
Models of Computation on
Abstract Data Types based on

Recursive Schemes

By

Jian Xu, B.Sc.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Science
Department of Computing and Software

McMaster University

c© Copyright by Jian Xu, August 2003

ii

MASTER OF SCIENCE (2003) McMaster University
(Computing and Software) Hamilton, Ontario

TITLE: Models of Computation on Abstract Data Types based on Recursive Schemes

AUTHOR: Jian Xu, B.Sc. (McMaster University, Canada)

SUPERVISOR: Dr. Jeffery I. Zucker

NUMBER OF PAGES: vi, 80

Abstract

This thesis compares two scheme-based models of computation on abstract many-
sorted algebras A: Feferman’s system ACP(A) of “abstract computational proce-
dures” based on a least fixed point operator, and Tucker and Zucker’s system µPR(A)
based on primitive recursion on the naturals together with a least number operator.
We prove a conjecture of Feferman that (assuming A contains sorts for natural num-
bers and arrays of data) the two systems are equivalent. The main step in the proof
is showing the equivalence of both systems to a system Rec(A) of computation by
an imperative programming language with recursive calls. The result provides a con-
firmation for a Generalized Church-Turing Thesis for computation on abstract data
types.

iii

Acknowledgements

I would first like to express my sincere thanks and appreciation to my supervisor,
Dr. J. I. Zucker, for his insight, thoughtful guidance and constant encouragement
throughout my study.

I am grateful to the members of my Examination Committee: Dr. J. Carette,
Dr. W. M. Farmer and Dr. W. Kahl, for their careful review and valuable comments.
Thanks to all tmy other professors for their help in these two years.

Thanks to friends in ITC 206 for the time we shared together. Last but not least,
many thanks to my parents for their support and my wife, Yan Li, for her love and
encouragement.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Basic concepts 4
2.1 Signatures . 4
2.2 Standard signatures and algebras . 8
2.3 N-standard signatures and algebras 8
2.4 Algebras A∗ of signature Σ∗ . 9
2.5 Second-order signatures and algebras 11

3 Models of computation based on recursive schemes 12
3.1 Feferman’s ACP schemes . 12
3.2 µPR schemes . 15

4 Models of computation based on imperative languages 17
4.1 Syntax . 17
4.2 Closed programs . 18
4.3 States . 20
4.4 Semantics of terms . 20
4.5 Algebraic operational semantics . 21
4.6 Operational semantics of statements 23
4.7 Semantics of procedures . 27
4.8 RelRec computability . 29
4.9 Monotonicity of RelRec procedures 31
4.10 Rec2 computability . 34
4.11 While procedures . 40

v

vi CONTENTS

5 From µPR to ACP 41

6 From ACP to Rec 49

7 From Rec to µPR 61
7.1 Gödel numbering of syntax . 61
7.2 Representation of states . 62
7.3 Representation of term evaluation . 63
7.4 Representation of computation step function 64
7.5 Representation of statement evaluation 66
7.6 Representation of procedure evaluation 67
7.7 Computability of semantic representing functions 67
7.8 Rec∗∗∗ computability =⇒ µPR∗ computability 69

8 Conclusion and future work 70
8.1 Simultaneous vs. simple LFP scheme 70
8.2 Necessity of auxiliary array sorts . 71
8.3 Second-order version of equivalence results 71

A Denotational semantics of statements 72
A.1 Complete partially ordered sets and least fixed points 72
A.2 Denotational semantics of statements 74

Chapter 1

Introduction

Schemes for recursive definitions of functions form an important component of com-
putability theory. Their theory is fully developed over the natural numbers N.
A well known recursive definition scheme is Kleene’s schemes [Kle52] for general
recursive functions on N based on the primitive recursion schemes of Dedekind
and Gödel, and the least number operator of Kleene. Another group of schemes
[MSHT80, Mos84, Mos89, Fef77, Fef92a, Fef92b, Fef96] employs the concept of least
fixed points. In such schemes, functions are defined as the least fixed points of second-
order functionals.

Recent research concerns not only the computability of functions on N, but also
that of functions on arbitrary structures, modelled as many-sorted algebras. A many-
sorted algebra A consists of a finite family of non-empty sets As1 , . . . , Asn called the
carriers of the algebra; and a finite family of functions on these sets with types like

F : s1 × · · · × sn → s

We are interested in N-standard partial algebras whose carriers include the set B
of booleans and the set N of naturals, and whose functions include the standard
operations on these carriers.

Recursion schemes are also generalized to work over many-sorted algebras. A gen-
eralization of Kleene’s scheme is Tucker and Zucker’s µPR scheme, which generates
functions by starting from some basic functions and applying to these composition,
simultaneous primitive recursion on N and the least number operator. Feferman’s
abstract computation procedures (ACP) for functionals of type level 2 over abstract
algebras, characterized by using the LFP (least fixed point) scheme, is developed in
[Fef96]. A natural question is the following.

1

2 1. Introduction

ACP∗1(A) Rec∗∗∗(A)

µPR∗(A) While∗∗∗(A)�

-

6

?

Figure 1.1: Implication cycle

What is the relation between the sets of functions defined by these two
schemes?

In order to compare the schemes µPR and ACP , since ACP (unlike µPR) deals
with functionals of type level 2, we first make some definitions.

A function on A is µPR∗(A) computable if it is defined by a µPR scheme over
A∗, which expands A by including new starred (array) sorts s∗ for each sort s of
Σ as well as standard array operations. Similarly, ACP∗1(A) is the set of ACP∗

computable functions (type level ≤ 1) on A.

The above question can now be re-stated more precisely:

For any abstract many-sorted algebra A, is µPR∗(A) = ACP∗1(A)?

S. Feferman raised this question in [Fef96] and conjectured that the answer is “Yes”.

Inspired by the denotational (or “fixed point”) semantics of recursive procedures
in [Sto77, dB80], we prove the following circle of inclusions:

Rec is an imperative language employed to simulate the least fixed points of
second-order functionals by properly chosen recursive procedure calls. Rec∗∗∗ is the
extension of Rec with arrays. Rec∗∗∗(A) is the set of Rec∗∗∗ computable functions on A.
Similarly, While∗∗∗(A) is the set of While∗∗∗ computable functions on A, where While
is another imperative programming language characterized by the ‘while’ construct.
(Precise definitions are given in Chapter 4.)

The equivalence between While∗∗∗(A) and µPR∗(A) was proved in [TZ88]. We
need to prove the following relations.

µPR∗(A) ⊆ ACP∗1(A) (1.1)

ACP∗1(A) ⊆ Rec∗∗∗(A) (1.2)

Rec∗∗∗(A) ⊆ While∗∗∗(A) (1.3)

1. Introduction 3

Of the above three inclusions, (1.1) is quite straightforward, and (1.3) can be
derived from the semantic investigation of While programs in [TZ00]. The really
interesting new result is (1.2), which forms the core of the thesis (Chapter 6).

In the proof of (1.2), even if we are considering functions of type level ≤ 1, we
nevertheless have to deal with functionals of type level 2, since functions are defined
as the least fixed points of functionals of type level 2. To simulate functionals of type
level 2, we therefore develop a second-order version of Rec, namely Rec2, and prove
that

ACP(A) ⊆ Rec2(A)

for functionals of type level ≤ 2. Then (1.2) follows as a corollary.
We should point out that we have modified Feferman’s schemes by replacing his

simple LFP scheme by a simultaneous LFP scheme. However this seems a very
reasonable modification of Feferman’s system.

Our proof gives further confirmation to the Generalized Church-Turing Thesis
[TZ88, TZ00], which states that the class of functions computable by finite determin-
istic algorithms on A are precisely µPR∗(A) (or equivalently While∗∗∗(A)).

The thesis is organized as follows. In Chapter 2, we introduce the basic concepts
of abstract many-sorted algebras that we will need. In particular, we will define
the first-order many-sorted algebras with booleans and natural numbers, possibly ex-
tended by auxiliary array structures. We will also investigate second-order version
of these algebras. In Chapter 3, we define the two computational models based on
recursive schemes discussed above, namely ACP and µPR. In Chapter 4, we define
two computational models based on imperative languages, Rec and While . The
semantics of Rec is fully discussed, while the While language is presented briefly
(details being given in [TZ88, TZ00]). Chapters 5, 6 and 7 prove (1.1), (1.2) and (1.3)
respectively. Chapter 6, we believe, is the core of this thesis, which proves that any
function computable by an ACP scheme is computable by some Rec procedures.
Chapter 8 concludes this thesis with a short summary and future work. In the Ap-
pendix, we develop the denotational semantics of statements of the Rec language
and prove their equivalence with the operational semantics. This is not essential to
our main results, but we believe it is interesting in its own right.

Chapter 2

Basic concepts

In this chapter, we will introduce some basic concepts concerning signatures and
algebras, which will be used in the following chapters. In particular, we have two
groups of concepts extracted from [TZ88, TZ00] and [Fef96] respectively. We will use
the definitions in [TZ88, TZ00] as the framework, and introduce the differences and
connections between that and [Fef96] in the last section 2.5. We present this chapter
to make the thesis self-contained, and to simplify the presentation. Interested readers
can refer to [TZ88, TZ00, Fef96] for detailed discussions.

2.1 Signatures

Definition 2.1.1 (Many-sorted signatures). A many-sorted signature Σ is a pair
〈Sort(Σ),Func (Σ)〉 where

(a) Sort(Σ) is a finite set of sorts.

(b) Func (Σ) is a finite set of (primitive or basic) function symbols F with

F : s1 × · · · × sm → s (m ≥ 0)

Each symbol F has a type s1 × · · · × sm → s, where m ≥ 0 is the arity of F, and
s1, . . . , sm ∈ Sort(Σ) are the domain sorts and s ∈ Sort(Σ) is the range sort
of F. The case m = 0 corresponds to constant symbols, we then write F : → s.

Definition 2.1.2 (Product types over Σ). A product type over Σ, or Σ-product type,
is a symbol of the form s1 × · · · × sm (m ≥ 0), where s1, . . . , sm are sorts of Σ,
called its component sorts. We use u, v, w, . . . for Σ-product types.

4

2. Basic concepts 5

For a Σ-product type u and Σ-sort s, let Func (Σ)u → s denote the set of all
Σ-function symbols of type u→ s.

Definition 2.1.3 (Function types). Let A be a Σ-algebra. A function type over Σ,
or Σ-function type, is a symbol of the form u→ s, with domain type u and range
type s, where u is a Σ-product type. We use τ 1, τ 2, . . . for Σ-function types.

Definition 2.1.4 (Σ-algebras). A Σ-algebra A has, for each sort s of Σ, a non-
empty set As, called the carrier of sort s, and for each Σ-function symbol F :
s1 × · · · × sm → s, a (partial) function FA : As1 × · · · × Asm → As. (If m = 0, this
is an element of As.)

For a Σ-product type u = s1 × · · · × sm, we define

Au =df As1 × · · · × Asm .

Thus x ∈ Au iff x = (x1, . . . , xm), where xi ∈ Asi
for i = 1, . . . ,m. So each

Σ-function symbol F : u→ s has an interpretation FA : Au → As. If u is empty,
i.e., F is a constant symbol, then FA is an element of As.

The algebra A is total if FA is total for each Σ-function symbol F. Without such
a totality assumption, A is called partial. In this thesis we deal mainly with partial
algebras.

Notation 2.1.5. We will write Σ(A) to denote the signature of an algebra A.

Notation 2.1.6. (a) We will use the following notation for signatures Σ:

signature Σ

sorts

...

s, (s ∈ Sort(Σ))

...

functions

...

F : s1 × · · · × sm → s, (F ∈ Func (Σ))

...

6 2. Basic concepts

(b) We will use the following notation for Σ-algebras A:

algebra A

carriers

...

As, (s ∈ Sort(Σ))

...

functions

...

FA : As1 × · · · × Asm → As, (F ∈ Func (Σ))

...

Example 2.1.7 (Booleans). The signature of booleans is important. It can be defined
as

signature Σ(B)

sorts bool

functions true, false : → bool,

and, or : bool2 → bool,

not : bool → bool

The algebra B of booleans contains the carrier B = {tt, ff} of sort bool, and, as
constants and functions, the standard interpretations of the function and constant
symbols of Σ(B).

Example 2.1.8 (Naturals). The signature of naturals can be defined as
The corresponding algebra of naturals N0 consists of the carrier N for sort nat and

functions 0N0 : → N and sucN0 : N → N.

Definition 2.1.9 (Reducts and expansions). Let Σ and Σ ′ be signatures.

(a) We write Σ ⊆ Σ ′ to mean Sort(Σ) ⊆ Sort(Σ ′) and Func (Σ) ⊆ Func(Σ ′).

2. Basic concepts 7

signature Σ(N0)

sorts nat

functions 0 : → nat,

suc : nat → nat

(b) Suppose Σ ⊆ Σ ′. Let A and A′ be algebras with signatures Σ and Σ ′ respectively.

• The Σ-reduct A′|Σ of A′ is the algebra of signature Σ, consisting of the
carriers of A′ named by the sorts of Σ and equipped with the functions of
A′ named by the function symbols of Σ.

• A′ is a Σ ′-expansion of A if and only if A is the Σ-reduct of A′.

Definition 2.1.10 (Σ-variables). Let Var = Var(Σ) be the class of Σ-variables x,
y, . . ., and Var s be the class of variables of sort s. For u = s1 × · · · × sm, we write
x : u to mean that x is a u-tuple of distinct variables.

Definition 2.1.11 (Σ-terms). Let Term = Term(Σ) be the class of Σ-terms t, . . .,
and Terms be the class of terms of sort s, defined by

ts ::= xs | F(ts1
1 , . . . , t

sm
m)

where F ∈ Func (Σ)u → s and u = s1 × · · · × sm. We write t : s to indicate that
t ∈ Terms. Further, we write t : u to indicate that t is a u-tuple of terms, i.e., a
tuple of terms of sorts s1, . . . , sm. (Note that in standard signature Σ the definition
of Term(Σ) is extended to include a conditional constructor, cf. Definition 2.2.3)

Definition 2.1.12 (Closed terms over Σ). We define the class T (Σ) of closed terms
over Σ, and for each Σ-sort s, the class T (Σ)s of closed terms of sort s. These
are generated inductively by the rule: if F ∈ Func (Σ)u → s and ti ∈ T (Σ)si

for
i = 1, . . . ,m where u = s1 × · · · × sm, then F(t1, . . . , tm) ∈ T (Σ)s.

Note that the implicit base case of this inductive definition is the case where
m = 0, which yields: for all constants c : → s, c() ∈ T (Σ)s. In this case we write c
instead of c(). Hence if Σ contains no constants, T (Σ) is empty.

Assumption 2.1.13 (Instantiation). In this thesis, we will assume:

T (Σ)s is non-empty for each s ∈ Sort(Σ).

8 2. Basic concepts

Definition 2.1.14 (Valuation of closed terms). For a Σ-algebra A and t ∈ T (Σ)s,
we define the valuation tA ∈ As of t in A by structural inductions on t:

F(t1, . . . , tm)A = FA((t1)A, . . . , (tm)A)

In particular, for m = 0, i.e., for a constant c : → s, cA = cA.

Definition 2.1.15 (Default terms; Default values). (a) For each sort s, we pick a
closed term of sort s. (There is at least one, by the instantiation assumption.)
We call this the default term of sort s, written δs. Further, for each product
type u = s1 × · · · × sm of Σ, the default (term) tuple of type u, written δu, is
the tuple of default terms (δs1 , . . . , δsm).

(b) Given aΣ-algebra A, for any sort s, the default value of sort s in A is the valuation
δs

A ∈ As of the default term δs; and for any product type u = s1 × · · · × sm,
the default (value) tuple of type u in A is the tuple of default values δu

A =
(δs1

A , . . . , δ
sm
A) ∈ Au.

2.2 Standard signatures and algebras

Definition 2.2.1 (Standard signatures). A signature Σ is standard if Σ(B) ⊆ Σ.

Definition 2.2.2 (Standard algebras). Given a standard signature Σ, a Σ-algebra
A is a standard algebra if it is an expansion of B, as defined in Example 2.1.7.

Definition 2.2.3 (Σ-terms for standard signatures). We extend Term(Σ) to include
a conditional constructor

ts ::= . . . |if b then ts1 else ts2 fi

where b is a (boolean) term of sort bool.

Any many-sorted signature Σ can be standardized to a signature ΣB by adjoining
the sort bool together with the standard boolean operations; and, correspondingly,
any algebra A can be standardized to an algebra AB by adjoining the algebra B.

2.3 N-standard signatures and algebras

Definition 2.3.1 (N-standard signature). A standard signature Σ is called N-
standard if it includes (as well as bool) the numerical sort nat, and also function

2. Basic concepts 9

symbols for the standard operations of zero, successor, equality and order on the nat-
urals:

0 : → nat

S : nat → nat

eqnat : nat2 → bool

lessnat : nat2 → bool.

Definition 2.3.2 (N-standard algebra). The corresponding Σ-algebra A is N-
standard if the carrier Anat is the set of natural numbers N= {0,1,2,. . . }, and the
standard operations (listed above) have their standard interpretations on N.

Definition 2.3.3 (N-standardization of Σ). The N-standardization ΣN of a standard
signature Σ is formed by adjoining the sort nat and the operations 0, S, eqnat, and
lessnat.

Definition 2.3.4 (N-standardization of A). The N-standardization AN of a standard
Σ-algebra A is the ΣN -algebra formed by adjoining the carrier N together with certain
standard operations to A, thus:

algebra AN

import A

carriers N

functions 0: →N,

S: N→N,

eqnat, lessnat: N2 → B

Assumption 2.3.5 (N-Standardness). In this thesis, we will assume, unless stated
otherwise:

All signatures Σ and Σ-algebras A are N-standard.

2.4 Algebras A∗ of signature Σ∗

Definition 2.4.1 (Signature Σ∗ and algebras A∗). Given a signature Σ, and Σ-
algebra A, we extend Σ and expand A in two stages:

10 2. Basic concepts

(a) N-standardize these to form ΣN and AN .

(b) Extend ΣN by including, for each sort s of Σ, a new starred sort s∗, and also the
function symbols described below. Define, for each sort s of Σ, the carrier A∗s
of sort s∗, to be the set of finite sequences (or arrays) a∗ over As.

(i) Lgths : s∗ → nat, where LgthA
s (a∗) gives the length of the array a∗ ∈ A∗s;

(ii) Nulls : → s∗, where NullAs is the array in A∗s of zero length;

(iii) Aps : s∗ × nat → s, where

ApA
s (a∗, k) =

 a∗[k] if k < LgthA
s (a∗),

δs
A otherwise;

(iv) Updates : s∗× nat× s→ s∗, where UpdateA
s (a∗, n, x) is the array b∗ ∈ A∗s

such that LgthA
s (b∗) = LgthA

s (a∗) and for all k < LgthA
s (a∗),

b∗[k] =

 a∗[k] if k 6= n,

x if k = n;

(v) Newlengths : s∗ × nat → s∗, where NewlengthA
s (a∗,m) is the array b∗ of

length m, such that for all k < m,

b∗[k] =

 a∗[k] if k < LgthA
s (a∗),

δs
A otherwise;

Definition 2.4.2. (a) A sort of Σ∗ is called simple or starred according as it has the
form s or s∗(respectively), for some s ∈ Sort(Σ).

(b) A variable is called simple or starred according as its sort is simple or starred.

Remarks 2.4.3. (a) The reason for introducing starred sorts is the lack of effective
coding of finite sequences within abstract algebras in general.

(b) Starred sorts have significance in programming languages, since starred variables
can be used to model arrays, and (hence) finite but unbounded memory. They
give us the power of dynamic memory allocation.

(c) For signatures Σ and algebras A where we focus on the array signatures and
algebras Σ∗ and A∗ (e.g. with the computation models µPR∗(A), ACP∗(A)
discussed later) only standardness (not N-standardness) need really be assumed,
since in any caseΣ∗ and A∗ will be N-standard, as required by Assumption 2.3.5.

2. Basic concepts 11

2.5 Second-order signatures and algebras

The algebras in [TZ88, TZ00] are first order algebras, since all functional symbols are
interpreted as first-order functions within the algebras. In general, however, Fefer-
man’s ACP deals with second-order many-sorted algebras in [Fef96]. This section
provides the background for Feferman’s ACP schemes in the next chapter. The N-
Standardness Assumption (Assumption 2.3.5) holds here as elsewhere throughout the
thesis.

Definition 2.5.1 (Second-order signatures). A second-order signature Σ is a pair
〈Sort(Σ),Func (Σ)〉 where

(a) Sort(Σ) is a finite set of sorts, where bool ∈ Sort(Σ), i.e., Σ is standard.

(b) Func (Σ) is a finite set of (primitive or basic) functional symbols F with

F : τ 1 × · · · × τm × s1 × · · · × sn → s.

Each symbol F has a type τ 1 × · · · × τm × s1 × · · · × sn → s, where m ≥ 0
and n ≥ 0, s1, . . . , sm, s ∈ Sort(Σ), and τ 1, . . . , τm are Σ-function types (see
Definition 2.1.3). When m = 0, a symbol F is first-order, i.e. a function symbol.

Definition 2.5.2 (second-order algebras). A second-order Σ-algebra A has:

(a) for each sort s of Σ, a non-empty set As, called the carrier of sort s. In particular,
we have B as the carrier of sort bool. Then, for each τ = u → s, we take
Aτ = {ϕ | ϕ : Au → As}.

(b) for each functional symbol F : τ 1 × · · · × τm × s1 × · · · × sn → s, a (partial)
functional FA : Aτ1 × · · · ×Aτm ×As1 × · · · ×Asn → As. (Again, if m = n = 0,
this is an element of As.)

Notation 2.5.3. We will write π, . . . for function product types τ 1 × · · · × τm (m ≥
0).

Notation 2.5.4. If π = τ 1 × · · · × τm, we write Aπ = Aτ1 × · · · × Aτm .

Remarks 2.5.5. (a) Given a second-order signature Σ, a Σ-function symbol

F : τ 1 × · · · × τm × s1 × · · · × sn → s is of type level 2, 1, or 0, according as
m > 0, m = 0 and n > 0, or m = n = 0.

(b) Σ is said to be first-order if each F ∈ Func (Σ) is of type level ≤ 1, in that it is
equivalent to the standard (first-order) signature defined in §2.2.

(c) Corresponding to each F ∈ Func (Σ), FA is of type level 2, 1 or 0; and corre-
sponding to Σ, a Σ-algebra A is of second or first order.

Chapter 3

Models of computation based on

recursive schemes

In this chapter, we will introduce two models of computation based on recursive
schemes, ACP and µPR. The contents are taken from [Fef96] and [TZ88] respec-
tively with necessary modification.

3.1 Feferman’s ACP schemes

In general, abstract computational procedures (ACP) deal with many-sorted algebras
A with objects of type level ≤ 2 (see Remark 2.5.5). With each signature Σ are
associated the following formal schemes for computation procedures on Σ-algebras.

I. (Initial functionals) F(ϕ, x) ' Fk(ϕ, x) (for each Fk ∈ Func (Σ));

II. (Identity) F(x) = x;

III. (Application) F(ϕ, x) ' ϕ(x);

12

3. Models of computation based on recursive schemes 13

IV. (Conditional) F(ϕ, x, b) '
[if b then G(ϕ, x) else H(ϕ, x)];

V. (Structural) F(ϕ, x) ' G(ϕf , xg);

VI. (Individual substitution) F(ϕ, x) ' G(ϕ, x,H(ϕ, x)));

VII. (Function substitution) F(ϕ, x) ' G(ϕ, λy · H(ϕ, x, y), x);

VIII. (Least fixed point) F1(ϕ, x, y1) ' %ϕ,x
1 (y1)

. . . ,

Fn(ϕ, x, yn) ' %ϕ,x
n (yn)

where

(%ϕ,x
1 , . . . , %ϕ,x

n) ≡
LFP((λ%1 · . . . · λ%n · λz1 ·

G1(ϕ, %1, . . . , %n, x, z1)),

. . . ,

(λ%1 · . . . · λ%n · λzn ·
Gn(ϕ, %1, . . . , %n, x, zn))).

The partial equality “'” above means that either both sides of the equation converge
and are equal, or both sides diverge. In scheme V, f : {1, . . . ,m′} → {1, . . . ,m},
g : {1, . . . , n′} → {1, . . . , n} and the scheme itself abbreviates

F(ϕ1, . . . , ϕm, x1, . . . , xn) ' G(ϕf (1), . . . , ϕf (m′), xg(1), . . . , xg(n′)).

As shown in [Fef96], the schemes are invariant under isomorphism.

Definition 3.1.1. (a) ACP(Σ) is the collection of all F generated by the schemes
for signature Σ.

(b) For any particular A of signature Σ, we take ACP(A) to be the collection of
all FA for F∈ ACP(Σ), and say that a functional F is ACP computable over
A if F = FA for some such F.

(c) ACP1(A) is the collection of all functions of type level ≤ 1 in ACP(A).

Definition 3.1.2. (a) ACP∗(Σ) is the collection of all F in ACP(Σ∗), with the
restriction that the domain and range types of F are simple (see Definition
2.4.2).

14 3. Models of computation based on recursive schemes

(b) For any particular A of signature Σ, we take ACP∗(A) to be the collection of
all FA for F ∈ ACP∗(Σ).

(c) ACP∗1(A) is the collection of all functions of type level ≤ 1 in ACP∗(A).

Notation 3.1.3. In the above context, we use, for 1 ≤ i ≤ n,

(a) Ĝ
ϕ,x

i as abbreviations of λ%1 · . . . · λ%n · λzi ·Gi(ϕ, %1, . . . , %n, x, zi);

(b) Ĝ
x

i as abbreviations of λ%1 · . . . · λ%n · λzi ·Gi(%1, . . . , %n, x, zi).

Notation 3.1.4. We define, for 1 ≤ i ≤ n,

(a) Ĝ
ϕ,x

i is the interpretation of Ĝ
ϕ,x

i in A defined by

λ%1 · . . . · λ%n · λzi ·GA
i (ϕ, %1, . . . , %n, x, zi);

(b) Ĝ
x

i is the interpretation of Ĝ
x

i in A defined by

λ%1 · . . . · λ%n · λzi ·GA
i (%1, . . . , %n, x, zi).

Remark 3.1.5 (Simultaneous LFP). In the least fixed points scheme VIII, we diverge
from [Fef96] by using simultaneous least fixed points, in the sense that

%0
1 ≡ ⊥

. . .

%0
n ≡ ⊥
%1

1 ≡ Ĝ
ϕ,x

1 (%0
1, . . . , %

0
n)

. . .

%1
n ≡ Ĝ

ϕ,x

n (%0
1, . . . , %

0
n)

%k+1
1 ≡ Ĝ

ϕ,x

1 (%k
1, . . . , %

k
n)

. . .

%k+1
n ≡ Ĝ

ϕ,x

n (%k
1, . . . , %

k
n)

and %ϕ,x
i =

∞
∪

k=0
%k

i for i = 1, . . . , n.

This seems necessary to prove the equivalence of ACP1(A) with µPR(A) which
uses simultaneous primitive recursion [TZ88, TZ00].

Note that if our type structure incorporated product types, then the simultaneous
LFP scheme could be replaced (or coded) by a simple LFP scheme in an obvious way.

3. Models of computation based on recursive schemes 15

Remarks 3.1.6. (a) The types of the schemes and their arguments are not specified
but should be evident.

(b) Since we consider only first-order algebras, i.e. all primitive functions Fk are
objects of type level ≤ 1, by [Fef96, Theorem 4] all FA are continuous, hence,
monotonic (see Definition A.1.5 and A.1.7). This justifies the use of scheme
VIII, i.e. the existence of the least fixed points.

Notation 3.1.7. We write ACP0 for ACP minus scheme VII.

Remark 3.1.8. By [Fef96, Theorem 3], ACP0(A) is closed under scheme VII for
first-order algebras A, i.e. if A is first-order, then

ACP0(A) = ACP(A).

Therefore, in the rest of thesis, we will not distinguish ACP and ACP0.

3.2 µPR schemes

We give the definitions of µPR computability in this section. Most of the contents are
taken from [TZ88] with some necessary modifications. We avoid excessive formality.
Interested readers can refer to [TZ88] for more details.

For each Σ, we have the following induction schemes which specify a common
structure for functions over all N-standard algebras A of signature Σ.

I. (Primitive functions) f(x) ' Fk(x) (for each Fk ∈ Func (Σ));

II. (Projection) f(x) = xi;

III. (Definition by cases) f(x) '


g1(x) if h(x) = tt

g2(x) if h(x) = ff

↑ if h(x) ↑;
IV. (Composition) f(x) ' h(g1(x), . . . , gm(x));

V. (Simultaneous primitive recursion)

f1(x, 0) ' g1(x)

. . . ,

fn(x, 0) ' gn(x)

16 3. Models of computation based on recursive schemes

f1(x, z + 1) ' h1(x, z, f1(x, z), . . . , fn(x, z))

. . . ,

fn(x, z + 1) ' hn(x, z, f1(x, z), . . . , fn(x, z));

VI. (Least number operator) f(x) ' µz[g(x, z) = tt].

Similar to ACP , the schemes are invariant under isomorphism.

Remarks 3.2.1. (a) The types of the schemes and their arguments are not specified
but should be evident.

(b) The semantics of the schemes should be clear from their formal presentation.
(Formal semantics can be found in [TZ88].) We should however point out that
the least number or µ operator in scheme VI is the constructive µ-operator,
with the operational semantics: “Test g(z, 0), g(z, 1), g(z, 2), . . . in turn until
you find k such that g(z, k) is true; then halt with output k.” This is a partial
operator; e.g. if g(z, 0)↓ff, g(z, 1)↑ and g(z, 2)↓tt, then f(z)↑ (i.e., it does not
converge to 2).

(c) µPR(A) is the set of all partial functions obtained from the basic functions
defined in I-III by means of operations defined in IV-VI.

(d) We can see, from schemes V and VI, the reason that we need to assume that nat-
ural numbers N is built into our algebras A, i.e. the N-standardness assumption.

Definition 3.2.2. (a) µPR(Σ) is the collection of all f generated by the schemes
for signature Σ.

(b) For any particular A of signature Σ, we take µPR(A) to be the collection of all
fA for f ∈ µPR(Σ), and say that a function f is µPR computable over A if
f = fA for some such f.

Definition 3.2.3. (a) µPR∗(Σ) is the collection of f in µPR(Σ∗), with the restric-
tion that the domain and range types of f are simple.

(b) For any particular A of signature Σ, we take µPR∗(A) to be the collection of all
fA for f ∈ µPR∗(Σ).

Remark 3.2.4 (PR schemes). We denote by PR(Σ) the collection of all f generated
by the schemes I-V for signature Σ. Then, we can define PR(A), PR∗(A), and
PR(A∗) in same way as for µPR(A), µPR∗(A), and µPR(A∗). We will say that f
is primitive recursive on A to mean that f ∈ PR(A).

Chapter 4

Models of computation based on

imperative languages

In this chapter, we will study two imperative programming models of computation
based on imperative programming languages, Rec and While . Rec is of particular
interest, since we will use it to bridge ACP and µPR. While is presented briefly
in the last section (4.11) to make this thesis self-contained.

First, we define an imperative programming language Rec = Rec(Σ) on standard
Σ-algebras. Then, we will define the abstract syntax and semantics of this language.

4.1 Syntax

We define five syntactic classes: variables, procedure name, terms, statements, and
procedures.

(a) Var = Var(Σ) is the class of Σ-variables x, y, . . . (see Definition 2.1.10).

(b) ProcName = ProcName(Σ) is the class of procedure names P1, P2, We
write ProcNameu → v for all procedure names of type u→ v.

(c) Term = Term(Σ) is the class of Σ-terms t, . . . (see Definition 2.2.3).

(d) Stmt = Stmt(Σ) is the class of statements S, . . ., defined by:
S ::= skip | xu := tu | S1;S2 | if b then S1 else S2 fi | xv := P (tu)

17

18 4. Models of computation based on imperative languages

where xu := tu is a concurrent assignment and xv := P (tu) is a procedure call,
with P ∈ ProcNameu → v for some product types u, v.

We will write Stmt∗ for Stmt(Σ∗).

(e) Proc = Proc(Σ) is the class of procedures R, . . ., defined by

R ::= 〈Dp : Dv : S〉,

where Dp is a procedure declaration, Dv is a variable declaration, and S is the
body.

Dp is defined by

Dp ::= P1 ⇐= R1, . . . , Pm ⇐= Rm, (m ≥ 0)

where Ri ::= 〈Dp
i : Dv

i : Si〉, for i = 1, . . . ,m; Dp
i and Dv

i are defined like Dp

and Dv.

Dv is defined by

Dv ::= in a out b aux c,

where a, b, and c are lists of input variables, output variables, and auxiliary
variables respectively, subject to the conditions:

• a, b, and c are pairwise disjoint;

• every variable occurring in S must be declared in Dv;

• the input variables must not occur on the left hand side of assignments in
S.

4.2 Closed programs

Notation 4.2.1. For a procedure declaration Dp, we use following notation to indi-
cate its depth in the main procedure:

(a) If Dp is the main procedure declaration, we write Dp0 for Dp.

(b) Let Dp ≡ 〈Pi ⇐= Ri〉mi=1 and Ri ≡ 〈Dp
i : Dv

i : Si〉 for i = 1, . . . ,m. If Dp ≡ Dpk ,
we write D

pk+1

i for Dp
i , for i = 1, . . . ,m.

So k is the depth of the procedure declaration. When k = 0, Dpk is the main procedure
declaration; when k > 0, Dpk is an intermediate procedure declaration.

4. Models of computation based on imperative languages 19

Definition 4.2.2. ProcSet(Dpk) is the set of procedure variables defined as follows:

(a) for Dp0 ≡ 〈Pi ⇐= Ri〉mi=1,

ProcSet(Dp0) ≡ {P1, . . . , Pm}

(b) for Dpk ≡ 〈Pi ⇐= Ri〉mi=1, where Ri ≡ 〈Dpk+1

i : Dv
i : Si〉, and D

pk+1

i ≡
〈Pij ⇐= Rij〉nj=1,

ProcSet(D
pk+1

i) ≡ ProcSet(Dpk) ∪ {Pi1, . . . , Pin}

Note that the definition is by recursion on the depth k of the declaration, i.e.
“top-down”. ProcSet(Dpk) consists of all procedure variables currently declared in
Dpk , as well as those declared in the “prior” declarations Dp0 , . . . , Dpk−1 . Thus the
definition depends implicitly on a main declaration Dp0 as a global context.

Notation 4.2.3. Let ProcVar(S) be the set of procedure names occurring in the
statement S (as procedure calls).

Definition 4.2.4 (Closed declaration). A procedure declaration Dp ≡
〈Pi ⇐= Ri〉mi=1, where Ri ≡ 〈Dp

i : Dv
i : Si〉, is closed if

(a) Dp
i is closed for i = 1, . . . ,m,

(b) for i = 1, . . . ,m, ProcVar(Si) ⊆ ProcSet(Dp
i)

Again, this is a recursive definition, but unlike Definition 4.2.2, it is “bottom-up”,
i.e. structural recursion on Dp, and the base case occurs whenever m = 0.

Definition 4.2.5 (Closed procedure). A procedure R ≡ 〈Dp : Dv : S〉 is closed if

(a) Dp is closed and

(b) ProcVar(S) ⊆ ProcSet(Dp)

Assumption 4.2.6 (Closure). In this thesis, we will assume:

All procedure declarations and procedures are closed.

20 4. Models of computation based on imperative languages

4.3 States

Definition 4.3.1 (State). For each standard Σ-algebra A, a state on A is a family
〈σs | s ∈ Sort(Σ)〉 of functions

σs : Var s → As.

Let State(A) be the set of states on A, with elements σ,

Notation 4.3.2. For x ∈ Var s, we often write σ(x) for σs(x). Also, for a tuple
x ≡ (x1, . . . , xm), we write σ[x] for (σ(x1), . . . , σ(xm)).

Definition 4.3.3 (Variant of a state). Let σ be a state over A, x ≡ (x1, . . . , xn) : u
and a = (a1, . . . , an) ∈ Au (for n ≥ 1). We define σ{x/a} to be the state over A
formed from σ by replacing its value at xi by ai for i = 1, . . . , n. That is, for all
variables y:

σ{x/a}(y) =

 σ(y) if y 6≡ xi for i = 1, . . . , n

ai if y ≡ xi.

4.4 Semantics of terms

For t ∈ Terms, we define the partial function

[[t]]A : State(A)
�−→ As

where [[t]]Aσ is the value of t in A at state σ.
The definition is by structural induction on t:

[[x]]Aσ = σ(x)

[[F(t1, . . . , tm)]]Aσ '

 FA([[t1]]
Aσ, . . . , [[tm]]Aσ) if [[ti]]

Aσ↓ (1 ≤ i ≤ m)

↑ otherwise

[[if b then ts1 else ts2 fi]]Aσ '


[[ts1]]

Aσ if [[b]]A↓tt

[[ts2]]
Aσ if [[b]]A↓ff

↑ if [[b]]A↑.

For a tuple of terms t = (t1, . . . , tm), we use the notation

[[t]]Aσ =df ([[t1]]
Aσ, . . . , [[tm]]Aσ).

4. Models of computation based on imperative languages 21

Definition 4.4.1. For any M ⊆ Var , and states σ1 and σ2, σ1≈
M
σ2 means

σ1 � M = σ2 � M , i.e., for all x ∈M , σ1(x) = σ2(x).

Lemma 4.4.2 (Functionality lemma for terms). For any term t and states σ1 and
σ2, if σ1≈

M
σ2 (M = var(t)), then [[t]]Aσ1 ' [[t]]Aσ2.

Proof . By structural induction on t.

4.5 Algebraic operational semantics

Algebraic operational semantics is a general method for defining the meaning of a
statement S, in a wide class of imperative programming languages, as a partial state
transformation, i.e., a partial function

[[S]]A : State(A)
�−→ State(A).

We will present an outline of this approach following [TZ00]. Interested readers can
refer to [TZ00] for details.

Assume, firstly, that (for the language under consideration) there is a class AtSt ⊂
Stmt of atomic statements for which we have a (partial) meaning function

〈|S|〉A : State(A)
�−→ State(A),

for S ∈ AtSt , and secondly, that we have two functions

First : Stmt
�−→ AtSt

Rest A : Stmt × State(A)
�−→ Stmt ,

where, for a statement S and state σ, First(S) is an atomic statement which gives
the first step in the execution of S (in any state), and Rest A(S, σ) is a statement
which gives the rest of the execution in state σ.

Then, we define the “one-step computation of S at σ” function

CompA
1 : Stmt × State(A)

�−→ State(A)

by

CompA
1 (S, σ) ' 〈|First(S)|〉Aσ.

Finally, the definition of the computation step function

CompA : Stmt × State(A)× N �−→ State(A) ∪ {∗}

22 4. Models of computation based on imperative languages

follows by a simple recursion on n:

CompA(S, σ, 0) = σ

CompA(S, σ, n+ 1) '


∗ if n > 0 and S is atomic

CompA(Rest A(S, σ),CompA
1 (S, σ), n)

otherwise.

Note that for n = 1, this yields

CompA(S, σ, 1) ' CompA
1 (S, σ).

The symbol ‘∗’ indicates that the computation is over.
If we put σn = CompA(S, σ, n), then the sequence of states

σ = σ0, σ1, σ2, . . . , σn, . . .

is called the computation sequence generated by S at σ. There are three possibilities:

(a) the sequence terminates in a final state σl, where CompA(S, σ, l + 1) = ∗;

(b) it is infinite (global divergence);

(c) it is undefined from some point on (local divergence).

In case (a) the computation has output, given by the final state; in case (b) the
computation is non-terminating, and has no output; and in case (c) the computation
is also non-terminating, and has no output, because a state at one of time cycles is
undefined, as a result of a divergent computation of a term.

Now, we are ready to derive the i/o (input/output) semantics. First we define the
length of a computation of a statement S, starting in state σ, as the partial function

CompLengthA : Stmt × State(A)
�−→ N

by

CompLengthA(S, σ) =


least n s.t. CompA(S, σ, n+ 1) = ∗

if such an n exists

↑ otherwise.

Note that CompLengthA(S, σ)↓ in case (a) above only. Then we define

[[S]]A(σ) ' CompA(S, σ,CompLengthA(S, σ)).

4. Models of computation based on imperative languages 23

4.6 Operational semantics of statements

We now apply the above theory to the language Rec(Σ). Even if the original state-
ment concerns only algebras A, we nevertheless have to work over A∗ (see Case 4 and
Remark 4.6.6 below). Therefore, in what follows, σ ∈ State(A∗), and we define the
semantic functions over A∗.

There are two atomic statements: skip and concurrent assignment. We define
〈|S|〉A

∗
for these:

〈|skip|〉A
∗
σ = σ

〈|x := t|〉A
∗
σ = σ{x/[[t]]A

∗
σ}

Note that x can be a starred variable and t a starred term. We will see later that,
even if the original statement contains only unstarred atomic statements, Rest A∗

will generate starred atomic statements (see Case 4 and Remark 4.6.6 below).
Next we define First and Rest A∗

by structural induction on S ∈ Stmt∗.
Case 1. S is atomic.

First(S) = S

Rest A∗
(S, σ) = skip.

Case 2. S ≡ S1;S2.

First(S) = First(S1)

Rest A∗
(S, σ) '

 S2 if S1 is atomic

Rest A∗
(S1, σ);S2 otherwise.

Case 3. S ≡ if b then S1 else S2 fi.

First(S) = skip

Rest A∗
(S, σ) '


S1 if [[b]]A

∗
σ = tt

S2 if [[b]]A
∗
σ = ff

↑ if [[b]]A
∗
σ↑.

Case 4. S ≡ x := Pi(t) (i = 1, . . . ,m)

First(S) = skip

Rest A∗
(S, σ) = Ŝi

where Ŝi is the statement defined in Figure 4.1.

24 4. Models of computation based on imperative languages

Here Ŝi looks complicated; however, the idea is simple. We want Ŝi to have the
same functionality as Pi without any side effects. In other words, we want x to get
its required value via the computation of Ŝi, but all other variables in a, b, and
c left unchanged, which is crucial for the proof of Lemma 4.7.3. Therefore, as is
customary in most recursive procedure semantics, we first store the current values in
some temporary storage; then execute the body of the procedure; and finally restore
the values of the variables. We now give some details.

• We use array structures for temporary storage. In most compilers, stacks are
used, and in this case, stacks would also be the better choice in principle; how-
ever, we want to avoid introducing too many concepts in this thesis. Actually,
we simulate stacks by our array variables in Ŝi. It is here that starred variables
are introduced in the definition of Rest A∗

(see Remark 4.6.6).

• In the construction of Ŝi, we assume a, b, and c are single variables in order to
keep the notation manageable. It is, however, not hard to generalize this to the
case that a, b, and c are tuples of variables.

• We introduce an extra temporary variable btmp to avoid erasing the output of
Si when restoring b.

• Before the execution of the body Si, we need to initialize the local variables a,
b, and c.

• sa, sb, and sc are sorts corresponding to the variables a, b, and c. Then δsb and
δsc are the corresponding default values for b and c.

• The expressions ‘t+ 1’ and ‘t− 1’ (for term t : nat) must be interpreted in the
language of N-standard signatures (§2.3). Now ‘t+1’ can be simply interpreted
as ‘S t’, and ‘t− 1’ can be interpreted as ‘Pd t’, where ‘Pd’ is a procedure name
for the predecessor function which is easily defined by a Rec procedure.

The following shows that the i/o semantics, derived from our algebraic operational
semantics, satisfies the usual desirable properties.

Theorem 4.6.1. (a) For S atomic, [[S]]A
∗

= 〈|S|〉A
∗
, i.e.,

〈|skip|〉A
∗
σ = σ

〈|x := t|〉A
∗
σ ' σ{x/[[t]]Aσ}.

(b)

[[S1;S2]]
A∗
σ ' [[S2]]

A∗
([[S1]]

A∗
σ).

4. Models of computation based on imperative languages 25

a∗ := Newlengthsa
(a∗, Lgthsa

(a∗) + 1);

b∗ := Newlengthsb
(b∗, Lgthsb

(b∗) + 1);

c∗ := Newlengthsc
(c∗, Lgthsc

(c∗) + 1);

a∗ := Updatesa
(a∗, Lgthsa

(a∗)− 1, a);

b∗ := Updatesb
(b∗, Lgthsb

(b∗)− 1, b);

c∗ := Updatesc
(c∗, Lgthsc

(c∗)− 1, c);

a := t;

b := δsb ;

c := δsc ;

Si

btmp := b;

a := Apsa
(a∗, Lgthsa

(a∗)− 1);

b := Apsb
(b∗, Lgthsb

(b∗)− 1);

c := Apsc
(c∗, Lgthsc

(c∗)− 1);

a∗ := Newlengthsa
(a∗, Lgthsa

(a∗)− 1);

b∗ := Newlengthsb
(b∗, Lgthsb

(b∗)− 1);

c∗ := Newlengthsc
(c∗, Lgthsc

(c∗)− 1);

x := btmp;

btmp := δsb ;

Figure 4.1: Content of Ŝi

26 4. Models of computation based on imperative languages

(c)

[[if b then S1 else S2 fi]]A
∗
σ '


[[S1]]

A∗
σ if [[b]]A

∗↓tt

[[S2]]
A∗
σ if [[b]]A

∗↓ff

↑ if [[b]]A
∗
σ↑.

(d)

[[x := Pi(t)]]
A∗
σ ' [[Ŝi]]

A∗
σ.

Proof . The results follow from Lemmas 4.6.2, 4.6.3, 4.6.4, and 4.6.5 below. We omit
details.

Lemma 4.6.2. For S atomic, CompA∗
(S, σ, n) '

 〈|S|〉A
∗
σ if n = 1

∗ otherwise

Lemma 4.6.3. CompA∗
(S1;S2, σ, n) '

CompA∗
(S1, σ, n) if ∀k < nCompA∗

(S1, σ, k + 1) 6= ∗

CompA∗
(S2, σ

′, n− n0) if ∃k < nCompA∗
(S1, σ, k + 1) = ∗

where n0 is the least such k, and

σ′ = CompA∗
(S1, σ, n0).

Lemma 4.6.4. CompA∗
(if b then S1 else S2 fi, σ, n+ 1) '

CompA∗
(S1, σ, n) if [[b]]A

∗
σ = tt

CompA∗
(S2, σ

′, n) if [[b]]A
∗
σ = ff

↑ if [[b]]A
∗
σ↑.

Lemma 4.6.5. CompA∗
(x := Pi(t), σ, n+ 1) ' CompA∗

(Ŝi, σ, n).

Remark 4.6.6. In case A is an N-standard Σ-algebra without starred sorts, we still
need starred variables to define the semantic functions (see Case 4 in the definition of
Rest A∗

). Thus, we have to work with A∗ for these semantic functions. An intuitive
explanation is the following:

4. Models of computation based on imperative languages 27

For a Rec procedure, we may need finite but arbitrarily large memory,
since a recursive procedure can be called arbitrarily many times and we
have to store information for all callers in order to make the caller work
properly when the callee terminates and returns. This requires dynamic
memory allocation, which is simulated by an array structure.

For the semantics of procedures, we need the following. Let M ⊆ Var , and
σ, σ′ ∈ State(A∗).

Lemma 4.6.7. Suppose var(S) ⊆M . If σ1 ≈
M
σ2, then for all n ≥ 0,

CompA∗
(S, σ1, n) ≈

M
CompA∗

(S, σ2, n).

Proof . By induction on n. Use the functionality lemma (4.4.2) for terms.

Lemma 4.6.8 (Functionality lemma for statements). Suppose var(S) ⊆ M . If
σ1 ≈

M
σ2, then either

(i) [[S]]Aσ1 ↓ σ′1 and [[S]]Aσ2 ↓ σ′2 (say), where σ′1 ≈
M
σ′2, or

(ii) [[S]]Aσ1↑ and [[S]]Aσ2↑.

Proof . From Lemma 4.6.7.

4.7 Semantics of procedures

Assumption 4.7.1 (Initialization). Before the execution of procedures, we assume:

All but the input variables are initialized to the default values of the same
sort.

Definition 4.7.2 (Semantics of procedures). Let

R ≡ 〈Dp : Dv : S〉, where Dv ≡ in a out b aux c

be a procedure of type u→ v. Then its meaning is a function

[[R]]A : Au → Av

defined as follows. For a ∈ Au, let σ be any state on A∗ such that σ[a] = a. Then

[[R]]A(a) '

 σ′[b] if [[S]]A
∗
σ ↓ σ′

↑ if [[S]]A
∗
σ↑.

28 4. Models of computation based on imperative languages

Note, this is well defined by the functionality lemma (4.6.8) for statements.

Lemma 4.7.3 (Procedure assignment lemma). Consider a statement x := Pi(t),
where Pi has the declaration Pi ⇐= Ri, and Ri ≡ 〈Dp

i : Dv
i : Si〉. Then

[[x := Pi(t)]]
A∗
σ ' σ{x/[[Ri]]

A([[t]]A
∗
σ)}

Note that this lemma amounts to saying that the semantics of a procedure call
statement is a state transformation which transforms a state to its variant in which
the tuple x gets the required values while all other variables are left unchanged; in
other words, there are no side effects.

Proof . Consider Ŝi (cf. Figure 4.1), let σ′ = [[a := t; b := δsb ; c := δsc]]A
∗
σ. Clearly,

σ′[a] = [[t]]A
∗
σ, σ′[b] = δsb , and σ′[c] = δsc . By Definition 4.7.2,

[[Ri]]
A([[t]]A

∗
σ) ' ([[Si]]

A∗
σ′)[b]. (4.1)

By Theorem 4.6.1 (d),

[[x := Pi(t)]]
A∗
σ ' [[Ŝi]]

A∗
σ. (4.2)

We will show

[[Ŝi]]
A∗
σ ' σ{x/([[Si]]

A∗
σ′)[b]}. (4.3)

The result will then follow from (4.1), (4.2) and (4.3).
To show (4.3), note that [[Ŝi]]

A∗
is a state transformation involving only variables

a∗, b∗, c∗, a, b, c, btmp, and x (cf. Figure 4.1). We will investigate the behavior of
these variables to show that a∗, b∗, c∗, a, b, c are unchanged, and x gets the desired
values, i.e. ([[Si]]

A∗
σ′)[b]. A formal proof will be tedious, since we need to record many

state transformations carefully. An informal proof, however, is easy to provide, and,
we believe, clear enough.

(a) a∗, b∗, and c∗ are extended by one at the beginning of Ŝi and trimmed by one
at the end. Within the execution of Ŝi, only the last locations of a∗, b∗, and
c∗, which are trimmed, are modified. Clearly, a∗, b∗, and c∗ keep their original
values.

(b) The original values of a, b, and c are stored in the last locations in a∗, b∗, and
c∗ respectively before the execution of Si, and restored after the execution. So
their original values are kept.

(c) The last line of Ŝi ensures that btmp takes the default value.

(d) The atomic statements btmp := b and x := btmp in Ŝi guarantee that x takes the
desired value ([[Si]]

A∗
σ′)[b].

4. Models of computation based on imperative languages 29

Remark 4.7.4. The importance of the procedure assignment lemma is that, by
stating that the semantics of a procedure call assignment is a state variant (without
side-effects), it justifies the replacement of such a call by an oracle call statement (see
S4.8 for definition).

Definition 4.7.5 (Rec computable functions). (a) A function f on A is computable
on A by a Rec procedure R if f = [[R]]A. It is Rec computable on A if it is
computable on A by some Rec procedure.

(b) Rec(A) is the class of functions Rec computable on A.

Definition 4.7.6. A Rec∗∗∗(Σ) procedure is a Rec(Σ∗) procedure in which the input
and output variables are simple. (However the auxiliary variables may be starred.)

Definition 4.7.7 (Rec∗∗∗ computable functions). (a) A function f on A is com-
putable on A by a Rec∗∗∗ procedure R if f = [[R]]A. It is Rec∗∗∗ computable on A
if it is computable on A by some Rec∗∗∗ procedure.

(b) Rec∗∗∗(A) is the class of functions Rec∗∗∗ computable on A.

4.8 RelRec computability

Let ϕ ≡ ϕ1, . . . , ϕn be a tuple of (partial) functions

ϕi : Aui
�−→ Avi .

We define the programming language Rec(φ) (or by abuse of notation, Rec(ϕ)) which
extends the language Rec by including a set of special function symbols φ1, . . . , φn.
We can think of φ1, . . . , φn as “oracles” for ϕ1, . . . , ϕn.

Notation 4.8.1. We will use RelRec for the class of all Rec(φ) procedures without
specifying the oracle names.

The atomic statements of Rec(φ) include the oracle calls

x := φi(t)

where t : ui and x : vi.

30 4. Models of computation based on imperative languages

The semantics of this is given by

〈|x := φi(t)|〉
Aσ '

 σ{x/b} if [[t]]Aσ ↓ a and also ϕi(a) ↓ b

↑ otherwise.

Following is the general form for a Rec(φ) procedure R. Note that the oracle list
is global, hence it is not presented in the inner procedures R1, . . . ,Rn.

oracles φ1, . . . , φm

P1 ⇐= R1, . . . ,Pn ⇐= Rn

in a out b aux c

S

Note that the semantic functions for statements as well as other related functions
like the computation step functions will all depend on the interpretations of the
oracles. Therefore we will have functions Rest A∗

ϕ , CompA∗

ϕ , CompLengthA∗

ϕ , and

[[S]]A
∗∗∗

ϕ instead of Rest A∗
, CompA∗

, CompLengthA∗
, and [[S]]A

∗
. The definitions of

these functions follow along similar lines to those in §4.6.

Notation 4.8.2. We will use notation [[R]]Aϕ for the function defined by the Rec(φ)
procedure R on A when φ is interpreted as ϕ. We may drop the subscript ϕ when it
is clear from the context.

Therefore, the semantics of a RelRec procedure R : u → v , where R ≡

oracles φ

P1 ⇐= R1, . . . ,Pn ⇐= Rn

in a out b aux c

S

(where φ : π and a : u) is a function

[[R]]Aϕ : Au �−→ Av

4. Models of computation based on imperative languages 31

given by

[[R]]Aϕ(a) '

 σ′[b] if [[S]]A
∗∗∗

ϕ σ ↓ σ′

↑ if [[S]]A
∗∗∗

ϕ σ↑.

where σ can be any state on A∗ such that σ[a] = a.
In this way we can define the notion of Rec(ϕ) computability or Rec computability

relative to ϕ, and Rec∗∗∗(ϕ) computability or Rec∗∗∗ computability relative to ϕ.
The reason for introducing Rec(ϕ) computability is because we need oracle call

statements to simulate functions as arguments in higher order functionals.

4.9 Monotonicity of RelRec procedures

Notation 4.9.1. For any functions ϕ and ϕ′ of the same type, we write ϕ v ϕ′ to
mean that for any input x ,

ϕ(x)↓ =⇒ ϕ′(x)↓ and ϕ(x) = ϕ′(x).

Note that v is a partial order over the set of partial functions of the same type, where
the totally divergent function is the bottom element.

Notation 4.9.2. Let ϕ ≡ ϕ1, . . . , ϕm and ϕ′ ≡ ϕ′1, . . . , ϕ
′
m be tuples of functions. We

write ϕ v ϕ′ to mean that ϕi v ϕ′i for i = 1, . . . ,m.

Below, ϕ and ϕ′ are two interpretations of the oracle tuple φ.

Lemma 4.9.3. Consider statement S with oracles φ. If ϕ v ϕ′, then

〈|First(S)|〉A
∗

ϕ v 〈|First(S)|〉A
∗

ϕ′ .

Proof . By definition, First(S) is an atomic statement. We have three cases:

(a) First(S) ≡ skip.

(b) First(S) ≡ x := t.

(c) First(S) ≡ x := φi(t).

Cases (a) and (b) are trivial, while Case (c) follows directly from condition ϕ v ϕ′.

32 4. Models of computation based on imperative languages

Lemma 4.9.4. Consider statement S with oracles φ. If ϕ v ϕ′, then1

Rest A∗

ϕ (S, ·) v Rest A∗

ϕ′ (S, ·).

Proof . By induction on the complexity of S. Let σ be an arbitrary state. (Recall
the definition of Rest A∗

in §4.6.)

(a) For S atomic,

Rest A∗

ϕ (S, σ) ≡ skip

≡ Rest A∗

ϕ′ (S, σ).

(b) S ≡ S1;S2. If Rest A∗
ϕ (S, σ)↓ then

Rest A∗

ϕ (S, σ) =

 S2 if S1 is atomic

Rest A∗
ϕ (S1, σ);S2 otherwise

(by definition of Rest A∗

ϕ)

=

 S2 if S1 is atomic

Rest A∗

ϕ′ (S1, σ);S2 otherwise

(by i.h.)

= Rest A∗

ϕ′ (S, σ)

(by definition of Rest A∗

ϕ′).

(c) S ≡ if b then S1 else S2 fi.

Note that [[b]]A
∗∗∗

ϕ σ ' [[b]]A
∗∗∗

ϕ′ σ. If Rest A∗
ϕ (S, σ)↓ then

1Here we use the notation f(x, ·) for λy · f(x, y).

4. Models of computation based on imperative languages 33

Rest A∗

ϕ (S, σ) =

 S1 if [[b]]A
∗∗∗

ϕ σ = tt

S2 if [[b]]A
∗∗∗

ϕ σ = ff

(by definition of Rest A∗

ϕ)

=

 S1 if [[b]]A
∗∗∗

ϕ′ σ = tt

S2 if [[b]]A
∗∗∗

ϕ′ σ = ff

(since [[b]]A
∗∗∗

ϕ σ = [[b]]A
∗∗∗

ϕ′ σ)

= Rest A∗

ϕ′ (S, σ)

(by definition of Rest A∗

ϕ′).

(d) S ≡ x := Pi(t)
(Pi ⇐= Ri, Ri ≡ 〈Dp

i : Dv
i : Si〉

where Dv
i ≡ in a out b aux c.

If Rest A∗
ϕ (S, σ)↓ then

Rest A∗

ϕ (S, σ) = Ŝi (by definition of Rest A∗

ϕ)

= Rest A∗

ϕ′ (S, σ) (by definition of Rest A∗

ϕ′).

Lemma 4.9.5. Consider statement S with oracles φ. If ϕ v ϕ′, then

CompA∗

ϕ (S, ·) v CompA∗

ϕ′ (S, ·).

Proof . By induction on n. Let σ be arbitrary state.
Base case: n = 0,

CompA∗

ϕ (S, σ, n) = σ

= CompA∗

ϕ′ (S, σ, n)

Induction Step: suppose CompA∗

ϕ (S, σ, n+ 1)↓,

CompA∗

ϕ (S, σ, n+ 1) = CompA∗

ϕ (Rest A∗

ϕ (S, σ), 〈|First(S)|〉A
∗

ϕ σ, n)

= CompA∗

ϕ′ (Rest A∗

ϕ′ (S, σ), 〈|First(S)|〉A
∗

ϕ′ σ, n)

(by i.h. and Lemmas 4.9.4 and 4.9.3)

= CompA∗

ϕ′ (S, σ, n+ 1)

34 4. Models of computation based on imperative languages

Lemma 4.9.6. Consider statement S with oracles φ. If ϕ v ϕ′, then

[[S]]A
∗∗∗

ϕ v [[S]]A
∗∗∗

ϕ′ .

Proof . From Lemma 4.9.5

Theorem 4.9.7 (Monotonicity Theorem for RelRec procedures). Let R be a
RelRec procedure with oracles φ. If ϕ v ϕ′, then

[[R]]Aϕ(x) v [[R]]Aϕ′(x).

Proof . Suppose R ≡ 〈Dp : Dv : S〉.
Let σ be any state such that σ[a] = x. By definition of semantics of procedures

[[R]]Aϕ(x) =

 σ1[b] if [[S]]A
∗∗∗

ϕ σ↓σ1

↑ if [[S]]A
∗∗∗

ϕ σ↑.

and

[[R]]Aϕ(x) =

 σ2[b] if [[S]]A
∗∗∗

ϕ′ σ↓σ2

↑ if [[S]]A
∗∗∗

ϕ′ σ↑.

If [[R]]Aϕ(x)↓, by Lemma 4.9.6, [[S]]A
∗∗∗

ϕ σ = [[S]]A
∗∗∗

ϕ′ σ, in other words σ1 = σ2. Hence,

σ1[b] = σ2[b], and [[R]]Aϕ(x) = [[R]]Aϕ′(x).

4.10 Rec2 computability

We will extend Rec to a second-order programming language Rec2 with the following
syntax extensions:

• A class of function variables φ1, φ2, . . . , with corresponding types τ 1, τ 2,

• A new program term constructor

ts ::= . . . | φ(tu)

where φ : u → s , tu : u and ts : s .

4. Models of computation based on imperative languages 35

• A function variables declaration

Df ::= functions φ

where φ ≡ φ1, . . . , φm is a tuple of function symbols and m ≥ 0.

• The procedure call has the more general form

x := P(T, t)

where T ≡ T1, . . . , Tm is a tuple of function instances and 0 ≤ m. Note that each
Ti (0 ≤ i ≤ m) is either a function variable declared in the current procedure,
or a primitive function symbol Fk. (For a discussion of an alternative, more
complicated form of the procedure call statements, see §6.11).

Notation 4.10.1. We will use the notation R̄, . . . for Rec2 procedures.
Following is a general form of a Rec2 procedure:
R̄ ≡

functions φ

P1 ⇐= R1, . . . ,Pn ⇐= Rn

in a out b aux c

S

Remark 4.10.2. Note the differences between RelRec and Rec2:

(a) In RelRec the function symbols φ are interpreted as (oracles for) function pa-
rameters, while in Rec2 they are interpreted as function inputs.

(b) In RelRec the oracle declaration is global, and inner procedures have no oracle
declaration, and so have type level 1; while in Rec2 each procedure can have
its own function symbol declaration, and so may have type level 2.

The semantic functions for terms will depend on the interpretations of the function
variables. We will use the notation [[t]]Aϕ for the semantic function of t when function
variables φ in t are interpreted as ϕ. The definitions are similar to those in §4.4 except
that we need to give the semantics of the new term constructor as follows:

[[φ(t1, . . . , tm)]]Aϕσ '

 ϕ([[t1]]
Aσ, . . . , [[tm]]Aσ) if [[ti]]

Aσ ↓ (1 ≤ i ≤ m)

↑ otherwise.

36 4. Models of computation based on imperative languages

Similar as for RelRec, we will have functions Rest A∗
ϕ , CompA∗

ϕ ,

CompLengthA∗

ϕ , and [[S]]A
∗∗∗

ϕ depending on the interpretation of oracles.
Therefore, the semantics of a Rec2 procedure R̄ : π × u → v , where R̄ ≡

functions φ

P1 ⇐= R1, . . . ,Pn ⇐= Rn

in a out b aux c

S

(where φ : π and a : u) is a functional

[[R̄]]A : Aπ × Au �−→ Av

given by

[[R̄]]A(ϕ, a) '

 σ′[b] if [[S]]A
∗∗∗

ϕ σ ↓ σ′

↑ if [[S]]A
∗∗∗

ϕ σ↑.

where σ can be any state on A∗ such that σ[a] = a.
In this way we can define the notion of Rec2 computability and Rec∗∗∗2 computabil-

ity.
We will prove (Theorem 4.10.5) a correspondence between RelRec and Rec2

computability. We need two lemmas.

Lemma 4.10.3 (RelRec ⇒ Rec2). Let R be a RelRec procedure of type u→ v
with oracle tuple φ of type π. We can transform R to a Rec2 procedure R̄ of type
π × u→ v such that for all ϕ : π and x : u,

[[R̄]]A(ϕ, x) ' [[R]]Aϕ(x).

Proof . (This is the easy direction). The transformation consists of re-interpreting
the oracle declaration of R as a function declaration and adding the same function
variable declaration “functions φ” to every inner procedure of R. Some points to be
notes are:

(1) The oracle call statement x := φ(t) is re-interpreted as an assignment statement.

4. Models of computation based on imperative languages 37

(2) The new function variable declaration for any inner procedures has the same form
as the main function variable declaration. This guarantees that φi in any inner
procedures has the same interpretation as φi in the main procedure.

(3) Some new function variable declaration for inner procedures may be redundant in
the sense that the function variables are not used in the body of the procedure;
however, this does no harm.

Lemma 4.10.4 (Rec2 ⇒ RelRec). Let R̄ be a Rec2 procedure of type π× u→ v.
We can transform R̄ to a RelRec procedure R of type u→ v with oracle φ of type π
such that for all ϕ : π and x : u,

[[R̄]]A(ϕ, x) ' [[R]]Aϕ(x).

Proof . The idea of this transformation is fairly simple, but it is complicated to write
out in detail. We therefore illustrate the transformation by some simple examples,
which we believe will make the general situation clear. There are two main points to
consider.

(1) (Interpreting assignment as oracle calls) In R̄ the new term constructor
makes it possible that a term t has as a subterm a function application which
is not allowed in R. The following example illustrate how to eliminate such a
function application within a term. Consider an assignment statement

x := Fk(φ(t′)),

where Fk is a primitive function symbol. We replace the assignment statement
by sequence of statements

z := t′; y := φ(z); x := Fk(y),

where y and z are two newly introduced variables disjoint from the variables
currently declared. This procedure is then repeated if necessary for the term
tuple t′, and so on. The method can also be generalized to the case that t occurs
in other contexts, such as boolean tests.

38 4. Models of computation based on imperative languages

(2) (Interpreting inner function variable declarations) Consider the following

Rec2 procedure R̄ ≡

functions φ1, φ2

P ′ ⇐= R̄
′

in a out b aux c

. . .

x1 := P ′(φ1, t1);

. . .

x2 := P ′(φ2, t2);

. . .

x3 := P ′(Fk, t3);

. . .

where R̄
′ ≡

functions ρ

in a′ out b′ aux c′

S

We can see that ρ is being interpreted as three different functions, corresponding
to the interpretations of φ1, φ2 and the primitive function symbol Fk respectively.
We can transform the above Rec2 procedure to a RelRec procedure

4. Models of computation based on imperative languages 39

R ≡

oracles φ1, φ2

P1 ⇐= R1,P2 ⇐= R2,P3 ⇐= R3

in a out b aux c

. . .

x1 := P1(t1);

. . .

x2 := P2(t2);

. . .

x3 := P3(t3);

. . .

where for i = 1, 2, 3, Ri ≡

in a′ out b′ aux c′

S i

and S 1, S 2 and S 3 are obtained from S by replacing all occurrences of ρ by φ1,
φ2 and Fk respectively.

This technique can be extended to cover all possible cases, because we have only
finitely many function variables declared and finitely many primitive function
symbols.

With this techniques, we can eliminate all inner function variable declarations
by instantiating the function variables in the inner procedures either as the
function variables in the main procedure (which, in turn, are re-interpreted as
oracles) or as primitive function symbols.

40 4. Models of computation based on imperative languages

From Lemmas 4.10.3 and 4.10.4 immediately follows:

Theorem 4.10.5. Let F : Aπ × Au �−→ Av be a second-order functional. F is
computable by a Rec2 procedure R̄ iff there exist a RelRec procedure R such that for
all ϕ : π and x : u,

F (ϕ, x) ' [[R̄]]A(ϕ, x) ' [[R]]Aϕ(x).

4.11 While procedures

The syntax of the language While(Σ) is like Rec(Σ), except that While(Σ) con-
tains a loop statement instead of the procedure call statement. In short, statements
S in While(Σ) are defined by:

S ::= skip | x := t | S1;S2 | if b then S1 else S2 fi | while b do S od

The semantics of While procedures are derived along similar lines as those for
the semantics of Rec procedures. Details can be found in [TZ00].

Definition 4.11.1 (While computable functions). (a) A function f on A is com-
putable on A by a While procedure P if f = [[P]]A. It is While computable on
A if it is computable on A by some While procedure.

(b) While(A) is the class of functions While computable on A.

Definition 4.11.2. A While∗∗∗(Σ) procedure is a While(Σ∗) procedure in which
the input and output variables are simple. (However the auxiliary variables may be
starred.)

Definition 4.11.3 (While∗∗∗ computable functions). (a) A function f on A is com-
putable on A by a While∗∗∗ procedure P if f = [[P]]A. It is While∗∗∗ computable
on A if it is computable on A by some While∗∗∗ procedure.

(b) While∗∗∗(A) is the class of functions While∗∗∗ computable on A.

We will not discuss While computability any further, since [TZ00] contains a
full discussion. However, we need to mention following significant theorem proved in
[TZ88].

Theorem 4.11.4. (a) While(A) = µPR(A).

(b) While∗∗∗(A) = µPR∗(A).

Chapter 5

From µPR to ACP

In this chapter, we will prove that, if a function f on A is µPR computable, then it
is ACP computable; and hence, if f is µPR∗ computable, it is ACP∗ computable.
We will prove the theorem by structural induction on the the schemes of µPR, i.e.
associate with every µPR scheme an ACP scheme. Even though we gave formal
definitions for ACP and µPR schemes in Chapter 3, we prefer to present informal
proofs in this chapter, in the sense that we ignore the distinction between syntax
and semantics for both ACP and µPR. We believe that our informal approach is
convincing.

Lemma 5.1. Let f , g, h, and p be functions defined respectively by

(a) f (x) ' F k(x) where Fk ∈ Func (Σ)

(b) g(~x) = xi

(c) h(x) '


h2(x) if h1(x) ↓tt

h3(x) if h1(x) ↓ff

↑ if h1(x) ↑

,

then f , g, h, and p ∈ ACP(A), provided h1, h2, and h3 ∈ ACP(A).

Proof . (a) By f (x) ' F k(x) (scheme I in ACP);

(b) By g(x) ' g ′(xi), and g ′(xi) = xi (scheme V and II);

41

42 5. From µPR to ACP

(c) By h(x) ' h ′(h1(x), x), and

h ′(b, x) '

 h2(x) if b= tt

h3(x) if b= ff

(schemes VI and IV).

Lemma 5.2. Let f be a function defined by f (x) ' h(g1(x), . . . , gm(x)).

If h, g1, . . . , gm ∈ ACP(A), then so is f .

Proof . Directly follows from scheme VI in ACP .

Lemma 5.3. Let f 1, . . . , f m be functions defined by

f 1(x, 0) ' g1(x)

. . . ,

f m(x, 0) ' gm(x)

f 1(x, z + 1) ' h1(x, z, f 1(x, z), . . . , f m(x, z))

. . . ,

f m(x, z + 1) ' hm(x, z, f 1(x, z), . . . , f m(x, z)).

If g1, . . . , gm, h1, . . . , hm ∈ ACP(A), so are f 1, . . . , f m.

Proof . Let

ϕx,1 =df λz · f1(x, z)

. . . ,

ϕx,m =df λz · fm(x, z);

and

Fϕ,x,1(z) '

 g1(x) if z=0

h1(x, z − 1, ϕ1(z − 1), . . . , ϕm(z − 1)) otherwise
. . . ,

Fϕ,x,m(z) '

 gm(x) if z=0

hm(x, z − 1, ϕ1(z − 1), . . . , ϕm(z − 1)) otherwise

5. From µPR to ACP 43

where ϕ ≡ ϕ1, . . . , ϕm, and

F̂ x,1 =df λϕ1 · . . . · λϕm · Fϕ,x,1

. . . ,

F̂ x,m =df λϕ1 · . . . · λϕm · Fϕ,x,m.

Note that F x,1, . . . ,F x,m are ACPs by scheme IV. We will show that

(ϕx,1, . . . , ϕx,m) = LFP (F̂ x,1, . . . , F̂ x,m).

(i) (ϕx,1, . . . , ϕx,m) are fixed points of (F̂ x,1, . . . , F̂ x,m), since for 1 ≤ i ≤ m,

F̂ x,i(ϕx,1, . . . , ϕx,m)(z)

'

 gi(x) if z=0

hi(x, z − 1, ϕx,1(z − 1), . . . , ϕx,m(z − 1)) otherwise
(5.1)

'

 gi(x) if z=0

hi(x, z − 1, f1(x, z − 1), . . . , fm(x, z − 1)) otherwise

' fi(x, z)

' ϕx,i(z).

(ii) (ϕx,1, . . . , ϕx,m) are the least fixed points of (F̂ x,1, . . . , F̂ x,m).

Put

ϕ0
x,1 ' λz · ⊥

. . . ,

ϕ0
x,m ' λz · ⊥

ϕk+1
x,1 ' F̂ x,1(ϕ

k
x,1, . . . , ϕ

k
x,m)

. . . ,

ϕk+1
x,m ' F̂ x,m(ϕk

x,1, . . . , ϕ
k
x,m).

Suppose (ψ1, . . . , ψm) is an arbitrary fixed point of (F̂ x,1, . . . , F̂ x,m). We first
show that for 1 ≤ i ≤ m,

∞
t

k=0
ϕk

x,i v ψi. (5.2)

44 5. From µPR to ACP

It is sufficient to show that for all k,

ϕk
x,i v ψi.

We prove this by induction on k. The base case is trivial, since ϕ0
x,i is the totally

undefined function. Induction step:

ϕk+1
x,i = F̂ x,i(ϕ

k
x,1, . . . , ϕ

k
x,m)

v F̂ x,i(ψ1, . . . , ψm) (by i.h. and the monotonicity of F̂ x,i)

= ψi (since ψ1, . . . , ψm are fixed points of F̂ x,1, . . . , F̂ x,m).

Now we prove for 1 ≤ i ≤ m,

ϕx,i =
∞
t

k=0
ϕk

x,i (5.3)

which make ϕx,1, . . . , ϕx,m the least fixed points of F̂ x,1, . . . , F̂ x,m.

The inclusion
∞
t

k=0
ϕk

x,i v ϕx,i follows from (5.2). In order to prove ϕx,i v
∞
t

k=0
ϕk

x,i,

we prove for any z ∈ N,

ϕx,i(z)↓ =⇒ ∃k : N · [ϕx,i(z) = ϕk
x,i(z)]. (5.4)

We will show for any z ∈ N,

ϕx,i(z) ' ϕz+1
x,i (z).

by induction on z.

Base case: z = 0.

ϕx,i(0) ' fi(x, 0) ' gi(x);

ϕ1
x,i(0) ' F̂ x,i(ϕ

0
x,1, . . . , ϕ

0
x,m)(0)

' gi(x) by (5.1).

Induction step:

Assume, for 1 ≤ i ≤ m

ϕx,i(z) ' ϕz+1
x,i (z).

We must show

ϕx,i(z + 1) ' ϕz+2
x,i (z + 1).

5. From µPR to ACP 45

ϕz+2
x,i (z + 1) ' F̂ x,i(ϕ

z+1
x,1 , . . . , ϕ

z+1
x,m)(z + 1)

'

 gi(x) if (z+1)=0

hi(x, z, ϕ
z+1
x,1 (z), . . . , ϕz+1

x,m(z)) otherwise

' hi(x, z, ϕ
z+1
x,1 (z), . . . , ϕz+1

x,m(z))

' hi(x, z, ϕx,1(z), . . . , ϕx,m(z)) by induction hypothesis.

' hi(x, z, f1(x, z), . . . , fm(x, z))

' fi(x, z + 1)

' ϕx,i(z + 1).

This proves (5.4) and hence (5.3), as required

Lemma 5.4. Let f be a function defined by f (x) ' µz [g(x, z) = tt].

If g ∈ ACP(A), so is f .

Proof . Define (using informal but suggestive notation) the function

f ′(x, z) ' µy ≥ z[g(x, y) = tt].

Note that

f ′(x, z) '


z if g(x ,z)=tt

f ′(x, z + 1) if g(x ,z)=ff

↑ otherwise.

Clearly, f(x) ' f ′(x, 0). Now, we can prove that f ′ is ACP , provided g is.
Put

ϕx = λz · f ′(x, z)

Fϕ,x(z) '


z if g(x ,z)=tt

ϕ(z + 1) if g(x ,z)=ff

↑ otherwise

F̂ x = λϕ · F x.

We claim that

ϕx = LFP (F̂ x).

46 5. From µPR to ACP

By hypothesis g is ACP , therefore, f ′ is ACP derived from g by means of schemes
VIII, IV, and V.

Now, we prove that

ϕx = LFP (F̂ x).

(i) ϕx is a fixed point of F̂ x, since

F̂ x(ϕx)(z)

'


z if g(x ,z)=tt

ϕx(z + 1) if g(x ,z)=ff

↑ otherwise

'


z if g(x ,z)=tt

f ′(x, z + 1) if g(x ,z)=ff

↑ otherwise

' f ′(x, z)
' ϕx(z).

(ii) ϕx is the least fixed point of F̂ x.

Put

ϕ0
x = λz · ⊥
. . . ,

ϕk+1
x = F̂ x(ϕ

k
x).

Suppose ψ is an arbitrary fixed point of F̂ x. We first show

∞
t

k=0
ϕk

x v ψ. (5.5)

It is sufficient to show that for all k,

ϕk
x v ψ.

We prove this by induction on k. The base case is trivial, since ϕ0
x is the totally

undefined function. Induction step:

ϕk+1
x = F̂ x(ϕ

k
x)

v F̂ x(ψ) (by i.h. and the monotonicity of F̂ x)

= ψ (since ψ is the fixed point of F̂ x).

5. From µPR to ACP 47

Now we prove

ϕx =
∞
t

k=0
ϕk

x (5.6)

which make ϕx the least fixed point of F̂ x.

The inclusion
∞
t

k=0
ϕk

x v ϕx follows from (5.5). In order to prove ϕx v
∞
t

k=0
ϕk

x, we

prove for any z ∈ N,

ϕx(z)↓ =⇒ ∃k : N · [ϕx(z) = ϕk
x(z)]. (5.7)

We will show for any z ∈ N

if ϕx(z) = k, then ϕk+1
x (z) = k

by induction on z.

By hypothesis ϕx(z) = k. Clearly, g(x, k) = tt and ∀ z≤ z′ < k · [g(x, z′) = ff]. So

ϕk+1
x (z) ' F̂ x(ϕ

k
x)(z)

'


z if g(x ,z)=tt

ϕk
x(z + 1) if g(x ,z)=ff

↑ otherwise

' ϕk
x(z + 1) (if g(x, z) = ff)

'


z + 1 if g(x ,z + 1)=tt

ϕk−1
x (z + 2) if g(x ,z + 1)=ff

↑ otherwise
. . .

'


k if g(x ,k)=tt

ϕz
x(k + 1) if g(x ,k)=ff

↑ otherwise

= k.

This proves (5.7) and hence (5.6), as required.

48 5. From µPR to ACP

Theorem 5.5. µPR(A) ⊆ ACP(A).

Proof . We associate, with each µPR scheme for a function f , an ACP scheme for
f , by structural induction on µPR schemes.

The result directly follows from Lemmas 5.1, 5.2, 5.3, and 5.4.

Corollary 5.6. µPR∗(A) ⊆ ACP∗(A).

Proof . From Theorem 5.5.

Chapter 6

From ACP to Rec

In this chapter, we will prove

ACP(A) ⊆ Rec2(A).

We will prove this by induction on the schemes of ACP , i.e. associate to every ACP
scheme a Rec2 procedure for the same functional. From this will follow:

ACP1(A) ⊆ Rec(A),

and hence

ACP∗1(A) ⊆ Rec∗∗∗(A).

Lemma 6.1. Let F ≡ FA, G ≡ GA, and H ≡ HA be functionals defined by

(i) F(ϕ, x) ' Fk(ϕ, x),

(ii) G(x) ' x, and

(iii) H(ϕ, x) ' ϕ(x).

Then, F , G and H are Rec2-computable.

Proof . We can construct Rec2 procedures RF , RG and RH as follows.

49

50 6. From ACP to Rec

RF ≡

functions φ

in aF out bF

bF := Fk(φ, aF)

RG ≡

in aG out bG

bG := aG

RH ≡

functions φ

in aH out bH

bH := φ(aH)

Clearly, F = [[RF]]A, G = [[RG]]A and H = [[RH]]A.

Lemma 6.2. Let F ≡ FA, G ≡ GA, and H ≡ HA be functionals, and let F be defined
by

F(ϕ, x, b) ' [if b = tt then G(ϕ, x) else H(ϕ, x)].

If G and H are Rec2-computable, then so is F .

Proof . By assumption, we have Rec2 procedures RG and RH as follows, such that
G = [[RG]]A and H = [[RH]]A.

6. From ACP to Rec 51

RG ≡
We can construct a Rec2 procedure RF as follows
[[RF]]A(ϕ, x, b) ' F (ϕ, x, b). The proof is obvious and details are omitted.

Lemma 6.3. Let F ≡ FA and G ≡ GA be functionals, and let F be defined by

F(ϕ, x) ' G(ϕf , xg) (refer to §3.1 for the meanings of f and g).

If G is Rec2-computable, then so is F .

Proof . By assumption, we have Rec2 procedures RG as follows, such that G =
[[RG]]A.

RG ≡
By modifying RG, We can construct a Rec2 procedure RF as follows.
SF is the same as SG, except that we replace all occurrences of φi by φf(i), and all

occurrences of aGi
by aFg(i)

. Essentially, RF permutes the function symbol tuple and

the input tuple, therefore [[RF]]A(ϕ, x) ' F (ϕ, x). The proof is obvious and details
are omitted.

Lemma 6.4. Let F ≡ FA, G ≡ GA, and H ≡ HA be functionals, and let F be defined
by

F(ϕ, x) ' G(ϕ, x,H(ϕ, x)).

If G and H are Rec2-computable, then so is F .

Proof . By assumption, we have Rec2 procedures RG and RH as follows, such that
G = [[RG]]A and H = [[RH]]A.

We can construct a Rec2 procedure RF as follows
[[RF]]A(ϕ, x) ' F (ϕ, x). The proof is obvious and details are omitted.

52 6. From ACP to Rec

Lemma 6.5. Let F 1 ≡ FA
1 , . . . ,F n ≡ FA

n , G1 ≡ GA
1 , . . . ,Gn ≡ GA

n be functionals, and
F1, . . . ,Fn are defined by

F1(ϕ, x, y1) ' %ϕ,x
1 (y1)

. . . ,

Fn(ϕ, x, yn) ' %ϕ,x
n (yn)

where

(%ϕ,x
1 , . . . , %ϕ,x

n) = LFP(Ĝ
ϕ,x

1 , . . . , Ĝ
ϕ,x

n).

If G1, . . . ,Gn are Rec2-computable, then so are F 1, . . . ,F n.

Refer to Notation 3.1.3, for Ĝ
ϕ,x

i and Ĝ
x

i used above; and Notation 3.1.4, for Ĝ
ϕ,x

i

and Ĝ
x

i used in the following proof.

Proof . By assumption, we have Rec2 procedures RG1 , . . . ,RGn as follows such that,
for 0 ≤ i ≤ n, G i = [[RGi

]]A.
RG1 ≡

functions φ, ρ1, . . . , ρn

PG1,1 ⇐= RG1,1 , . . . ,PG1,m1
⇐= RG1,m1

in aG1,1 aG1,2 out bG1 aux cG1

SG1

. . .
RGn ≡

functions φ, ρ1, . . . , ρn

PGn,1 ⇐= RGn,1 , . . . ,PGn,mn
⇐= RGn,mn

in aGn,1 aGn,2 out bGn aux cGn

SGn

6. From ACP to Rec 53

We can construct Rec2 procedures RF 1, . . . ,RF n as follows.
RF 1 ≡

functions φ

PG1 ⇐= R′
G1
, . . . ,PGn ⇐= R′

Gn

in aF1,1 aF1,2 out bF1

bF1 := PG1(φ, aF1,1 , aF1,2)

. . .
RFn ≡

functions φ

PG1 ⇐= R′
G1
, . . . ,PGn ⇐= R′

Gn

in aFn,1 aFn,2 out bFn

bFn := PGn(φ, aFn,1 , aFn,2)

where, for 1 ≤ i ≤ n, R′
Gi
≡

functions φ

PGi,1
⇐= RP

Gi,1
, . . . ,PGi,mi

⇐= RP
Gi,mi

in aGi,1
aGi,2

out bGi
aux cGi

SP
Gi

Here, for 1 ≤ i ≤ n, RP
Gi,1

, . . . ,RP
Gi,mi

, and SP
Gi

are the same as RGi,1
, . . . ,RGi,mi

,
and SGi

, except that all occurrences of function application statements of the form
c := ρj(t) are replaced by procedure calls c := PGj

(φ, aGi,1
, t). We are, essentially,

replacing function application statements by simultaneous recursive calls. For details,
we need to eliminate all declarations for ρ and all occurrences of ρ as procedure call
inputs.

Remark 6.6. In this proof, we will only consider RelRec like Rec2 procedures in
the sense that,

54 6. From ACP to Rec

(a) a function symbol occurs either in a function application statement of form c :=
φ(t) or in a procedure call statement as inputs;

(b) all function variable declarations for any inner procedures has the same form as
the main function variable declaration, which guarantees that φi in any inner
procedures has the same interpretation as φi in the main procedure. This jusifies
the replacement of c := ρj(t) by c := PGj

(φ, aGi,1
, t) in the inner procedures.

This assumption is based on the fact that we can transform every Rec2 procedure to
a RelRec like Rec2 procedure by the technique decribed in the proofs of Lemmas
4.10.4 and 4.10.3. We believe this makes this proof simpler and clearer.

We claim that, if φ are interpreted as ϕ and for 1 ≤ i ≤ n, σ[aFi,1
] = x and

σ[aFi,2
] = yi, then

[[RFi
]]A(ϕ, x, yi) ' F i(ϕ, x, yi). (6.1)

In order to prove (6.1) we prove, for 1 ≤ i ≤ n,

λyi · F i(ϕ, x, yi) v λyi · [[RFi
]]A(ϕ, x, yi), (6.2)

λyi · [[RFi
]]A(ϕ, x, yi) v λyi · F i(ϕ, x, yi). (6.3)

To prove (6.2): Putting

%0
1 ≡ ⊥

. . .

%0
n ≡ ⊥

. . .

%k+1
1 ≡ Ĝ

ϕ,x

1 (%k
1, . . . , %

k
n)

. . .

%k+1
1 ≡ Ĝ

ϕ,x

n (%k
1, . . . , %

k
n)

By definition of least fixed points, it is sufficient to prove that,

for all k, %k
i v λyi · [[RFi

]]A(ϕ, x, yi), for 1 ≤ i ≤ n. (6.4)

We will prove this by simultaneous induction on k.

Note first that by definition of procedure RGi
, and interpreting φ, ρ1, . . . , ρn as

ϕ, %k
1, . . . , %

k
n, respectively, we get

[[RGi
]]A(ϕ, %k

1, . . . , %
k
n, x, yi) ' G i(ϕ, %

k
1, . . . , %

k
n, x, yi) ' %k+1

i (yi). (6.5)

6. From ACP to Rec 55

By induction hypothesis %k
i v λyi · [[RFi

]]A(ϕ, x, yi), for i = 1, . . . , n. Therefore by
the monotonicity theorem (Thorem 4.9.7) of functions

λyi · [[RGi
]]A(ϕ, %k

1, . . . , %
k
n, x, yi) v

λyi · [[RGi
]]A(ϕ, λy1 · [[RF1]]

A(ϕ, x, y1), . . . , λyn · [[RFn]]A(ϕ, x, yn), x, yi),

for i = 1, . . . , n.
So by (6.5) and Sublemma 6.7 below,

%k+1
i v λyi · [[RFi

]]A(ϕ, x, yi)

which proves (6.4) by induction on k, and hence (6.2).
The reverse direction (6.3) is proved by simultaneous course of values induction

on CompLength(R,ϕ,a). Here, CompLength(R,ϕ,a) denotes the computation
length of procedure R with inputs ϕ and a, defined by

CompLength(R, ϕ, a) = CompLengthA(S , σ)

where R ≡ 〈Df : Dp : Dv : S〉, Df ≡ functions φ where φ is intepreted as ϕ, Dv ≡
in a out b aux c, and σ[a] = a.

Assume that, for 1 ≤ i ≤ n, for all inputs ϕ, x and yi, if
CompLength(RFi

, ϕ, (x, yi)) < l, then

[[RFi
]]A(ϕ, x, yi)↓ =⇒ [[RFi

]]A(ϕ, x, yi) = F i(ϕ, x, yi). (6.6)

Suppose now that for some ϕ, x and yi

[[RFi
]]A(ϕ, x, yi)↓ and CompLength(RFi

, ϕ, (x, yi)) = l.

By Sublemma 6.7 below and [[RFi
]]A(ϕ, x, yi)↓, we have:

[[RFi
]]A(ϕ, x, yi) = [[RGi

]]A(ϕ, λz1 · [[RF1]]
A(ϕ, x, z1), . . . , λzn · [[RFn]]A(ϕ, x, zn), x, yi)

= G i(ϕ, λz1 · [[RF1]]
A(ϕ, x, z1), . . . , λzn · [[RFn]]A(ϕ, x, zn), x, yi).

Clearly, within the computation for [[RFi
]]A(ϕ, x, yi), λzj · [[RFj

]]A(ϕ, x, zj) (for j =
1, . . . , n) will only be applied on some z (say) which is the value of some term t,
however

CompLength(RFj
, ϕ, (x, z)) < CompLength(RFi

, ϕ, (x, yi)) = l.

Therefore for all such z, by induction hypothesis

[[RFj
]]A(ϕ, x, z) = F j(ϕ, x, z)

56 6. From ACP to Rec

This justifies the replacement of λzj · [[RFj
]]A(ϕ, x, zj) by λzj · F j(ϕ, x, zj) within the

computation of [[RFi
]]A(ϕ, x, yi) and hence

[[RFi
]]A(ϕ, x, yi)

= G i(ϕ, λz1 · [[RF1]]
A(ϕ, x, z1), . . . , λzn · [[RFn]]A(ϕ, x, zn), x, yi)

= G i(ϕ, λz1 · F 1(ϕ, x, z1), . . . , λzn · F n(ϕ, x, zn), x, yi))

= F i(ϕ, x, yi),

which proves (6.6) is “True” for arbitrary computation length l by simultaneous
course of value inductionon on l, and hence (6.3).

Sublemma 6.7. Let RFi
and RGi

, 1 ≤ i ≤ n, be the procedures defined in the proof
of Lemma 6.5. Then for arbitrary input ϕ, x and y i,

[[RFi
]]A(ϕ, x, yi) ' [[RGi

]]A(ϕ, λz1 · [[RF1]]
A(ϕ, x, z1), . . . , λzn · [[RFn]]A(ϕ, x, zn), x, yi).

Proof . By definition of the semantics of procedures,

[[RFi
]]A(ϕ, x, yi) '

 σ′[bFi
] if [[bFi

:= PGi
(φ, aFi,1

, aFi,2
)]]Aσ↓σ′

↑ if [[bFi
:= PGi

(φ, aFi,1
, aFi,2

)]]Aσ↑

where σ[aFi,1
] = x, σ[aFi,2

] = yi and φ are intepreted as ϕ.
By the procedure assignment lemma (Lemma 4.7.3),

[[bFi
:= PGi

(φ, aFi,1
, aFi,2

)]]Aσ ' σ{bFi
/[[RP

Gi
]]A(ϕ, [[aFi,1

]]Aσ, [[aFi,2
]]Aσ)}

' σ{bFi
/[[RP

Gi
]]A(ϕ, x, yi)}

Therefore,

[[RFi
]]A(ϕ, x, yi) ' (σ{bFi

/[[RP
Gi

]]A(ϕ, x, yi)})[bF i
] ' [[RP

Gi
]]A(ϕ, x, yi). (6.7)

In other words, [[RFi
]]A = [[RP

Gi
]]A. Now we must just show

[[RP
Gi

]]A(ϕ, x, yi) ' [[RGi
]]A(ϕ, λz1 · [[RF1]]

A(ϕ, x, z1), . . . , λzn · [[RFn]]A(ϕ, x, zn), x, yi).

and the result will follow.
By definition,

[[RP
Gi

]]A(ϕ, x, yi) '

 σ′1[bGi
] if [[SP

Gi
]]Aσ1↓σ′1

↑ if [[SP
Gi

]]Aσ1↑

where σ1[aGi,1
] = x, σ1[aGi,2

] = yi and φ are intepreted as ϕ.

6. From ACP to Rec 57

[[RGi
]]A(ϕ, λz1 · [[RF1]]

A(ϕ, x, z1), . . . , λzn · [[RFn]]A(ϕ, x, zn), x, yi) ' σ′2[bGi
] if [[SGi

]]Aσ2↓σ′2
↑ if [[SGi

]]Aσ↑

where σ2[aGi,1
] = x, σ2[aGi,2

] = yi and φ, ρ1, . . . , ρn are intepreted as
ϕ, λz1 · [[RF1]]

A(ϕ, x, z1), . . . , λzn · [[RFn]]A(ϕ, x, zn) respectively.
Now SP

Gi
and RP

Gi,1
, . . . ,RP

Gi,mi
are the same as SGi

and RGi,1
, . . . ,RGi,mi

, except

that all occurrences of procedure calls c := PGj
(φ, aGi,1

, t) in SP
Gi

are replaced by
function application statements c := ρj(t) in SGi

. Thus, it is sufficient to prove

[[c := PGj
(φ, aGi,1

, t)]]A ' [[c := ρj(t)]]
A.

By the procedure assignment lemma, and since [[aGi,1
]]Aσ = x and φ are intepreted

as ϕ,

[[c := PGj
(φ, aGi,1

, t)]]Aσ ' σ{c/[[RP
Gj

]]A(ϕ, x, [[t]]Aσ)}.

By the semantics of term and assignment statements, and since ρj is the oracle
for λz · [[RFj

]]A(ϕ, x, z),

[[c := ρj(t)]]
Aσ ' σ{c/[[RFj

]]A(ϕ, x, [[t]]Aσ)}.

By (6.7), [[RP
Gj

]]A = [[RFj
]]A, and hence, [[c := PGj

(φ, aGi,1
, t)]]A = [[c := ρj(t)]]

A,
which ends the proof.

Theorem 6.8. ACP(A) ⊆ Rec2(A).

Proof . We prove this by induction on schemes for ACPs . Precisely, we will asso-
ciate, with each ACP scheme, a Rec2 procedure.

For schemes I-III, use Lemma 6.1. For schemes IV-VI, use Lemmas 6.2, 6.3, 6.4,
respectively. For scheme VIII, use Lemma 6.5. Recall Remark 3.1.8 that we can
ignore scheme VII for first-order algebras.

Corollary 6.9. ACP1(A) ⊆ Rec(A).

Proof . For any function f ∈ ACP1(A), it follows directly from Theorem 6.8 that
there is a Rec2 procedure R without function variable in the main procedure, such
that

f = [[R]]A.

58 6. From ACP to Rec

By Theorem 4.10.5, there exist a RelRec procedure R′ with no oracles, such that
for all x : u,

f (x) ' [[R]]A(x) ' [[R′]]A(x).

However, R′ turns out to be a Rec procedure which ends the proof.

Corollary 6.10. ACP∗1(A) ⊆ Rec∗∗∗(A).

Proof . From Theorem 6.9.

Remark 6.11. We prove Lemma 6.4 in order to show that functionals defined by
Rec2 are closed under the individual substitution scheme VI. In the proof we use the
procedure call statement to simulate scheme VI.

To show that functionals defined by Rec2 are closed under the function substitu-
tion scheme VII directly, we will need the following lemma.

Let F ≡ FA, G ≡ GA, and H ≡ HA be functionals, and let F be defined by

F(ϕ, x) ' G(ϕ, λy · H(ϕ, x, y), x).

If G and H are Rec2-computable, then so is F .
Note the form of the procedure call of Rec2, there is obvious way to simulate

function abstraction as input using this simple form procedure call. We need more
general form of procedure call which contains λ abstraction. Let us extend Rec2

to another second-order programming language λRec2 which contains procedure call
statement like

x := P(T, t)

where T ≡ T1, . . . , Tm (m ≥ 0). For 1 ≤ i ≤ m, Ti can be one of following forms.

(1) A primitive function symbol Fk.

(2) A function variable φ declared in current procedure.

(3) A term abstraction λx·t obtained by λ abstraction from a term. If λx·t instantiate
a function symbol ρ, a term ρ(t′) is instantiated by (λx · t)(t′) ' t[x/t′]. t[x/t′]
is a term obtained from t by replacing all occurrences of x by t′.

(4) A procedure abstraction λy · P (φ, x, y). If λy · P (φ, x, y) instantiate a func-
tion symbol ρ, a term ρ(t) is instantiated by (λy · P (φ, x, y))(t), which is
P (φ, x, t). Note that P (φ, x, t) is not term. Therefore, Similar as in Re-
mark 4.10.4 part (1), an assignment statement z := Fk(ρ(t)) is instantiated
by z′ := P (φ, x, t); z := Fk(z

′), where z′ is a newly introduced variables disjoint
from the variables currently declared. Again it is not hard to generalize this
method.

6. From ACP to Rec 59

Then we can prove that functionals defined by λRec2 are closed under the function
substitution scheme VII by using the procedure call of the new form to simulate
scheme VII as follows.

Assump that we have Rec2 procedures RG and RH as follows, such that G =
[[RG]]A and H = [[RH]]A.

RG ≡

functions φ ρ

PG1 ⇐= RG1 , . . . ,PGm ⇐= RGm

in aG out bG aux cG

SG

60 6. From ACP to Rec

RH ≡

functions φ

PH1 ⇐= RH1 , . . . ,PHm ⇐= RHm

in aHx aHy out bH aux cH

SH

We can construct a Rec2 procedure RF as follows

functions φ

PG ⇐= RG, PH ⇐= RH

in aF out bF aux cF

bF := PG(φ, λcF · PH(φ, aF , cF), aF)

[[RF]]A(ϕ, x) ' F (ϕ, x). Again, the proof is obvious and details are omitted.
This also gives the correspondence between ACP(A) and λRec2(A) for second-

order algebra A, i.e. we may be able to prove

ACP(A) ⊆ λRec2(A)

which cannot avoid scheme VII. However this is out of our range.
In short we have to work over λRec2 if we are considering ACP(A) for second-

order algerbra A. As a special case, when A is first-order, Rec2 is good enough for
our purpose.

Chapter 7

From Rec to µPR

In this chapter, we want to prove that, if a function f over A is Rec∗∗∗-computable,
then it is µPR∗ computable. We will first prove that Rec∗∗∗ computability implies
While∗∗∗ computability, and the result then follows from Theorem 4.11.4.

We begin by giving a Gödel numbering of the syntax of Rec procedures and
representations of states. In this way, we can define representation functions for
CompA and CompLength , which we prove to be While∗∗∗ computable.

The proof is parallel to the argument in [TZ00, §4], which this chapter follows
closely, except that we are considering Rec procedures, while [TZ00] considers While
procedures. We just present the differences between them, and interested readers can
refer to [TZ00] for details.

7.1 Gödel numbering of syntax

We assume given a family of numerical codings, or Gödel numberings, of the classes
of syntactic expressions of Σ and Σ∗, i.e., a family gn of effective mappings from ex-
pressions E to natural numbers pEq = gn(E), which satisfy certain basic properties:

• pEq increases strictly with compl (E), and in particular, the code of an expres-
sion is larger than those of its subexpressions;

• sets of codes of the various syntactic classes, and of their respective subclasses,
such as {ptq | t ∈ Term}, {ptq | t ∈ Terms}, etc., are primitive recursive;

• we can go primitive recursively from codes of expressions to codes of their
immediate subexpressions, and vice versa.

61

62 7. From Rec to µPR

In short, we can primitive recursively simulate all operations involved in processing
the syntax of the programming language.

We will use the notation

pTermq =df {ptq | t ∈ Term},

etc., for sets of Gödel numbers of syntactic expressions.

7.2 Representation of states

We are interested in the representation of various semantic functions on syntactic
classes by functions on A or A∗, and in the computability of these representing func-
tions. These semantic functions have states as arguments, so we must first define a
representation of states.

Let x be a u-tuple of program variables. A state σ on A is represented (relative
to x) by a tuple of elements a ∈ Au if σ[x] = a.

The state representing function

Rep A
x : State(A) → Au

is defined by

Rep A
x (σ) = σ[x].

The modified state representing function

Rep A
x ∗ : State(A) ∪ {∗} → B× Au

is defined by

Rep A
x ∗(σ) = (tt, σ[x])

Rep A
x ∗(∗) = (ff, δu

A)

where δu
A is the default tuple of type u in A.

7. From Rec to µPR 63

7.3 Representation of term evaluation

Let x be a u-tuple of variables. Let Term x be the class of all Rec(Σ) program
terms (see §4.1 for definition) with variables among x only, and for all sorts s of
Σ, let Term x,s = Term x,s(Σ) be the class of such terms of sort s. Similarly we
write TermTupx for the class of all term tuples with variables among x only, and
TermTupx,v for the class of all v-tuples of such terms.

The term evaluation function on A relative to x

TE A
x,s : Term x,s × State(A)

�−→ As,

defined by

TE A
x,s(t, σ) = [[t]]Aσ,

is represented by the function

te A
x,s : pTerm x,sq× Au �−→ As

defined by

te A
x,s(ptq, a) = [[t]]Aσ,

where σ is any state on A such that σ[x] = a. (This is well defined, by the functionality
lemma for terms.) We can see that a term t is represented by its Gödel number, and
a state by a tuple of values. In other words, the following diagram commutes:

Term x,s × State(A)

pTerm x,sq× Au As
-

Q
Q

Q
Q

Q
Q

Q
QQs

?

TE A
x,s

te A
x,s

〈gn ,Rep A
x 〉

Further, for a product type v, we will define an evaluation function for tuples of
terms

te A
x,v : pTermTupx,vq× Au �−→ Av

similarly, by

te A
x,v(ptq, a) = [[t]]Aσ.

64 7. From Rec to µPR

7.4 Representation of computation step function

Let AtSt x be the class of Rec(Σ) atomic statements (see §4.5 for definition) with
variables among x only. The atomic statement evaluation function on A relative to
x,

AE A
x : AtSt x × State(A)

�−→ State(A),

defined by

AE A
x (S, σ) = 〈|S|〉Aσ

is represented by the function

ae A
x : pAtSt xq× Au �−→ Au,

defined by

ae A
x (pSq, a) = (〈|S|〉Aσ)[x],

where σ is any state on A such that σ[x] = a. In other words, the following diagram
commutes.

AtSt x × State(A) State(A)

pAtSt xq× Au Au-

-

? ?

AE A
x

ae A
x

〈gn ,Rep A
x 〉 Rep A

x

Next, let Stmt x be the class of Rec(Σ) statements (see §4.1 for definition) with
variables among x only, and define

Rest A
x =df Rest A � (Stmt x × State(A)) :

Then First and Rest A
x are represented by the functions

first : pStmtq → pAtStq

rest A
x : pStmt xq× Au �−→ pStmt xq

7. From Rec to µPR 65

which are defined so as to make the following diagrams commute:

Stmt AtSt

pStmtq pAtStq-

-

? ?

First

first

gn gn

Stmt x × State(A) Stmt x

pStmt xq× Au pStmt xq
-

-

? ?

Rest A
x

rest A
x

〈gn ,Rep A
x 〉 gn

Note that first is a function from N to N, and (unlike rest A
x and most of the

other representing functions here) does not depend on A or x.

Next, the computation step function (relative to x)

Comp A
x = CompA � (Stmt x × State(A)× N) :

Stmt x × State(A)× N �−→ State(A) ∪ {∗}

is represented by the function

comp A
x : pStmt xq× Au × N �−→ B× Au

which is defined so as to make the following diagram commute:

Stmt x × State(A)× N State(A) ∪ {∗}

pStmt xq× Au × N B× Au-

-

? ?

Comp A
x

comp A
x

〈gn ,Rep A
x , idN〉 Rep A

x

We put

comp A
x (pSq, a, n) = (notover A

x (pSq, a, n), state A
x (pSq, a, n))

66 7. From Rec to µPR

with the two “component functions”

notover A
x : pStmt xq× Au × N �−→ B

state A
x : pStmt xq× Au × N �−→ Au

where notover A
x (pSq, a, n) tests whether the computation of pSq at a is over by

step n, and state A
x (pSq, a, n) gives the value of the state (representative) at step n.

7.5 Representation of statement evaluation

The statement evaluation function on A relative to x,

SE A
x : Stmt x × State(A)

�−→ State(A),

defined by

SE A
x (S, σ) = [[S]]Aσ,

is represented by the (partial) function

se A
x : pStmt xq× Au �−→ Au,

defined by

se A
x (pSq, a) = ([[S]]Aσ)[x]

where σ is any state on A such that σ[x] = a. In other words, the following diagram
commutes.

Stmt x × State(A) State(A)

pStmt xq× Au Au-

-

? ?

SE A
x

se A
x

〈gn ,Rep A
x 〉 Rep A

x

7. From Rec to µPR 67

7.6 Representation of procedure evaluation

So let a, b, c be pairwise disjoint lists of variables, with types a : u, b : v and c :
w. Let Proc a, b, c be the class of Rec procedures of type u→ v, with declaration
in a out b aux c. The procedure evaluation function on A relative to a, b, c

PE A
a, b, c : Proc a, b, c × Au �−→ Av

defined by

PE A
a, b, c(R, a) = [[R]]A(a)

is represented by the function

pe A
a, b, c : pProc a, b, cq× Au �−→ Av

defined by

pe A
a, b, c(pRq, a) = [[R]]A(a).

In other words, the following diagram commutes:

Proc a, b, c × Au

pProc a, b, cq× Au Av-

Q
Q

Q
Q

Q
Q

Q
QQs

?

PE A
a, b, c

pe A
a, b, c

〈gn , idAu〉

7.7 Computability of semantic representing func-

tions

By examining the definitions of the various semantic functions in Section 4, we can
infer the relative computability of the corresponding representing functions, as follows.
Note that by Remark 4.6.6, we need to work over A∗.

Lemma 7.7.1. The function first : N → N is primitive recursive, and hence While
computable on AN , for any standard Σ-algebra A.

68 7. From Rec to µPR

Lemma 7.7.2. Let x be a tuple of program variables and A∗ a standard Σ∗-algebra.

(a) ae A∗
x and rest A∗

x are While computable in 〈te A∗
a,s | s ∈ Sort(Σ∗)〉 on A∗.

(b) comp A∗
x , and its two component functions notover A∗

x and state A∗
x , are While

computable in ae A∗
x and rest A∗

x on A∗.

(c) se A∗
x is While computable in comp A∗

x on A∗.

(d) pe A∗
a, b, c is While computable in se A∗

x on A∗, where x ≡ a, b, c.

(e) te A∗
x,s is While computable in peA

x,y,〈〉 on A∗, where y is a variable of sort s, not
in x.

Proof . Note first that if a semantic function is defined from others by structural
recursion on a syntactic class of expressions, then a representing function for the
former is definable from representing functions for the latter by course of values
recursion [TZ88] on the set of Gödel numbers of expressions of this class [TZ00].

The proofs are analogous to those for [TZ00, Lemma 4.2]. Note, for part (b)-(e),
the proofs in [TZ00] are based on the general algebraic operational semantics, without
any assumption about the language, whether it is While or Rec. Thus the results
can be used directly, with the only difference that we are working over Σ∗ algebras.

For part (a), clearly, the function ae A∗
x is primitive recursive on A∗, since we only

have two kinds of atomic statements, skip and concurrent assignment. The function
rest A∗

x is course of value recursive on nat with range sort nat, which is reducible to
primitive recursive on nat (see proof for [TZ00, Lemma 4.2]). Hence, they are While
computable on A∗. Note that a procedure call statement is not an atomic statement,
recall the definition of functions First and Rest A∗

in §4.6 that First(S) = skip
and Rest A∗

(S, σ) = Ŝi.

Lemma 7.7.3. The following are equivalent.

(i) For all x and s, the term evaluation representing function te A∗
x,s is While com-

putable on A∗.

(ii) For all x, the atomic statement evaluation representing function ae A∗
x , and the

representing function rest A∗
x , are While computable on A∗.

(iii) For all x, the computation step representing function comp A∗
x , and its two com-

ponent functions notover A∗
x and state A∗

x , are While computable on A∗.

(iv) For all x, the statement evaluation representing function se A∗
x is While com-

putable on A∗.

7. From Rec to µPR 69

(v) For all a, b, c, the procedure evaluation representing function pe A∗
a, b, c is While

computable on A∗.

Proof . From the transitivity lemma of relative computability (cf. [TZ00, Lemma
3.32]), and Lemma 7.7.2.

7.8 Rec∗∗∗ computability =⇒ µPR∗ computability

Lemma 7.8.1. The term evaluation representing function on A∗ is While com-
putable, and hence, µPR definable on A∗.

Proof . See [TZ88, TZ00].

Theorem 7.8.2. (a) Rec(A) ⊆ While∗∗∗(A),

(b) Rec∗∗∗(A) ⊆ While∗∗∗(A).

Proof . (a) Suppose f is Rec computable on A. Then there is a Rec procedure R
such that f ' [[R]]A. Suppose that

R ::= 〈Dp : Dv : S〉 and Dv ::= in a out b aux c.

It follows from Lemmas 7.7.3 and 7.8.1 that there exist a function pe A∗
a, b, c which

is While computable on A∗, actually While∗∗∗ computable on A, since the input
and output variables are simple. Substituting the variable for the Gödel number
in the While∗∗∗ procedure for pe A∗

a, b, c by the numeral for the Gödel number of
R, we obtain the While∗∗∗ procedure for [[R]]A, i.e. f .

(b) By part (a), Rec∗∗∗(A) ⊆ While∗∗∗∗∗∗(A) = While∗∗∗(A).

Since we can effectively code a double starred object (i.e. two-dimensional array)
of a given sort as a single starred (or one-dimensional array) of the same sort
[TZ00, Remark 2.31].

Corollary 7.8.3. (a) Rec(A) ⊆ µPR∗(A),

(b) Rec∗∗∗(A) ⊆ µPR∗(A),

Proof . From Theorem 7.8.2 and 4.11.4.

Chapter 8

Conclusion and future work

We have proved that

ACP∗1(A) = µPR∗(A)

via the following circle of inclusions for N-standard many-sorted algebras A.

ACP∗1(A) Rec∗∗∗(A)

µPR∗(A) While∗∗∗(A)�

-

6

?

Some questions which arise from our work are:

8.1 Simultaneous vs. simple LFP scheme

The ACP schemes introduced in §3.1 differ from those in [Fef96] by using simultane-
ous least fixed points scheme instead of simple least fixed point scheme (cf. Remark
3.1.5). An interesting question is:

In the absence of product types, can our ACP∗ schemes be reduced to
Feferman’s version, i.e. with simple (not simultaneous) least fixed points?

70

8. Conclusion and future work 71

8.2 Necessity of auxiliary array sorts

Another question is : Can we prove that

ACP1(A) = µPR(A)

for N-standard many-sorted algebras A without arrays?
In connection with this, we have shown that µPR(A) ⊆ ACP1(A) and

ACP1(A) ⊆ Rec (Theorems 5.5 and 6.9). The remaining question is, whether
Rec ⊆ µPR(A). In Remark 4.6.6, we discuss the difficulty in avoiding the use of
arrays when defining the semantics of Rec procedures. Therefore, Rec ⊆ µPR(A)
is unlikely to be true; however, we lack a proof.

8.3 Second-order version of equivalence results

Since ACP∗ is a second-order system, and µPR∗ is first-order, in order to prove
equivalence we have to modify one or the other. We chose to work with a first-
order version ACP∗1 of ACP∗. An alternative (and perhaps better) way would
be to work with second-order versions of µPR∗ and While∗∗∗, i.e. RelµPR∗ and
RelWhile∗∗∗ containing function parameters (cf. the system RelRec in Chapter 4)
and then prove the complete circle of inclusions in Figure 1.1 for second-order systems.
Our results for the first-order systems would then follow easily.

Appendix A

Denotational semantics of

statements

In this chapter, we develop the denotational semantics of statement of Rec proce-
dures. This chapter is independent of the rest of the thesis. It is, actually, a side
issue of our research.

A.1 Complete partially ordered sets and least

fixed points

In this section we will define a series of mathematic concepts and their properties,
which provide the basis for defining the denotational semantics of statements, as well
as the justification for ACP schemes. All definitions and theorems in this section
can be found in [dB80]. We omit most proofs. Interested people can refer to [dB80].

We begin from the basic concept of partially ordered set.

Definition A.1.1 (Partially ordered set). Let C be an arbitrary set. A partial order
v on C is a subset of C × C (we write x v y instead of (x ,y) ∈ v) which satisfies

(a) x v x (reflexivity).

(b) If x v y and y v x then x = y (antisymmetry).

72

A. Denotational semantics of statements 73

(c) If x v y and y v z then x v y (transitivity).

Definition A.1.2 (Least upper bound). Let C be arbitrary set and X ⊆ C .

(a) z ∈ C is called the least upper bound (lub) of X if

(i) x v z for all x ∈ X ,

(ii) for all y ∈ C , if x v y for all x ∈ X , then z v y .

The lub of a set X will be denoted by tX .

(b) The lub of a sequence x 0, x 1, . . . is denoted by
∞
t

i=0
x i.

Definition A.1.3 (Chains). A chain on (C ,v) is a sequence x 0, x 1, . . . such that
x i v x i+1, for i = 0, 1,

Definition A.1.4 (Complete partially ordered sets). A complete partially ordered
set (cpo) is a set C together with a partial order v which satisfies the following two
requirements.

(a) There is a least element with respect to v, i.e. an element ⊥ such that ⊥ v x
for all x ∈ C .

(b) Each chain (x i)
∞
i=0 has a lub

∞
t

i=0
x i.

Definition A.1.5 (Monotonic functions). Let (C 1, v1) and (C 2, v2) be partially
ordered sets. A function f : C 1 → C 2 is called monotonic if, for each x , y ∈ C 1,
if x v1 y , then f (x) v2 f (y).

Definition A.1.6 (Fixed point). Let C be a cpo, f : C → C , and x ∈ C .

(a) x is called a fixed point of f if f (x) = x .

(b) x is called the least fixed point of f , written LFP(f), if x is a fixed point of f , and
moreover, for each fixed point y of f , x v y .

Definition A.1.7 (Continuous functions). Let (C 1, v1) and (C 2, v2) be cpo’s. A
monotonic function f : C 1 → C 2 is called continuous if, for each chain (x i)

∞
i=0 of

elements in C 1,

f (
∞
t

i=0
x i) v

∞
t

i=0
f (x i).

74 A. Denotational semantics of statements

Lemma A.1.8. Let C be a cpo. Let f : C → C be monotonic. Then f is
continuous iff, for each chain (x i)

∞
i=0 in C ,

f (
∞
t

i=0
x i) =

∞
t

i=0
f (x i).

Theorem A.1.9. Let C be a cpo. Let f : C → C be continuous. f has a least
fixed point, such that

LFP(f) =
∞
t

i=0
f i(⊥).

Theorem A.1.10. Let C 1, . . . , C n be cpo’s. Let f i : C 1 × · · · × C n → C i

be continuous, for i = 1, . . . , n. Then the vector of functions [f 1, . . . , f n] has a
simultaneous least fixed point, such that

LFP(f 1, . . . , f n) =
∞
t

k=0
〈x k

1, . . . , x
k
n〉

where, for i = 1, . . . , n,

x 0
i = ⊥C i

x k+1
i = f i(x

k
1, . . . , x

k
n).

A.2 Denotational semantics of statements

In this section we will define the denotational semantics of a statement S, and then, we
will justify this definition by proving its equivalence with the operational semantics.
The definitions and proofs are analogous to those in [TZ88, §3.1.8-3.1.10], which
consider recursive calls without parameters.

First we define a partial order on the set of partial state transformations on A.

Definition A.2.1. (a) StateTrans(A) is the set of all partial state transformations
on A.

(b) For ϕ1, ϕ2 ∈ StateTrans(A), ϕ1 vA ϕ2 iff ∀σ ∈ State(A),

ϕ1(σ) ↓ ⇒ ϕ2(σ) ↓ and ϕ2(σ) = ϕ1(σ).

Lemma A.2.2. vA is a partial order on StateTrans(A).

Lemma A.2.3. The structure (StateTrans(A),vA) is a cpo.

A. Denotational semantics of statements 75

Proof . We need to show that (StateTrans(A), vA) has a least element and that
each chain in (StateTrans(A), vA) has a lub.

(a) The totally undefined transformation, denoted by ϕ⊥, where ϕ⊥(σ)↑ for all σ, is
clearly the vA-least element.

(b) Let ϕ0 vA ϕ1 vA . . . be any vA chain. We define ϕ =
∞
∪

n=0
ϕn, i.e. for all σ and

σ′,

ϕ(σ)↓σ′ ⇔ for some n, ϕn(σ)↓σ′

It is easy to check that ϕ is the desired lub of the chain.

Now we define the semantics of statement as the lub of a sequence of partial state
transformation [[S]]A

∗∗∗

k , where, for each k ≥ 0, [[S]]A
∗∗∗

k is the approximate meaning of S
given by interpreting procedure calls of depth k or more simply as diverging.

Definition A.2.4. [[S]]A
∗∗∗

k , for k = 0, 1, . . . , is defined by induction on (k, compl (S)),
where compl (S) is the complexity of S, e.g. the length of S.
Base case (k = 0).

(a) For S atomic,

[[skip]]A
∗∗∗

0 σ = σ

[[x := t]]A
∗∗∗

0 σ = σ{x/[[t]]Aσ}.

(b)

[[S1;S2]]
A∗∗∗

0 σ ' [[S2]]
A∗∗∗

0 ([[S1]]
A∗∗∗

0 σ).

(c)

[[if b then S1 else S2 fi]]A
∗∗∗

0 σ '

 [[S1]]
A∗∗∗
0 σ if [[b]]A

∗∗∗
0 σ = tt

[[S2]]
A∗∗∗
0 σ if [[b]]A

∗∗∗
0 σ = ff

(d)

[[x := Pi(t)]]
A∗∗∗

0 σ ↑

76 A. Denotational semantics of statements

Induction step. For cases (a), (b) and (c), [[S]]A
∗∗∗

k is just like [[S]]A
∗∗∗

0 . For the last case,

[[x := Pi(t)]]
A∗∗∗

k+1σ ' [[Ŝi]]
A∗∗∗

k σ (cf. Figure 4.1).

Lemma A.2.5. The sequence [[S]]A
∗∗∗

0 , [[S]]A
∗∗∗

1 , . . . is vA-increasing.

Proof . Show that [[S]]A
∗∗∗

k vA[[S]]A
∗∗∗

k+1 by induction on (k, compl (S)).

This lemma justifies the following definition.

Definition A.2.6 (Denotational semantics). We define the denotational semantics
as a partial state transformation

[[S]]A
∗∗∗

den =
∞
t

k=0
[[S]]A

∗∗∗

k =
∞
∪

k=0
[[S]]A

∗∗∗

k .

The following shows that denotational semantics also satisfy the usual desirable
i/o properties.

Theorem A.2.7. (a) For S atomic, [[S]]A
∗∗∗

den = 〈|S|〉A
∗
, i.e.,

〈|skip|〉A
∗
σ = σ

〈|x := t|〉A
∗
σ ' σ{x/[[t]]A∗

σ}.

(b)

[[S1;S2]]
A∗∗∗

denσ ' [[S2]]
A∗∗∗

den([[S1]]
A∗∗∗

denσ).

(c)

[[if b then S1 else S2 fi]]A
∗∗∗

denσ '


[[S1]]

A∗∗∗

denσ if [[b]]A
∗∗∗

denσ = tt

[[S2]]
A∗∗∗

denσ if [[b]]A
∗∗∗

denσ = ff

↑ if [[b]]A
∗∗∗

denσ↑.

(d)

[[x := Pi(t)]]
A∗∗∗

denσ ' [[Ŝi]]
A∗∗∗

denσ.

A. Denotational semantics of statements 77

Proof . For part (a), (b) and(c), the equation hold for [[S]]A
∗∗∗

k (k = 0, 1, . . .) by defini-
tion. So they hold for [[S]]A

∗∗∗

den, by taking suprema.
For part(d),

[[x := Pi(t)]]
A
den =

∞
∪

k=0
[[x := Pi(t)]]

A∗∗∗

k by Definition A.2.6

=
∞
∪

k=0
[[x := Pi(t)]]

A∗∗∗

k+1 by Lemma A.2.5

=
∞
∪

k=0
[[Ŝi]]

A∗∗∗

k by Definition A.2.4

=[[Ŝi]]
A
den.

Now we prove the equivalence of the operational and denotational semantics of
statements.

Theorem A.2.8. [[S]]A
∗

= [[S]]A
∗∗∗

den

Proof . We need to prove two directions.

(a) [[S]]A
∗ vA [[S]]A

∗∗∗

den

If [[S]]A
∗
σ diverges, there is nothing to prove. If [[S]]A

∗
σ converges, we prove,

by induction on CompLengthA∗
(S, σ), that [[S]]A

∗∗∗

den converges and [[S]]A
∗
σ =

[[S]]A
∗∗∗

denσ.

(b) [[S]]A
∗∗∗

den vA [[S]]A
∗

By Definition A.2.6, it is sufficient to prove that for all S and for all k,
[[S]]A

∗∗∗

k vA [[S]]A
∗
.

We show it by induction on (k, compl (S)). We consider the following cases:

(i) S atomic:
It follows the Definition A.2.4 and Theorem 4.6.1 that

[[S]]A
∗∗∗

k = 〈|S|〉A
∗

= [[S]]A
∗

(ii) S ≡ S1;S2

Since compl (S1) < compl (S) and compl (S2) < compl (S), by induction
hypothesis, we have [[S1]]

A∗∗∗

k vA [[S1]]
A∗

and [[S2]]
A∗∗∗

k vA [[S2]]
A. It follows that

[[S1;S2]]
A∗∗∗

k vA [[S1;S2]]
A∗

, i.e. [[S]]A
∗∗∗

k vA [[S]]A.

(iii) S ≡ if b then S1 else S2 fi
Similar to (ii).

78 A. Denotational semantics of statements

(iv) S ≡ x := Pi(t)

[[x := Pi(t)]]
A∗∗∗

k = [[Ŝi]]
A∗∗∗

k−1 (by Definition A.2.4)

vA [[Ŝi]]
A∗

(by induction hypothesis)

= [[x := Pi(t)]]
A∗

(by Theorem 4.6.1)

Bibliography

[dB80] Jaco de Bakker. Mathematical Theory of Program Correctness. Prentice-
Hall International, 1980.

[Fef77] Solomon Feferman. Inductive schemata and recursively continuous func-
tionals. In R. O. Gandy and M. Hyland, editors, Logic Colloquium ’76,
pages 373–392. North-Holland, Amsterdam, 1977.

[Fef92a] Solomon Feferman. A new approach to abstract data types, i: Informal
development. Mathematical Structures in Computer Science, 2:193–229,
1992.

[Fef92b] Solomon Feferman. A new approach to abstract data types, ii: Com-
putability on adts as ordinary computation. In Computer Science Logic,
pages 79–95. Springer-Verlag, 1992.

[Fef96] Solomon Feferman. Computation on abstract data types. the extensional
approach, with an application to streams. Annals of Pure and Applied
Logic, 81:75–113, 1996.

[Kle52] S. C. Kleene. Introduction to Metamathematics. North-Holland, Amster-
dam, 1952.

[Mos84] Y. N. Moschovakis. Abstract recursion as a foundation for the theory of
recursive algorithms. In Computation and Proof Theory, pages 289–364.
Springer-Verlag, 1984.

[Mos89] Y. N. Moschovakis. The formal language of recursion. Joutnal of Symbolic
Logic, 54:1216–1252, 1989.

[MSHT80] J. Moldestad, V. Stoltenberg-Hansen, and J. V. Tucker. Finite algorithmic
procedures and inductive definibility. Mathematica Scandinavica, 46:62–
76, 1980.

79

80 BIBLIOGRAPHY

[MT92] K. Meinke and J.V. Tucker. Universal algebra. In Handbook of Logic in
Computer Science, volume 1. Oxford University Press, 1992.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. The MIT Press, 1977.

[TZ88] J.V. Tucker and J.I. Zucker. Program Correctness over Abstract Data
Types, with Error-State Semantics. North-Holland, 1988.

[TZ93] J.V. Tucker and J.I. Zucker. Computable functions on stream algebras.
In H. Schwichtenberg, editor, NATO Advanced Study Institute, Interna-
tional Summer School on Proof and Computation, Marktoberdorf, Ger-
many, pages 341–382. Springer-Verlag, 1993.

[TZ00] J.V. Tucker and J.I. Zucker. Computable functions and semicomputable
sets on many-sorted algebras. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 5,
pages 317–523. Oxford University Press, 2000.

[TZ02] J.V. Tucker and J.I. Zucker. Abstract computability and algebraic speci-
fication. ACM Transactions on Computational Logic, 3:279–333, 2002.

[Win93] Glynn Winskel. Th Formal Semantics of Programming Languages: An
Introduction. The MIT Press, 1993.

