anonymous-19)
Theory: machine-arithmetic
[x, y : int 7→

div(x, y) ] ↓ [int× int ⇀ int].

Definition A.30 (div ma)
Theory: machine-arithmetic
[x, y : int 7→

div(x, y) ].

Theorem A.31 (maxint-pos-mod-lemma)
Theory: machine-arithmetic
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∀a : Z, b : int s. t. 0 < b,
mod(a, b) < maxint.

(proof

(

direct-and-antecedent-inference-strategy

(cut-with-single-formula " a mod b < b and b<=maxint")

simplify

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(cut-with-single-formula "#(b,int)")

(incorporate-antecedent "with(b:int,#(b,int));")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

beta-reduce-repeatedly

direct-and-antecedent-inference-strategy

(instantiate-theorem division-with-remainder ("b" "a")))

))

Theorem A.32 (minint-pos-mod-lemma)
Theory: machine-arithmetic
∀a : Z, b : int s. t. 0 < b,

minint < mod(a, b).

(proof

(

direct-and-antecedent-inference-strategy

(cut-with-single-formula "0<= a mod b")

simplify

(instantiate-theorem division-with-remainder ("b" "a"))

))

Theorem A.33 (int-mod-lemma)
Theory: machine-arithmetic
∀a : Z, b : int s. t. ¬(b = 0),

mod(a, b) ↓ int.

(proof

(

(cut-with-single-formula

21



"forall(a:zz,b:int,0<b implies #(a mod b,int))")

(block

(script-comment "‘cut-with-single-formula’ at (0)")

direct-and-antecedent-inference-strategy

(case-split ("0<b"))

simplify

(block

(script-comment "‘case-split’ at (2)")

(force-substitution "a mod b" "-(- a mod -b)" (0))

(block

(script-comment "‘force-substitution’ at (0)")

(apply-macete-with-minor-premises int-minus-lemma)

(backchain "with(p:prop,forall(a:zz,b:int,p));")

simplify

(block

(script-comment "‘backchain’ at (1)")

(cut-with-single-formula "#(-b, int)")

(simplify-antecedent "with(r:rr,#(r,int));")

(apply-macete-with-minor-premises int-minus-lemma)))

(block

(script-comment "‘force-substitution’ at (1)")

(apply-macete-with-minor-premises mod-of-negative)

simplify)))

(block

(script-comment "‘cut-with-single-formula’ at (1)")

direct-and-antecedent-inference-strategy

(cut-with-single-formula "#(a mod b ,zz)")

(block

(script-comment "‘cut-with-single-formula’ at (0)")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

beta-reduce-repeatedly

simplify

(cut-with-single-formula "minint<a mod b and a mod b<maxint")

simplify

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(apply-macete-with-minor-premises minint-pos-mod-lemma)

(apply-macete-with-minor-premises maxint-pos-mod-lemma)))

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(apply-macete-with-minor-premises mod-of-integer-is-integer)

simplify))

))
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Lemma A.34 (Anonymous-20)
Theory: machine-arithmetic
[x, y : int 7→

mod(x, y) ] ↓ [int× int ⇀ int].

Definition A.35 (mod ma)
Theory: machine-arithmetic
[x, y : int 7→

mod(x, y) ].

B The File for Even and Odd Testers

(include-files
(files
(imps /theories/machine-arithmetic/machine-arithmetic)))

Language B.1 (machine-arithmetic-language-extension)
Embedded language: machine-arithmetic
Constants: zeroma : int
plus 1ma : int
minus 1ma : int
unspecified0 : int
unspecified1 : int
unspecified2 : int
unspecified3 : int

plus 77ma : int

Theory B.2 (machine-arithmetic-extension)
Language: machine-arithmetic-language-extension
Component Theories and Axioms: See Figure 2.

The following 2 definitions are mutually recursive.

Definition (Recursive) B.3 (odd%nn)
Theory: machine-arithmetic-extension
[ odd nn, even nn : int ⇀ int 7→

[ x1 : int 7→
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Component theory: machine-arithmetic
Top level axioms:

machine-arithmetic-extension-axiom-0 zeroma = 0.

machine-arithmetic-extension-axiom-1 plus 1ma = 1.

machine-arithmetic-extension-axiom-2 minus 1ma = −1.

machine-arithmetic-extension-axiom-3 plus 77ma = 77.

Figure 2: Components and axioms for machine-arithmetic-extension

conditionally, if =ma (zeroma, x1)
• then zeroma

• else even nn(+ma(minus 1ma, x1)) ] ].

Definition (Recursive) B.4 (even%nn)
Theory: machine-arithmetic-extension
[ odd nn, even nn : int ⇀ int 7→

[x : int 7→
conditionally, if =ma (zeroma, x)
• then plus 1ma

• else odd nn(+ma(minus 1ma, x)) ] ].

(view-expr "(apply-operator even%nn plus%77_ma)"
(language machine-arithmetic-extension)
(syntax sexp-syntax))

(def-compound-macete rewrite-integer-constants
(series
machine-arithmetic-extension-axiom-0
machine-arithmetic-extension-axiom-1
machine-arithmetic-extension-axiom-2
machine-arithmetic-extension-axiom-3))

Theorem B.5 (even%nn-odd%nn-definedness-lemma-1)
Theory: machine-arithmetic-extension
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∀n : Z s. t. 0 ≤ n ∧ n ↓ int,
conjunction
• even nn(n) ↓
• odd nn(n) ↓ .

(proof

(

(induction trivial-integer-inductor ("n"))

(block

(script-comment "‘induction’ at (0 0 0 0 0 0 0 0)")

unfold-defined-constants

(unfold-single-defined-constant-globally =_ma)

(apply-macete-with-minor-premises rewrite-integer-constants))

(block

(script-comment

"‘induction’ at (0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0)")

(unfold-single-defined-constant-globally =_ma)

(apply-macete-with-minor-premises rewrite-integer-constants)

(unfold-single-defined-constant-globally +_ma)

simplify

(incorporate-antecedent "with(r:rr,#(r,int));")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

simplify)

))

Theorem B.6 (even%nn-odd%nn-definedness-lemma-2)
Theory: machine-arithmetic-extension
∀n : Z s. t. n < 0,

conjunction
• ¬(even nn(n) ↓)
• ¬(odd nn(n) ↓).

(proof

(

direct-inference

direct-inference

(instantiate-theorem

program-letrec-strong-minimality_machine-arithmetic-extension

("lambda(x:int,if(0<=x,odd%nn(x),?int))"

"lambda(x:int,if(0<=x,even%nn(x),?int))"))

(block

(script-comment "‘instantiate-theorem’ at (0 0 0 0 0)")
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(contrapose "with(p:prop,not(p));")

(unfold-single-defined-constant-globally odd%nn)

(case-split ("zero_ma =_ma u_0"))

(block

(script-comment "‘case-split’ at (1)")

simplify

(incorporate-antecedent "with(u_0:int,zero_ma =_ma u_0);")

(unfold-single-defined-constant-globally =_ma)

(apply-macete-with-minor-premises rewrite-integer-constants)

simplify)

(block

(script-comment "‘case-split’ at (2)")

(incorporate-antecedent "with(i:int,#(i));")

simplify

direct-inference

(cut-with-single-formula

"0=0 and #(lambda(x:int,if(0<=x, even%nn(x), ?int))

(minus%1_ma +_ma u_0))")

(incorporate-antecedent "with(i:int,#(i));")

beta-reduce-repeatedly

simplify

direct-and-antecedent-inference-strategy

(incorporate-antecedent "with(i:int,0<=i);")

(apply-macete-with-minor-premises unfold-defined-expression%+_ma)

(apply-macete-with-minor-premises rewrite-integer-constants)

simplify))

(block

(script-comment "‘instantiate-theorem’ at (0 0 1 0 0)")

(contrapose "with(p:prop,not(p));")

(unfold-single-defined-constant-globally even%nn)

(case-split ("zero_ma =_ma u_0"))

(block

(script-comment "‘case-split’ at (1)")

simplify

(incorporate-antecedent "with(u_0:int,zero_ma =_ma u_0);")

(unfold-single-defined-constant-globally =_ma)

(apply-macete-with-minor-premises rewrite-integer-constants)

simplify)

(block

(script-comment "‘case-split’ at (2)")

(incorporate-antecedent "with(i:int,#(i));")

simplify

direct-inference

(cut-with-single-formula

"0=0 and #(lambda(x:int,if(0<=x, odd%nn(x), ?int))

(minus%1_ma +_ma u_0))")

(incorporate-antecedent "with(i:int,#(i));")

26



beta-reduce-repeatedly

simplify

direct-and-antecedent-inference-strategy

(incorporate-antecedent "with(i:int,0<=i);")

(apply-macete-with-minor-premises

unfold-defined-expression%+_ma)

(apply-macete-with-minor-premises rewrite-integer-constants)

simplify))

(block

(script-comment "‘instantiate-theorem’ at (0 1 0)")

(case-split ("#(n,int)"))

(block

(script-comment "‘case-split’ at (1)")

direct-inference

(block

(script-comment "‘direct-inference’ at (0)")

(instantiate-universal-antecedent

"with(f:[int,int],

forall(u_0:int,

#(even%nn(u_0)) implies even%nn(u_0)=f(u_0)));"

("n"))

(incorporate-antecedent "with(i:int,i=i);")

simplify)

(block

(script-comment "‘direct-inference’ at (1)")

(instantiate-universal-antecedent

"with(f:[int,int],

forall(u_0:int,#(odd%nn(u_0)) implies odd%nn(u_0)=f(u_0)));"

("n"))

(incorporate-antecedent "with(i:int,i=i);")

simplify))

(block

(script-comment "‘case-split’ at (2)")

direct-inference

(contrapose "with(p:prop,not(p));")

(contrapose "with(n:zz,not(#(n,int)));")))

))

Theorem B.7 (even%nn-odd%nn-definedness)
Theory: machine-arithmetic-extension
∀n : Z ⇐⇒
• conjunction
◦ even nn(n) ↓
◦ odd nn(n) ↓
• conjunction
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◦ 0 ≤ n
◦ n ↓ int.

(proof

(

direct-inference

direct-inference

(block

(script-comment "‘direct-inference’ at (0)")

(instantiate-theorem even%nn-odd%nn-definedness-lemma-2 ("n"))

simplify)

(apply-macete-with-minor-premises

even%nn-odd%nn-definedness-lemma-1)

))

Theorem B.8 (correctness-of-even%nn-odd%nn-lemma-1)
Theory: machine-arithmetic-extension
∀i : Z s. t. 0 ≤ i ∧ i ↓ int,

conjunction
• ⇐⇒
◦ even nn(i) = 1
◦ ∃j : int i = 2 · j

• ⇐⇒
◦ odd nn(i) = 1
◦ ∃j : int i = 2 · j + 1.

(proof

(

(induction trivial-integer-inductor ("i"))

(block

(script-comment "‘induction’ at (0 0 0 0 0 0 0 0)")

beta-reduce-repeatedly

direct-and-antecedent-inference-strategy

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (0 0 0)")

(instantiate-existential ("0"))

simplify)

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (0 0 1 0)")

(weaken (0))
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(unfold-single-defined-constant-globally even%nn)

(unfold-single-defined-constant-globally =_ma)

(apply-macete-with-minor-premises rewrite-integer-constants))

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (0 1 0 0 0)")

(contrapose "odd%nn(0)=1;")

(weaken (2 1 0))

(unfold-single-defined-constant-globally odd%nn)

(unfold-single-defined-constant-globally =_ma)

(apply-macete-with-minor-premises rewrite-integer-constants))

(contrapose "with(p:prop,not(p));")

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (0 1 1 0 0 0)")

(contrapose "with(r:rr,0=r+1);")

(cut-with-single-formula "j<0 or j=0 or 0<j")

(block

(script-comment "‘cut-with-single-formula’ at (0)")

(antecedent-inference "with(p:prop,p or p or p);")

simplify

simplify

simplify)

simplify)

(contrapose "with(p:prop,not(p));"))

(block

(script-comment

"‘induction’ at (0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0)")

(unfold-single-defined-constant-globally =_ma)

(unfold-single-defined-constant-globally +_ma)

(apply-macete-with-minor-premises rewrite-integer-constants)

simplify

(backchain "with(p:prop,p implies p);")

(backchain "with(p:prop,p implies p);")

direct-and-antecedent-inference-strategy

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (0)")

(incorporate-antecedent "with(r:rr,#(r,int));")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

simplify)

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (1 1 0 0 0 0)")

(backchain "with(r:rr,t:zz,t=r);")

(instantiate-existential ("j+1"))
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simplify

(block

(script-comment "‘instantiate-existential’ at (1 0)")

(incorporate-antecedent "with(t:zz,#(t,int));")

(backchain "with(r:rr,t:zz,t=r);")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

simplify))

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (1 1 0 1 1 0)")

(instantiate-existential ("j-1"))

simplify

(block

(script-comment "‘instantiate-existential’ at (1 0)")

(incorporate-antecedent "with(t:zz,#(1+t,int));")

(backchain "with(r:rr,r=r);")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

simplify)))

))

Theorem B.9 (correctness-of-even%nn-odd%nn-lemma-2)
Theory: machine-arithmetic-extension
∀i : Z s. t. 0 ≤ i ∧ i ↓ int,

conjunction
• ⇐⇒
◦ even nn(i) = 1
◦ odd nn(i) = 0

• ⇐⇒
◦ odd nn(i) = 1
◦ even nn(i) = 0.

(proof

(

(induction trivial-integer-inductor ("i"))

(block

(script-comment "‘induction’ at (0 0 0 0 0 0 0 0)")

beta-reduce-repeatedly

unfold-defined-constants

(unfold-single-defined-constant-globally =_ma)

(apply-macete-with-minor-premises rewrite-integer-constants))

(block
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(script-comment

"‘induction’ at (0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0)")

(cut-with-single-formula "#(t,int)")

(block

(script-comment "‘cut-with-single-formula’ at (0)")

(unfold-single-defined-constant-globally =_ma)

(unfold-single-defined-constant-globally +_ma)

(apply-macete-with-minor-premises rewrite-integer-constants)

simplify)

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(incorporate-antecedent "with(r:rr,#(r,int));")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

simplify))

))

Theorem B.10 (correctness-of-even%nn)
Theory: machine-arithmetic-extension
∀i : int s. t. 0 ≤ i,
⇐⇒
• even nn(i) = 1
• ∃j : int i = 2 · j.

(proof

(

direct-inference

direct-inference

(instantiate-theorem correctness-of-even%nn-odd%nn-lemma-1 ("i"))

(contrapose "with(p:prop,not(p));")

))

Theorem B.11 (correctness-of-odd%nn)
Theory: machine-arithmetic-extension
∀i : int s. t. 0 ≤ i,
⇐⇒
• odd nn(i) = 1
• ∃j : int i = 2 · j + 1.

(proof

(
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direct-inference

direct-inference

(instantiate-theorem correctness-of-even%nn-odd%nn-lemma-1 ("i"))

(contrapose "with(p:prop,not(p));")

))

Theorem B.12 (program-answer)
Theory: machine-arithmetic-extension
even nn(plus 77ma) = 0.

(proof

(

(instantiate-theorem

correctness-of-even%nn-odd%nn-lemma-2 ("plus%77_ma"))

(block

(script-comment "‘instantiate-theorem’ at (0 0 0)")

(contrapose "with(p:prop,p);")

(weaken (0))

(apply-macete-with-minor-premises rewrite-integer-constants)

simplify)

(contrapose "with(p:prop,p);")

(move-to-ancestor 2)

(block

(script-comment "‘instantiate-theorem’ at (0 1 0)")

(backchain-backwards

"odd%nn(plus%77_ma)=1 iff even%nn(plus%77_ma)=0;")

(instantiate-theorem correctness-of-odd%nn ("plus%77_ma"))

(contrapose "with(p:prop,forall(j:int,p));")

(cut-with-single-formula "#(plus%77_ma,int)")

(instantiate-existential ("38"))

(block

(script-comment "‘instantiate-existential’ at (0)")

(apply-macete-with-minor-premises rewrite-integer-constants)

simplify)

(block

(script-comment "‘instantiate-existential’ at (1)")

(incorporate-antecedent "#(plus%77_ma,int);")

(apply-macete-with-minor-premises rewrite-integer-constants)

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

simplify))

))
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Component theory: machine-arithmetic
Top level axioms:

machine-arithmetic-extension-axiom-0 plus 1ma = 1.

machine-arithmetic-extension-axiom-1 zeroma = 0.

machine-arithmetic-extension-axiom-2 minus 1ma = −1.

machine-arithmetic-extension-axiom-3 plus 4ma = 4.

Figure 3: Components and axioms for machine-arithmetic-extension

C The File for Recursive Factorial Function

(include-files
(files
(imps /theories/machine-arithmetic/machine-arithmetic)))

Language C.1 (machine-arithmetic-language-extension)
Embedded language: machine-arithmetic
Constants: plus 1ma : int
zeroma : int
minus 1ma : int
unspecified0 : int
unspecified1 : int
unspecified2 : int

plus 4ma : int

Theory C.2 (machine-arithmetic-extension)
Language: machine-arithmetic-language-extension
Component Theories and Axioms: See Figure 3.

Definition (Recursive) C.3 (fact)
Theory: machine-arithmetic-extension
[ fact : int ⇀ int 7→

[n : int 7→
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conditionally
• if =ma (zeroma, n) then plus 1ma

• if <ma (zeroma, n) then
[ named by compiler : int 7→

∗ma (n,named by compiler) ]
(fact(+ma(minus 1ma, n)))

• otherwise unspecified0 ] ].

(view-expr "(apply-operator fact plus%4_ma)"
(language machine-arithmetic-extension)
(syntax sexp-syntax))

(def-compound-macete rewrite-integer-constants
(series
machine-arithmetic-extension-axiom-0
machine-arithmetic-extension-axiom-1
machine-arithmetic-extension-axiom-2
machine-arithmetic-extension-axiom-3))

Theorem C.4 (fact-definedness-lemma)
Theory: machine-arithmetic-extension
∀n : Z s. t. fact(n) ↓,
n ↓ int.

(proof

(

direct-inference

(unfold-single-defined-constant-globally fact)

simplify

))

Theorem C.5 (correctness-of-fact)
Theory: machine-arithmetic-extension
∀n : Z s. t. 0 ≤ n ∧ fact(n) ↓,

fact(n) = n!.

(proof

(

(induction trivial-integer-inductor ("n"))
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(block

(script-comment "‘induction’ at (0 0 0 0 0 0 0 0)")

beta-reduce-repeatedly

direct-inference

(unfold-single-defined-constant-globally fact)

(unfold-single-defined-constant-globally =_ma)

(apply-macete-with-minor-premises rewrite-integer-constants)

simplify

(unfold-single-defined-constant-globally factorial)

(apply-macete-with-minor-premises tr%monoid-null-prod))

(move-to-ancestor 3)

(block

(script-comment "‘induction’ at (0 0 0 0 0 0 0 1 0 0 0 0)")

direct-inference

(instantiate-theorem fact-definedness-lemma ("1+t"))

(incorporate-antecedent "with(i:int,#(i));")

(unfold-single-defined-constant-globally fact)

(unfold-single-defined-constant-globally =_ma)

(unfold-single-defined-constant-globally <_ma)

(unfold-single-defined-constant-globally +_ma)

(apply-macete-with-minor-premises rewrite-integer-constants)

simplify

direct-and-antecedent-inference-strategy

(apply-macete-with-minor-premises unfold-defined-expression%*_ma)

(backchain "with(p:prop,p implies p);")

direct-inference

(apply-macete-locally factorial-out (0) "(1+t)!")

simplify)

))

Theorem C.6 (program-answer)
Theory: machine-arithmetic-extension
implication
• fact(plus 4ma) ↓
• fact(plus 4ma) = 4!.

(proof

(

(apply-macete-with-minor-premises rewrite-integer-constants)

direct-inference

(apply-macete-with-minor-premises correctness-of-fact)

))
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Component theory: machine-arithmetic
Top level axioms:

machine-arithmetic-extension-axiom-0 zeroma = 0.

machine-arithmetic-extension-axiom-1 minus 1ma = −1.

machine-arithmetic-extension-axiom-2 plus 4ma = 4.

machine-arithmetic-extension-axiom-3 plus 1ma = 1.

Figure 4: Components and axioms for machine-arithmetic-extension

D The File for Iterative Factorial Function

(include-files
(files
(imps /theories/machine-arithmetic/machine-arithmetic)))

Language D.1 (machine-arithmetic-language-extension)
Embedded language: machine-arithmetic
Constants: zeroma : int
minus 1ma : int
unspecified0 : int
unspecified1 : int
unspecified2 : int
unspecified3 : int

plus 4ma : int
plus 1ma : int

Theory D.2 (machine-arithmetic-extension)
Language: machine-arithmetic-language-extension
Component Theories and Axioms: See Figure 4.

Definition (Recursive) D.3 (fact%loop)
Theory: machine-arithmetic-extension
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[ fact loop : int× int ⇀ int 7→
[n, a : int 7→

conditionally, if <ma (zeroma, n)
• then fact loop(+ma(minus 1ma, n), ∗ma(n, a))
• else a ] ].

(view-expr "(apply-operator fact%loop plus%4_ma plus%1_ma)"
(language machine-arithmetic-extension)
(syntax sexp-syntax))

(def-compound-macete rewrite-integer-constants
(series
machine-arithmetic-extension-axiom-0
machine-arithmetic-extension-axiom-1
machine-arithmetic-extension-axiom-2
machine-arithmetic-extension-axiom-3))

Theorem D.4 (fact%loop-definedness-lemma)
Theory: machine-arithmetic-extension
∀n, a : Z s. t. fact loop(n, a) ↓,

conjunction
• n ↓ int
• a ↓ int.

(proof

(

direct-inference

(unfold-single-defined-constant-globally fact%loop)

simplify

))

Theorem D.5 (correctness-of-fact%loop-lemma)
Theory: machine-arithmetic-extension
∀n : Z s. t. 0 ≤ n,
∀a : Z s. t. fact loop(n, a) ↓,
fact loop(n, a) = n! · a.

(proof

(
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(induction trivial-integer-inductor ("n"))

(block

(script-comment "‘induction’ at (0 0)")

beta-reduce-repeatedly

direct-and-antecedent-inference-strategy

(unfold-single-defined-constant-globally fact%loop)

unfold-defined-constants

(apply-macete-with-minor-premises rewrite-integer-constants)

(apply-macete-with-minor-premises tr%monoid-null-prod)

simplify)

(move-to-ancestor 5)

(block

(script-comment "‘induction’ at (0 1 0 0 0)")

direct-and-antecedent-inference-strategy

(instantiate-theorem fact%loop-definedness-lemma ("1+t" "a"))

(cut-with-single-formula "#(fact%loop(t,(1+t) *_ma a))")

(block

(script-comment "‘cut-with-single-formula’ at (0)")

(unfold-single-defined-constant-globally fact%loop)

(unfold-single-defined-constant-globally <_ma)

(unfold-single-defined-constant-globally +_ma)

(apply-macete-with-minor-premises rewrite-integer-constants)

simplify

(backchain "with(p:prop,forall(a:zz,p));")

direct-inference

(instantiate-theorem

fact%loop-definedness-lemma ("t" "(1+t) *_ma a"))

(apply-macete-with-minor-premises

unfold-defined-expression%*_ma)

(apply-macete-locally-with-minor-premises

factorial-out (0) "(1+t)!")

simplify)

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(incorporate-antecedent "with(i:int,#(i));")

(unfold-single-defined-constant (0) fact%loop)

(unfold-single-defined-constant-globally <_ma)

(unfold-single-defined-constant-globally +_ma)

(apply-macete-with-minor-premises rewrite-integer-constants)

simplify))

))

Theorem D.6 (correctness-of-fact%loop)
Theory: machine-arithmetic-extension
∀n, a : Z s. t. 0 ≤ n ∧ fact loop(n, a) ↓,

fact loop(n, a) = n! · a.
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(proof

(

direct-and-antecedent-inference-strategy

(apply-macete-with-minor-premises

correctness-of-fact%loop-lemma)

))

Theorem D.7 (program-answer)
Theory: machine-arithmetic-extension
implication
• fact loop(plus 4ma,plus 1ma) ↓
• fact loop(plus 4ma,plus 1ma) = 4!.

(proof

(

(apply-macete-with-minor-premises rewrite-integer-constants)

direct-inference

(apply-macete-with-minor-premises correctness-of-fact%loop)

simplify

))

E The File for Fibonacci Function

(include-files
(files
(imps /theories/machine-arithmetic/machine-arithmetic)))

Language E.1 (machine-arithmetic-language-extension)
Embedded language: machine-arithmetic
Constants: zeroma : int
minus 1ma : int
unspecified0 : int
unspecified1 : int
unspecified2 : int
unspecified3 : int

plus 1ma : int
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Component theory: machine-arithmetic
Top level axioms:

machine-arithmetic-extension-axiom-0 zeroma = 0.

machine-arithmetic-extension-axiom-1 minus 1ma = −1.

machine-arithmetic-extension-axiom-2 plus 1ma = 1.

Figure 5: Components and axioms for machine-arithmetic-extension

Theory E.2 (machine-arithmetic-extension)
Language: machine-arithmetic-language-extension
Component Theories and Axioms: See Figure 5.

The following 2 definitions are mutually recursive.

Definition (Recursive) E.3 (fib%2)
Theory: machine-arithmetic-extension
[ fib 2,fib 1 : int ⇀ int 7→

[ n1 : int 7→
conditionally, if =ma (zeroma,n1)
• then zeroma

• else fib 1(+ma(minus 1ma,n1)) ] ].

Definition (Recursive) E.4 (fib%1)
Theory: machine-arithmetic-extension
[ fib 2,fib 1 : int ⇀ int 7→

[n : int 7→
conditionally, if =ma (zeroma, n)
• then plus 1ma

• else [ named by compiler,named by compiler1 : int 7→
+ma (named by compiler,named by compiler1) ]

(fib 1(+ma(minus 1ma, n)),fib 2(+ma(minus 1ma, n))) ] ].

(view-expr "(apply-operator fib%1 plus%1_ma)"
(language machine-arithmetic-extension)
(syntax sexp-syntax))
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Definition (Recursive) E.5 (fib)
Theory: h-o-real-arithmetic
[ f : Z ⇀ R 7→

[n : Z 7→
conditionally
• if n = 0 then 1
• if n = 1 then 1
• otherwise f(n− 1) + f(n− 2) ] ].

Theorem E.6 (uniqueness-for-fibonacci)
Theory: h-o-real-arithmetic
∀f : Z ⇀ R, n : Z implication
• conjunction
◦ ∀x : Z s. t. 2 ≤ x ∧ x ≤ n,

f(x) = f(x− 1) + f(x− 2)
◦ f(0) = 1
◦ f(1) = 1
• ∀x : Z s. t. 0 ≤ x ∧ x ≤ n,
f(x) = fib(x).

(proof

(

direct-inference

direct-inference

(antecedent-inference "with(p:prop,p);")

(induction complete-inductor ("x"))

(case-split ("m=0"))

simplify

(block

(script-comment "‘case-split’ at (2)")

(case-split ("m=1"))

simplify

(block

(script-comment "‘case-split’ at (2)")

(cut-with-single-formula "2<=m")

(move-to-sibling 1)

simplify

(block

(script-comment "‘cut-with-single-formula’ at (0)")

simplify

(backchain

"with(r:rr,p:prop,forall(x:zz,p and p implies r=r));")

(backchain
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"with(p:prop,forall(k:zz,p and p implies (p implies p)));")

(backchain

"with(p:prop,forall(k:zz,p and p implies (p implies p)));")

simplify

direct-inference

(block

(script-comment "‘direct-inference’ at (0)")

(instantiate-universal-antecedent

"with(p:prop,forall(k:zz,p and p implies (p implies p)));"

("[-1]+m"))

(simplify-antecedent "with(r:rr,not(0<=r));")

(simplify-antecedent "with(m:zz,r:rr,not(r<m));")

(simplify-antecedent "with(n:zz,r:rr,not(r<=n));"))

(block

(script-comment "‘direct-inference’ at (1)")

(instantiate-universal-antecedent

"with(p:prop,forall(k:zz,p and p implies (p implies p)));"

("[-2]+m"))

(simplify-antecedent "with(r:rr,not(0<=r));")

(simplify-antecedent "with(m:zz,r:rr,not(r<m));")

(simplify-antecedent "with(n:zz,r:rr,not(r<=n));")))))

))

(def-compound-macete apply-machine-axioms
(repeat
machine-arithmetic-extension-axiom-0
machine-arithmetic-extension-axiom-1
machine-arithmetic-extension-axiom-2))

(def-script unfold-machine-constants 0
(
(while
(progresses?
(block

(apply-macete-with-minor-premises apply-machine-axioms)
(unfold-single-defined-constant-globally =_ma)
(unfold-single-defined-constant-globally +_ma)
(unfold-single-defined-constant-globally *_ma)))

(skip))))

Theorem E.7 (fib%1-recursive-definedness-lemma)
Theory: machine-arithmetic-extension
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∀x : Z implication
• conjunction
◦ 1 ≤ x
◦ x ≤ maxint
◦ fib 1(x) ↓
• conjunction
◦ fib 1(x− 1) ↓ int
◦ fib 2(x− 1) ↓ int.

(proof

(

(unfold-single-defined-constant (0) fib%1)

unfold-machine-constants

simplify

))

Theorem E.8 (subtraction-lemma)
Theory: machine-arithmetic-extension
∀x : int, y : Z s. t. 0 ≤ y ∧ y ≤ x,
x− y ↓ int.

(proof

(

direct-and-antecedent-inference-strategy

(cut-with-single-formula "#(x,int)")

(incorporate-antecedent "with(x:int,#(x,int));")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

beta-reduce-repeatedly

(apply-macete-with-minor-premises minint-is-negative-maxint)

simplify

))

Theorem E.9 (minus-1-lemma)
Theory: machine-arithmetic-extension
∀x : int s. t. 1 ≤ x,

+ma (minus 1ma, x) = x− 1.

(proof

(
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unfold-machine-constants

direct-and-antecedent-inference-strategy

(cut-with-single-formula "#([-1]+x,int)")

simplify

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(cut-with-single-formula "#(x-1,int)")

(simplify-antecedent "with(r:rr,#(r,int));")

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(apply-macete-with-minor-premises subtraction-lemma)

simplify))

))

Theorem E.10 (fib%1-recursive-condition)
Theory: machine-arithmetic-extension
∀x : Z implication
• conjunction
◦ 2 ≤ x
◦ x ≤ maxint
◦ fib 1(x) ↓
• fib 1(x) = fib 1(x− 1) + fib 1(x− 2).

(proof

(

(unfold-single-defined-constant (0) fib%1)

(apply-macete-with-minor-premises minus-1-lemma)

unfold-machine-constants

simplify

direct-and-antecedent-inference-strategy

(unfold-single-defined-constant (0) fib%1)

(apply-macete-with-minor-premises minus-1-lemma)

unfold-machine-constants

simplify

direct-and-antecedent-inference-strategy

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (0)")

(contrapose "with(r:rr,#(r));")

simplify)

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (1)")
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(unfold-single-defined-constant (0) fib%2)

(apply-macete-with-minor-premises minus-1-lemma)

unfold-machine-constants

simplify

(cut-with-single-formula

"#(fib%1((x_$0-1)-1),int) and #(fib%2((x_$0-1)-1),int)")

(block

(script-comment "‘cut-with-single-formula’ at (0)")

(antecedent-inference "with(p:prop,p and p);")

(contrapose "with(r:rr,#(fib%1(r),int));")

simplify)

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(apply-macete-with-minor-premises

fib%1-recursive-definedness-lemma)

simplify))

))

Theorem E.11 (hereditary-definedness-of-fib%1)
Theory: machine-arithmetic-extension
∀x, y : Z implication
• conjunction
◦ 0 ≤ x
◦ 0 ≤ y
◦ y ≤ x
◦ fib 1(x) ↓
• fib 1(y) ↓ .

(proof

(

(cut-with-single-formula

"forall(x,y:zz,

0<=x and 0<=y and y<=x and #(fib%1(x)) implies #(fib%1(x-y)))")

(block

(script-comment "‘cut-with-single-formula’ at (0)")

direct-and-antecedent-inference-strategy

(instantiate-universal-antecedent "with(p:prop,forall(x,y:zz,p));"

("x" "x-y"))

(simplify-antecedent "with(p:prop,not(p));")

(simplify-antecedent "with(p:prop,not(p));")

(simplify-antecedent "with(r:rr,x:zz,#(fib%1(x-r)));"))

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(induction trivial-integer-inductor ("y"))
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simplify

(move-to-ancestor 5)

(block

(script-comment "‘induction’ at (0 0 0 0 0 0 0 1)")

beta-reduce-repeatedly

direct-and-antecedent-inference-strategy

(simplify-antecedent "with(p:prop,not(p));")

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (0 0 0 0 1)")

(case-split ("t+1=x"))

(block

(script-comment "‘case-split’ at (1)")

simplify

(unfold-single-defined-constant (0) fib%1)

unfold-machine-constants)

(block

(script-comment "‘case-split’ at (2)")

(cut-with-single-formula

"fib%1(x-t)=fib%1((x-t)-1) + fib%1((x-t)-2)")

(block

(script-comment "‘cut-with-single-formula’ at (0)")

simplify

(simplify-antecedent "with(r:rr,i:int,i=r);"))

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(instantiate-theorem fib%1-recursive-condition

("x-t"))

(block

(script-comment "‘instantiate-theorem’ at (0 0 0)")

(cut-with-single-formula "x<=maxint")

(simplify-antecedent "with(r:rr,not(2<=r));")

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(cut-with-single-formula "#(x,int)")

(incorporate-antecedent "with(x:zz,#(x,int));")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

simplify))

(block

(script-comment "‘instantiate-theorem’ at (0 0 1)")

(cut-with-single-formula "#(x,int)")

(incorporate-antecedent "with(x:zz,#(x,int));")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

beta-reduce-repeatedly

direct-and-antecedent-inference-strategy
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(simplify-antecedent "with(r:rr,not(r<=maxint));")))))))

))

Theorem E.12 (fib%1-if-defined-is-fib)
Theory: machine-arithmetic-extension
∀x : Z s. t. 0 ≤ x ∧ fib 1(x) ↓,

fib 1(x) = fib(x).

(proof

(

direct-and-antecedent-inference-strategy

(instantiate-theorem uniqueness-for-fibonacci ("fib%1" "x"))

(block

(script-comment "‘instantiate-theorem’ at (0 0 0 0 0)")

(contrapose "with(p:prop,not(p));")

(instantiate-theorem fib%1-recursive-condition ("x_$0"))

(block

(script-comment "‘instantiate-theorem’ at (0 0 1)")

(cut-with-single-formula "#(x_$0,int)")

(block

(script-comment "‘cut-with-single-formula’ at (0)")

(incorporate-antecedent "with(x_$0:zz,#(x_$0,int));")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

beta-reduce-repeatedly

direct-and-antecedent-inference-strategy)

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(cut-with-single-formula "#(fib%1(x_$0))")

(apply-macete-with-minor-premises

hereditary-definedness-of-fib%1)

(instantiate-existential ("x"))

simplify))

(block

(script-comment "‘instantiate-theorem’ at (0 0 2)")

(contrapose "with(i:int,not(#(i)));")

(apply-macete-with-minor-premises

hereditary-definedness-of-fib%1)

(instantiate-existential ("x"))

simplify))

(block

(script-comment "‘instantiate-theorem’ at (0 0 1)")

(contrapose "with(p:prop,not(p));")

(unfold-single-defined-constant (0) fib%1)

unfold-machine-constants)
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(block

(script-comment "‘instantiate-theorem’ at (0 0 2)")

(contrapose "with(p:prop,not(p));")

(unfold-single-defined-constant (0) fib%1)

(apply-macete-with-minor-premises minus-1-lemma)

unfold-machine-constants

simplify

(unfold-single-defined-constant (0) fib%2)

unfold-machine-constants

simplify)

simplify

))

F The File for Greatest Common Denominator

(include-files
(files (imps /theories/machine-arithmetic/gcd)))

Language F.1 (machine-arithmetic-language-extension)
Embedded language: machine-arithmetic
Constants: zeroma : int

unspecified0 : int
unspecified1 : int
unspecified2 : int

plus 6ma : int
plus 7ma : int

Theory F.2 (machine-arithmetic-extension)
Language: machine-arithmetic-language-extension
Component Theories and Axioms: See Figure 6.

Definition (Recursive) F.3 (gcd scm)
Theory: machine-arithmetic-extension
[ gcdscm : int× int ⇀ int 7→

[u, v : int 7→
conditionally, if
if ≤ma (zeroma, v) then ≤ma (zeroma, u) else falsehood
• then if =ma (zeroma, u)
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Component theory: machine-arithmetic
Top level axioms:

machine-arithmetic-extension-axiom-0 zeroma = 0.

machine-arithmetic-extension-axiom-1 plus 6ma = 6.

machine-arithmetic-extension-axiom-2 plus 7ma = 7.

Figure 6: Components and axioms for machine-arithmetic-extension

◦ then v
◦ else if =ma (zeroma, v) then u else gcdscm(v,modma(u, v))

• else unspecified0 ] ].

(view-expr "(apply-operator gcd_scm plus%6_ma plus%7_ma)"
(language machine-arithmetic-extension)
(syntax sexp-syntax))

Theorem F.4 (gcd scm-is-gcd)
Theory: machine-arithmetic-extension
∀a, b : int s. t. 0 ≤ a ∧ 0 ≤ b,

gcdscm(a, b) = gcd(a, b).

(proof

(

(cut-with-single-formula

"forall(b:zz,

0<=b and b<=maxint

implies

forall(a:zz, 0<=a and a<=maxint implies gcd_scm(a,b)=gcd(a,b)))")

(block

(script-comment "‘cut-with-single-formula’ at (0)")

direct-and-antecedent-inference-strategy

(backchain "with(p:prop,forall(b:zz,p));")

direct-and-antecedent-inference-strategy

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (0 1)")

(cut-with-single-formula "#(b,int)")

(incorporate-antecedent "with(b:int,#(b,int));")

49



(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

beta-reduce-repeatedly

direct-and-antecedent-inference-strategy)

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (1 1 0)")

(cut-with-single-formula "#(a,int)")

(incorporate-antecedent "with(a:int,#(a,int));")

(apply-macete-with-minor-premises

int-defining-axiom_machine-arithmetic)

beta-reduce-repeatedly

direct-and-antecedent-inference-strategy))

(block

(script-comment "‘cut-with-single-formula’ at (1)")

(induction complete-inductor ("b"))

(apply-macete-with-minor-premises

machine-arithmetic-extension-axiom-0)

(case-split ("a=0"))

(block

(script-comment "‘case-split’ at (1)")

simplify

(apply-macete-with-minor-premises symmetry-of-gcd)

(apply-macete-with-minor-premises gcd-for-zero)

(unfold-single-defined-constant-globally <=_ma)

(unfold-single-defined-constant-globally =_ma)

simplify)

(block

(script-comment "‘case-split’ at (2)")

(unfold-single-defined-constant-globally =_ma)

(unfold-single-defined-constant-globally <=_ma)

simplify

(case-split ("m=0"))

(block

(script-comment "‘case-split’ at (1)")

simplify

(apply-macete-with-minor-premises gcd-for-zero))

(block

(script-comment "‘case-split’ at (2)")

simplify

beta-reduce-with-minor-premises

(move-to-sibling 1)

(block

(script-comment "‘beta-reduce-with-minor-premises’ at (1)")

(unfold-single-defined-constant (0) mod_ma)

(cut-with-single-formula "#(a mod m ,zz)")

(apply-macete-with-minor-premises mod-of-integer-is-integer))
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(block

(script-comment "‘beta-reduce-with-minor-premises’ at (0)")

(unfold-single-defined-constant-globally mod_ma)

(instantiate-theorem division-with-remainder

("m" "a"))

simplify

(case-split ("a mod m = 0"))

(block

(script-comment "‘case-split’ at (1)")

simplify

(contrapose "with(r:rr,r=0);")

(apply-macete-with-minor-premises mod-characterization)

simplify

(contrapose "with(a,m:zz,not(m=gcd(a,m)));")

(apply-macete-with-minor-premises gcd-of-multiple))

(block

(script-comment "‘case-split’ at (2)")

simplify

(backchain "with(p:prop,forall(k:zz,p));")

(move-to-sibling 1)

(apply-macete-with-minor-premises mod-of-integer-is-integer)

(block

(script-comment "‘backchain’ at (0)")

(instantiate-theorem division-with-remainder

("a mod m" "m"))

direct-and-antecedent-inference-strategy

simplify

simplify

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (1 1 0 1 0)")

(apply-macete-with-minor-premises symmetry-of-gcd)

simplify)

(block

(script-comment

"‘direct-and-antecedent-inference-strategy’ at (1 1 1 0 0)")

(apply-macete-with-minor-premises symmetry-of-gcd)

(block

(script-comment

"‘apply-macete-with-minor-premises’ at (0)")

(apply-macete-with-minor-premises rev%invariance-of-gcd)

(apply-macete-with-minor-premises symmetry-of-gcd)

(apply-macete-with-minor-premises rev%invariance-of-gcd)

simplify

(unfold-single-defined-constant (0) gcd)

(apply-macete-with-minor-premises

definedness-of-generator)
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(apply-macete-with-minor-premises

integer-combinations-form-an-ideal))

(apply-macete-with-minor-premises

mod-of-integer-is-integer))))))))

))
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