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Abstract

sttwu is a very simple version of simple type theory that admits
undefined terms and statements about definedness. This paper gives a
Hilbert-style proof system for sttwu and proves that it is sound and
complete for the general model semantics for sttwu.

1 Introduction

sttwu is a very simple version of simple type theory that admits undefined
terms and statements about definedness [6]. (sttwu is short for Simple
Type Theory with Undefinedness.) Au is a Hilbert-style proof system for
sttwu defined below. It is a modification of the proof system A for stt

given in [5] which is based on P. Andrews’ proof system [1, 2] for Q0, an
elegant version of Church’s type theory. Au is closely related to the proof
systems for the undefinedness logics PF [3] and PF∗ [4].

We prove that Au is sound and complete with respect to the general
models semantics for sttwu. The completeness proof is very similar to
the completeness proofs for PF and PF∗, which are derived from Andrews’
proof of the Henkin completeness theorem [7] for Q0.

We assume the reader is familiar with the definitions given in [6].
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2 General Models

A general structure for a language L = (C, τ) of sttwu is a pair M = (D, I)
where:

(1) D = {Dα : α ∈ T } is a set of nonempty domains (sets).

(2) D∗ = {t, f}.

(3) For α, β ∈ T , Dα→β is some nonempty set of total functions from Dα

to Dβ if β = ∗ and some nonempty set of partial and total functions
from Dα to Dβ if β 6= ∗.

(4) I maps each c ∈ C to a member of Dτ(c).

M is a general model1 for L if there is a binary function V M that satisfies the
same conditions as the valuation function for a standard model (see [6]). A
general model is thus the same as a standard model except that the function
domains of the model may not be “fully inhabited”. Hence every standard
model for L is also a general model for L.

Let Γ∪ {A} be a set of formulas of L. A is valid in M , written M |= A,
if V M

ϕ (A) = t for all variable assignments ϕ into M . M is a general model

for Γ if M |= B for all B ∈ Γ. A is valid in the general sense if M |= A for
every general model M for L.

3 The Proof System

Au is defined relative to a sttwu language L = (C, τ). It consists of the
following sixteen axiom schemas and two rules of inference:

A1 (Truth Values)

∀ f : (∗ → ∗) . (f(T) ∧ f(F)) ⇔ (∀x : ∗ . f(x)).

A2 (Leibniz’ Law)

∀x, y : α . (x = y) ⇒ (∀ p : (α → ∗) . p(x) ⇔ p(y)).

A3 (Extensionality)

∀ f, g : (α → β) . (f = g) ⇔ (∀x : α . f(x) ' g(x)).

1The notion of a “general model” was introduced by L. Henkin in [7].
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A4 (Beta-Reduction)

Aα ↓ ⇒ (λx : α . Bβ)(Aα) ' Bβ[(x : α) 7→ Aα]

provided Aα is free for (x : α) in Bβ.

A5 (Equality and Quasi-Quality)

Aα ↓ ⇒ (Bα ↓ ⇒ (Aα ' Bα) ' (Aα = Bα)).

A6 (Expressions of Type ∗ are Defined)

A∗ ↓ .

A7 (Variables are Defined)

(x : α)↓ where x ∈ V and α ∈ T .

A8 (Constants are Defined)

c↓ where c ∈ C.

A9 (Function Abstractions are Defined)

(λx : α . Bβ)↓

A10 (Improper Function Application)

(Fα→β ↑ ∨Aα ↑) ⇒ Fα→β(Aα)↑ where β 6= ∗.

A11 (Improper Predicate Application)

(Fα→∗ ↑ ∨ Aα ↑) ⇒ ¬Fα→∗(Aα).

A12 (Improper Equality)

(Aα ↑ ∨ Bα ↑) ⇒ ¬(Aα = Bα).

A13 (Proper Definite Description of Type α 6= ∗)

(∃ !x : α . A∗) ⇒ ((I x : α . A∗)↓ ∧ A∗[(x : α) 7→ (I x : α . A∗)])

where α 6= ∗ and provided (Ix : α . A∗) is free for (x : α) in A∗.
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A14 (Improper Definite Description of Type α 6= ∗)

¬(∃ !x : α . A∗) ⇒ (I x : α . A∗)↑ where α 6= ∗.

A15 (Proper Definite Description of Type ∗)

(∃ !x : ∗ . A∗) ⇒ A∗[(x : ∗) 7→ (I x : ∗ . A∗)]

provided (Ix : ∗ . A∗) is free for (x : ∗) in A∗.

A16 (Improper Definite Description of Type ∗)

¬(∃ !x : ∗ . A∗) ⇒ ¬(I x : ∗ . A∗).

R1 (Modus Ponens) From A∗ and A∗ ⇒ B∗ infer B∗.

R2 (Quasi-Equality Substitution) From Aα ' Bα and C∗ infer
the result of replacing one occurrence of Aα in C∗ by an occurrence
of Bα, provided that the occurrence of Aα in C∗ is not immediately
preceded by λ.

A proof of a formula A in Au is a finite sequence of formulas of L, ending
with A, such that each member in the sequence is an instance of an axiom
schema of Au or is inferred from preceding formulas in the sequence by a
rule of inference of Au. A theorem of Au is a formula for which there is a
proof in Au.

Let Γ be a set of formulas of L. A proof of a formula A from Γ in Au

is a finite sequence π1
_π2 of formulas, ending with A, such that π1 is a

proof in Au and each member D of π2 satisfies at least one of the following
conditions:

(1) D ∈ Γ.

(2) D is a member of π1 (and hence a theorem of Au).

(3) D is inferred from preceding members of π2 by R1.

(4) D is inferred from two preceding members Aα ' Bα and C∗ of π2 by
R2, provided that the occurrence of Aα in C∗ is not in a subexpression
λx : β . Eγ of C∗ where (x : β) is free in a member of Γ and free in
Aα ' Bβ .
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We write Γ ` A to mean there is a proof of A from Γ in Au. (` A is written
instead of ∅ ` A.) Clearly, A is a theorem of Au iff ` A. The next two
theorems follow immediately from the definition above.

Theorem 1 (R1′) If Γ ` A∗ and Γ ` A∗ ⇒ B∗, then Γ ` B∗.

Theorem 2 (R2′) If Γ ` Aα ' Bα and Γ ` C∗, then Γ ` D∗, where D∗ is

the result of replacing one occurrence of Aα in C∗ by an occurrence of Bα,

provided that the occurrence of Aα in C∗ is not immediately preceded by λ

or in a subexpression λx : β . Eγ of C∗ where (x : β) is free in a member of

Γ and free in Aα ' Bα.

4 Basic Metatheorems

Theorem 3 (Beta-Reduction Rule) If Γ ` Aα ↓ and Γ ` C∗, then Γ `
D∗, where D∗ is the result of replacing one occurrence of (λx : α . Bβ)(Aα)
in C∗ by an occurrence of Bβ[(x : α) 7→ Aα], provided Aα is free for (x : α) in

Bβ and the occurrence of (λx : α . Bβ)(Aα) in C∗ is not in a subexpression

λ y : γ . Eδ of C∗ where (y : γ) is free in a member of Γ and free in

(λx : α . Bβ)(Aα).

Proof Follows immediately from A4, R1′, and R2′. 2

Lemma 1 If Γ ` Aα ↓, then Γ ` Aα ' Aα.

Proof We obtain Γ ` (λx : α . x)(Aα) ' Aα by applying R1′ to the
hypothesis and an instance of A4. The conclusion of the lemma then follows
by the Beta-Reduction Rule. 2

Corollary 1 ` T.

Proof By the definition of T, A9, and Lemma 1. 2

Lemma 2 If Γ ` Aα ↓ and Γ ` Bα ↓, then Γ ` Aα ' Bα iff Γ ` Aα = Bα.

Proof
(⇒): Follows immediately from A5, R1′, and R2′.
(⇐): Γ ` (Aα ' Bα) ' (Aα = Bα) by the first two hypotheses, A5,

and R1′. ` (Aα ' Bα) ' (Aα ' Bα) by A6 and Lemma 1. We obtain
Γ ` (Aα = Bα) ' (Aα ' Bα) by applying R2′ to these two statements. The
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conclusion of the lemma then follows by applying R2′ to this statement and
Γ ` Aα = Bα. 2

As a result of A6 and Lemma 2, a quasi-equality A∗ ' B∗ and an equality
A∗ = B∗ are completely interchangeable in Au.

Theorem 4 (Universal Instantiation) If Γ ` ∀x : α . B∗ and Γ ` Aα,

then Γ ` B∗[(x : α) 7→ Aα], provided Aα is free for (x : α) in B∗.

Proof Γ ` λx : α . B∗ = λx : α . T by the first hypothesis, the definition
of ∀, A9, and the Beta-Reduction Rule. Γ ` (λx : α . B∗)(Aα) ' B∗[(x :
α) 7→ Aα] by the second hypothesis, A4, and R1′. We obtain Γ ` (λx :
α . T)(Aα) ' B∗[(x : α) 7→ Aα] from these two statements by Lemma 2
and R2′. Then Γ ` T ' B∗[(x : α) 7→ Aα] by the second hypothesis and
the Beta-Reduction Rule. The conclusion of the theorem is obtained by
applying R2′ to this statement and the conclusion of Corollary 1. 2

Universal Instantiation is needed to instantiate axiom schemas A1–3.

Theorem 5 (Tautology Theorem) If A is a tautological consequence of

B1, . . . , Bn and Γ ` B1, . . . , Γ ` Bn for n ≥ 0, then Γ ` A.

Proof Lemma 2 and Universal Instantiation enable the theorem to be
proved by an argument very similar to the proof of Theorem 5234 in [2]. 2

Proposition 1 ` (Aα = Bα) ⇒ (Aα ' Bα).

Proof Follows from the definition of ' and the Tautology Theorem. 2

Theorem 6 (Deduction Theorem) If Γ ∪ {A} ` B, then Γ ` A ⇒ B.

Proof Similar to the proof of Theorem 5240 in [2]. 2

5 Soundness and Completeness

Let Γ ∪ {A} be a set of formulas of L. Γ is consistent if there is no proof of
F from Γ.

Theorem 7 (Soundness Theorem) If Γ ` A, then M |= A for every

general model M for Γ.
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Proof Each instance of each axiom schema of Au is valid in the gen-
eral sense, and R1 and R2 preserve validity in every general model for L.
The theorem then follows from the Deduction Theorem. See the proof of
Theorem 5402 in [2] for details. 2

Theorem 8 (Consistency Theorem) If Γ has a general model, then Γ
is consistent.

Proof Let M be a general model for Γ. Assume that Γ is inconsistent, i.e.,
that Γ ` F. Then, by the Soundness Theorem, M |= F, and so V M

ϕ (F) = t

(for any variable assignment ϕ), which contradicts the definition of a general
model. 2

Theorem 9 (Henkin’s Theorem for sttwu) If Γ is a consistent set of

sentences of L, then Γ has a general model.

Proof Similar to the proof of Theorem 7.2 in [3]. The proof requires the
axiom schemas A6–16 that concern definedness. 2

Theorem 10 (Henkin’s Completeness Theorem for sttwu) Let Γ be

a set of sentences of L. If M |= A for every general model M for Γ, then

Γ ` A.

Proof Assume M |= A for every general model M for Γ, and let B be
the universal closure of A. Then M |= B for every general model M for Γ.
Suppose Γ ∪ {¬B} is consistent. Then, by Henkin’s Theorem for sttwu,
there is a general model M0 for Γ ∪ {¬B}, and so M0 |= ¬B. Since M0 is
also a general model for Γ, M0 |= B. From this contradiction it follows that
Γ ∪ {¬B} is inconsistent. Hence Γ ` B by the Deduction Theorem and the
Tautology Theorem. Therefore, Γ ` A by Universal Instantiation and A7.
2
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