Efficient Encoding of Mathematical Knowledge

Jacques Carette WMI

Efficient Encoding of Computational Mathematical Knowledge

Jacques Carette WMI

Overview

- Classical representations
- Efficiency
- Representation by programs
- Implicit representations
- Mixed representations

Classical representations

- Expression trees
- DAGs
- Examples

- Computational
- Programmer
- Semantic
- User

- Computational
 - Time & space
- Programmer
 - Expressivity of language
 - Richness of library

- Semantic
 - Richness of encoding
- User
 - Usability!
 - Usefulness

- Primarily concerned with
 - Requirements for semantic efficiency
 - Effects of lack of semantic efficiency

Representation by programs

• Examples...

Representation by programs

- Kolmogorov complexity!
- Further (selected) examples
 - Gaia/combstruct
 - polyGCD (black box)
 - Linbox (black box)
 - Kronecker & Projective Noether

 $\square \pi$

- RootOf($Z^5-3*Z+1,1.2$)
- exp(z)

- BesselJ(1,z)
 - Solution of 2nd order LODE
 - Enough information to generate:
 - derivative
 - series
 - floating point evaluation
 - continuity checking
 - some integration
 - and other codes!

- Software architecture benefit
 - Code for ~50 functions for ~10 pieces of functionality can be generated automatically
 - Code for unnamed functions too

• Defn: "solution to this problem"

Mixed representations

• 1 example

Conclusion

• Non-standard representations for knowledge promise (and often deliver) large gains in "efficiency"