Integration of Formal Mathematical Theories A Challenge for NA-MKM

MICHAEL KOHLHASE

School of Computer Science

Carnegie Mellon University

http://www.cs.cmu.edu/~kohlhase

Demo at http://mbase.mathweb.org:8080/mbase

MBASE, a Knowledge Base of Math. Theories

This has been attempted before!

(Principia Math., Bourbaki,...)

This time stress the infrastructure aspect

(Open Source Model)

enable easy and powerful browsing

(personalization, MATHML)

high-level (semantic) search

(commutativity: X(Y,Z) = X(Z,Y))

distributed Internet support:

(e.g. local working KB vs. archive KB)

version management and concurrent access (like CVS for cooperation)

offer added-value inference services

(enlist MATHWEB)

large-scale structure for navigation & reuse (theory graph, inheritance)

MBASE as a MATHWEB component. (not only for human consumption)

situated vs. stateless communication of mathematical services

MBASE and the Semantics of communicated Objects

Why is this an issue?

(preserving the meaning across transport)

e.g. the Ricci-Tensor \mathcal{R}^{ij} differs between schools of physicists by a factor of 2!

Is this unit in psi or erg?

(Remember the Mars orbiter †1999)

OPENMATH/C-MATHML approach: Objects as logical formulae

sufficient: semantics of constants

(that of var, appl, bind is well-known)

specify semantics by reference to joint ontology

(⇒ OMDoc)

MBASE as an ontology-server for MATHWEB

establishes unique reference for objects

serves knowledge on demand

(distinguished URI)

(just-in-time math)

offers dynamic communication caches

(local context)

seamless integration of local and global context

Problems: Caching, version management, distributed garbage collection

The MBASE System: Architecture

MATHWEB for distribution

(MOZART-internal and XML-RPC)

OMDoc for Communication

(XML/OPENMATH/MathML-based)

Precise document model allows to decouple interface development

RDBMS for persistence

(large amount of data)

currently: MYSQL (archive server) JDoM impl. (scratch-pad/cache)

- encode mathematical structure in database model
- use Oz pickling to store MOZART data structures as strings in DB.
- use concurrent constraints in MOZART to manipulate logic terms.
- INKA for management of theory change
- management of inheritance structure, proof obligations
- (concurrent access and update) (like CVS, but object-level diff/patch)

4

An Experiment in Data/Knowledge Integration

- Goal: connect various theorem proving systems to MBASE
- Systems: Ω MEGA, INKA, PVS, λ Clam, TPS, IMPS and CoQ
- Similarities:

(all descendents of AUTOMATH)

- TPS, PVS, Ω MEGA, λ Clam, and IMPS based on simply typed λ -calculus.
- ΩMEGA, INKA, IMPS and Pvs have higher sort concepts.
- Pvs and Coq allow dependent- and record types
- Differences:

(serving different purposes)

- INKA, Pvs, and Coo support inductive definitions, (but by very different mechanisms and on differing levels)
- IMPS supports partial functions, theory interpretations
- Coo is constructive, rest classical.

The Experiment (continued)

Formula level

- (system-specific representation languages)
- Use <OMS cd="sys" name="op"> for logical operators
- specify the representation language of sys by <theory id="sys">
- use similarity among systems to define common language cores
- communication immediate in common fragments!
- Statement level

(Def,Thm,Proot,...)

- OMDoc1.1 sufficient for Ω MEGA, INKA, PVS, λ Clam, TPS, IMPS
- <definition> too weak for Coo (mutuality)

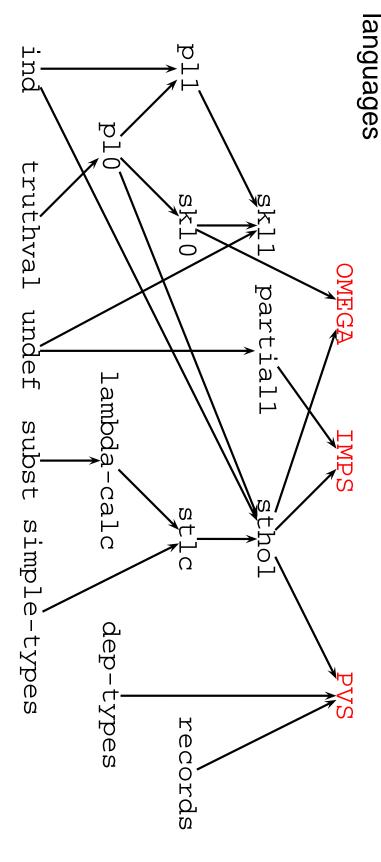
(OMDoc2.0)

Theory level

- (Development Graph)
- OMDoc1.1 sufficient for Ω MEGA, INKA, CoQ, λ Clam, TPS, IMPS
- Pvs has param. theories, quantification over parameters (breaks OpenMath)

A standardized Hierarchy of logical languages

Idea: Provide a standardized, well-documented set of "names" for logical



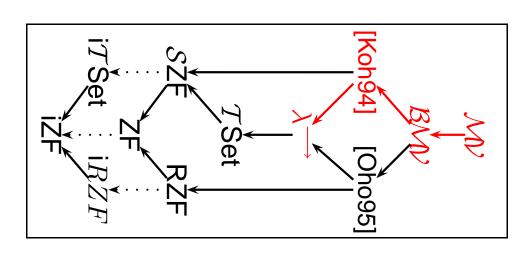
This hierarchy is based on literal inclusion

- (can we wo better?)
- MBASE: Conservative Extension Principle with Logic Morphisms (Extend the Hierarchy with a level of proofs.)

_

Logic Morphisms

- Definition: Logical System $\mathcal{S} = (\mathcal{L}, \mathcal{C})$,
- L language (set of well-formed formulae)
- ${\cal C}$ calculus (set of inference rules)
- − \mathcal{D} : $\mathcal{H} \vdash_{\mathcal{C}} \mathbf{A}$ is a \mathcal{C} -derivation of \mathbf{A} from \mathcal{H}
- Definition: Logic Morphism $\mathcal{F}:\mathcal{S}\longrightarrow\mathcal{S}'$,
- Language Morphism $\mathcal{F}^{\mathcal{L}}:\mathcal{L}\longrightarrow\mathcal{L}'$
- Calculus Morphism $\mathcal{F}^{\mathcal{D}}$ from \mathcal{C} -derivations to $\mathcal{D}: \mathcal{H} \vdash_{\mathcal{C}} \mathbf{A}$, we have $\mathcal{F}^{\mathcal{D}}(\mathcal{D}): \mathcal{F}^{\mathcal{L}}(\mathcal{H}) \vdash_{\mathcal{C}'} \mathcal{F}^{\mathcal{L}}(\mathbf{A})$. \mathcal{C}' -derivations, such that for any \mathcal{C} -derivation
- Logic morphisms transport proofs!



Relativization = Morphism from $\mathbb{S}FOL$ to FOL

- Signature: $\mathcal{R}([+::\mathbb{N} \to \mathbb{N} \to \mathbb{N}]) = \forall X, Y \mathbb{N}(X) \land \mathbb{N}(Y) \Rightarrow \mathbb{N}(X+Y)$.
- Formulae: $\mathcal{R}(\forall X_{\mathbb{B}}.A) = \forall X.B(X) \Rightarrow \mathcal{R}(A)$

• Sorts:
$$\mathcal{R}\left(\frac{\mathbf{A}.:\mathbb{B}\to\mathbb{C}\quad \mathbf{B}.:\mathbb{B}}{\mathbf{A}\mathbf{B}.:\mathbb{C}}\right) = \frac{\forall X.\mathbb{B}(X) \Rightarrow \mathbb{C}(\mathbf{A}X)}{\mathbb{B}(\mathbf{B}) \Rightarrow \mathbb{C}(\mathbf{A}\mathbf{B})}$$

• Proofs:
$$\mathcal{R}\left(\frac{\forall X_{\mathbb{B}}.A \quad B:\mathbb{B}}{[B/X]A}\right) = \frac{\forall X_{\mathbb{B}}(X) \Rightarrow \mathcal{R}(A)}{\mathbb{B}(\mathcal{R}(B)) \Rightarrow \mathcal{R}([B/X]A) \rightarrow \mathbb{B}(B)}$$

Integrating Theories: e.g. sets in PVS vs \(\Omegamma\) MEGA

Which symbols are defined? How do we map them?

PVS	Ω MEGA	PVS	Ω MEGA
set		subset?	subset
member	in		subset2
empty?	empty	strict_subset?	proper-subset
emptyset	emptyset		superset
nonempty?	not-empty	union	union
full?			union2
fullset			union-over-collection
singleton?	singleton	intersection	intersection
singleton			intersection-over-coll.
complement	set-complement	disjoint?	misses
difference	setminus	meets	
symmetric_difference		add	add-one
	exclunion	remove	

Integrating Theories: PVS vs ΩMEGA

Further PVS symbols: every, some, the, choose, rest

(defined in base.thy in $\Omega MEGA$)

Further OMEGA symbols: powerset, set=, strange-ho-abbr, pair, cartesian-product, first-of-pair, second-of-pair,

pair-operation,

(in type system)

has-fixpoint, is-constant-map, is-identity, (with functions?)

finite-set

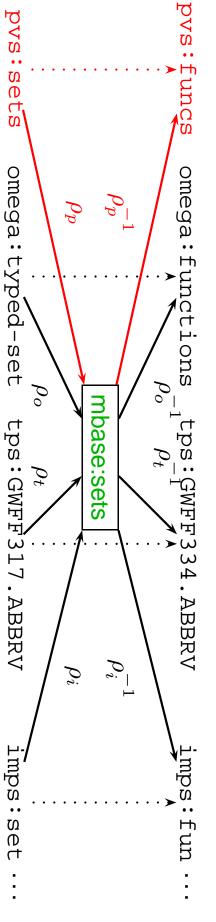
(finite_set.pvs)

Problems:

- (all of the systems have grown organically)
- differing names, definitions, theory boundaries
- (differing intuitions?)
- artefacts of constraints imposed by the system
- (file lengths, etc.)
- part of the theories hard-coded into the system (base logic, notations)
- no theory organization at all
- (e.g. TPs has flat library with abbrevs.)

Strategies for Theory Integration

Idea: Use theory interpretations to establish inclusion into union theory



- move all the results to the union theory via theory-interpretations ρ_* , collect the results there (may need to simplify)
- repeat recursively, until done
- Problems: needs a lot of manual labor, users must rel-learn? (expensive)
- Benefits: true interoperability of math software systems re-use the work of others (let's stand on the shoulders of giants)

Challenge: It is time for another stab at QED

- A mathematical Infrastructure based on Communication and Knowledge
- MATHWEB as a framework for distributed web-based math. services
- MBASE as a knowledge base with added-value services
- Many other systems I have not mentioned

(but not forgotten)

Standardized communication languages

(based on XML)

gives us the beginning of an integrated framework for MKM.

- Challenge: Avoid fragmentation!
- Concentrate on Interoperability (transfer

(translation + migration vs. prescription)

"Open-Knowledge" model

(instead of local fiefdoms)

– Embrace "Web Services" idea

(distribution as a way to unite)

Let us work together to create a great resource!

