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Abstract. This paper introduces the imps proof script mechanism and
some practical methods for exploiting it.

1 Introduction

imps, an Interactive Mathematical Proof System [4, 2], is intended to serve three
ultimate purposes:

– To provide mathematics education with a mathematics laboratory for stu-
dents to develop axiomatic theories, proofs, and rigorous methods of sym-
bolic computation.

– To provide mathematical research with mechanized support covering a range
of concrete and abstract mathematics, eventually with the help of a large
theory library of formal mathematics.

– To allow applied formal methods to use flexible approaches to formalizing
problem domains and proof techniques, in showing software or hardware
correctness.

Thus, the goal of imps is to provide mechanical support for traditional methods
and activities of mathematics, and for traditional styles of mathematical proof.
Other automated theorem provers may be intended for quite different sorts of
problems, and they can therefore be designed on quite different principles. For
instance, some are meant to act as the back ends for ai systems that need to
prove simple theorems about simplified worlds. However, theorem provers of this
latter kind will not be able to serve the purposes we have mentioned, for which
a wide range of traditional mathematical techniques must be supported.

In this paper we will focus on the imps proof script mechanism; we intend to
illustrate why it aids in developing the large bodies of mathematical theory that
? Supported by the MITRE-Sponsored Research program. Presented at the 12th In-

ternational Conference on Automated Deduction, Nancy, France, June/July, 1994.
Published in: D. Bundy, ed., Automated Deduction—CADE-12, Lecture Notes in
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are needed for these goals. As such, the paper is intended as a pragmatic one
rather than a theoretical one. We aim to emphasize concrete, practical ways of
getting proofs done. We believe that the imps proof script mechanism aids the
user in carrying out proofs, in tailoring and reusing previously developed proof
ideas, and in conveying the essential content and structure of proofs.

Our pragmatic approach derives from our view that, in mechanized theorem
proving, what happens on the outside may be more important than what hap-
pens on the inside. For example, a user may be more sensitive to the time it
takes him to do some simple data entry tasks, or to find a clever encoding of a
mathematical idea, than he is to the time it takes the machine to explore de-
duction steps. Frequently, one should be less concerned with what it is possible
to do and more concerned with what can be done conveniently.

In particular, our aim is to provide flexible and convenient ways of manipu-
lating and reusing proofs. The operations that will serve this purpose cannot be
determined from proof theory, but primarily from experience. Given our aim, it
is not necessary to adopt an object logic in which proofs themselves are first class
objects, because we do not aim to prove things about proofs. On the contrary, it
is more important to make it very easy for a user to get his hands on his proofs
and (especially) partial proof attempts; to make it very cheap for him to restart
proofs and reexecute portions; and to encourage an experimental attitude to
proof construction.

Mechanizing mathematics is widely acknowledged to be hard work. It forces
us to a more formal level, and at the same time to a more concrete representa-
tional level, than we would normally adopt in standard mathematical practice.
Thus, offsetting the benefit that we gain confidence in the correctness of our
proofs, there are the extra burdens that most everyone who has dealt with a
mechanized theorem prover has surely experienced. Effective styles of usage are
needed to mitigate these burdens and to provide new methods exploiting the
more concrete structure we have at our disposal. Below, we will describe some
techniques we have found so far.

imps is self-consciously an interactive system; however, we believe that cur-
rent mechanized theorem provers intended for mathematics are all interactive in
one sense or another. The kinds of interaction can vary from the crafting of an
appropriate sequence of lemmas to reach the theorem, to the setting of various
switches before control is passed to the machine, to the user supplying most
of the proof by hand. Perhaps a more interesting distinction than the familiar
but flawed one of “degree of autonomy” is the distinction between systems in
which the user interacts only between attempts to construct a proof, and those
in which he interacts during the process of constructing a proof. imps is emphat-
ically of the second kind. We find that, in the first kind of system, the human
helps the machine to prove the theorem, while in the second kind, the machine
can help the human. Partly for this reason, imps provides relatively large proof
steps in many of its proof commands, which aids the user in correlating the steps
in constructing an imps proof with the successive portions of an intuitive proof
sketch.
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In order to encourage a substantial community of users to adopt imps, we
want to describe a range of styles of effective usage. These styles of usage are best
refined only after substantial experience has been gained in using the system for
a particular type of problem. Over time, these styles of usage evolve in tandem
with improvements or adaptations in the theorem prover itself. In this paper
we convey some aspects of a successful style for using the imps facilities for
interactive and script-based proof.

The paper is organized as follows. Section 2 introduces special procedures
for applying theorems called macetes, which play a fundamental role in the imps

proof system. Sections 3–5 describe the imps proof script mechanism and ways
it can be put to use. Section 6 briefly compares imps proof scripts and macetes
with traditional tactics. And Section 7 contains a conclusion.

2 Macetes

Macetes supplement the imps simplifier [4, 5] in order to provide more flexibility
to the user. The simplifier applies universally quantified equalities as rewrite
rules in a manner which is usually beyond the user’s control. In particular, it is
not possible for the user to direct the simplifier to apply only those theorems
that belong to a specified set of theorems. This rigidity of rewrite rule application
clearly clashes with normal mathematical practice, where theorems are usually
applied, individually or in groups, in a way which is dependent on content and
ultimately determined by the mathematics practitioner.

In imps the macete mechanism is designed to provide a simple facility to
extend the simplifier in straightforward ways (or build simple simplifiers from
scratch) so that the user has more control over what theorems get applied.
Macetes are of two basic kinds: atomic and compound. For instance, when a
theorem is installed (after it has been proved), a corresponding atomic macete
(called a theorem macete) is automatically created. These theorem macetes do a
variety of kinds of conditional rewriting depending on the syntactic form of the
underlying theorem. Theorem macetes are created for all theorems, even those
that are not conditional equalities [5]. A theorem may be applied as a macete
using ordinary matching or using translation matching , an inter-theory form of
expression matching which allows a theorem to be applied outside of its home
theory [3]. Atomic macetes also include simplification and beta-reduction.

Compound macetes are specified using an extremely simple language for de-
termining control of the process of applying atomic macetes. This language pro-
vides a few simple constructors for sequencing and iteration of arbitrary macetes.

Macetes are applied via special proof commands that add at most one infer-
ence to the deduction graph. Since the number of macetes that are loaded into
the system may be large (1000 macetes is typical), the facility would not be too
practical if the user had to guess the right one out of the blue. To deal with
this imps provides a special menu—the “macete menu”—to tell the user which
macetes may be applicable to a given subgoal. In situations where over 1000
macetes are available, there are rarely more than 10 macetes presented to the
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user. Consequently, this menu can be used to provide guidance on what to do
next. It provides information to the novice about what is available in the theory
library, and it provides feedback to the expert about the essential content of his
subgoal.

3 Proof Scripts in IMPS

A logical deduction is represented in imps as a kind of directed graph called a
deduction graph [4]. An imps user initially sees proof as an interactive process—
frequently with much trial and error—acting on a deduction graph. In this view,
developing the proof means issuing a sequence of commands, with the imps user
interface supplying a good deal of information about what steps may be useful.
Each command is applied to a specific node in the deduction graph and pro-
duces (zero or more) additional nodes. Roughly speaking, the graph structure
represents the relation of entailment between the nodes. When an inference sup-
ports a node with subgoal nodes, and all of the subgoals are recognized to be
true (“grounded”), then the node is also grounded. A proof is complete when
its original goal node is grounded. Throughout the proof, the user has a current
node, which may be freely changed between commands. After each command,
the system selects a current node. The next command will apply to this newly
selected node unless the user explicitly changes the current node. When a com-
mand has added new unsupported subgoals, the new current node is generally the
leftmost; when a command has grounded its node, the system generally chooses
the leftmost unsupported descendent of the nearest ungrounded ancestor.1 imps

enforces a goal directed style of reasoning, in which the proof is constructed from
the conclusion backwards using a sequent-based system of rules.

A proof script (or script for short) is a sequence of certain s-expressions
that, when executed, applies a sequence of commands to a deduction graph. An
example of a proof script is shown in Figure 1. The structure of the deduction
graph and the default way of selecting a new current node determine how these
commands are applied to the deduction graph. An intimate knowledge of the
syntax for proof scripts is unimportant: no one types scripts. Instead, the user
interacts with the system through its interface, usually selecting from menus
generated on the fly, to carry out the commands. At any point in the process,
the user can ask imps to create a proof script that is a transcript of the proof or
partial proof. In practice, all proof scripts are created from these basic transcripts
of interactive execution, by editing them to introduce control structures.

The s-expressions in a proof script are of several kinds:

– Command forms do the ultimate work of adding new nodes to the deduc-
tion graph. In the example shown in Figure 1, applying macetes such as
tr%subseteq-antisymmetry and indicator-facts-macete and doing the
direct inferences are command forms.

1 A more elaborate scheme is used when the nearby portion of the deduction graph is
not tree-like.
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– Node motion forms cause script execution to continue at a node other than
the natural continuation node; for instance, (jump-to-node top).

– Assignment forms may define local macetes or invocable scripts (see below)
which can be referenced at other places within the script. This is especially
useful in certain kinds of proofs, such as proofs by symmetry, which involve
two or more instances of the same argument. (label-node top) is a different
kind of assignment form.

– Conditionals subordinate the execution of a portion of a script to the validity
of a certain condition. Typical conditions are that the assertion of the goal
sequent matches a given expression or that a particular subscript succeeds
in adding inferences to the proof.

– Iteration forms provide for execution of a subscript while a specified condi-
tion holds, or over a specified range of nodes. In Figure 1, for-nodes begins
an iteration over the set of unsupported descendents of the target node.

– Block and comment forms provide structure and documentation.

((label-node top)

(apply-macete-with-minor-premises tr%subseteq-antisymmetry)

(script-comment

"Replace equation with two inclusions.")

direct-inference

(jump-to-node top)

(for-nodes

(unsupported-descendents)

(block

insistent-direct-inference

(apply-macete-with-minor-premises indicator-facts-macete)

beta-reduce-repeatedly))))

Fig. 1. Script for proving sets are equal

While a script is executing, it maintains two distinguished nodes in the de-
duction graph. First, there is the head node, which remains fixed. Second, there
is the current node, which starts off as the head node, and as execution pro-
gresses, evolves according to the default selection rules described above or the
dictates of explicit node motion forms included in the script.

We regard a script execution as an attempt to provide a proof, or part of a
proof, for a particular subgoal node, namely the one selected as the head node.
For this reason if, part way through execution, the head node should become
grounded, the remainder of the script is discarded. There is nothing more for it
usefully to do. We have found that this principle greatly improves the robustness
and predictability of the script mechanism. Without it, there is the risk that
“overachieving” scripts will carry out meaningless proof steps in some adjacent
portion of the deduction, with the consequence that later proof commands may
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by default apply to the wrong subgoals. As a special case, a block is an anonymous
script procedure with no parameters. In effect, it merely introduces a head node
and discards any of the nested commands that may remain after the head node
is grounded.

These remarks describe the possible “moves” in interacting with imps. Later
we will we describe some of the “strategies” we employ in playing the game.

3.1 Invocable Scripts

The most basic user level inference steps are given by built-in imps proof com-
mands; these are Lisp procedures2 which call primitive inferences in useful pat-
terns. Assuming that the primitive inferences, several of which carry out sophis-
ticated reasoning steps, are correctly implemented, proof commands are guaran-
teed only to make sound inferences, because they modify deduction graphs only
by calling primitive inferences. There are approximately 60 built-in proof com-
mands in imps. A single command will, in general, add several nodes, and often
several levels of nested subgoals, to the deduction graph. Moreover, the same
command, issued in different contexts, may add different numbers of nodes or
levels.

In theory, new proof commands can be added to imps by directly writing
new Lisp procedures, although writing such procedures is usually difficult. An
invocable script is a new proof command created by the user from a proof script.
It can be invoked—either interactively or in other scripts—just like the basic
imps proof commands implemented in the underlying Lisp. When requested,
imps tells the user which proof commands, whether built-in or user-defined, are
possibly applicable to a given subgoal.

The parameters to an invocable script are untyped, and referenced position-
ally by positive integers. Their actual values may be:

– integers;
– strings, used to represent expressions; or
– symbols, used to represent theorems, macetes, and commands primarily.

An invocable script may be defined at the top level, as a globally available com-
mand, using the def-script form as in Figure 2. Alternatively, it may be purely
local to an encompassing proof script. For instance, the local invocable script
in Figure 3 contraposes against the assumption matching the pattern given as
argument, after which it uses a group of theorems about the algebra of fractions
as a macete, before finally calling the simplifier. This local invocable script is
then used three times in the proof fragment that follows.

Invocable scripts may take other invocable scripts or other commands as ar-
guments, as was illustrated by the example in Figure 2. It repeatedly applies
direct inferences (sequent calculus right introduction rules) and antecedent in-
ferences (sequent calculus left introduction rules) backwards to generate a set
of subgoals, before finally applying the command given by its actual parameter
2 Yale’s T dialect of Scheme [10] is in fact the implementation language.
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(def-script command-on-direct-descendents 1

((label-node compound)

direct-and-antecedent-inference-strategy

(jump-to-node compound)

(for-nodes

(unsupported-descendents)

$1)))

Fig. 2. Invocable script with a command parameter

(let-script

contrapose-denom-remove 1

;; The arg is the pattern to contrapose on

;;

((contrapose $1)

(apply-macete-with-minor-premises

fractional-expression-manipulation)

simplify))

($contrapose-denom-remove "with(r:rr,r<0);")

($contrapose-denom-remove "with(r:rr,r=0);")

($contrapose-denom-remove "with(r:rr,r=1);")

Fig. 3. Local invocable script and its application

to every leaf node introduced in this process. This invocable script is frequently
called with the parameter simplify, although the example of Figure 1 could be
rewritten by passing the contents of the block as its argument.

4 Proof by Emacs

A crucial advantage of the imps script language is that simple textual manip-
ulations of the scripts allow a user to reuse proofs or portions of proofs in a
highly predictable way. In many cases, a very superficial understanding of many
portions of a proof is enough to enable a user to transform it into a proof of
another theorem.

As an example, consider Figure 4, which was created while developing parts
of freshman calculus using nonstandard analysis. It establishes the theorem that
the limit of a sum equals the sum of the individual limits. The proof script
contained within it (below the word proof) is given almost as it appears in our
files; we have added only the marker & appearing at the right of some of the
lines. It is not necessary to understand the script completely. That is part of the
point.

Suppose that we now want to prove the analogous theorem about the limit
of a product. This theorem about products does not follow from the theorem
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(def-theorem sum-of-limits

"forall(f,g:[rr,rr], c:rr, #(lim(f,c)) and #(lim(g,c)) implies

lim(lambda(x:rr,f(x)+g(x)),c)=lim(f,c)+lim(g,c))" &

(theory nsa-theory)

(proof

(direct-and-antecedent-inference-strategy

(apply-macete-with-minor-premises

iota-free-characterization-of-lim)

direct-and-antecedent-inference-strategy

(apply-macete-with-minor-premises ast-composition-binary)

beta-reduce-repeatedly

(force-substitution "ast(+)" "++" (0)) &

(move-to-sibling 1)

simplify

extensionality

(unfold-single-defined-constant (0) ++) &

(apply-macete-with-minor-premises additivity-of-st) &

(apply-macete-with-minor-premises

iota-free-characterization-of-lim-existence)

(unfold-single-defined-constant-globally ++) &

(apply-macete-with-minor-premises ast-extends-compound)

(apply-macete-with-minor-premises

lim-existence-implies-finite-on-monad)

direct-and-antecedent-inference-strategy

(apply-macete-with-minor-premises

lim-existence-implies-finite-on-monad)

direct-and-antecedent-inference-strategy)))

Fig. 4. Limit of a sum

about sums. Moreover, in most standard treatments the proofs are considerably
different. However, in our nonstandard treatment there is a proof of the theorem
for products that is very much like the theorem for sums. The extra work that
one would expect to have to do is encapsulated in a lemma corresponding to the
lemma additivity-of-st.

A user more or less familiar with what was going on, but who did not neces-
sarily follow the proof completely, can recognize that only the lines with a & to
the right seem to have anything to do with addition in particular. The other lines
are more or less generic with respect to the issue here. We now change just those
lines to the corresponding ones for multiplication, generally using global-replace
or query-replace in Emacs; hence the description “proof by Emacs.” In this case,
+ is replaced with ∗ and additivity is replaced by multiplicativity, which
suffices to produce both the theorem to be proved and also the proof script.
When we run this new script on the new theorem, we see that a complete proof
is obtained. One might ask how the user is to know the “corresponding” lines.
Although ultimately this is a matter of mathematical understanding, imps can
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provide some assistance, as our next example will illustrate.
Continuing our excursion through freshman calculus, consider the analogous

theorem on the limit of a quotient. Suppose we try exactly the same approach.
Imagine we have changed the addition to division, as we changed the addi-
tion to multiplication above. We might mistakenly assume that the analogue of
multiplicativity-of-st is called divisibility-of-st, and make the change
accordingly. We now run the script, but when it tries to execute

(apply-macete-with-minor-premises divisibility-of-st)

it returns the error message that there is no such macete. imps will help us
find the correct name. We then jump back into the script at the point this was
attempted, or rerun the portion of the script up to that point. Now, the correct
choice st-of-quotient will pop up in the menu of applicable macetes, and it
can be inserted. One might argue that our naming convention was not very
consistent, but how much consistency should you expect, especially when theory
libraries are developed by different users?

We are not done yet, as the observant reader will have noticed, because this
“theorem” is not true. When we run the new script, we no longer get an error
message, but after all the commands have been executed, the goal node is not
grounded. The user now examines the ungrounded nodes and considers what
imps was unable to prove. The user might examine, for example, the default
current node. A quick look, and perhaps an imps simplification, will make it
quite clear that the problem is that the hypothesis saying that the limit of the
denominator is nonzero is missing. Without this hypothesis, there is no way to
discharge the proof obligation to show that the denominator is nonzero or that
the quotient is defined. Amending the hypothesis, rerunning the script, and doing
a few additional steps will ground the corrected theorem. Naturally, the process
will not always proceed as smoothly, but it would be unrealistic to expect that
it would.

In extreme cases of proof by Emacs, no editing whatever is needed to reuse
a script. In proving that a finite set S with n elements has 2n subsets, a key
ingredient for the induction is that if you remove any element x from S, then
every subset of S is either a subset of S \ {x} or of the form A∪{x}, where A is
such a subset. Figure 5 contains a proof script for the lemma that asserts this.
There is an analogous theorem that states that if a set S has n elements, then for
k ≤ n, S has

(
n
k

)
subsets of cardinality k. The inductive proof of that theorem

depends on an analogue of the above lemma for decomposing the k element
subsets. It turns out that the script displayed in Figure 5 will also ground this
theorem, even though the proof in the strict sense (for instance, represented as
a deduction graph) is entirely different.

Of course, not all imps proofs are, or could be, “done by Emacs” in any
significant way. On the other hand, however, it is often the case in mathematics
that a claim is made that the proof of theorem B is similar to the proof of
theorem A, with the implicit or sometimes explicit suggestion that the details
are left to the reader. Often the reader does not check the details, and more
significantly, neither does the author. Not infrequently, what looks quite similar
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(def-theorem power-decomposition

"forall(s:sets[ind_1], x:ind_1, n:nn, x in s implies

power(s)=

power(s diff singleton{x}) union power(s) inters filter(x))"

(theory generic-theory-1)

(proof

(direct-and-antecedent-inference-strategy

unfold-defined-constants

set-equality-script

direct-and-antecedent-inference-strategy

(contrapose "with(p:prop,not(p));")

simplify-insistently

(contrapose "with(p:prop,not(p));")

simplify

direct-and-antecedent-inference-strategy

set-containment-script

direct-and-antecedent-inference-strategy

(incorporate-antecedent

"with(f,x:sets[ind_1],x subseteq f)")

simplify-insistently )))

Fig. 5. Power set decomposition lemma

on a superficial level is quite different when all the details need to be supplied.
This sometimes leads to errors.

In such cases, “proof by Emacs” can be extremely useful, particularly because
it is cheap and easy. A user can try a number of scripts quickly without taking
much time or effort, and especially, without requiring much hard thinking, which
is especially important at the end of a long day. When a successful proof is found,
one can then reflect upon it at one’s convenience, to absorb the mathematical
content. Although one might waste one’s time in vain attempts, the underlying
soundness of imps insures that if one does ground the theorem, then it has really
been proved, even if the user does not yet understand exactly why it worked.

The relatively high level of imps scripts is needed: it preserves the similarity
on the superficial level, which often breaks down if one must descend to greater
detail. Recall that a single command in a script will often generate many steps in
the underlying proof, and the same command may generate different proof steps
in different contexts. Consequently, by using scripts we can take advantage of
similarity on the more schematic level. imps automatically supplies the necessary
differences in detail.

“Proof by Emacs” may prove a useful technique in cooperative mathematics
research and mathematics education. It may be possible to borrow proofs which
might involve techniques or concepts outside the expertise of the borrower, but
which he could then adapt for his purposes. This often happens informally to-
day, but with far less assurance that the adaptation is legitimate. Similarly,
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instructors can give students worked examples to adapt, allowing the students
to verify their adaptations for themselves. Of course, this sort of thing is also
done now, except that either details are omitted or students do not get timely
reinforcement. This would also allow the assignment of much larger, more real-
istic problems, in place of the much shorter ones that are customary today, and
yet would no doubt save a great deal of wear and tear on the instructor.

“Proof by Emacs” is one among a range of techniques that imps supports to
allow the mathematician to do what he would like to do anyway, but in a more
convenient and reliable way.

5 Proof by Symmetry

Various essentially different kinds of reasoning are lumped together under the
term “proof by symmetry.” In some cases, a proof by symmetry may be for-
malized by constructing a theory interpretation from an axiomatic theory T
into itself; for instance, the right cancellation law in groups follows from the left
cancellation law, using the “symmetry” (interpretation) that maps the group
operation · to λx, y . y ·x. The imps mechanisms supporting this form of reason-
ing are discussed in [4, 3]. In this section, we will instead focus on cases which do
not easily fit that pattern, but in which portions of a proof are symmetrical with
each other. The formula shown in Figure 6 involving the floor function3 supplies
a very simple example: In proving the right hand side from the left hand side, the
two halves of the nested biconditional are symmetrical. In fact, in proving the
left hand side from the right hand side, we also create two symmetrical subgoals,
namely to prove that floor(x) ≤ floor(y) and that floor(y) ≤ floor(x), but these
are handled trivially by the imps simplifier.

∀x, y : R floor(x) = floor(y) ⇐⇒ (∀m : Z m ≤ x ⇐⇒ m ≤ y)

Fig. 6. Floor equality criterion

The user starts the proof by breaking apart the logical connectives, after
which he confronts, as his current subgoal, the task of showing m ≤ y assuming

m ≤ x and floor(x) = floor(y).

To do so, he instantiates the first theorem shown in Figure 7 with the arguments
x and m, and instantiates the second theorem with y. Simplification completes
this case. Since the second case is obviously true for the same reason, he can
request that imps print the text of his proof so far, as shown in Figure 8. The user
3 The symbol “floor” is a constant defined in the imps theory of real arithmetic as that

function which for every real x returns the unique integer n such that n ≤ x < n+1.
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∀x : R, n : Z n ≤ x ⊃ n ≤ floor(x)

∀x : R floor(x) ≤ x

Fig. 7. Lemmas used in the proof

direct-and-antecedent-inference-strategy

(instantiate-theorem floor-not-much-below-arg ("x" "m"))

(instantiate-theorem floor-below-arg ("y"))

simplify

Fig. 8. Transcript of first case

may then edit this text to construct a locally defined script, shown in Figure 9.
Finally, the user types and executes the proof command ($do-case "y" "x"),
which carries out the same inferences with the roles of x and y interchanged. The
full proof, as it is recorded in an imps theory file, is given in Figure 10. This final
presentation has the advantage that the symmetry between the two subgoals is
made explicit for a later reader by the two $do-case forms. Thus, our approach
to proof by symmetry eases the user’s burden in the course of developing the
proof, and makes the structure of the proof easier to read off its final form.

We have used this technique in many examples, where the individual subgoals
may be far more demanding. Another frequent source of symmetrical subgoals—
apart from biconditionals in the goal—is the instances of the anti-symmetry of ≤.
Instances of the trichotomy of < also frequently furnish two symmetrical cases
(the strict inequalities) as well as the nonsymmetrical, and frequently quite easy,
case with the equality.

6 Comparison with Tactics

Tactic-based theorem proving [8] has been a major area of research in auto-
mated reasoning since the development of Edinburgh lcf [6]. In fact, the ml

programming language was invented for writing lcf tactics. Today tactics are
used in several major theorem proving systems, including hol [7], Isabelle [9],
and Nuprl [1].

Tactics are procedures that automate part of the proof process. They come
in many flavors. For example, a refinement tactic is a procedure which generates
a list of subgoals from a given goal in a deduction, and a transformational tactic
is a procedure that constructs a new deduction from an old deduction [1]. The
former notion of a tactic is fairly restrictive, while the latter notion is quite
broad. Although the notion of a tactic varies widely, all tactics are constructed
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(let-script

do-case 2

((instantiate-theorem floor-not-much-below-arg ((% " ~a " $1) "m"))

(instantiate-theorem floor-below-arg ((% " ~a " $2)))

simplify))

Fig. 9. Script for the symmetrical cases

direct-and-antecedent-inference-strategy

(let-script

do-case 2

((instantiate-theorem floor-not-much-below-arg ((% " ~a " $1) "m"))

(instantiate-theorem floor-below-arg ((% " ~a " $2)))

simplify))

($do-case "x" "y")

($do-case "y" "x")

(apply-macete-with-minor-premises <=-anti-symmetry)

(apply-macete-with-minor-premises floor-not-much-below-arg)

(command-on-direct-descendents simplify)

Fig. 10. Final proof script

or applied in a special way so they are guaranteed to be sound with respect to
the proof system being used.

An imps proof script is a kind of tactic which serves the same purposes as
other kinds of tactics:

– To create new proof commands (rules of inference).
– To represent executable proof sketches.
– To store proofs in a compact, replayable form.

A proof script is more general than a refinement tactic since the behavior of a
proof script is dependent on the structure, contents, and current node of the
deduction graph to which it is applied. On the other hand, a proof script is
more restrictive than a transformational tactic since the script programming
language is restricted and since scripts can change the structure of a deduction
graph only by adding new nodes. From our point of view, proof scripts have just
about the right level of generality: they are powerful enough to do useful things,
but controlled enough to be easily manipulated as text. Proof scripts also have
several idiosyncrasies that set them apart from other kinds of tactics:

– The systematic use of simplification.
– The application of theorems via macetes.
– The use of the “current node” idea to linearize the execution of scripts.
– The use of “blocks” to make scripts more robust.

13



A macete is also a kind of tactic, but it has a very limited purpose: to apply
and retrieve theorems (or organized collections of theorems). Macetes play an
extremely important role in the imps proof process. Like proof scripts, macetes
are idiosyncratic:

– Macetes apply a theorem or collection of theorems at any location in (the
assertion of) a goal, even deeply within it.

– As we mentioned in Section 2, macetes use both ordinary expression match-
ing and translation matching so that theorems can be applied both inside
and outside of their home theories.

– Theorem macetes (see Section 2) are automatically created by imps when
theorems are installed.

Even though the means to program macetes is quite restricted in comparison to
tactics and imps proof scripts, in practice it is very easy for the imps user to
build useful macetes.

7 Conclusion

For any proof system, we may distinguish the knowledge explicitly formalized
in it from the body of more procedural knowledge which is not formalized, but
which a person must grasp to use it effectively. Proving interesting theorems,
whether with pencil and paper or with mechanized theorem provers, requires a
great deal of each.

In imps, the explicitly formalized knowledge required is primarily codified in
the theory library, a large and open-ended collection of axiomatic theories and
theorems. Theory interpretations serve as links to interconnect the theories in
the library. The current theory library contains about 50 named theories and over
1100 replayable proofs. The theories include formalizations of the real number
system and objects like sets and sequences; theories of abstract mathematical
structures such as groups and metric spaces; and theories to support specific
applications of imps in computer science. Several of the theorems proved reach
about the level of the fundamental theorem of calculus. The most developed area
of mathematics in the theory library is abstract mathematical analysis.

The more implicit, procedural knowledge is encoded in several ways. Com-
pound macetes provide one way, as many of them amount to rudimentary proce-
dures for (logically sound) symbolic computation. Proof scripts are intended as
another repository of this sort of practical knowledge. User-defined commands
introduced by def-script encapsulate knowledge of how to perform some con-
ceptually unified, higher-level manipulation on a goal. In “proof by Emacs,”
the proof of one theorem serves as a template indicating how to prove related
theorems. One form of proof by symmetry uses the procedural knowledge ac-
cumulated in proving one case to codify what is common between the cases.
More generally, we consider the proof scripts in the theory library as a mine of
ideas and techniques for getting a wide variety of substantial theorems rigorously
proved with imps.
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In this paper we have tried to convey a portion of this procedural knowledge
for the case of imps. We think that the developers and users of various proof sys-
tems can make valuable contributions to our common goals by formulating and
exchanging this kind of information, in addition to the more usual information
about explicit logical techniques.
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