
UITP 2008

Panoptes

An Exploration Tool for Formal Proofs

William M. Farmer1,2 Orlin G. Grigorov1,3

Department of Computing and Software
McMaster University

Hamilton, Ontario, Canada

Abstract

Proof assistants aid the user in proving mathematical theorems by taking care of low-level reasoning details.
Their user interfaces often present proof information as text, which becomes increasingly difficult to compre-
hend as it grows in size. Panoptes is a software tool that enables users to explore graphical representations
of the formal proofs produced by the imps Interactive Mathematical Proof System. Panoptes automatically
displays an imps deduction graph as a visual graph that can be easily manipulated by the user. Its facilities
include target zooming, floating information boxes, node relabeling, and proper substructure collapsing.

Keywords: IMPS, deduction graph, proof tree, theorem prover, graph visualization, OCaml, OpenGL.

1 Introduction

A proof assistant is a software system for developing formal proofs. The user guides
the development of an attempt to prove a conjecture, while many of the low-level
details are done automatically by the proof assistant. Proof assistants are usually
not equipped with sophisticated tools for exploring the “tree” of formulas that is
produced by a proof attempt. However, the proof structure created in proving a
conjecture can sometimes grow to a large size involving hundreds of formulas and
inferences. In this case, the user can easily lose his or her way when exploring the
proof and can miss seeing different parts of the proof with similar structure that
could be merged if identified.

Panoptes, named after the all-seeing giant of Greek mythology, is a software
system for exploring the proof structures produced by the imps Interactive Math-
ematical Proof System [3,4,5]. The proof structures that imps creates are certain
kinds of graphs called deduction graphs. Panoptes automatically displays an imps

1 This research was supported by NSERC.
2 Email: wmfarmer@mcmaster.ca
3 Email: ogrigorov@gmail.com

mailto:wmfarmer@mcmaster.ca
mailto:ogrigorov@gmail.com


Farmer and Grigorov

deduction graph as a visual graph that can be manipulated by the user. Although
Panoptes is designed to work with imps, it focuses on facilities that would be useful
to many other proof assistants. This paper describes the facilities that Panoptes
provides and gives an overview of its implementation.

2 Deduction Graphs in IMPS

A deduction graph [3] in imps is a directed bipartite graph used to represent a proof
or proof attempt. It contains two types of nodes and arrows that connect a node of
one type to a node of the other type. A sequent node represents a sequent consisting
of a single formula called the assertion and a finite set of assumptions called the
context. An inference node represents an inference from a finite set of sequents
(the hypotheses) to a single sequent (the conclusion). An inference node has arrows
pointing to it from the sequent nodes representing its hypotheses and an arrow
pointing from it to a sequent node representing its conclusion. The root node of a
deduction graph is a distinguished sequent node in the graph that represents the
sequent to be proved.

For example, the figure

is a small deduction graph consisting of n + 1 sequent nodes and 1 inference node.
This deduction graph represents the inference of the conclusion held by the sequent
node C from the hypotheses held by the sequent nodes H1, . . . ,Hn.

Since a sequent node can have more than one arrow into it, any number of al-
ternate strategies can be represented in the deduction graph for proving a given
sequent. Thus a deduction graph generally does not represent a single proof at-
tempt, but rather a set of intertwined proof attempts. Deduction graphs may
contain cycles and may not be connected. A sequent node is said to be grounded if
it is known to be valid. A deduction graph is a proof if its root node is grounded.
A deduction graph that is a proof does not necessarily represent a proof tree; it
may contain garbage, i.e., parts of the deduction graph that represent unneeded or
unfinished alternate proof attempts.

3 Description of System

Panoptes serves as an add-on application, which runs concurrently with imps. It
provides a graphical visualization of the deduction graph, which is synchronized with
the internal representation of the deduction graph upon request by the user. The
tool provides a large set of functions to ease the process of exploring the structure
of the graph and understanding the logical development of the proof. The main
design goal was to make graph manipulation easy, and the result is a program that

2



Farmer and Grigorov

provides an almost playful way of exploring the deduction graph. Another design
goal was to make it easy to port to other theorem provers by encapsulating into a
separate module the part that processes the input from the theorem prover.

3.1 Functionality

Apart from the graphical visualization of the deduction graph on the screen, the
system provides a range of useful functionality to the user. The following are some
of the major options available.

• Target zooming. The user can zoom in and out on parts of the graph by just
pointing with the mouse and holding down a button. This is quite different from
the standard way of zooming first and then scrolling to reach the point of interest,
which can easily lead to confusion and disorientation of the user.

• Collapsing. Parts of the graph can be collapsed into special inference and se-
quent nodes. For instance, if the validity of a sequent node is reduced to the
validity of one or more other sequent nodes through a number of proof steps,
the user has the option to collapse all these steps into a special inference node,
which consolidates the reasoning that reduces the goal to the subgoals. Similarly,
cycles of equivalent sequent nodes can be collapsed into a special sequent node.
Collapsing is very important when dealing with large deduction graphs since it
enables secondary information to be hidden without compromising the semantic
integrity of the deduction graph representation.

• Labeling. The user can freely label nodes and parts of the graph so that these
components can be identified with names that are more meaningful than the
names generated by the system.

• Floating information boxes. Each node, regardless of its type, contains some
information. In the case of a sequent node, this information comprises the se-
quent represented by the node. An inference node contains the inference rule
that generated the represented inference, and a collapsed inference node contains
the (possibly large) part of the graph that is hidden by the collapsing. Each
node in the deduction graph has an information box that contains the informa-
tion associated with it. These information boxes can be toggled between visible
and nonvisible states. Additionally, when visible, an information box has a direct
visible link to its associated node, which further enhances the efficiency of pre-
senting the information to the user. Of course, these information boxes can be
scaled, repositioned, and manipulated in many ways by merely pressing a button
or dragging the mouse.

• History of operations. A comprehensive history of the operations applied to a
deduction graph is kept at all times, so that the user can easily revert back to an
earlier arrangement of the graph on the screen. Also, this function is important
for preserving the effort invested into rearranging the graph between proof steps,
which is possible due to the fact that imps only adds new nodes, but never removes
nodes from the deduction graph.

• Automatic layout and manual rearranging. Upon startup, Panoptes pro-
vides an initial layout of the deduction graph. This allows Panoptes to fit the

3



Farmer and Grigorov

whole graph in the screen space provided by the system and also to minimize the
crossing of edges as much as possible. In addition, the user is able to drag and
drop components of the graph to either improve or modify the layout according to
his or her preference, while the program automatically protects the connections
(the arrows) between the nodes.

Additionally, appropriate automatic labeling and numbering of repetitions (in
the case of inference nodes representing applications of the same inference rule)
is automatically performed by the system. The power of color is also utilized:
grounded nodes are colored in green, repeated nodes (i.e., nodes that complete a
cycle or merge proof directions) in brown, collapsed inference nodes in purple, etc.

3.2 Implementation

A fully functional prototype of the proposed system has been developed in Objective
Caml (OCaml) [9] using the LablGL library [6] that implements an interface to
OpenGL [7] in OCaml.

The choice of OCaml as the programming language was made on the basis
of its features, such as its support for modular design, as well as its automatic
garbage collection system, type inferencing, and allowance for both imperative and
functional programming styles. All of this adds up to a versatile language that is
suitable for developing large projects with a reduced chance for programming errors
and an increased runtime stability. Furthermore, OCaml is available for many
operating systems including Linux and Mac OS X, which makes the tool portable
to all systems that currently support imps.

As for the graphical library, OpenGL is usually associated with three-
dimensional graphical visualizations, but the system uses these capabilities for im-
plementing different techniques. For instance, moving the graph or selected com-
ponents of the graph closer or further away from the viewer creates the effect of
zooming in contrast to the usual method of merely scaling the image. The advan-
tage lies in OpenGL being a direct API to the 3D instruction set of the graphical
hardware, and as such it provides a performance unmatched by the standard way
of drawing graphics on the screen. The result is an application, which delegates all
graphical computations and manipulations to the GPU, rather than to the CPU
of the host machine, leaving the latter fully available for other work (such as that
done by the imps reasoning engine). Consequently, a computer system equipped
with a reasonably modern graphics card would be capable of running the prototype
smoothly without burdening the user with unnecessary lags and delays.

3.3 Availability and Screenshots

The source code and instructions for compiling and running the system are available
at the Panoptes home page: http://imps.mcmaster.ca/ogrigorov/panoptes/.
The home page also provides access to a demo of the system, as well as detailed
documentation of the requirements, design, and implementation of the system [8].

A few screenshots are displayed below, although the complete functionality, fea-
tures, and performance of Panoptes cannot be demonstrated by static pictures:

4

http://imps.mcmaster.ca/ogrigorov/panoptes/


Farmer and Grigorov

• Screenshot 1. imps and Panoptes working side by side.

• Screenshot 2. The deduction graph from the previous screenshot is fully
collapsed.

5



Farmer and Grigorov

• Screenshot 3. A rendering of a larger graph. A help screen with the available
commands is visible, and a few subgraphs are collapsed. Some information boxes
for certain nodes are visible.

• Screenshot 4. A very large graph consisting of hundreds of nodes.

6



Farmer and Grigorov

• Screenshot 5. Zoomed section of the large graph from the previous screenshot.

4 Related Work

A number of people have invested time and effort in improving the user experience
with theorem provers. The work that deals with matter similar to the ideas behind
Panoptes is described below.

Developed in Java, the Interactive Symbolic Visualization of Semi-Automatic
Theorem Proving system [1] presents formal proofs produced by the acl2 theorem
prover [10] in the form of cone-shaped three-dimensional graphs on the screen. The
user can rotate the visualization in order to look at all angles, as well as to open
detached information windows with information about the nodes. Rather than
labeling, colors are used to differentiate between different nodes.

Another proof assistant, pvs [11], offers graphical display of proof trees for users
with Tcl/Tk (http://www.tcl.tk/) installed on their systems. The visualization ap-
pears to have limited functionality for the manipulation of the tree display, although
it too offers opening of windows with details about the nodes.

The Interactive Derivation Viewer [15] renders derivations that are written in
the TPTP [14] language [13], and provides an interface that allows one to quickly
explore different features of the derivation. The display is very customizable and the
user has access to functions like zooming, fit to height or width of the drawing pane,
etc. The user can also see the information associated with each node, although it
appears difficult to have such information visible simultaneously for more than one
node.
LOUI (Lovely ΩMEGA User Interface) [12] offers a graphical representation

of the logical proofs created by the ΩMEGA system [2] in the form of a graphi-
cal structure that is a proper tree. It divides the nodes into different categories
and differentiates them visually from one another by assigning different shapes and

7

http://www.tcl.tk/


Farmer and Grigorov

colors to each category. Similarly to Panoptes, the user has different facilities to
manipulate the appearance of the proof tree, such as zooming, scrolling, focusing,
and other functionalities.

5 Future Work

Future work can take different directions.
New features, such as a facility to syntactically or semantically compare and

calculate a degree of similarity between sequent nodes will further enhance the ef-
fectiveness of Panoptes. Also, exploiting the 3D capabilities provided by OpenGL
can result in the ability to stack different proof attempts of a particular goal per-
pendicularly to the screen plane. The user can then use commands to spin through
the different proof attempts or even look at the graph from a different angle for
obtaining different perspective and understanding.

Even though Panoptes was successfully tested and performed without noticeable
lags on a system equipped with two 30” Apple Cinema HDTM displays, each capable
of 2560×1600 pixels resolution, it is yet to be tested on a system connected to
a large wall of screens (i.e., 4×3 units with combined resolution of 10,240×4,800
pixels). Since the current design and implementation concentrate on optimizing
the program for better runtime performance, it will prove beneficial if the tool is
running smoothly on such large screen systems.

Since the dataflow between imps and Panoptes is currently happening only in one
direction (data can travel from imps to Panoptes, but Panoptes cannot send mes-
sages to imps), expanding Panoptes into a standalone user interface to completely
replace the existing Emacs-based user interface of imps is the most ambitious plan
of all. This is due to the enormous amount of details that need to be accounted for,
although given sufficient time and dedication, it is completely achievable.

6 Conclusion

The users of proof assistants require effective tools for exploring the proof structures
they create. Panoptes demonstrates the kind of functionality that these tools need
to provide. Its implementation utilizes the powerful features offered by today’s com-
puter graphics technology. The ideas used in Panoptes for exploring imps deduction
graphs can be readily applied to other proof assistants. Moreover, Panoptes has
been designed so that the code itself can be ported to other proof assistants as well.

References

[1] Bajaj, C., S. Khandelwal, J. Moore and V. Siddavanahalli, Interactive symbolic visualization of semi-
automatic theorem proving, Technical Report TR-03-37, University of Texas at Austin (2003).

[2] Benzmller, C., L. Cheikhrouhou, D. Fehrer, A. Fiedler, Huang, M. Kerber, M. Kohlhase, K. Konrad,
E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann and V. Sorge, Omega: Towards a mathematical
assistant, in: W. McCune, editor, Automated Deduction—CADE-14, Lecture Notes in Computer
Science 1249 (1997), pp. 252–255.

[3] Farmer, W. M., J. D. Guttman and F. J. Thayer, IMPS: An Interactive Mathematical Proof System,
Journal of Automated Reasoning 11 (1993), pp. 213–248.

8



Farmer and Grigorov

[4] Farmer, W. M., J. D. Guttman and F. J. Thayer, The IMPS user’s manual, Technical Report M-93B138,
The MITRE Corporation (1993), online at http://imps.mcmaster.ca/.

[5] Farmer, W. M., J. D. Guttman and F. J. Thayer Fábrega, IMPS: An updated system description, in:
M. McRobbie and J. Slaney, editors, Automated Deduction—CADE-13, Lecture Notes in Computer
Science 1104 (1996), pp. 298–302.

[6] Garrigue, J., An Objective Caml interface to OpenGL (2007), online at
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgl.html.

[7] Gold Standard Group and SGI, OpenGL—The industry standard for high performance graphics.

[8] Grigorov, O. G., “Panoptes: An Exploration Tool for Formal Proofs,” M.Sc. in Computer Science thesis,
McMaster University (2008), online at http://imps.mcmaster.ca/ogrigorov/panoptes.

[9] INRIA, The Caml language (2008), online at http://caml.inria.fr.

[10] Kaufmann, M. and J. Moore, An industrial strength theorem prover for a logic based on common lisp,
Software Engineering 23 (1997), pp. 203–213.

[11] Owre, S., N. Shankar, J. M. Rushby and D. W. J. Stringer-Calvert, “PVS System Guide, Version 2.4,”
SRI International, Menlo Park, CA, USA, November 2001.

[12] Siekmann, J., S. Hess, C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, H. Horacek, M. Kohlhase,
K. Konrad, A. Meier, E. Melis and V. Sorge, LOUI: A distributed graphical user interface for the
interactive proof system Ωmega, in: R. C. Backhouse, editor, User Interfaces for Theorem Provers,
number 98-08 in Computing Science Reports, Department of Mathematics and Computing Science,
Eindhoven Technical University, 1998, pp. 130–138.

[13] Sutcliffe, G., S. Schulz, K. Claessen and A. V. Gelder, Using the TPTP language for writing derivations
and finite interpretations., in: U. Furbach and N. Shankar, editors, IJCAR, Lecture Notes in Computer
Science 4130 (2006), pp. 67–81.

[14] Sutcliffe, G. and C. Suttner, The TPTP problem library, J of Automated Reasoning 21 (1998), pp. 177–
203.

[15] Trac, S., Y. Puzis and G. Sutcliffe, An interactive derivation viewer, Electronic Notes in Theoretical
Computer Science 174 (2007), pp. 109–123.

9

http://imps.mcmaster.ca/
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgl.html
http://imps.mcmaster.ca/ogrigorov/panoptes
http://caml.inria.fr

	Introduction
	Deduction Graphs in IMPS
	Description of System
	Functionality
	Implementation
	Availability and Screenshots

	Related Work
	Future Work
	Conclusion
	References

