The MathScheme Project

William M. Farmer McMaster University

13 June 2002

The MathScheme Project

• **Objective**: To develop a new approach to mechanized mathematics in which computer theorem proving and computer algebra are integrated and generalized

MathScheme Group at McMaster:

- Bill Farmer (project leader)
- Wolfram Kahl
- Rheda Khedri
- Mark Lawford
- Martin v. Mohrenschildt
- Dave Parnas
- Jeff Zucker
- Web site: http://imps.mcmaster.ca/mathscheme/

Project Stages

1. Infrastructure:

- Develop a formal framework for managing mathematics
- Develop a microkernel for a mechanized mathematics system based on the framework
- Build on the ideas embodied in IMPS and Axiom
- 2. **Application:** Pursue a series of **applications** that require support for formal deduction and symbolic computation
- 3. **Long Range:** Build an **interactive mathematics laboratory** that will support a wide range of mathematical activity

Example: Axiomatic Theory

- Let **PA** be the following axiomatic theory of Peano arithmetic:
 - Background logic: Second-order logic (SOL)
 - Language: Language of SOL with constants 0, $S_{ij} = 0$
 - Axioms:

```
\forall x . \neg (S(x) = 0) (0 is not a successor) 
 \forall x, y . S(x) = S(y) \supset x = y (S is injective) 
 \forall P . [P(0) \land (\forall x . P(x) \supset P(S(x)))] \supset \forall x . P(x) (induction axiom)
```

- +, *, < are definable in **PA**, but simple computations require many applications of the axioms
- An infinite number of new axioms are need to define 1,2,3,... in **PA**

Example: Algorithmic Theory

- Let NNA be the following algorithmic theory of natural number arithmetic:
 - Background logic: First-order logic (FOL)
 - **Language**: Language L of FOL with constants $0, 1, 2, \ldots, +, *, =, <, \text{ true, and false}$
 - Algorithms:
 - st eval computes the numeral that "equals" a ground term of L
 - st reduce computes the truth value of a ground equation or inequality of L
- Computations of ground expressions are limited in efficiency only by the efficiency of eval and reduce
- Abstract expressions cannot be computed or proved using NNA

Principal Ideas Behind the Framework

- Facilitate the full mathematics process of creating, exploring, and connecting mathematical models
- Allow both formulas and algorithms to be assumed as axioms
- Merge deduction and computation into a single activity (called derivation)
- Use the **little theories method** to organized mathematics
- Allow different background logics to be used simultaneously

Transformers

- A **transformer** Π from L_1 to L_2 is an algorithm that implements a partial function $\pi: \mathcal{E}_1 \rightharpoonup \mathcal{E}_2$
- Examples of transformers:
 - Rules of inference
 - Computational rules
 - Translations between biform theories

Formuloids

- ullet A assertional formuloid heta of L is a formula A of L
 - $-\operatorname{span}(\theta) = \{A\}$
 - operation(θ) = $\Pi_{A \mapsto \text{true}}$
- \bullet An equational formuloid θ of L is a transformer Π from L to L
 - $-\operatorname{span}(\theta) = \{E = \Pi(E) \mid E \in \mathcal{E} \text{ and } \Pi(E) \text{ is defined} \}$
 - operation(θ) = Π

Biform Theories

- A **biform theory** is a triple $T = (K, L, \Gamma)$ where:
 - K is an admissible background logic
 - -L is a language of **K**
 - Γ is a set of formuloids of L called the **axiomoids** of T
- The axiomoids are used to specify:
 - The basic objects and concepts of T
 - The basic deduction and computation rules of ${\it T}$
- ullet T can be viewed as being simultaneously an axiomatic theory and an algorithmic theory
 - The set of **axioms** of T is the union of the spans of the axiomoids of T
 - The set of **algorithms** of T is set of operations of the axiomoids of T

Interpretations

- An **interpretation** of T_1 in T_2 is a transformer Φ from L_1 to L_2 that:
 - Satisfies certain syntactic conditions
 - Maps theorems of T_1 to theorems of T_2
- Interpretations are a powerful mechanism for connecting biform theories with similar structure
 - Serve as conduits for passing information (in the form of theorems) from abstract theories to more concrete theories or equally abstract theories
 - Provide the basis for the little theories method

Theoremoids

- A **theoremoid** θ of T is a formuloid of L such that $T \models A$ for each $A \in \text{span}(\theta)$
- A transformational theoremoid is a sound deduction or computational rule
- How are new transformational theoremoids constructed?
 - Generated automatically from theorems
 - Build from other theoremoids using combinators
 - Instances of generic theoremoids

Conclusion

- ullet A biform theory T is simultaneously an axiomatic theory and an algorithmic theory
- ullet The axiomoids of T are the assumptions of T
 - They are expressed both declaratively and procedurally
- ullet The theoremoids of T are deduction and computation rules for T
 - Derivations are created by applying theoremoids
 - New theoremoids are constructed from theorems and theoremoids of T via techniques that guarantee soundness

Challenges for MKM

- 1. Sharing mathematical knowledge
- 2. Expanding the MKM community
- 3. Ownership of mathematical knowledge
- 4. Internal representation
- 5. External presentation
- 6. Organization of mathematical knowledge
- 7. Users and applications
- 8. Improving the accessibility of tools
- 9. Certification