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Abstract. A transformer is a function that maps expressions to ex-
pressions. Many transformational operators—such as expression eval-
uators and simplifiers, rewrite rules, rules of inference, and decision
procedures—can be represented by transformers. Computations and de-
ductions can be formed by applying sound transformers in sequence. This
paper introduces machinery for defining sound transformers in the con-
text of an axiomatic theory in a formal logic. The paper is intended to
be a first step in a development of an integrated framework for symbolic
computation and formal deduction.

1 Introduction

Mechanized mathematics is the study of how the computer can be used
to support, improve, and automate the mathematical reasoning process.
The field is divided into two quite separated camps: computer algebra
and theorem proving. Computer algebra focuses on nonbranching sym-
bolic computations over concrete structures implemented by fast, but not
necessarily, sound algorithms. Theorem proving focuses on the construc-
tion of sound deductions in abstract theories expressed in formal logics.
Computer algebra systems are usually restricted to just a few areas of
mathematics and are often mathematically unreliable, but they provide
strong support for computation and are relatively easy to use. Theorem
proving systems tend to be wide in scope and mathematically rigorous,
but provide little support for computation and are difficult to use. There
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is no mechanized mathematics system today that offers both the symbolic
computation capabilities of computer algebra systems and the formal de-
duction capabilities of theorem proving systems.

Mechanized mathematics has the potential to revolutionize how math-
ematics is learned and practiced by students, engineers, scientists, and
possibly even mathematicians. This potential can only be achieved by
combining the capabilities of both computer algebra and theorem prov-
ing systems. We are developing an integrated framework for symbolic
computation and formal deduction which is intended to serve as a basis
for the implementation of a new kind of mechanized mathematics system.

The framework allows computation and deduction to be freely mixed
together. As a result, parts of a deduction can be performed by compu-
tations. For example, an assertion that says f ′ is the derivative of f can
be verified by directly computing f ’s derivative instead of inferring the
assertion from axioms and previously proven theorems. As another re-
sult, a computation can be directed by a context of assumptions possibly
causing the computation to branch. For example, a computation of an in-
tegral (antiderivative) of λx . xn has two possible branches depending on
whether n = −1 is true or false. One of the branches may be eliminated
if n = −1 can be proved or disproved from the assumptions placed on n.

One of key ideas in our framework for integrating computation and
deduction is the notion of a “transformer” in an axiomatic theory. The
purpose of this paper is to define what transformers are, explain what it
means for transformers to be sound, and illustrate techniques for creating
sound transformers.

The paper is organized as follows. The underlying logic for the frame-
work is briefly discussed in section 2. Transformers are introduced in
section 3, computations and deductions formed by applying sound trans-
formers in sequence are defined in section 4, and the notion of a “trans-
formational theory” is presented in section 5. Techniques for defining new
sound transformers is the subject of section 6. The papers ends with a
short conclusion.

2 STMM

The underlying logic of the integrated framework is a version of von-
Neumann-Bernays-Gödel (nbg) set theory [9, 10] called stmm [4, 5]. Un-
like traditional set theories (such as Zermelo-Fraenkel (zf) set theory and
nbg), stmm is a well-suited foundation for mechanized mathematics. It
allows terms to be undefined, has a definite description operator, provides
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a sort system for classifying terms by value, and includes lambda-notation
with term constructors for function application and function abstraction.
In short, it includes both the set-theoretic machinery of nbg set theory
and the function-theoretic machinery of lutins [1–3], the logic of the
imps Interactive Mathematical Proof System [6, 7].

For the purposes of this paper, the reader does not need an intimate
understanding of stmm. A language of stmm contains two kinds of ex-
pressions: terms which may be undefined and formulas which denote true
or false and are always defined. An axiomatic theory of stmm is a pair
(L, Γ ) where L is a language of stmm and Γ is a set of formulas of L
called the axioms of T . In the following, “language” and “axiomatic the-
ory” will mean “language of stmm” and “axiomatic theory of stmm”,
respectively.

Terms and formulas are constructed using the usual logical connec-
tives (=,¬,∧,∨,⊃,≡,∀,∃, “application”, λ) plus a few special connectives
(I, if, ↓,'). For terms s and t, s = t means s and t are both defined with
the same value, and s ' t means s = t or s and t are both undefined. For
formulas A and B, A ⊃ B means A implies B, and A ≡ B means A ⊃ B
and B ⊃ A. I is a definite description operator for forming definite de-
scriptions of the form (Ix : α . A), if is an if-then-else term constructor for
forming conditional terms of the form if(A, s, t), and ↓ is a definedness op-
erator for forming definedness assertions of the form s↓. For expressions
E and E′, E α= E′ means E and E′ are alpha-equivalent, i.e., they are
identical up to a renaming of bound variables. α= often serves as syntactic
identity.

Although we have chosen a highly expressive logic with special ma-
chinery for reasoning with undefinedness and functions, the ideas given
in the paper will work in less sophisticated logics.

3 Transformers

The “transformer” is the key notion in our framework. It has two
meanings. Its algorithmic meaning is a function on expressions, and
its axiomatic meaning is a set of expressions. Many transformational
operations—such as expression evaluators and simplifiers, rewrite rules,
rules of inference, and decision procedures—can be represented by trans-
formers.

For the rest of the paper, let us fix an axiomatic theory T = (L, Γ ).
A term transformer of L is a total function on the terms of L, and a
formula transformer of L is a total function on the formulas of L. Let τ
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be a term or formula transformer. τ moves a member E of its domain if
E is not identical to τ(E). In the following, let a “transformer” mean a
“transformer of L”, an “expression” mean a “expression of L”, etc.

A transformer can be “sound” in different ways. A term transformer
τ is computationally sound in T if, for all terms s, T |= s ' τ(s). A
formula transformer τ is computationally sound in T if, for all formulas
A, T |= A ≡ τ(A). A formula transformer τ is deductively sound in T if,
for all formulas A, T |= A ⊃ τ(A). A formula transformer τ is reductively
sound in T if, for all formulas A, T |= τ(A) ⊃ A.

Example 1. Let T = (L, Γ ) be an axiomatic theory which formalizes real
arithmetic in a standard way, and let τ be the term transformer that is
defined by the following rules:

1. If t α= s/s, where s is a term of sort R (the sort of the real numbers),
then

τ(t) := if(s 6= 0, 1,⊥R)

where ⊥R is a canonical undefined term of sort R.
2. Otherwise, τ(t) := t.

τ is computationally sound in T since

T |= ∀x : R . x/x ' if(x 6= 0, 1,⊥R).

It is a sound formalization of an unsound simplification procedure com-
monly used in computer algebra systems.

4 Computations and Deductions

Let E be an expression and τ be a (term or formula) transformer. Each
subexpression occurrence in E can be uniquely represented by a sequence
of positive integers called the path of the occurrence in E. One subex-
pression occurrence in E contains another subexpression occurrence in E
if the path of the former is an initial segment of the path of the latter.
Two subexpression occurrences in E are disjoint if neither one contains
the other.

A target of τ in E is an occurrence of a subexpression in E which is
moved by τ . A target is maximal if its path in E is not an initial segment
of the path of another target of τ in E. A set of maximal targets of τ in
E is obviously pairwise disjoint. Given expressions E1 and E2,

E1
τ−→ E2
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means there is a pairwise disjoint set S of targets of τ in E1 such that E2

is obtained from E1 by simultaneously replacing each target E in S with
τ(E).

E1
max,τ−→ E2

means E2 is obtained from E1 by simultaneously replacing each maximal
target E of τ in E1 with τ(E). Of course,

E1
max,τ−→ E2 implies E1

τ−→ E2.

A computation of L from an expression E0 to an expression En using
a set Π of transformers of L is a sequence

〈E0, τ1, E1, . . . , τn, En〉

such that:

1. n ≥ 1.
2. τi ∈ Π for all i with 1 ≤ i ≤ n.
3. Ei−1

τi−→ Ei for all i with 1 ≤ i ≤ n.

A deduction is a computation 〈E0, τ1, E1, . . . , τn, En〉 where each Ei is a
formula (but each τi can be either a term or formula transformer).

A computation 〈E0, τ1, E1, . . . , τn, En〉 of L is computationally sound
in T if each τi is computationally sound in T .

A deduction 〈A0, τ1, A1, . . . , τn, An〉 is deductively sound in T pro-
vided, for all i with 1 ≤ i ≤ n, if τi is a term transformer, then τi is
computationally sound in T and if τi is a formula transformer, then one
of the following statements is true:

1. τi is computationally sound in T .
2. τi is deductively sound in T and applied only to positive1 subformula

occurrences in Ai−1.
3. τi is reductively sound in T and applied only to negative subformula

occurrences in Ai−1.

A deduction 〈A0, τ1, A1, . . . , τn, An〉 is reductively sound in T provided,
for all i with 1 ≤ i ≤ n, if τi is a term transformer, then τi is compu-
tationally sound in T and if τi is a formula transformer, then one of the
following statements is true:
1 A subformula occurrence of A in a formula B is positive [negative] if the occurrence

is in the scope of an even [odd] number of occurrences of ¬ in B and the occurrence
in not in a definite description or a conditional term.
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1. τi is computationally sound in T .
2. τi is reductively sound in T and applied only to positive subformula

occurrences in Ai−1.
3. τi is deductively sound in T and applied only to negative subformula

occurrences in Ai−1.

Proposition 1. Let T = (L, Γ ) be an axiomatic theory and

C = 〈E0, τ1, E1, . . . , τn, En〉

be a computation of L.

1. If C is a term computation which is computationally sound in T , then
T |= E0 ' En.

2. If C is a formula computation which is computationally sound in T ,
then T |= E0 ≡ En.

3. If C is a deduction which is deductively sound in T , then
T |= E0 ⊃ En.

4. If C is a deduction which is reductively sound in T , then
T |= En ⊃ E0.

A forward proof of a formula A in T is a deduction from true2 to A
which is deductively sound in T . A backward proof of a formula A in T
is a deduction from A to true which is reductively sound in T .

Example 2. There are simple transformers for introducing and eliminat-
ing theorems (and axioms) into and from deductions. Suppose T = (L, Γ )
is an axiomatic theory and A is a theorem of T (i.e., T |= A). Let τ1 be
the “elimination” formula transformer that is defined by the following
rules:

1. If B α= A, then τ1(B) := true.
2. Otherwise, τ1(B) := B.

Let τ2 be the “introduction” formula transformer defined by the rule
τ2(B) := B ∧A. τ1 and τ2 are both computationally sound in T .

5 Transformational Theories

A transformational theory of stmm is a tuple

U = (L, Γ,Πct,Πcf ,Πdf ,Πrf)

where:
2 true is a canonical true formula of L.
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1. L is a language.
2. Γ is a set of formulas of L called the explicit axioms of U .
3. Πct is a set of term transformers of L called the primitive computa-

tional term transformers of U .
4. Πcf is a set of formula transformers of L called the primitive compu-

tational formula transformers of U .
5. Πdf is a set of formula transformers of L called the primitive deductive

formula transformers of U .
6. Πrf is a set of formula transformers of L called the primitive reductive

formula transformers of U .

The axiomatic theory of U , written ax-thy(U), is the axiomatic theory

(L, Γ ∪ Γct ∪ Γcf ∪ Γdf ∪ Γrf)

where:

1. Γct = {s ' τ(s) : τ ∈ Πct and s is a term of L}.
2. Γcf = {A ≡ τ(A) : τ ∈ Πcf and A is a formula of L}.
3. Γdf = {A ⊃ τ(A) : τ ∈ Πdf and A is a formula of L}.
4. Γrf = {τ(A) ⊃ A : τ ∈ Πrf and A is a formula of L}.

A formula A of L is an axiom or theorem of U if A is an axiom or theorem,
respectively, of ax-thy(U). U |= A means ax-thy(U) |= A.

Proposition 2. Let U = (L, Γ,Πct,Πcf ,Πdf ,Πrf) be a transformational
theory and T = ax-thy(U). Then each τ ∈ Πct ∪ Πcf is computationally
sound in T , each τ ∈ Πdf is deductively sound in T , and each τ ∈ Πrf is
reductively sound in T .

6 Defining New Transformers

An axiomatic theory is “developed” by defining new constants and prov-
ing theorems. A transformational theory is developed by defining new
constants, proving theorems, and defining new transformers and proving
their soundness. There are three ways of defining sound transformers.
First, sound transformers can be generated automatically from theorems
in several ways depending on the syntactic form of the theorem. Second,
sound transformers can be constructed from other sound (and in some
cases possibly unsound) transformers using constructors that always pro-
duce sound transformers. Third, a transformer can be manually defined
and then manually proven to be sound.

These ways of defining transformers are illustrated with examples in-
spired by the macete mechanism of imps (see [7, 8].)

7



6.1 Generating Transformers from Theorems

There are several ways that sound transformers can be automatically
generated from theorems. We will give two representative examples.

Example 3 (Implication Transformers). Suppose

T |= ∀x1
α1
, . . . , xnαn . A

′ ⊃ A′′.

Let τ1 be the formula transformer of L defined by the following rules:

1. If B α= A′σ where σ is a substitution with domain {x1
α1
, . . . , xnαn},

then τ1(B) := A′′σ.
2. Otherwise, τ1(B) := B.

Let τ2 be the formula transformer of L defined by the following rules:

1. If B α= A′′σ where σ is a substitution with domain {x1
α1
, . . . , xnαn},

then τ2(B) := A′σ.
2. Otherwise, τ2(B) := B.

τ1 is deductively sound in T , and τ2 is a reductively sound in T . τ1 is a
forward chaining rule of inference, while τ2 is a backward chaining rule of
inference.

Example 4 (Term Conditional Rewrite Transformers). Suppose

T |= ∀x1
α1
, . . . , xnαn . A ⊃ s

′ ' s′′.

Let τ be the term transformer of L defined by the following rules:

1. If t α= s′σ where σ is a substitution with domain {x1
α1
, . . . , xnαn}, then

τ(t) := if(Aσ, s′′σ, t).
2. Otherwise, τ(t) := t.

τ is a forward conditional rewrite rule which is computationally sound in
T . The corresponding backward conditional rewrite rule can be defined
in a similar way.

6.2 Constructing New Transformers

Sound term or formula transformers can be constructed using the follow-
ing transformer constructors:
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1. Lift The term lift of a transformer τ is the term transformer t-lift(τ)
defined by the rule t-lift(τ)(s) := t iff s

max,τ−→ t. The formula lift of a
transformer τ is the formula transformer f-lift(τ) defined in a similar
way to t-lift(τ).

2. Composition The composition of two term or formula transformers
τ1 and τ2 is the transformer τ1 ◦ τ2 defined by the rule (τ1 ◦ τ2)(E) :=
τ1(τ2(E)). For a transformer τ , τn is the transformer τ ◦ · · · ◦ τ (n
times) where n ≥ 1.

3. Fixpoint The fixpoint of a term or formula transformer τ is the trans-
former µτ defined by the rule µτ(E) := E′ where E′ α= τn(E) and
E′

α= τ(E′) for some n ≥ 1. (µτ is the identity (term or formula)
transformer if, for some expression E, τn(E) is not alpha-equivalent
to τn+1(E) for all n ≥ 1.)

4. Conditional Let τ1 and τ2 be term transformers and A be a
formula. The conditional of τ1 and τ2 with respect to A is the
transformer cond(A, τ1, τ2) defined by the rule cond(A, τ1, τ2)(s) :=
if(A, τ1(s), τ2(s)).

5. Sounder Let τ , τ1 and τ2 be term or formula transformers.
The sounder of τ with respect to τ1 and τ2 is the transformer
sound(τ, τ1, τ2) defined by the following rules:
(a) If (τ1 ◦ τ)(E) α= τ2(E), then sound(τ, τ1, τ2)(E) := τ(E).
(b) Otherwise, sound(τ, τ1, τ2)(E) := E.

Proposition 3. Let T = (L, Γ ) be an axiomatic theory, τ , τ1 and τ2 be
term or formula transformers of L, and A be a formula of L.

1. If τ is computationally sound in T , then t-lift(τ) and f-lift(τ) are com-
putationally sound in T .

2. If τ1 and τ2 are computationally, deductively, or reductively sound in
T , then τ1 ◦ τ2, µτ1, and cond(A, τ1, τ2), are computationally, deduc-
tively, or reductively sound in T , respectively.

3. If τ1 and τ2 are computationally sound in T , then sound(τ, τ1, τ2) is
computationally sound in T .

6.3 Manually Defining Transformers

A transformer can be defined by a program (written in some a program-
ming language) that takes an expression as input and returns an expres-
sion as output. It is the responsibility of whoever uses the transformer
either to verify that the transformer is sound or to only use the trans-
former in a sound way. The former may require proving that the program

9



is sound. The latter can be done by employing the sound transformer
constructor given above. We illustrate this with the following example:

Example 5. Let τ be a term transformer defined by a program that com-
putes an integral (antiderivative) of a function, τ1 be a term transformer
that maps a function to its derivative, and τ2 be a transformer that maps
a term to its canonical representation. Assume τ1 and τ2 are known
to be computationally sound, but τ may be unsound for some inputs.
Since integration and derivative are inverses of each other, the sounder
sound(τ, τ2 ◦ τ1, τ2) will apply τ only when it is sound. This illustrates
how a simpler transformer (performing differentiation) is used to check a
more complex transformer (performing integration).

7 Conclusion

We have introduced the notion of a transformer, shown how computa-
tions and deductions can be formed by applying sound transformers in
sequence, demonstrated how transformers can be used to define axiomatic
theories, and presented machinery for generating sound transformers from
theorems and defining new sound transformers from old sound transform-
ers. The paper is intended to be a first step in the development of an
integrated framework for symbolic computation and formal deduction.

In the second step in the development of the framework, we will in-
troduce branching computations. A branch can potentially be introduced
in a computation whenever a conditional term appears in the expression
being transformed. Branching is controlled with the use contexts, which
are sets of formulas that serve as local assumptions [11]. Branching com-
putations are more convenient for both humans and software to work with
than linear, nonbranching computations.

References

1. W. M. Farmer. A partial functions version of Church’s simple theory of types.
Journal of Symbolic Logic, 55:1269–91, 1990.

2. W. M. Farmer. A simple type theory with partial functions and subtypes. Annals
of Pure and Applied Logic, 64:211–240, 1993.

3. W. M. Farmer. Theory interpretation in simple type theory. In J. Heering et al.,
editor, Higher-Order Algebra, Logic, and Term Rewriting, volume 816 of Lecture
Notes in Computer Science, pages 96–123. Springer-Verlag, 1994.

4. W. M. Farmer. A proposal for the development of an interactive mathematics
laboratory for mathematics education. In E. Melis, editor, CADE-17 Workshop
on Deduction Systems for Mathematics Education, pages 20–25, 2000.

10



5. W. M. Farmer and J. D. Guttman. A set theory with support for partial functions.
Studia Logica, 66:59–78, 2000.

6. W. M. Farmer, J. D. Guttman, and F. J. Thayer Fábrega. imps: An updated
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