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Abstract

Partial functions are ubiquitous in both mathematics and computer
science. Therefore, it is imperative that the underlying logical for-
malism for a general-purpose mechanized mathematics system provide
strong support for reasoning about partial functions. Unfortunately,
the common logical formalisms—first-order logic, type theory, and set
theory—are usually only adequate for reasoning about partial functions
in theory. However, the approach to partial functions traditionally em-
ployed by mathematicians is quite adequate in practice. This paper
shows how the traditional approach to partial functions can be for-
malized in a range of formalisms that includes first-order logic, simple
type theory, and Von-Neumann-Bernays-Gödel set theory. It argues
that these new formalisms allow one to directly reason about partial
functions; are based on natural, well-understood, familiar principles;
and can be effectively implemented in mechanized mathematics sys-
tems.
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1 Introduction

Reasoning about partial functions is one of the fundamental problems of
mechanized mathematics. But what are partial functions and what is mech-
anized mathematics?

In practice, a function f usually has both a domain of definition Df

consisting of the values at which it is defined and a domain of application
D∗f consisting of the values to which it may be applied. These two domains
may be different from each other. For example, the division function is
defined at 〈x, y〉 iff x and y are real numbers with y 6= 0, but it can be
applied to any pair of real numbers. Hence, a statement like

∀x ∈ R . x 6= 0 ⊃ x/x = 1

makes perfectly good sense even though x/x would be undefined (nondenot-
ing) if x = 0.

A function f is total if Df = D∗f and is partial if Df ⊆ D∗f . Thus a
total function is a special case of a partial function. In both mathematics
and computer science, strictly partial functions are ubiquitous. In fact,
mathematicians usually refer to partial functions simply as functions; for
them there is nothing unusual about a function which is not defined at each
value to which it can be applied.

The goal of mechanized mathematics is to produce computer environ-
ments that support and improve rigorous mathematical reasoning. Mech-
anized mathematics is a highly interdisciplinary, but very young field that
involves logic, mathematics, automated reasoning (as used in automated the-
orem provers), symbolic computation (as used in computer algebra systems),
and human-computer interaction. Its main application area is currently for-
mal methods for developing and analyzing computer hardware and software.
However, the most important application area in the future will certainly be
mathematics education. And, as the discipline matures, mechanized mathe-
matics will also be used increasingly in mathematics research. I believe that,
by automating the process of doing mathematics, mechanized mathematics
systems will transform how mathematics is learned and practiced in the next
century.

One of the principal design decisions for a mechanized mathematics sys-
tem is the choice of what the underlying logical formalism should be. Since
partial functions are so important and so prevalent in mathematics and
computer science, the chosen formalism ought to provide strong support
for reasoning about partial functions. It is also imperative that the chosen
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formalism be natural (so that it is compatible with the user’s intuition), well-
understood (so that it can be effectively implemented), and widely familiar
(so that it is not an obstacle to learning to use the system). Unfortunately,
the common formalisms—first-order logic, type theory, and set theory—are
inadequate for reasoning about partial functions in practice.

First-order logic with function symbols has some machinery for reason-
ing about total functions. Total functions can be represented using function
symbols, but there is no support for quantifying over functions or for speci-
fying functions by means of lambda-notation.

There are many kinds of type theory. All of them provide special machin-
ery, such as types and lambda-notation, for working with functions. This
machinery is effective for reasoning about total functions, but it usually can
only be used to reason about partial functions in indirect and artificial ways.

Axiomatic (first-order) set theory is the most popular foundation for
mathematics. Partial functions can be easily represented in set theory as
certain sets of ordered pairs. (In fact, in set theories without proper classes,
all functions are strictly partial.) However, in set theory there is no special
machinery for reasoning about functions, total or partial. For instance, there
is no built-in mechanism for directly applying a term representing a function
to a term representing an argument to form a new term.

Many formalisms have been proposed that are intended to support par-
tial functions (see the References section for examples). These formalisms
have usually been rejected by system developers because their semantics is
thought to be too arcane and their implementation too difficult.

The objective of this talk is to show that there are formalisms which
support partial functions; are based on natural, well-understood, familiar
principles; and can be effectively implemented.

2 IMPS

My ideas on reasoning about partial functions in mechanized mathematics
systems have been greatly influence by imps, an Interactive Mathematical
Proof System [13, 14] developed by Joshua Guttman, Javier Thayer Fábrega,
and myself. imps is intended to be an environment for rigorous mathematical
reasoning that is useful to a wide range of people. The strategy for achieving
this objective has been to try to provide mechanical support for traditional
mathematical techniques and styles of practice.
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The logic of imps, named lutins1, is a version of simple type theory
that admits partial functions, undefined terms, and subtypes. We chose it
for imps because of its familiarity, expressiveness, and strong support for
partial and higher-order functions. I will say much more about lutins later
in the talk.

The imps system has proven to be a very effective tool for formalizing and
reasoning about traditional mathematics. The imps theory library contains
significant portions of logic, abstract algebra, and mathematical analysis
with over 1200 replayable proofs. In sophistication, several of the theorems
that have been proved reach about the level of the fundamental theorem
of calculus. A major part of the success of imps is due to its ability to
effectively deal with partial functions and undefined terms.

3 The Traditional Approach

Although common formalisms are inadequate for reasoning about partial
functions, mathematicians have no difficulty in dealing with partial func-
tions. Most mathematicians employ what I will call the traditional approach
to partial functions. This approach can be boiled down to three principles:

(1) Variables and constants are always defined, i.e., they always denote
something.

(2) Functions may be partial. The application of an expression denoting a
function to an expression denoting a value outside of the function’s do-
main gives an expression that is undefined (e.g., 1/0 and limx→∞ sinx
are undefined). Moreover, an application is undefined if any argument
is undefined (e.g., 0 ∗ (1/0) is undefined since 1/0 is undefined).

(3) Formulas are always true or false. The application of a predicate
(i.e., an expression denoting a truth-valued function) is always defined.
Moreover, an application of a predicate is false if any argument is
undefined (e.g., 1/0 = 1/0 is false since 1/0 is undefined).

I claim that, not only is this approach commonly used by mathematicians, it
is the approach for dealing with partial functions like division that is usually
taught to American students in college, high school, and even junior high
school.

1Pronounced as the word in French.
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Several formalizations of the traditional approach have been proposed.
The ones I know about are:

• R. Schock (1968) [35].

• T. Burge (1971) [4, 5].

• M. Beeson (1981) [2, 3].

• L. Monk (1986) [30].

• S. Feferman (1990) [16].

• W. Farmer, J. Guttman, J. Thayer (1990) [10, 11, 12].

The last formalization in the list is lutins, the logic of imps. It is noteworthy
because it has been implemented and tested in a general-purpose mechanized
mathematics system.

4 Partial First-Order Logic

I will now introduce a system named Partial First-Order Logic (pfol) to
illustrate how the traditional approach can be formalized in first-order logic.
pfol has the usual connectives of first-order logic:

=,¬,∧,∨,⊃,≡, ∀, ∃.

In addition, it has a definite description operator I that is used to construct
terms of the form Ix . ϕ. I is given a free semantics: Ix . ϕ denotes the
unique x that satisfies ϕ if there is such an x and is undefined otherwise.
For example,

Ix . x 6= x

is an undefined term.
Several other useful symbols can be introduced as abbreviations:

• s↓ ≡ s = s (“s is defined”).

• s↑ ≡ ¬(s↓) (“s is undefined”).

• s ' t ≡ s↓ ∨ t↓ ⊃ s = t (“s and t are quasi-equal”).

• if(ϕ, s, t) ≡ Ix . ((ϕ ⊃ x = s) ∧ (¬ϕ ⊃ x = t)) where x does not oc-
cur in ϕ, s, or t (an if-then-else term constructor).
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The semantics of pfol is very similar to that of ordinary first-order logic.
For a given pfol language L, a model for L consists of a nonempty domain
D plus a function which maps each individual constant of L to an element
of D, each function symbol of L to a partial function from D×· · ·×D to D,
and each predicate symbol to a total function from D × · · · ×D to {t, f}.
The valuation function with respect to a model is generally partial: a term
of the form f(a) has no value in the model if the value of a is outside the
domain of the value of f .

The machinery in pfol for partial functions and undefined terms—the
function symbols and the I operator—is purely a convenience; it extends
but does not alter the conceptual framework of classical first-order logic.
The use of function symbols and the I operator in a pfol theory can be
eliminated, and a pfol theory without function symbols and I has the same
semantics as an ordinary first-order theory without function symbols. As a
consequence of these two facts, any theory of pfol can be translated into a
logically equivalent theory of ordinary first-order logic. That is, the following
theorem is true:

Elimination Theorem For every pfol theory T , there is an ordinary first-
order logic (fol) theory T ∗ and a translation from each formula ϕ of T to
a formula ϕ∗ of T ∗ such that T ∗ involves no use of function symbols or the
I operator and

T |=pfol ϕ iff T ∗ |=fol ϕ
∗.

Moreover, ϕ∗ = ϕ if ϕ contains no function symbols nor I.

Most of the logical axiom schemas of pfol are exactly the same as those
for ordinary first-order logic. However, those dealing with instantiation and
equality substitution are slightly different. For example, universal instanti-
ation holds only for defined terms:

(∀x . ϕ) ∧ t↓ ⊃ ϕ[x 7→ t]

where t is free for x in ϕ. And the law of substitution holds for terms that
are quasi-equal instead of just equal:

s ' t ⊃ ϕ(s) ≡ ϕ(t).

There are also new axiom schemas that formalize the properties of the
definite description operator I and the definedness operators ↓ and ↑. For
example, the definedness axiom schemas are:
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• a↓ for each variable or individual constant a.

• t1↑ ∨ · · · ∨ tn↑ ⊃ f(t1, . . . , tn)↑ for each function symbol f .

• t1↑ ∨ · · · ∨ tn↑ ⊃ ¬p(t1, . . . , tn) for each predicate symbol p.

Notice that these three axiom schemas correspond to the three principles of
the traditional approach to partial functions.

A very important property of pfol is that undefined terms are indis-
cernible. This means that an undefined term in a formula can be replaced
by any other undefined term without changing the meaning of the formula.
This property distinguishes pfol (and other formalizations of the traditional
approach) from free logics2 in which there is some mechanism for reasoning
about nonexistent entities such as the present king of France.

5 LUTINS

Simple type theory à la Church [7] is a higher-order logic for reasoning
about truth values, individuals, and simply typed total functions. I will
briefly describe a version of simple type theory named Partial Simple Type
Theory (pstt) in which the traditional approach has been formalized. (For
a detailed presentation of a system like pstt, see [10].) pstt has the usual
hierarchy of types consisting of base types and functions types. The base
types are ι, ι′, . . . (which denote domains D,D′, . . . of individuals) and ∗
(which denotes the domain {t, f} of truth values). A function type has the
form α1 × · · · × αn → αn+1 where α1, . . . , αn+1 are base or function types.

A type is of kind ∗ if the type is ∗ or has the form α1× · · ·×αn → αn+1

where αn+1 is of kind ∗; a type is of kind ι if it is not of kind ∗. For example,
ι → (∗ → ι′) is of kind ι and ι × ι → ∗ is of kind ∗. A function type of
kind ι denotes a domain of partial functions, while a function type of kind ∗
denotes a domain of total functions (in accordance with the second and third
principles of the traditional approach). For instance, ι → (∗ → ι′) denotes
the domain of partial functions from D to the domain of partial functions
from {t, f} to D′, and ι× ι→ ∗ denotes the domain of total functions from
D ×D to {t, f} (i.e., the domain of binary predicates on D).

2There is a substantial literature on free logic that begins approximately with
H. Leonard’s 1956 paper “The logic of existence” [26]. For some samples from this litera-
ture see [18, 19, 23, 24, 25, 33, 35, 36, 39].
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There are a few new logical axiom schemas that are different from those
of pfol and ordinary simple type theory. A lambda-expression is always
defined:

(λx1, . . . , xn . t)↓ .

Like universal instantiation, beta-reduction is restricted to defined expres-
sions:

a1↓ ∧ · · · ∧ an↓ ⊃ (λx1, . . . , xn . t)(a1, . . . , an) ' t[x1 7→ a1, . . . , xn 7→ an]

where each ai is free for xi in t. And extensionality holds for partial as well
as total functions:

f = g ≡ ∀x1, . . . , xn . f(x1, . . . , xn) ' g(x1, . . . , xn).

A shortcoming of pstt is that the types indicate the domain and range
of total functions, but not partial functions. What is needed is a system of
subtypes and types for organizing partial functions like the pstt system of
types for organizing total functions. Let us define a sort to be a subtype or
type. lutins is pstt plus a system of sorts. I will give a quick sketch of
the lutins sort system. For a detailed description of lutins and its sort
system, see [11, 13].

A language L of lutins contains a hierarchy of atomic and compound
sorts. Each atomic sort is assigned an enclosing sort (which may be itself).
A compound sort has the form α1 × · · · × αn → αn+1 where α1, . . . , αn+1

are atomic or compound sorts. The atomic/enclosing sort relationship de-
termines a partial order � on the sorts of L with the following properties:

• If α is an atomic sort and β is its enclosing sort, then α � β.

• If αi � βi for all i with 1 ≤ i ≤ n+ 1, then
α1 × · · · × αn → αn+1 � β1 × · · · × βn → βn+1.

• The pstt types are the maximal sorts in �.

• For each sort α, there is a unique type τ(α) such that α � τ(α).

The sorts of L denote nonempty sets and � entails set inclusion. A
compound sort α1 × · · · × αn → αn+1 whose type is of kind ι denotes the
domain of partial functions from D1×· · ·×Dn to Dn+1, where each Di is the
domain denoted by αi. (A compound sort whose type is of kind ∗ denotes
a certain domain of total functions.) Notice that the second property of �
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makes sense because a partial function from D1 × · · · ×Dn to Dn+1 is also
a partial function from D′1 × · · · ×D′n to D′n+1 whenever Di ⊆ D′i for all i
with 1 ≤ i ≤ n+ 1.

As an example, consider a language for the real numbers containing
the atomic sorts Z, Q, R, and ∗ whose enclosing sorts are Q, R, R, and
∗, respectively. (R and ∗ are the base types.) Then Z � Q � R and
Q→ Z � R→ R. If Z, Q, and R denote the integers, rationals, and reals,
respectively, then Q→ Z would denote the domain of partial functions from
the rationals to the integers. This domain would be a subset of the domain
denoted by R → R, i.e., the domain of partial functions from the reals to
the reals.

Sorts are used in three ways in lutins. First, they are used to restrict
binding operators. For example, the Archimedean principle of the real num-
bers is expressed by the sentence

∀x : R . ∃ y : Z . x < y,

and the integer division function is specified by the expression

λx, y : Z . I z : Z . x = y ∗ z,

where ∗ is the multiplication operator defined on the real numbers.
Second, every expression e is assigned a sort σ(e) on the basis of its

syntax. The main rules that govern the assignment are:

• Variables and constants are assigned sorts when they are specified.

• σ(f(t1, . . . , tn)) = αn+1 if σ(f) = α1 × · · · × αn → αn+1.

• σ(λx1 : α1, . . . , xn : αn . t) = α1 × · · · × αn → αn+1 if σ(t) = αn+1.

• σ(Ix : α . ϕ) = α.

σ(e) = α means, if e is defined, the value of e is in the set denoted by α.
That is, if an expression is defined, its assigned sort gives some immediate
information about its value, which is very useful to both the human user and
the computer. (Of course, if the value of an expression is in a set denoted
by a subsort of the expression’s assigned sort, the subsort might be a more
useful indicator of expression’s value than the assigned sort.)

And third, sorts facilitate the construction of interpretations of one
lutins theory in another (see [12]).
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Definedness is expressed in lutins by two operators. The expression

e ↓ α,

read “e is defined in α”, means the e is defined and its value is a member of
the set denoted by α. The expression

e↓,

read “e is defined”, is an abbreviation for e ↓ σ(e).
Most of the axiom schemas of lutins are essentially the same as those

of pstt except in some schemas “defined-in” is used in place of “is-defined”:

• (∀x : α . ϕ) ∧ (t ↓ α) ⊃ ϕ[x 7→ t] where t is free for x in ϕ.

• (a1 ↓ α1) ∧ · · · ∧ (an ↓ αn) ⊃
(λx1 : α1, . . . , xn : αn . t)(a1, . . . , an) ' t[x1 7→ a1, . . . , xn 7→ an]
where each ai is free for xi in t.

• f↑ ∨ (t1 ↑ α1) ∨ · · · ∨ (tn ↑ αn) ⊃ f(t1, . . . , tn)↑
where σ(f) = α1 × · · · × αn → αn+1.

• (t1 ↑ α1) ∨ · · · ∨ (tn ↑ αn) ⊃ ¬p(t1, . . . , tn)
where σ(p) = α1 × · · · × αn → ∗.

To illustrate how the sort mechanism works, assume N and R are sorts
and !, /, and

√
are constants such that:

• N � R.

• σ(!) = N→ N.

• σ(/) = R×R→ R.

• σ(
√

) = R→ R.

Assume further that N and R denote the natural numbers and the real
numbers and !, /, and

√
denote the factorial, division, and square root

functions, respectively.
Then σ(2!) = σ((2/3)!) = σ((9/3)!) = N by the syntax of !, and

• 2! ↓,

• (2/3)! ↑, and
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• (9/3)! ↓

by the semantics of ! and /. Similarly, σ(
√

4) = σ(
√

2/3) = σ(
√
−1) = R

by the syntax of
√

, and

•
√

4 ↓ N,

•
√

2/3 ↓ but
√

2/3 ↑ N, and

•
√
−1 ↑.

by the semantics of / and
√

.
There are some important distinctions between types as they are nor-

mally used in computer science and sorts as they are used in imps. In
computer science, “expression e has type α” means the value of e is in the
set denoted by α. In addition, type systems usually satisfy the following
two properties:

(1) e is assigned a type iff e is type correct (i.e., every operator in e is
applied to an argument of the right type).

(2) Determining whether e is type correct is feasible.

For a sophisticated language of expressions, it can be very difficult to con-
struct a type system that simultaneously satisfies both of these properties.
There is a natural tension between them that makes type system design a
nontrivial enterprise.

In the imps approach, “expression e has sort α” means, if e is defined,
the value of e is in the set denoted by α. In contrast to the two properties
for type systems are the following two properties for imps-style sort systems:

(1) Every expression e is assigned a sort (whether or not it is defined).

(2) Determining whether e is defined is undecidable.

There is no tension between achieving these two properties in an imps-style
sort system since an expression does not need to be defined to be assigned
a sort. The task of determining definedness in such sort systems—which is
analogous to the task of determining type correctness in type systems—is
thus separated completely from the task of assigning sorts to expressions.
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6 Definedness Checking in IMPS

Because lutins does not assume that all functions are total and all ex-
pressions are defined, many questions about the definedness of expressions
must be answered in the course of a proof. It is imperative that any system
which implements a logic like lutins must provide automated support for
checking the definedness of many expressions, for otherwise the user would
be overwhelmed by the number of (mostly trivial) theorems that he or she
would have to prove.

The algorithm in imps for definedness checking is embedded in the imps
simplifier [13, 15], which automates most of the low-level reasoning—the
kind of reasoning that the user would consider drudgework—that is done
in imps. In addition to definedness checking, the simplifier performs arith-
metic, algebraic, and order simplification; logical simplification; and the
application of rewrite rules. The design of the simplifier is highly recursive.
For example, algebraic simplification often requires definedness checking,
and the definedness checking algorithm often makes calls to the top level of
the simplifier.

A variety of theory-specific information is used by the simplifier when
checking definedness:

• The sorts of expressions, particularly the sorts of variables and con-
stants.

• The relationships between sorts.

• Facts about the domain and range of functions.

• Consequences of the local context of the definedness assertion that is
being checked.

Although determining the definedness of an expression is an undecidable
problem, definedness checking works quite well in imps: usually almost all
the definedness checking required for an application of imps can be done
automatically by the system.

As an example, consider the following definedness assertion:

∀x, y : Z, z : Q . 2 < z ⊃ (x ∗ y − 3!/z) ↓ Q.

Most of you would consider this assertion to be trivially true. However, a
mechanical proof of this assertion requires the assemblage and application
of a great many facts including:
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• N is a subsort of Z.

• Z is a subsort of Q.

• 3 ↓ N.

• ! is total on N.

• N is closed under !.

• ∗ and − are total on Q×Q.

• Q is closed under ∗ and −.

• ∀x, y : Q . y 6= 0 ⊃ x/y ↓ Q.

• ∀x : Q . 2 < x ⊃ x 6= 0.

7 Partial NBG Set Theory

Von-Neumann-Bernays-Gödel set theory (nbg) is a well-known (first-order)
set theory in which variables range over both sets and proper classes. This
means that the universe of sets V can be defined as an individual constant
in nbg even though it is a proper class. Also functions from V to V , such
as the cardinality function, are first-class objects in nbg even when they are
proper classes. (A good introduction to nbg is found in [29].)

nbg is closely related to Zermelo-Fraenkel set theory (zf), the most
popular formalization of set theory. nbg and zf share the same intuitive
model of the iterated hierarchy of sets. The nonlogical axioms of nbg are
very similar to those of zf; most of them are simply zf axioms with some of
the quantifiers restricted to sets. And there is a faithful interpretation of zf
in nbg [31, 34, 38], which implies that zf is consistent iff nbg is consistent.
However, nbg is finitely axiomatizable, while zf is not. (See [17] or [29] for
a proof of this celebrated fact about nbg.)

nbg provides strong support for reasoning about (partial and total) func-
tions in theory. I will show how to formalize the traditional approach to par-
tial functions in nbg.3 The resulting system named nbg∗ provides strong
support for reasoning about functions in practice.

3To simplify the discussion I will consider only unary functions.
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I will construct nbg∗ in three steps. First, the underlying logic of nbg,
ordinary first-order logic, is replaced with pfol. The nonlogical axioms of
nbg∗ are exactly the nonlogical axioms of nbg.

Second, term constructors for (unary) function application and lambda-
abstraction are defined as follows:

• f(a) ≡ I b . fun(f) ∧ 〈a, b〉 ∈ f .

• λx . t ≡ I g . fun(g) ∧ ∀x ∈ V . if(t ∈ V, g(x) = t, g(x)↑).

Here f, a, t are terms, x is a variable, b does not occur in f or a, and g does
not occur in x or t. Also, fun(f) means f is a function, i.e., a class of ordered
pairs such that, if 〈a, b〉, 〈a, b′〉 ∈ f , then b = b′. These constructors, along
with the definite description operator I, allow one to build complex terms
in nbg∗ that denote classes.

Third, a lutins-style sort system is added. The sort system has a hier-
archy of sorts similar to that of lutins, containing both atomic sorts and
compound sorts of the form α → β. A sort denotes a nonempty domain of
classes. (A domain of classes can be a set, a proper class, or a collection
containing at least one proper class.) A compound sort α → β denotes the
domain of partial functions from the sets in the domain denoted by α to the
sets in the domain denoted by β. Of course, if α and β denote sets, then
the compound sort α → β will also denote a set. Two very useful atomic
sorts are C, the domain of all classes, and V, the domain of all sets. C is
the maximum sort: every sort is a subsort of it. Every sort that denotes a
class is a subsort of V, and every compound sort is a subsort of V→ V.

As a candidate logic for a mechanized mathematics system, nbg∗ has
the following strengths:

• It is based on ideas and principles that are very familiar from mathe-
matical practice.

• It has the same expressive power as zf.

• It has the same convenient machinery for reasoning about functions
as lutins.

• The simplification and definedness checking algorithms in imps for
lutins can be used for nbg∗ with no major conceptual changes.

• lutins theories can be directly translated into nbg∗ theories.
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On the other hand, nbg∗ has three fairly obvious weaknesses. First, it
would be a very major undertaking to implement a mechanized mathematics
system based on nbg∗. In order to be useful to a wide range of people, the
system would need a variety of mechanisms to bring the level of reasoning
from the microscopic level of formal sets to a more human level comparable
to that used in mathematical practice. Many of these could be borrowed
from imps, but they would have to be fine-tuned for the new system and its
new logic.

Second, arbitrary terms in nbg∗ are not allowed to be sorts. The prob-
lem here is that an arbitrary term may denote the empty set. Allowing sorts
that may denote the empty set would greatly complicate the logic, its im-
plementation, and the use of a mechanized mathematics system based on it.
For example, variables would no longer be defined for free; they would only
be defined when the sort of the variable denoted a nonempty class—which
could vary from one context to another.

And third, the set/class distinction, which is a fundamental principle of
nbg∗, has a marginal status in everyday mathematical practice—particularly
outside the community of professional mathematicians. For this reason, one
could argue that nbg∗ does not conform to mathematical practice as suc-
cessfully as lutins does.

8 Conclusion

I have argued that the traditional approach to partial functions can be for-
malized in a range of familiar formalisms without sacrificing the underlying
intuition and semantics. The new machinery of these formalisms allows one
to reason about (partial and total) functions in a natural and direct way.
The imps system demonstrates that this partial functions machinery can be
effectively implemented.

Some brief remarks on the other addresses. Three addresses were given at
the Partial Functions and Programming: Foundational Questions confer-
ence in addition to the one presented in this paper. In the address entitled
“Definedness”, Solomon Feferman distinguished “logics of existence” from
“logics of definedness”. The formalisms that I have discussed—as well as
most other formalizations of the traditional approach to partial functions—
are logics of definedness. The logic that David Parnas presented in “A Logic
for Describing, not Verifying Software” is essentially the same as pfol with-
out the definite description operator I. And Dana Scott pointed out in his
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address “Partial Functions and Type Theory” that the notion of a partial
function used in my talk admits partial functions with arbitrary domains and
ranges. He noted that there are other notions of a partial function—such as
the partial recursive function and the partial function in intuitionistic type
theory—in which domains and ranges are restricted to certain kinds of sets.
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