Authoring Mathematical Knowledge

Bruce R. Miller NIST

2 Issues

- Extracting mathematical content (formula level)Challenging enough...
- Determining it's role & interrelations.
 (document level)
 Useful for validation.
 Hope to learn more here.

Authoring for MKM: Ideal?

- Integrate document creation with derivation/proof.
- Valid, machine readable

But, for DLMF

- Are we there yet?
- Dozens of authors using compatible tools?
- What they *know* vs. willing to *prove*?

Authoring for MKM: LATEX?

- A good choice...
 - Author familiarity, convenience (for some)
 - Logical document structure (sort of).
 - Expressive for mathematics
 - Beautiful typography!
- and a bad one.
 - Needs more structure
 - Quirky computational model
 - Ambiguous math markup

LATEXML Goals

- \LaTeX \Longrightarrow XML Transformer
 - General purpose
 - LaTeX-like DTD (or other?)
 - Math to MathML, OpenMath
- Closely mimic T_EX behaviour.
- Lossless
- Extensible, not necessarily in T_EX.
- Adaptable.
- ... and finish DLMF project!

Mimic TeX's Digestive Tract

- Mouth *Tokenizes*
- Gullet *Expands*
- Stomach *Digests* but Augmented!
- Intestines *Builds* Document Tree
- Postprocessing per application
 - math parsing/analysis, math images,
 - graphics, table rewriting, ...

Practical Math?

- DO allow author macros
- DO cope with quirky T_EX \frac12, a^xy vs. a^{x}y
- DON'T pretend to 'understand' all legacy T_EX. (at least, not without additional info)
- DON'T require completely explicit \add{a}{b}
- DO preserve any semantic clues.
- DO encourage markup that reduces ambiguity
- DO allow author/document specific clarification of notations

Math: Middle Road

- Let LATEXML deal with TeX quirks.
- Acts as structure-preserving Lexer.
- Bulk of math (for us) not so bad
- Use infix parser in postprocessing.
- Focus on ambiguities
 - author/document-specific declarations
 - higher-level markup.

Examples: Declarations

```
With
   DefSymbol('U','U','FUNCTION');
Now U(x) gives U(x), as before,
And, after parsing
  <qqAMX>
    <XMTok meaning='U' role='FUNCTION'/>
    <XMTok meaning='x' role='ID'/>
  </XMApp>
instead of
  <qqAMX>
    <XMTok meaning='InvisibleTimes'/>
    <XMTok meaning='U' role='ID'/>
    <XMTok meaning='x' role='ID'/>
  </XMApp>
```


Examples: Higher Level Markup

Define a macro such that

$$\deriv[n]{f}{x} \Rightarrow \frac{d^n f}{dx^n}$$

With the declaration

```
DefConstructor('\deriv[]{any}{any}',
   "<XMApp><XMTok meaning='deriv'/>"
   ." <XMArg>#2</XMArg><XMArg>#3</XMArg>" ...
```

the constructed tree is

```
<XMApp><XMTok meaning='deriv'/>
  <XMArg><XMTok meaning='f'/></XMArg>
  <XMArg><XMTok meaning='x'/></XMArg>
  <XMArg><XMTok meaning='n'/></XMArg>
</XMApp>
```


Examples: Special Functions

With appropriate T_EX macrology:

\HyperpFq{p}{q}
$$\Rightarrow pF_q$$

Introduce notion of evaluating a function at:

\HyperpFq{p}{q}@{a}{b}{z}
$$\Rightarrow {}_{p}F_{q}(a;b;z)$$

or (alternative notation)

\HyperpFq{p}{q}@@{a}{b}{z}
$$\Rightarrow {}_{p}F_{q}\begin{pmatrix} a \\ b \end{pmatrix}$$

Palatable notation? Easier to type than

Examples: Special Functions II

Constructing DOM gives

```
<qqAMX>
  <XMTok meaning='HyperpFq'/>
  <XMArg><XMTok meaning='p'/></XMArg>
  <XMArg><XMTok meaning='q'/></XMArg>
  <XMArg><XMTok meaning='a'/></XMArg>
  <XMArg><XMTok meaning='b'/></XMArg>
  <XMArg><XMTok meaning='z'/></XMArg>
</XMApp>
and parser can treat args individually,
avoiding guesswork.
```


Examples: Special Functions III

And from there, MathML

```
<m:mmultiscripts>
  <m:mi>F</m:mi>
  <m:mi>q</m:mi>
  <m:none/>
  <m:mprescripts/>
  <m:mi>p</m:mi>
  <m:none/>
</m:mmultiscripts>
<m:mo>&ApplyFunction;</m:mo>
<m:mrow>
  <m:mo> (</m:mo>
  <m:mtable>
    <m:mtr><m:mtd><m:mi>a</m:mtd></m:mtr>
    <m:mtr><m:mtd><m:mi>b</m:mtd></m:mtr>
  North American Mathematical Knowledge Management
                                                Phoenix, AZ; Jan 6, 2004 – p.13/14
```

Problems

- Role of text and spacing in math.
- Overloading of *symbols* (scoping?)
- Palatable LATEX extensions for math.

