
Panoptes: An Exploration Tool
for Formal Proofs

Panoptes: An Exploration Tool
for Formal Proofs

By

Orlin Grigorov, B.A.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

M.Sc. in Computer Science
Department of Computing and Software

McMaster University

c© Copyright by Orlin Grigorov, 2008

ii

MASTER OF SCIENCE (2008) McMaster University
(Computer Science) Hamilton, Ontario

TITLE: Panoptes: An Exploration Tool for Formal Proofs

AUTHOR: Orlin Grigorov
B.A.(American University in Bulgaria)

SUPERVISOR: Dr. William M. Farmer

NUMBER OF PAGES: viii, 113

ABSTRACT

Proof assistants aid the user in proving mathematical theorems by taking care of low-
level reasoning details. Their user interfaces often present proof information as text,
which becomes increasingly difficult to comprehend as it grows in size. Panoptes is
a software tool that enables users to explore graphical representations of the formal
proofs produced by the IMPS Interactive Mathematical Proof System. Panoptes
automatically displays an IMPS deduction graph as a visual graph that can be easily
manipulated by the user. Its facilities include target zooming, floating information
boxes, node relabeling, and proper substructure collapsing.

CONTENTS

Abstract iii

1 Introduction 1

1.1 Formalized Mathematics . 1

1.2 Proof Assistants . 1

1.3 Objectives of the Thesis . 2

1.4 Organization of the Thesis . 3

2 Background 5

2.1 IMPS . 5

2.2 Sequents . 5

2.3 Proof Representation . 6

2.3.1 Prescriptive Approach . 6

2.3.2 Descriptive Approach . 6

2.3.3 Deduction Graphs . 7

2.3.4 Grounded Nodes . 8

3 Problem 9

3.1 Navigating Through the Deduction Graph 9

3.2 Detecting Nodes with Similar Semantics 12

3.3 Avoiding Redundant Work . 13

CONTENTS v

4 Solution 14

4.1 New Tool . 14

4.2 Targeted Users . 14

4.3 Who was Panoptes? . 15

4.4 List of Synonyms . 15

5 Requirements of the System 16

5.1 Overview . 16

5.2 Functional Requirements . 16

5.2.1 Visualization of Nodes . 17

5.2.2 Naming Conventions . 17

5.2.3 Information Boxes . 18

5.2.4 Positioning of Nodes . 19

5.2.5 Zooming Function . 20

5.2.6 Collapsing Parts of the Graph 20

5.2.7 Undoing Operations . 21

5.2.8 Helping the User . 21

5.3 Nonfunctional Requirements . 22

5.3.1 User Characteristics . 22

5.3.2 Usability . 22

5.3.3 Hardware Considerations . 23

5.3.4 Performance Characteristics 23

5.3.5 System Interfacing . 25

5.3.6 Portability . 25

5.3.7 Management Issues . 25

6 Design of the System 26

6.1 Overview . 26

6.2 Revisiting the Functional Requirements 27

6.2.1 Visualization of Nodes . 27

6.2.2 Naming Conventions . 28

6.2.3 Information Boxes . 29

6.2.4 Positioning of Nodes . 31

6.2.5 Zooming Function . 31

6.2.6 Collapsing Parts of the Graph 31

6.2.6.1 Single Subgoal Chain of Deduction Steps 32

vi CONTENTS

6.2.6.2 Multiple Subgoals Deduction Steps 33

6.2.6.3 Multiple Proof Directions (Branching) 34

6.2.6.4 Cycles . 35

6.2.6.5 Converging Branches 36

6.2.6.6 Examining Collapsed Nodes 38

6.2.6.7 Naming of Collapsed Nodes 39

6.3 Integration with IMPS . 40

6.3.1 How IMPS Works . 40

6.3.2 Actions, Induced by IMPS and Its User Interface 41

6.3.3 Actions, Induced by the User 41

6.3.4 Integrating Panoptes In the Process 41

6.3.4.1 Flow of Commands (Messages) 42

6.3.4.2 Data Flow . 43

6.3.5 History of Operations Between Deduction Steps 44

6.4 Structuring the System . 44

6.5 Shortcomings of the Design . 45

7 Prototype Implementation of the System 46

7.1 Overview . 46

7.2 Programming Choices . 46

7.2.1 Objective Caml (vs. C/C++) 47

7.2.2 OpenGL . 48

7.2.2.1 Three-dimensional Space and Zooming 49

7.2.2.2 User Interface Elements 50

7.2.2.3 Text in OpenGL . 50

7.2.2.4 OpenGL Literature 51

7.2.3 Graphviz . 52

7.3 Installation and Use . 52

7.4 Demonstration . 53

7.5 Screenshots . 54

8 Related Work 64

9 Future Work 66

10 Conclusion 68

CONTENTS vii

11 Acknowledgments 69

Appendix A—Module Guide 70

A.1 Anticipated Changes . 70

A.2 Unlikely Changes . 71

A.3 Module Decomposition . 72

A.4 Description of Modules . 72

A.4.1 Keyboard Input Module (external) 73

A.4.2 Mouse Control Module (external) 73

A.4.3 File Read/Write Module (external) 73

A.4.4 Window Initialization Module (external) 73

A.4.5 OpenGL Module (external) 74

A.4.6 Automatic Layout Module (external) 74

A.4.7 Types Module . 74

A.4.8 Parser Module . 74

A.4.9 Sqn grabber Module . 75

A.4.10 Parser dot Module . 75

A.4.11 TextGL Module . 75

A.4.12 Node Module . 75

A.4.13 Arrow Module . 76

A.4.14 Canvas Module . 76

A.4.15 Panoptes Module . 76

A.5 Uses Hierarchy . 76

A.6 Summary of Requirements . 78

A.6.1 List of Functional Requirements 78

A.6.2 List of Non-Functional Requirements 79

A.7 Traceability Matrix . 81

Appendix B—Documentation of the Implementation 82

B.1 Module Sqn grabber . 83

B.2 Module Types . 83

B.3 Module TextGL . 84

B.4 Module Parser . 87

B.5 Module Node . 91

B.6 Module Arrow . 96

B.7 Module Parser dot . 97

viii CONTENTS

B.8 Module Canvas . 98

B.9 Module Panoptes . 109

CHAPTER 1

INTRODUCTION

1.1 Formalized Mathematics

In [4], Dr. W. M. Farmer talks about the difference between formalized and conven-

tional mathematics. According to him “formalized mathematics offers greater rigor

than conventional mathematics,” which is supported by the fact that in formalized

mathematics there is more precision in the language of formal logic than there is

in the informal (or conventional) mathematical language. Furthermore, it is totally

acceptable and possible for formal proofs to be checked by a machine, and also the

process of mathematical reasoning can be mechanized. Thus “more opportunity for

mechanical support” is offered by formalized mathematics than conventional mathe-

matics can offer. Of course, there are certain drawbacks in formalized mathematics,

such as the overwhelming amount of detail that is produced, as well as the fact that

not much mathematics of this form has been produced, although there is more and

more as time passes. Accessibility problems remain though—ordinary mathemati-

cians cannot benefit from it as much because it is not in a form that they are used

to and understand.

1.2 Proof Assistants

When dealing with proofs, a proof assistant (a.k.a. a computer assisted theorem

prover) aids the user in the development of a formal proof. It is important to know

2 1. Introduction

that these systems do not fully automate this process, as that is quite ineffective—the

search space is too large (often even supercomputers would not be capable of iterating

through all of the possibilities in a reasonable amount of time). Also, searches that

fail normally provide little useful feedback to the user. Usually, computer assisted

theorem provers automatically take care of the low-level reasoning, while the user is

given the opportunity to choose the more global direction of the search for a proof.

1.3 Objectives of the Thesis

The user interfaces of proof assistants are mostly text based. Also, formal proofs

produced by them are often quite lengthy with many steps and each step produces

a significant amount of information. This makes it difficult to manually inspect and

successfully follow and understand complete proofs. Furthermore, while developing a

proof, the user needs to be careful and know exactly what he or she is doing, for which

a strong understanding of the stage and position in the proof is vital for success. It

is extremely difficult to comprehend all the information contained in the text of the

proof, which is a major reason mathematicians do not choose to use proof assistants

in their work. Simply put, because of the text-based approach to transmitting infor-

mation from the computer to the user, the use of computer assisted proof assistants

is not yet a popular technique for producing proofs. Furthermore, these are proofs

that are not only checked by a machine, hence guaranteed to be correct, but also

potentially easier to create due to the assistance from the system.

This thesis accounts for the inconveniences and inefficiencies of the common text-

based user interfaces, which are used in computerized theorem provers nowadays, and

then proposes the requirements, design and a sample implementation of a program

that takes theorem proving to another level—graphical representation of completed

proofs or proofs in progress, where the user has a global overview of the structure,

context and information before his or her eyes without too much staring at text and

straining to decode the information contained in these proofs. The more global goal

is to reduce the fear of using a computer-assisted theorem prover. The user must

devote considerable time to finding his or her way around the proof structure instead

of concentrating on proving the goals and being able to focus on the mathematical

side of the matter at hand.

1. Introduction 3

1.4 Organization of the Thesis

This thesis proposes a new software program that will create a more manageable

environment for people to use software theorem provers. As such, the document is

divided into several major chapters, each of which deals with a different phase of the

development life-cycle of a program. It ends with two appendices, which attempt to

further enhance the reader’s comprehension of the material covered by this work, and

a bibliography list.

Chapter 2 (Background) provides background about the theorem prover, which

was chosen for the case study of this thesis. Detailed information on its capabili-

ties and way of proving theorems is given, as well a description of its output format.

The latter has a great impact on the requirements and design of the proposed system.

Chapter 3 (Problem) states the major problem areas associated with the text-

based delivery of results, and a claim is made about the inefficiency of this approach.

The identified problems in this chapter will serve as a basis for gathering requirements

and designing the new system in the subsequent chapters.

Chapter 4 (Solution) briefly, but clearly, proposes the new system. Also, it de-

scribes the kind of potential users who will be interested in using it.

Chapter 5 (Requirements of the System) provides the requirements of the pro-

posed system. All deemed necessary functionality is described here, and also each

requirement is labeled with a short name so that it can be referenced later in the

document.

Chapter 6 (Design of the System) establishes the algorithms that are used for

implementing the functionalities described in the previous chapter.

Chapter 7 (Prototype Implementation of the System) provides a description

of a prototype implementation of the tool. The programming choices are described,

along with their advantages and other reasons for making the choices. The reader

should also expect to see some techniques that were utilized to make a good working

system.

4 1. Introduction

Chapter 8 (Related Work) discusses past work of other people that deals with

subject matter similar to this thesis.

At the end, Chapter 9 (Future Work) offers a discussion that touches on everything

from including and implementing new features up to some very brave and ambitious

ideas, such as expanding the software into a fully functional standalone user interface.

Appendix A (Module Guide) contains the module guide of the design, which was

created concurrently with the process of gathering the requirements.

Appendix B (Documentation of the Implementation) contains the technical

documentation of the implementation of the program, where each module, method

and variable is documented.

CHAPTER 2

BACKGROUND

2.1 IMPS

IMPS1 [6], developed for the MITRE Corporation by W. M. Farmer, J. D. Guttman,

and F. J. Thayer, is a proof assistant that aids the user in developing formal proofs,

where the high-level reasoning is controlled by the user, while the low-level reasoning

is done automatically. These proofs are built within formal theories and are a blend

of deduction and calculation.

The meaning of the term “formal proof” is slightly different than the meaning found

in most mathematical literature. In IMPS, the steps in a proof can be so large that

the proof can start to resemble an informal proof. As such, the formal proofs in

IMPS can be clear and understandable by humans. These large steps are possible

because IMPS automatically does most of the low-level reasoning through expression

simplification routines. Still, a proof in IMPS is as formal as it can get, because all

‘invisible’ details are checked and verified by the machine.

2.2 Sequents

The goals that are to be proved in IMPS are called sequents [6]. Rather than just

being a formula to be proved, a sequent is associated in a certain IMPS theory with

1IMPS stands for “Interactive Mathematical Proof System.”

6 2. Background

a pair consisting of a single formula, called an assertion A, and a finite set of as-

sumptions, called a context Γ. Consequently, each sequent can be written in the

form Γ ⇒ A, which means that A follows from the assumptions in Γ. Logically2, if

Γ = {A1, · · · , An} then the sequent represents the logical formula A1 ∧ · · · ∧An ⊃ A.

2.3 Proof Representation

Usually, in the world of theorem provers, the proofs can be represented in either a

prescriptive or descriptive way, and IMPS uses both of these ways.

2.3.1 Prescriptive Approach

The prescriptive approach can be one of two kinds: declarative or procedural. In

the declarative way the prescription for a proof might say something like “A follows

from B,” in which case the system will try to come up with a way of showing that

“B implies A.” To do that, it might try all available commands (or sequences of

commands) to provide a proof of the implication. The method of prescribing a proof in

a procedural way is different. In this case, the prescription will say something like “use

command 25,” and the system will go ahead and apply that command. IMPS uses

this method, while other systems (i.e. Mizar [25] and ACL2 [17]) use the declarative

way of prescribing proofs. However, the declarative way of prescribing proofs has one

very big disadvantage—to make it possible to execute the prescription, the steps must

be relatively small and the proof can thus become very tedious to manually inspect.

The only way of eliminating this disadvantage is if a very powerful theorem prover is

used, which can recognize big steps and have available commands for them, so that

the procedural-prescriptive proof script can contain relatively big steps. Despite all

of that, the declarative way is liked more by people who do not want to understand

the intimacies of theorem provers, but all they need to have is the knowledge of how

they can take steps which are recognized by the system. That being said, the users

do not need to learn the available commands as in the procedural way.

2.3.2 Descriptive Approach

In the descriptive approach of proof presentation, the proof object is shown directly,

which is analogous to saying something like “this is the proof object.” IMPS calls

2The logic assumed is propositional logic.

2. Background 7

these proof objects “deduction graphs,” and in the current IMPS user interface, these

graphs are laid out as if they were trees [5].

2.3.3 Deduction Graphs

A deduction graph has two kinds of nodes: one that is used to represent sequents and

is called a sequent node, and one to represent inferences and is called an inference

node. Refer to Figure 2.1, where i is an inference node, and H1, · · · , Hn and C are

sequent nodes.

Figure 2.1: An inference node with associated sequent nodes.

As is shown in the diagram, the inference node i forms a logical relationship between

the sequent nodes it is connected to: if each of the sequent nodes H1, · · · , Hn are

valid, then the sequent node C is valid. It also contains the mathematical justifica-

tion, called the inference rule, which justifies this relationship between the sequent

nodes. The way a proof is developed in IMPS, though, is backwards in the sense that

the above statement can be read and understood as “the validity of the sequent node

C can be reduced to the validity of H1, · · · , Hn” [7].

Consequently, the deduction graphs in IMPS are bipartite graphs: there are no edges

between nodes of the same kind. That is, a sequent node will never be connected

to another sequent node, and an inference node will never be connected to another

inference node.

As can be seen in the figure above, the deduction graph is also a directed graph:

a directed edge from a sequent node to an inference node denotes that the sequent

node is a hypothesis for the inference represented by the inference node. Thus, an

inference node can have many directed edges pointing at it from many sequent nodes,

because an inference may have more than one hypothesis, though this is not the case

for directed edges that originate from inference nodes. There can be only one such

8 2. Background

link between an inference node and a sequent node, the latter representing the con-

clusion of the inference. Last but not least, it is worth mentioning that the deduction

graphs may contain cycles, and having the properties of bipartite graphs, it follows

that a cycle will always contain an even number of edges.

2.3.4 Grounded Nodes

Referring back to Figure 2.1, in the previous section it was explained that the sequent

node C is guaranteed to be valid if all of the sequent nodes H1, · · · , Hn, representing

the hypotheses of the connecting inference node i, are valid. Also, if the inference

node i had no hypotheses at all, the conclusion node C would be automatically valid

as well.

In IMPS, sequent nodes that are valid are said to be grounded sequent nodes. Further-

more, the inference nodes whose hypotheses are all grounded sequent nodes are said

to be grounded inference nodes. A proof of a theorem in IMPS is completed when

the sequent node that contains the sequent representing the theorem (the starting

sequent node) becomes a grounded sequent node.

CHAPTER 3

PROBLEM

This chapter presents the major limitations, which are not covered by the functionality

of the IMPS user interface. It is important to understand that these limitations are

in no way due to poor design of the user interface (in fact, the IMPS user interface

is a product of deep understanding of the problem and it takes full advantage of the

abilities of the platform on which it is based) but are a consequence of the nature of

Emacs, the software system on which it is based. Namely, Emacs is entirely based on

dealing with information in the form of text. This chapter explains the limitations

associated with that, and the next chapter (Chapter 4) proposes a new system that

attempts to reduce or completely remove these obstacles when the user is developing

a formal proof in a computer-assisted theorem prover.

3.1 Navigating Through the Deduction Graph

Sometimes a proof can become quite lengthy, so the deduction graph may contain

hundreds of nodes and edges. The current IMPS user interface runs in the text-

based Emacs environment, and the deduction graph is represented by a lisp-style,

parenthesis-intensive format, suitable for representing trees in text form. Cycles in

the graph are taken care of by simply repeating a node name with an indication that

the node appeared earlier; it is up to the user to find the node and to understand

the structure of the graph. Of course, the IMPS user interface is designed to take

complete advantage of all available features that Emacs can offer, such as coloring,

10 3. Problem

Figure 3.1: Current text based representation of a deduction graph

indentation, searching and parenthesis matching. Still, because of the fact that every-

thing is text, the user has to acquire substantial skill in working with Emacs before

they can actually become more comfortable and productive in using the user inter-

face. Although knowledge and Emacs experience can serve the user very well when

the proofs are relatively short, when creating more elaborate and serious proofs, the

deduction graph will continue to grow, including hundreds of nodes in a very short

time. In that case, it is no longer possible, even with dedication and extreme effort,

to understand and analyze the proof structure well enough to either comprehend the

direction of the proof or to make an informed judgement on the next steps to take

in the proof. Very often the proof can also take a direction that will not lead to

completion, so the user should be able to detect that in time and either start with

3. Problem 11

a different approach from an earlier point (or even the beginning) without wasting

effort and time working on something that will not lead to success.

Figure 3.1 shows an example of a very short proof session with IMPS. The screenshot

shows the Emacs buffer, which displays the current deduction graph that represents

the proof of the following theorem: if a number x, which is equal to a certain natural

number y squared, is even, then y is even as well. Figure 3.2 shows the structure of

the same deduction graph in graphical form, where each circle represents a sequent

node and each square represents an inference node.

Figure 3.2: Representation of a deduction graph in graphical form

12 3. Problem

It is important to understand that these figures give an example of a very small

deduction graph, which consists of only 28 sequent nodes. Imagine a proof, which

contains 20 times as many nodes. Then it would be extremely difficult to navigate

through the graph and understand the structure, and notice parts of the graph which

look similar. The latter could potentially lead the user towards realizing how certain

parts can be proved in similar ways. Additionally, even though IMPS provides the

useful functionality of automatically focusing on unproven nodes, it does not provide

the user with a way to put nodes side to side to decide which one he or she wants

to work on. For example, consider the situation where the user applies induction

to a sequent. This command will create additional nodes that need to be proven,

such as the base for the induction and the induction step. If the graph contains

other unproven goals, the IMPS user interface can only offer support for toggling

between all unproven goals, without clearly indicating how and why the unproven

nodes appeared. It can be argued that this would be clear from visually inspecting

the information in the sequent, but this will cease to be easy to determine with large

proofs, where, for example, induction was applied a few times already. Another way

of dealing with this is to visually inspect the deduction graph that is offered in the

Emacs buffer, but the inconvenience of that must be clear by now from the example

given above—the user will become disoriented almost immediately.

3.2 Detecting Nodes with Similar Semantics

Sometimes a proof can reach a sequent, which contains a certain expression either in

its context or in its assertion, and it may be similar in meaning with an expression,

which was dealt with before at an earlier step in the proof or in a different proof

branch of the same goal. For example, consider the following two expressions:

1. “2 / 3”

2. “[2/3]”

IMPS understands the first expression as having three separate constants: “/”, “2”,

and “3”. It treats these three constants as an application of “/” to “2” and “3” to

form the expression. The second expression, though, is a constant itself. It represents

the rational number that is obtained by dividing 2 by 3. In the end, both expressions

mean the same thing, but IMPS does not detect and respect their equivalence. To

do so, the user would probably need to request simplification or some other relevant

3. Problem 13

manipulation. Therefore, if the user has the means to put these two pieces of in-

formation simultaneously in sight, the human brain can immediately spot that the

two nodes might be dealing with the same thing, either in part or fully, which might

prevent the user from wasting time and effort on working on something, which is

seemingly different, but in reality the same. Such visualization and comparison of the

information, contained in the deduction graph with respect to easy observation and

exploration, is currently impossible with the existing facilities.

3.3 Avoiding Redundant Work

Another situation arises when there are different sequents with the same assertion1,

but different assumptions2. If one of them is proven, then it could be the case that

certain assumptions in another object are not necessary. For example, if we have

already proven {H1, H2, H3} =⇒ C, where H1, H2 and H3 are the hypotheses and C

is the conclusion, and we have already seen that to prove C we did not use H3, then

later in the proof if we meet a sequent {H1, H2, H4} =⇒ C that needs to be proven,

IMPS will not automatically detect our discovery that for the proof of C only H1

and H2 are needed. Consequently, unless we explicitly remember the latter fact, we

will end up trying to discover a proof for C once again, this time based on the old

hypotheses and the new ones.

It is worth noting, though, that in the previous example we could use a special

command to toss out H3, in which case IMPS will detect automatically the similarity

later and will ground the new sequent. The problem with this approach is that tossing

out assumptions is dangerous, as later in the proof the user may reach a point where

it turns out that these assumptions are actually needed. In that case they will have

to redo the proof by adding back the discarded hypotheses.

1Assertion = conclusion.
2Assumption = hypothesis.

CHAPTER 4

SOLUTION

4.1 New Tool

The objective of this project is to create a tool named Panoptes, which will serve as

an add-on to the current IMPS user interface. The purpose of this tool is to allow

the user to explore IMPS deduction graphs in a new and more natural way. The

main goal is to make it easy to comprehend visually the information contained in the

deduction graphs, as well as to give freedom to the user to manipulate and change

how they see the information in these structures as easily as possible.

Furthermore, the core of the tool is to be as generic as possible, so that it can be

ported to other systems for computer assisted theorem proving by changing a small

part of the design and implementation of the tool (possibly just the module that is

responsible for retrieving the information from the proof assistant, see Appendix A).

4.2 Targeted Users

The primary target group of users is both mathematicians, who are interactively

using IMPS or another proof assistant to search for proofs of theorems while devel-

oping theories, as well as computer scientists and software engineers, whose goal is

to produce proofs for the correctness of software. Also, the tool should reduce the

intimidation novice users, such as students, experience upon their first clash with the

4. Solution 15

world of formalized mathematics and proof assistants.

4.3 Who was Panoptes?

In Greek mythology, the brother of the nymph Io was a giant with a hundred eyes.

His name was Argus, but he was also known as Argus Panoptes, where the epithet

means “the all-seeing.” Argus was a very effective watchman because his eyes would

never go to sleep together at the same time. Thus, having a number of eyes open

and watching at all times, he could see everything, and being a giant, he was looking

from above [28]. The relation to the proposed Exploration Tool for Formal Proofs is

that the goal is to make the latter as powerful as Argus Panoptes—that is, to give

the best possible overview of large deduction graphs.

4.4 List of Synonyms

The following list provides words and phrases, which are used throughout this paper

to denote the same things, and therefore they are used interchangeably:

• Grounded = valid = true = proved = guaranteed;

• Inference = deduction operation (or step);

• Sequent = goal;

• A leaf = a sequent node with no further breakdown, could be grounded or

ungrounded;

• Hypothesis = assumption = premise;

• Assertion = conclusion.

CHAPTER 5

REQUIREMENTS OF THE SYSTEM

5.1 Overview

This chapter is divided in two main sections: “Functional Requirements” (5.2) and

“Nonfunctional Requirements” (5.3). The first section describes the functionality that

Panoptes should provide and each individual requirement is listed and described. By

reading this section the reader should expect to acquire a clear idea of what the pro-

gram does and what functions are available for the user to select. The second section

concentrates on issues that need to be addressed by the design and implementation

to increase the “quality” of the system rather than what it does. Again, each non-

functional requirement is listed and labeled, so that it can be referenced later in the

paper.

5.2 Functional Requirements

The functional requirements are divided into a few separate groups that provide

related goals, or actions that deal with similar matter. There is a separate subsection

for each such group.

5. Requirements of the System 17

5.2.1 Visualization of Nodes

This section describes the requirements for the graphical visualization of the nodes on

the screen. Also, it explains the reasoning behind some requested features and how

they will contribute towards bringing Panoptes closer to the ultimate goal of making

the use of IMPS easier (see Section 4.1).

First and foremost, Panoptes should display the graph on the screen in graphical

form. This requirement is apparent since it is the actual essence of the system, but

it is listed below for the sake of being complete.

� Requirement 1. The deduction graph should be displayed in graphical form on

the screen.

The deduction graphs produced by IMPS are bipartite graphs, and as such there are

two different kinds of nodes—sequent nodes and inference nodes, which were described

in the previous chapters. The visualization should make it easy for the user to clearly

differentiate visually between the two kinds without need of any additional action

(such as keystrokes).

� Requirement 2. The two kinds of nodes should be visually different when drawn

on the screen.

Also, Panoptes should automatically detect and visually mark ‘special’ nodes. These

comprise grounded nodes, repeated nodes (nodes that complete a cycle or merge

proof directions), collapsed nodes (described later in Subsection 5.2.6), as well as

nodes which have never been worked on.

� Requirement 3. Special nodes should be visually marked to stand out from the

rest.

5.2.2 Naming Conventions

Each node in a deduction graph created by IMPS is unique with respect to all the

others. Each sequent node represents a unique sequent. In the case of the inference

nodes, there might be more than one node that represents applications of the same

inference rule, but the nodes are still unique when viewed in combination with their

hypotheses and conclusion sequent nodes. Therefore, Panoptes should provide unique

18 5. Requirements of the System

names (or labels) for each node1.

IMPS automatically assigns a text name to each newly created sequent node in the

deduction graph. Instead of generating new unique names, Panoptes should use

in its visualization the same names generated by IMPS. This has the advantage of

facilitating the user’s ability to cross-reference nodes displayed in Panoptes with the

same nodes in the IMPS user interface, where the user applies the proof commands.

� Requirement 4. Sequent nodes should be labeled on the screen with the names

generated by IMPS.

As mentioned above, each inference node represents an application of an inference

rule and there is a chance that a proof or a proof attempt, represented by a deduc-

tion graph, uses certain inference rules more than once. Still, to adhere to the goal

of having unique nodes in the graph, Panoptes should implement a mechanism for

naming the inference nodes in a way that will both preserve the comprehension of

what the node represents by just reading its name as well as the uniqueness of that

name in respect to all other nodes in the graph.

� Requirement 5. At initial startup of Panoptes, the name of an inference node

should be unique but still indicate the inference rule it is associated with.

However intelligent the automatic naming algorithm of Panoptes and IMPS could be,

there will be cases when the user might prefer to have even more meaningful names

of particular nodes of interest. That is why the user should be able to rename such

nodes with names according to his or her preference. This will improve the user’s

experience by making it easier to find his or her way around the graph by a simple

glance rather than by examining the contents of the nodes (see Subsection 6.4 below

for more information on examining the contents of a node).

� Requirement 6. The user should be able to rename the labels of nodes.

5.2.3 Information Boxes

As mentioned in the previous section, every single node carries information. Infer-

ence nodes contain the inference rules that generated the represented inferences, and

1Notice that when a node is syntactically equivalent to another node, then the deduction graph
will contain a cycle rather than having the same node twice.

5. Requirements of the System 19

sequent nodes represent sequents, each of which consists of a number of assumptions

and an assertion. In the IMPS user interface the sequent is textually described in the

following format:

H1;

· · ·
Hn;

=>

C;

where H1 · · ·Hn for 0 ≤ n represent the assumptions (hypotheses), and C represents

the assertion (conclusion) of the sequent. Altogether, this information represents the

logical formula H1 ∧ · · · ∧Hn ⊃ C.

It is only logical that the user should be able to examine this detailed information

that is associated with a node. A feature of this function is to have a visual link

between the display of this information and the node it is associated with, which will

prove beneficial for the user’s experience.

� Requirement 7. The user should be able to examine the information associated

with sequent and inference nodes without losing track of which node this information

is associated with.

5.2.4 Positioning of Nodes

IMPS stores the deduction graph in a text format (see Figure 3.1 on page 10), which

contains information only about the contents and structure of the graph. To provide

a visualization of that graph, Panoptes should implement a mechanism for generat-

ing position coordinates for each single component of the graph. Furthermore, the

generated layout should manage to fit the whole graph in the screen space provided

by the system and should also minimize the crossing of edges as much as possible2.

� Requirement 8. Upon startup, the program should generate a layout, which fits

the whole graph on the screen. The number of edges crossing each other should be

minimized.

2Notice that fitting the deduction graph in the screen for big proofs might make it unreadable.
That is why the requirements that follow define suitable functionalities to deal with this issue.

20 5. Requirements of the System

In addition, the user should be able to drag and drop components of the graph to

either improve or modify the layout according to their preference.

� Requirement 9. The user should be able to easily rearrange the layout of arbi-

trary parts of the graph manually.

5.2.5 Zooming Function

In the case when a deduction graph consists of a large number of nodes, fitting that

graph on the screen will make the nodes appear very small especially if the available

screen space is relatively small compared to the number of nodes. That is why the

user should be capable of easily zooming in and out on parts of the graph to examine

them as well as comprehend the structure of the graph.

� Requirement 10. The program should provide an easy-to-use zooming function.

5.2.6 Collapsing Parts of the Graph

Some of the complicated commands that IMPS provides produce a large number of

nodes when used in a deduction step. Since proofs and proof attempts consist of nu-

merous commands that are applied to break goals into simpler subgoals, the number

of nodes in a deduction graph rapidly increases. Consequently, the graph becomes

more and more cluttered with information, which may lead to user disorientation and

an inability to decide the next proof step.

To make it easy to solve this problem, Panoptes should provide a function to hide

selected parts of the graph that might be deemed not important for the process of

reasoning about the choice of the next proof command to apply. This “collapsing”

function should be safe to execute in respect to preserving the properties of the graph

(recall that being a bipartite graph, the deduction graph has two and only two kinds

of nodes, which are in turn additionally bound by certain rules described in the

Introduction and Background chapters).

� Requirement 11. Panoptes should provide a function for collapsing deduction

graph substructures without changing their meaning.

Collapsed parts of the graph should not be simply erased by the collapsing function,

but rather stored in some manner. Furthermore, the user should be capable of ex-

5. Requirements of the System 21

amining the contents of a collapsed object to understand what part of the graph it

encapsulates.

� Requirement 12. The user should be able to examine the contents of objects

that represent collapsed parts of the graph.

To reduce the need for mandatory examination of the detailed content of these objects,

Panoptes should provide a mechanism for generating meaningful short labels for each

such object. Each label should be good enough to provide a clear hint to the user

regarding the collapsed part of the graph.

� Requirement 13. Objects, representing collapsed parts of the graph, should have

labels for easy identification of the information they contain.

5.2.7 Undoing Operations

As shown so far, Panoptes should offer a range of operations that the user can ap-

ply to the graph. This enables the user to completely transform the appearance of

the deduction graph on the screen with respect to the initial visualization that the

system provides. It is important that Panoptes keeps a comprehensive history of the

operations applied to a deduction graph at all times to allow the user to revert back

to an earlier arrangement of the graph on the screen when needed.

� Requirement 14. Each user induced operation on the visualization of the de-

duction graph should be reversible.3

5.2.8 Helping the User

A brief help screen should be available during runtime, which can be called by the user

for reference to all available commands and their respective shortcuts (keystrokes).

� Requirement 15. A help screen with available commands and ways to execute

them should be present for the user.

3The depth of reversals should be unlimited, so that the user can completely restore the initial
graph layout given that they reverse every single operation on the graph that was made up to that
point.

22 5. Requirements of the System

5.3 Nonfunctional Requirements

The nonfunctional requirements describe the desired quality of the system, rather

than its functionality. The section is divided into a few major categories, and each

requirement is listed and explained.

5.3.1 User Characteristics

Section 4.2 already described the typical users of the system. Additionally, the users

should be familiar with the services provided by the proof assistant. Before using the

system, they should already know how to develop proofs, and should have a complete

understanding of the entities that comprise a deduction graph. The users should refer

to Chapter 2 to familiarize themselves with the terms used in this document. It will

allow them to maximally benefit from the aid the system provides in the process of

developing formal proofs.

5.3.2 Usability

The main objective of Panoptes is to make it easier for people to use theorem provers.

As such, it must be easy to learn to use, so its user interface should be as straight-

forward as possible. That is why the user should be able to invoke operations with a

mere keystroke, rather than a combination or a sequence of keystrokes. In addition,

the user should have an easy and clear understanding about why he or she wants to

invoke a certain operation—in other words, each function that the user calls should

have a predictable result.

� Nonfunctional Requirement 1. The system should be easy to learn for users

already familiar with the proof assistant.

� Nonfunctional Requirement 2. The system should be easy to use for users

already familiar with the proof assistant—every operation should be easy to invoke

and should have a predictable result.

Additionally, the system should automatically protect the user from making mistakes,

such as attempting to execute actions on irrelevant parts of the graph.

� Nonfunctional Requirement 3. The system should protect the user from at-

tempting invalid operations on the graph.

5. Requirements of the System 23

There is no particular need for a separate User’s Guide document.4 Furthermore,

Functional Requirement 15 on page 21 requires the system to provide a help screen

with all available commands to the user when needed.

Overall, the usability of the system should indicate that any proof development task

takes less time to do by using the aid of the system as compared to using only the

proof assistant. The larger the task at hand, the more time should be “saved” by

choosing to use the system.

5.3.3 Hardware Considerations

The computer system running Panoptes should be equipped with a graphics card that

is capable of rendering 3D graphics.5 Thus, Panoptes should be running smoothly

without burdening the user with unnecessary lags and delays. Furthermore, the

dedicated graphical processing unit (GPU) of the graphics card should be used for

all graphics-related computations, which should in turn decrease the workload put on

the central processing unit (CPU). The latter would be thus available for other work

(such as that done by the IMPS reasoning engine).

� Nonfunctional Requirement 4. The system should minimize the workload on

the Central Processing Unit (CPU) by having the Graphical Processing Unit (GPU)

do as many presentation routine calculations as possible.

5.3.4 Performance Characteristics

The design and implementation should take into account the fact that the main objec-

tive of Panoptes is to aid the user in developing formal proofs, which is a complicated

and often difficult process. That is why the system should be very responsive in

displaying the result generated by the user operations on the deduction graph. Ad-

ditionally, good foundations for speed and smoothness of the graphics are imperative

as the Department of Computing and Software at McMaster University will soon be

equipped with 24 units of 30-inch Apple Cinema HDTM displays6, each capable of

2560 x 1600 pixels resolution. The screens will be combined (see Figure 5.1) to con-

struct two large units, each consisting of 6 screens (2 x 3 screens, 7,680 x 3,200 pixels

4It is assumed that the user already knows how to use IMPS.
5Most graphic cards that are sold nowadays are equipped with capabilities to render 3D graphics.
6Exact numbers are subject to change.

24 5. Requirements of the System

resolution total), and one huge unit, made of 12 screens (3 x 4 screens, 10,240 x 4,800

pixels resolution total). Even though these large constructions will be controlled by

adequately powerful video devices, the design and implementation of Panoptes should

be optimized enough to ensure smooth graphics and operations without the need of

super powerful graphical devices.

Figure 5.1: Stacked 30-inch Apple Cinema HD displays

Additionally, Panoptes should be able to handle deduction graphs containing many

hundreds of nodes. Controlling such large structures involves accounting for a large

amount of detail and when it comes to visualization there will be many computations

to be done. Therefore, good design and implementation algorithms should be created

accordingly.

� Nonfunctional Requirement 5. Algorithms for the computation of the screen

positions of nodes, edges, and other components of the deduction graph should be

chosen carefully to ensure smooth runtime performance7.

7A good measurement would be frames per second (FPS). A good target FPS would be 25 or
more, which is more than the TV standard for NTFS motion videos.

5. Requirements of the System 25

5.3.5 System Interfacing

Even though IMPS is the selected system for this study, the design and implemen-

tation should be created with the future goal in mind of porting Panoptes to other

theorem provers. For that matter, the parts of the system responsible for accepting

and processing the input data should be separated from the rest of the system. This

will make it easy to modify them to accommodate other proof assistants.

� Nonfunctional Requirement 6. The parts of the system that are responsible

for accepting and processing input8 from the proof assistant should be easily modifiable.

5.3.6 Portability

Panoptes should compile and be fully operational under all systems that currently

support IMPS. For now these are Linux, Mac OS X, and other versions of Unix.

� Nonfunctional Requirement 7. The system should be compilable and able to

run on Unix-style operating systems, particularly Linux and Mac OS X.

Additionally, Panoptes should be easily modifiable to compile and run on large mul-

tiscreen displays (see Section 5.3.4).

� Nonfunctional Requirement 8. The system run on large screens with little or

no modifications.

5.3.7 Management Issues

Preferably a single installation script should be provided that will compile and prepare

the tool for use. The effort of finding and installing external libraries that are needed

by the program should be minimized.

� Nonfunctional Requirement 9. Installation should be performed by simply

executing an installation script.

8“Input” refers to the data provided by the client proof assistant. In the current study, this is
IMPS.

CHAPTER 6

DESIGN OF THE SYSTEM

6.1 Overview

Creation of Panoptes did not follow any of the standard software development mod-

els. It began as a simple idea, which was immediately implemented into a simple

working program. From there on, new requirements were added or existing ones

modified or refined, and each time that would happen the implementation of the pro-

totype (explained in Chapter 7) was modified or expanded. This process of software

development, although known as the “Evolutionary Prototyping Method of Software

Development,” dangerously approaches the idea behind the term ad hoc programming

since gathering requirements, design and implementation were three processes hap-

pening at the same time, thus resembling one process altogether. However, in [22] Dr.

Parnas extensively justifies the statement that as long as the project is documented

in a rational way, this should not be a problem.

This chapter does not constitute a design in the format that the reader would expect—

there are no class diagrams, object diagrams or other similar design elements. Rather

than that, the chapter establishes procedures and algorithms for achieving in the best

possible way the functionality of the system listed in the previous Chapter 5. Also, the

chapter explains the practical side of the design, such as the methods and principles

used and it mentions some possible shortcomings. As such, this chapter is intended

for readers interested in learning how the system accomplishes its functionality, while

6. Design of the System 27

a reader, who is interested in directly modifying the design or understanding Panoptes

as a complete system, should refer to Appendix A, which provides the Module Guide

of this design. The appendix shows, explains, and attempts to justify the module

decomposition of Panoptes.1

6.2 Revisiting the Functional Requirements

This section provides the design decisions made on the functional requirements stated

in Chapter 5.

6.2.1 Visualization of Nodes

To be consistent with the literature already written about IMPS, we will adhere to

some notational conventions for our examples.

A circle will be used to denote a sequent node and a rectangle (or a square) will be

used to denote an inference node in the graph. Furthermore, all nodes are to be con-

nected with arrows, whose direction leads ultimately to the main goal (in the normal

case). Figure 6.1 shows a sample deduction graph, which demonstrates this idea.

Figure 6.1: Shapes and arrows

1Rather than refactoring the source code to obtain the module structure, the latter was obtained
by carefully analyzing the source code.

28 6. Design of the System

In addition, the requirements call for a visual distinction between special nodes. The

best way to accomplish this is by utilizing the power of color. To be consistent with

the IMPS user interface, grounded nodes are to be colored in green. Also, repeated

nodes are to be colored in brown, and collapsed nodes are to be colored in purple

despite the fact that these are not colored in the text version provided by the IMPS

user interface.

6.2.2 Naming Conventions

In IMPS the names of the sequent nodes take the form SQN-# where # is a number

that shows the order in which the sequent nodes were created. In other words, if

m < n, then SQN-m was created earlier in the deduction process than SQN-n. Note

that generally the distance from the main goal cannot be judged by this number.

Figure 6.2: Numbers in sequent nodes do not represent depth.

Consider Figure 6.2. Analyzing the graph, the user started with SQN-1 and after

applying a command the goal was broken down to SQN-2. Then the user went back

to SQN-1 and tried another command, which in turn produced SQN-3. Continuing

with the latter, SQN-4 was produced. The user then realized that they would like

to continue working on the former starting point of the proof, so he or she applied

a command to SQN-2 that produced SQN-5. It is apparent that IMPS names the

6. Design of the System 29

nodes in the order they were created, and SQN-5 and SQN-4 are in the same depth

level, although in reality 5 > 4.

The requirements chapter calls for unique names of all nodes, including the inference

nodes. Furthermore, it was mentioned that sometimes the same inference rules are

used in different proof steps, thus leaving nodes with identical names (the name of an

inference node is assigned by IMPS according to the inference rule that is applied).

A way to achieve uniqueness is to insert a number at the end of the name, which can

also be used to distinguish the order in which the commands were executed. Consider

Figure 6.3.

Figure 6.3: Numbering of inference nodes.

The figure provides an example, in which the same command is used more than once

in the proof, and how Panoptes should deal with naming the inference nodes.

6.2.3 Information Boxes

The Requirements chapter already showed the kind and format of the information

that is represented by the sequent nodes. Also, it was mentioned that there is infor-

mation associated with the inference nodes as well. That information can be retrieved

30 6. Design of the System

from the digital copy of the IMPS User’s Manual [7], which provides a detailed de-

scription of each possible inference step. Along with that, it also contains a short

verbal description of each inference, which is compact enough to be displayed by the

information boxes. For instance, the command cut-with-single-formula is verbally

described in a concise manner as follows:

“This command allows you to add a new assumption to the context of the given se-

quent. Of course, you are required to show separately that the new assumption is a

consequence of the context.”

The actual procedure of opening and examining a node starts with the user selecting

a node, after which he or she should be able to invoke an “open info box” operation.

As a result, a rectangle with information should appear on the screen connected to

the node to which it is associated. Simple labeling of the name of the node in the

information box is not enough, especially since we are striving to make the deduction

graph more visually comprehensive. Therefore the box should be connected by some

kind of dashed line to the node of interest. Consider Figure 6.4 for an example of this

idea.

Figure 6.4: Information boxes.

Furthermore, the user should be able to scale and reposition the information boxes

6. Design of the System 31

similarly to the manipulation functions provided for the nodes of the graph.

6.2.4 Positioning of Nodes

Since generating an optimal layout is almost a whole science by itself and a lot of

research has been conducted on the topic, it is suggestive that a third-party library

is used to accomplish the task. See the Implementation chapter (7) for detailed in-

formation about the chosen external layout generator.

Due to the hard and complicated task of generating the best possible layout automat-

ically as well as the fact that the user might want to rearrange the graph according to

personal preference, the requirements called for functionality for manual rearranging

of the graph. This should be accomplished by an easy drag-and-drop capability on

the nodes of the graph, while the program automatically protects the connections

(the arrows) between the nodes.

6.2.5 Zooming Function

A good zooming design will allow the user not only to zoom in or out easily, but

will provide more elaborate mechanisms. One such mechanism is that the zooming

is executed on a certain section of the graph rather than on the center of the image.

For example, a zoom-in operation over a certain node should simultaneously make

the graph bigger and shift the enlarged picture to keep the focus on the selected node

at all times. This way, the user will be able to quickly “look into” the part of the

graph of interest instead of just zooming in and then shifting the graph until that

part becomes visible. That latter effect could also be very confusing, because the user

might get lost, especially since he or she is not able to see the context of the graph.

See the Implementation chapter (7) for a detailed explanation of an innovative trick

used to accomplish this function.

6.2.6 Collapsing Parts of the Graph

This section will define how collapsing should be done to preserve the properties of

the graph. The section starts with defining the shapes, used in the diagrams that

follow.

32 6. Design of the System

A star (see Figure 6.5) will represent a “bag,” which contains the information that

is collapsed. Furthermore, this star will exhibit the same properties as an inference

node, that is, it may have more than one child, but one and only one parent.

Another shape that will be used in the figures in the subsequent subsections is the

cloud shape (see Figure 6.6). It will be used to represent collapsed/reduced cycles in

the deduction graphs, which are described later in this chapter. The cloud shape will

represent a node that exhibits the same properties as a sequent node.

Figure 6.5: A star shape hides parts of the graph and exhibits the same properties as
an inference node.

Figure 6.6: A cloud shape hides cycles and exhibits the same properties as a sequent
node.

6.2.6.1 Single Subgoal Chain of Deduction Steps

Figure 6.7: Collapsing a chain of deductions that produces a single subgoal.

6. Design of the System 33

In Figure 6.7 the simplest candidate for a collapsing procedure is demonstrated. Here,

proving SQN-3 will ground SQN-2, which in turn will ground SQN-1. Therefore, the

user might want to remove the clutter, created by all nodes of no interest between

the chosen endpoints of the collapse (SQN-1 and SQN-3).

6.2.6.2 Multiple Subgoals Deduction Steps

Figure 6.8: Collapsing parts with deductions with more than one subgoal.

When collapsing, a case might appear when one or more of the inference nodes be-

tween the chosen endpoints of the collapse procedure have more than one hypothesis

(subgoal). Consider Figure 6.8: If we suppose that the user wishes to collapse every-

thing between sequent nodes SQN-1 and SQN-5, then we can see that the procedure

is not as straightforward as just replacing everything in between with a collapsed box.

In fact, now we have a sequent node SQN-4, which is an extra subgoal introduced in

the picture by some middle breakdown in the proof.

34 6. Design of the System

By definition, proving SQN-5 will ground SQN-3, which combined with a proof for

SQN-4, will ground SQN-2, which in turn grounds SQN-1. Therefore, in order to

ground SQN-1, we need to prove SQN-5 and SQN-4, which is graphically represented

by the graph on the right in the figure.

6.2.6.3 Multiple Proof Directions (Branching)

Figure 6.9: Collapsing parts with more than one proof direction

As we already know, sometimes the users might go back to the original goal or earlier

subgoal, and attempt other procedures in their search for a proof. An example can

be seen in the leftmost graph in Figure 6.9. Here, grounding either SQN-3 or SQN-4

will guarantee the upmost goal (SQN-1).

Consequently, the users might want to hide the information, which is not really helping

in their search for a proof. Unlike the previous collapsing case scenario (Subsection

6.2.6.2), we cannot automatically hide everything between the leaves and the goal

due to the fact that a star exhibits the same properties as an inference node. If we

do that, the integrity of the graph will be destroyed. That is why the users should

be able to decide which branch they wish to collapse, and the other branches should

remain unchanged. Of course, the users may sequentially collapse all branches, as

illustrated in the figure, where the end result will simply mean that SQN-1 can be

grounded by either grounding SQN-3 or SQN-4.

6. Design of the System 35

6.2.6.4 Cycles

Figure 6.10: Collapsing cycles

Consider Figure 6.102, which shows a part of a deduction graph, containing a cycle.

This example shows all possible situations in which a cycle can occur:

• INF-5 is an inference node, coming out of the cycle;

• INF-6 and INF-4 are inference nodes, coming into the cycle;

• SQN-4 is a sequent node, coming into the cycle (notice that there is no sequent

node that comes out of the cycle, which is due to the fact that an inference may

have one and only one child).

If the user decides to collapse (or hide) this cycle, they will have to select two sequent

nodes in the cycle, and then invoke the cycle reduction functionality. Consequently,

the program should verify whether these two nodes are a part of one common cycle.

Unfortunately, the latter check is not enough—the program must also verify that

2The dotted line in the figure connects a node for illustrative purposes only. The presence of this
node in the example will actually make it impossible to collapse the cycle, as it is explained in the
text.

36 6. Design of the System

there is no sequent node coming into the cycle (in our example, such a node is SQN-

4) because in this current arrangement it is not possible to replace the cycle with a

cloud shaped node, exhibiting the properties of a sequent node. One possible solution

to this problem will be to introduce a ‘dummy’ inference node, but this will be an

invasive treatment of the graph, and it is not recommended. A much better option is

to make the lack of such node a prerequisite for being able to collapse a cycle, which

will not limit the user too much3.

6.2.6.5 Converging Branches

Recall that sometimes the process of developing a proof will lead the user to go back

to an earlier goal and attempt to proceed with different proof steps. It is possible

that the proof leads the user to the very same sequent that was reached earlier by

following a different approach. For the purpose of this document, we will use the

term converging branches for such scenarios.

Consider the top left diagram on Figure 6.11. Clearly, the proof proceeded by reduc-

ing SQN-1 to SQN-3 by four different routes. If the user wants to collapse the part

of the graph, which ultimately leads to the same sequent node, they would normally

select the two ending sequent nodes as endpoints of the collapse (SQN-1 and SQN-3).

After the collapse the diagram on the bottom should be obtained, which is clearly

valid: SQN-1 reduces to SQN-3 by INF-5, and SQN-6, SQN-5, and SQN-7 become

obsolete and can be removed from the graph. Unfortunately, the process is not so

straightforward, unless there is at least one branch consisting of a direct reduction

of SQN-1 to SQN-3 without any inference nodes with more than one child sequent

node. Look at the top right diagram of the same figure, where no such option exists.

In that case, collapsing everything will be wrong since there will be more obligations

to be satisfied to preserve the meaning of the graph. Those are the combinations of

SQN-3 and SQN-6, SQN-3 and SQN-8, SQN-3 and SQN-5, or SQN-3 and SQN-7.

Therefore, it is apparent that Panoptes should reduce such parts of the graph if and

only if there is one straight branch of reduction.

Another scenario is when there are two or more converging branches, but the user

would like to get just some of the branches out of the way. Consider Figure 6.12, which

3Based on interviews conducted with users of IMPS, a cycle with incoming sequent nodes happens
very rarely.

6. Design of the System 37

Figure 6.11: Collapsing converging branches

has two converging branches. The diagram on the right shows a state, in which the

right branch is collapsed. This functionality should be available, but the selection

method becomes more complicated. Now the user needs to have the means of making

it clear which of all branches need collapsing. This can be achieved by starting the

process as usual (selecting beginning and ending sequent nodes, between which the

collapse should occur). Then Panoptes should scan the graph, and in the case that

there is more than one possible branch to collapse, to prompt the user whether they

want to collapse the whole part of the graph as described at the beginning of this

section, or to select an additional inference node. Thus, having two sequent nodes

and one inference node selected, Panoptes will know what the choice of the user is.

38 6. Design of the System

Figure 6.12: Collapsing just one of many converging branches

6.2.6.6 Examining Collapsed Nodes

One way of “looking into” the collapsed boxes will be to automatically produce an in-

formation box (described in Section 6.2.3) for each collapsed node (denoted by a star

or cloud shape in our diagrams). Ideally, the information presented in these boxes

should take the same form as the part of the graph, which was collapsed. There is a

potential problem to this approach though: very often the collapsed part of the graph

will be a long chain of deduction steps, each of which produces only one subgoal (see

Subsection 6.2.6.1). Thus, the ratio between the height and width of the information

box will be too large, and it will be just as unreadable on the screen as the part of

the graph that was initially collapsed. Also, zooming in on the information box will

not alleviate this problem any more than just zooming in on the graph itself before

the collapse.

An alternative solution is to present the collapsed part of the graph in a way that

IMPS currently presents the deduction graph in its user interface. For example,

consider again Figure 6.11 from page 37. If the user wanted to examine the contents

of the star node, which represents the collapsed part of the graph, they would see the

following information in IMPS format:

(SQN-1

(INF-1

(SQN-2

6. Design of the System 39

(INF-2

(SQN-6)

(SQN-3))))

(INF-5

(SQN-3 -see above-))

(INF-3

(SQN-4

(INF-4

(SQN-3 -see above-)))

(SQN-5))

(INF-6

(SQN-3 -see above-)

(SQN-7)))

Alternatively, the user can be given a further choice by the option to display just the

direct branch, which is the basis of the collapse (in the case of converging branches).

In that case, the information can consist of just the following:

(SQN-1

(INF-5

(SQN-3)))

A third, slightly different, but very useful and potentially best method will be the so

called “momentary undo” function. It should allow the user to hold down a button

while hovering over a collapsed node, and as long as the button is pressed, a temporary

uncollapsing of the node should occur. If the performance of the program is good

enough, the user should be able to switch back and forth until they comprehend the

information they need.

6.2.6.7 Naming of Collapsed Nodes

The most meaningful way to name a collapsed node would be to construct its name

from the beginning and ending nodes of the collapsed part of the graph. Consider

again Figure 6.8. According to the suggested mechanism, the star-shaped node will be

named “SQN-1 => SQN-5”. Although this approach does not provide the complete

information about the collapsed node, it certainly increases the information that can

be apparent. In this example, it can be safely assumed that this node “represents

40 6. Design of the System

the part of the graph, which was collapsed after selecting SQN-1 and SQN-5 as end

collapse points.”

6.3 Integration with IMPS

This section analyses the way IMPS is designed, and creates a design for integrating

Panoptes with IMPS so that they can work together.

6.3.1 How IMPS Works

Figure 6.13 shows how IMPS operates. The user interface is written in Emacs Lisp

and runs in XEmacs or GNU Emacs, while the IMPS engine runs in Common Lisp

in the background as a process, and accepts commands from the user interface. Once

computations are done, IMPS sends back the results to the user interface, where fur-

ther actions and commands are selected by the user.

Figure 6.13: Communication between IMPS and its user interface.

Building the deduction graph can be viewed as a combined effort between IMPS and

the user interface. When IMPS receives a sequent node and a command, it returns

information about the newly produced nodes. The user interface then “plugs” this

information into the right place in the deduction graph.

The deduction graph (DG) is stored on the disk in the form of a text file, which has

the following format:

DG := --

| SQN

SQN := (name INF_CHILDREN)

INF_CHILDREN := --

6. Design of the System 41

| (name SQN_CHILDREN)

SQN_CHILDREN := SQN

| SQN SQN_CHILDREN

When IMPS returns the result, the information about the newly produced sequent

nodes is written on the disk. The user interface reads this file and appends the

information to its own resident buffer in Emacs.

6.3.2 Actions, Induced by IMPS and Its User Interface

Typically, the user invokes commands from the user interface on chosen sequent nodes.

IMPS receives these “requests,” does computations, and returns a result. Panoptes

should be ‘aware’ of such events by eavesdropping on the communication protocol

between IMPS and the user interface, and more particularly, on the return of the

results from IMPS to the user interface. This protocol basically consists of modifying

files on the disk, so Panoptes should implement constant monitoring of these files.

Consequently, Panoptes should notify the user when changes to the deduction graph

are detected.

6.3.3 Actions, Induced by the User

The requirement for Panoptes to notify the user upon changes in the deduction graph

was described in the previous subsection (6.3.2). When this happens, the user should

have the choice to either continue working on the deduction graph as it is, or to

introduce the new information into “the picture.” This process should be straight-

forward and painless, possibly with the hit of a button. Then, Panoptes will redraw

the whole deduction graph along with all collapsed sections in it, and allow the user

to continue their exploration and work.

6.3.4 Integrating Panoptes In the Process

Since the deduction graphs are always present on the disk in their complete form,

Panoptes needs to read that file, parse it, and create a graph in its own data struc-

tures.

42 6. Design of the System

Additionally, similar to the user interface, Panoptes also needs to keep track of new

information in the file that holds the info for the sequent nodes, and whenever there

is something new, it should collect it and store it. This is needed because with each

step, the file gets overwritten with the information about the newly produced nodes,

which is the way IMPS was designed and functions.

6.3.4.1 Flow of Commands (Messages)

Figure 6.14: Exchange of commands in the system

Consider Figure 6.14. It shows how IMPS, its user interface, and Panoptes combine to

form one big system. In the figure, the edges are numbered and labeled. If the whole

work process was divided in smaller sequential steps, the numbers would represent

the order, in which the events occur. The process starts with the user choosing a goal

in the Emacs user interface, which comes with IMPS. Then, the user decides to apply

a certain command to this goal, so this information (the goal and the command) are

sent to IMPS (edge 1). When IMPS finishes its computations, it saves the newly

produced sequent nodes on the disk (edge 2). The Emacs user interface then reads

that information (edge 3), stores it in a resident buffer of its own, plugs the new nodes

into the deduction graph (DG), which is then written back to the disk by overwriting

the file that stores it (edge 4). Meanwhile, the Grabber module of Panoptes detects

availability of new sequent nodes information, so it collects it (edge 5) and appends

it to its own file on the disk, which is exclusively for use by Panoptes (edge 6). Then

6. Design of the System 43

the Grabber sends a message to the user interface (edge 7), which makes the user

aware that there is an available update to the deduction graph. At this point, the

user might decide to continue working without updating the graph, during which

time steps 1 through 7 might repeat without loss of any information. When the user

decides to update, Panoptes reads and updates its internal data structure with the

new information about sequent nodes (edge 8), and then reads the final deduction

graph (edge 9) and rebuilds it internally. Then, the user is presented with the new

deduction graph visualization and he or she may continue working.

6.3.4.2 Data Flow

In reference to Figure 6.15, unlike the previous diagram, which showed the commands

sent from components of the system to other components, the diagram in this fig-

ure describes the data flow in the system. The dash-point-dash lines connect any

two components that may exchange some kind of data at a certain moment during

runtime. Also, these lines are directed and labeled with a short description of the

data that is being exchanged. An arrow with a label “abc” from a component A to

a component B indicates that the component A sends the data unit “abc” to the

component B.

Figure 6.15: Data flow in the system

44 6. Design of the System

The reader will also notice that the numbering from the diagram in the previous

figure is preserved to ease the understanding of the process. This is possible because

of the fact that the data exchange happens in the same sequence as the one for

messages exchange, which was described in the previous subsection (6.3.4.1). Rather

than being an accident, this happens because of the sequential manner in which proof

development events happen in the system as a whole.

6.3.5 History of Operations Between Deduction Steps

Suppose the following situation is at hand: The user works on the deduction graph in

Panoptes by rearranging parts of the graph, collapsing parts of the graph, renaming

nodes, opening and situating node information boxes. At that point, the user has

customized the appearance in a way, suitable to visually inspect and make judgments.

Then, the user decides to work on a goal, and selects a suitable command from the

user interface, which in turn passes it to IMPS, and the latter produces a result. At

that point, the graph has new additions to it, and the user is notified (See Subsection

6.3.2). Consequently, the user chooses to update the graph in Panoptes by invoking

the update functionality (See Subsection 6.3.3). At that point, if precautions are not

taken, Panoptes updates the graph and redraws it. As a result, all rearrangements to

the graph, mentioned above, will be lost. That is why, Panoptes needs to keep track

of all actions by the user, and when the graph is updated, to automatically execute

them. It is important to note that throughout the life cycle of the search for a proof,

no information ever gets lost, that is, only new information is being introduced into

the graph. This implies that most of the actions on the graph will always be valid,

except the case described in Section 6.2.6.5. Panoptes should automatically detect

this case with converging branches and disregard the command.

6.4 Structuring the System

The design of the system follows an object-oriented approach, where each module

constitutes one class. These classes can be instantiated into objects by the objects of

other classes in the system to provide services to them. Furthermore, each module

is separated in a single file on the disk, which must be included by the modules that

need to use it. Thus, an easy identification of the relevant part for each particular

service can be identified and examined easily. Refer to Appendix A for a detailed

6. Design of the System 45

description on how Panoptes is modularized, as well as a detailed description and

dependencies between modules.

6.5 Shortcomings of the Design

A design created concurrently with the process of gathering requirements runs the

risk of not being the best possible design. However, the main goal of this thesis is

to suggest a system that solves the problems associated with the limitations of the

current user interfaces of theorem provers. The current design and implementation

(see Chapter 7) offer a working prototype of Panoptes, but should not be considered

as a final product to be released and used for heavy and possibly commercial work.

That being said, there is an ample room for further analysis and refinements. For

example, the design will benefit from a description in the form of an industrially

established method, such as UML (class diagrams, object diagrams, collaboration

diagrams, etc.). Furthermore, the design can be formalized and then verified for

correctness by using software tools, such as the B-method, or even IMPS. However,

that process is lengthy and cannot be completed in the available time frame.

CHAPTER 7

PROTOTYPE IMPLEMENTATION OF

THE SYSTEM

7.1 Overview

This chapter describes the implementation of a prototype of Panoptes. There is a

description of the chosen programming language and libraries that are used for dif-

ferent tasks. Also, the end of the chapter provides detailed instructions on how to

install the software.

If the reader desires to gain a deeper understanding of the implementation, he or

she should refer to Appendix B, which contains comprehensive documentation of the

source code. For the ultimate enthusiasts and also developers who wish to extend the

code or use parts of it in their own programming, the fully commented source code

can be downloaded and viewed from the link provided at the end of this chapter.

7.2 Programming Choices

One of the most important nonfunctional requirements for Panoptes is to draw graph-

ics fast enough to eliminate any noticeable lags for the user. This is not only depen-

dent on the design of the system, but also on the implementation methods, which

in turn requires a good choice of a programming language and libraries for graphical

7. Prototype Implementation of the System 47

support. This section describes the choices that were made in this regard.

7.2.1 Objective Caml (vs. C/C++)

The importance of the choice of a programming language comes from the fact that

the compiler bears the task of transforming a high level program into low level ex-

ecutable code that runs sufficiently fast on the host machine. This requirement is

vital for avoiding the situation when the user has to wait for the program to finish its

calculations. The latter could not only result in wasting the user’s time, but might

also break his or her focus and concentration on the problem. Some might argue

against the importance of this requirement, but experience has shown that even a

little slowdown might be detrimental to the user having a pleasant experience. Recall

that one of the main goals of Panoptes is to make computer assisted theorem proving

a helpful and accessible aid to the user rather than create one more reason to continue

producing proofs in the old-fashioned way with paper and pencil.

Objective Caml [13] (a.k.a. OCaml) is a programming language created by Xavier

Leroy, Jerome Vouillon, Damien Doligez, Didier Remy, and others in 1996. Since

then, OCaml has established itself as a popular open source ML-derived language

that can be used not only for specific tasks but also for generic programming. It

is currently managed and maintained by the French National Institute for Research

in Computer Science and Control (INRIA) [12] and is characterized by a very large

community of users both in Europe and North America.

One of the most prominent characteristics of OCaml, which was also the main rea-

son to choose it for implementing the Panoptes prototype, is the static type system

that is also complemented by a powerful type inferencing engine. This feature alone

excluded the usual choice, C or C++ for object-oriented programming, made by

most programmers for implementing such projects. This type inferencing capability

of OCaml provides an unmatched aid in producing code free of programming errors.

On the occasion of some type mismatch in the program, which is one of the easiest

errors to make but among the most difficult to discover, the compiler will automati-

cally output an error. In contrast, the C++ compiler will produce a runnable program

that will ultimately lead to, for instance, a “segmentation fault” during some point

of a runtime session. Thus, OCaml guarantees to a large degree that a program that

compiles successfully has a much lower chance of crashing than a similar program

48 7. Prototype Implementation of the System

written in C/C++.

Furthermore, the OCaml programmer does not need to worry about garbage collec-

tion as the latter is done automatically by the automatic memory management and

incremental garbage collection system built into the language. This means that inci-

dental, but painful, omissions of the “new”, “malloc”, “delete” and “free” operators

in the C family of languages are not a problem anymore (in fact, OCaml does not

even have such operators). In addition, OCaml offers the programmer an environ-

ment for not only using imperative programming and object-oriented constructs, but

also functional programming, which is a capability directly derived from the OCaml

predecessor, ML.

Most importantly, programmers in OCaml enjoy the countless libraries available for

dealing with almost anything from pattern matching (which is, by the way, built-in

to OCaml) to creating large-scale graphical applications. In addition, studies show

that the performance of a program compiled with OCaml is comparable to the equiv-

alent code written in C++ [19], and the compilation process is just as fast, and in

some cases, even faster than the similar process in C++. Furthermore, a practical

comparison of a Ray Tracer implementation in both C++ and OCaml [3] reveals that

OCaml code is about twice as short and succinct as the equivalent code written in

C++.

Last but not least, a large amount of literature on developing a full range of software

in OCaml is available in the form of online guides and tutorials, as well as reference

books and textbooks. This was essential for developing the Panoptes prototype since

the author’s experience in developing OCaml programs was initially limited to a short

programming assignment, which only touched upon the world of OCaml.

7.2.2 OpenGL

The performance level of Panoptes is not supposed to differ much from that of a fast

paced video game. This type of applications require immediate display of the rele-

vant graphics since even a little delay might make the display of a certain graphical

component obsolete. To require such graphical performance from Panoptes means

that the implementation of the project is more complicated than the implementation

of applications that just draw graphics on the screen without interaction from the

7. Prototype Implementation of the System 49

user. Thus, the dynamic interaction between the user and the components of the

visualized deduction graph implies that Panoptes should respond to each action in a

quick, almost immediate, manner.

Panoptes uses the LablGL library [8] that implements an interface to OpenGL [10] in

OCaml. Usually, OpenGL is associated with three-dimensional graphical visualiza-

tions but the prototype uses these capabilities for implementing different techniques,

some of which are described below.

7.2.2.1 Three-dimensional Space and Zooming

The deduction graph in Panoptes is an object that resides somewhere in the realm

of virtual space. The computer screen can be viewed as a window to the space, from

which the user can peek. Therefore, only a small section of the whole space is visible

by the user at any given time. This section is defined by the position coordinates of

the user (resp. the computer screen) as well as the direction the window is pointing

at (i.e. a vector). Also, further configuration is needed: the length of the viewing

vector (the user cannot see things that are too distant), the field of view (a.k.a. FOV,

measured in angle radians), etc. These features are supported by the 3D functional-

ity provided by OpenGL, and Panoptes utilizes them for implementing some visual

tricks, rather than using the API to draw graphics that are intended to represent

objects that appear 3D to the user.

One such trick is used in the implementation of the zooming function. Moving the

graph or selected components of the graph closer or further away from the viewer

creates the effect of zooming, which mimics how zooming happens in nature—the

closer an object gets to the eyes of the user, the bigger it appears and more detail is

visible.1 In contrast, the usual zooming method that is used in most applications is

to merely scale the image. The advantage of bringing the graph in the space lies in

OpenGL being a direct API to the 3D instruction set of the graphical hardware, and as

such, it provides a performance unmatched by the standard way of drawing graphics

on the screen. The result is an application which delegates all graphical computations

and manipulations to the GPU, rather than the CPU of the host machine, thus

leaving the latter fully available for other work (such as that done by the IMPS

1Alternatively, the user (represented by a viewport in OpenGL) can move closer or further away
from the object to achieve zooming. Performance wise both methods are equivalent.

50 7. Prototype Implementation of the System

reasoning engine). Consequently, a computer system equipped with a reasonably

modern graphics card would be capable of running the prototype smoothly without

burdening the user with unnecessary lags and delays.

7.2.2.2 User Interface Elements

OpenGL comes with GLUT (The OpenGL Utility Toolkit) [26], which is a window

system independent toolkit for writing OpenGL programs. It represents a library

of utilities for performing system-level I/O with the operating system running the

OpenGL program. The implementation of Panoptes uses GLUT for many functions

such as window initialization, window control, as well as attaching event listeners for

all keyboard and mouse activities.

The main reason for choosing GLUT for building the Panoptes user interface was

not its full set of functions but rather its portability. GLUT makes it possible for

the developer to not worry about the kind of host operating system that will be

running the application. This is an important feature that perfectly fits the portability

nonfunctional requirement for Panoptes.

7.2.2.3 Text in OpenGL

The Panoptes requirements to label all nodes in the deduction graph and to display

information boxes with detailed information about the nodes calls for choosing a

technology for displaying text in an OpenGL drawing area. This proved to be one of

the most difficult issues to deal with during the process of developing the prototype

because OpenGL has very little support for displaying text.

At the time of developing the Panoptes prototype, there were just a few known meth-

ods for displaying text in OpenGL programs [9]. One way of achieving this is to

use bitmap fonts, which are usually very fast to display since they are pre-rasterized.

Despite the speed advantage, though, the provided OpenGL functionality does not

support rotation and scaling of the text. To make things even more limited, the

method relies completely on the available bitmap fonts installed on the host ma-

chine.2 However, the prototype implementation uses this method to display a help

screen with available commands to the user upon request.

2Bitmap fonts are not the same as true-type fonts (TTF), which are vector based.

7. Prototype Implementation of the System 51

Another method for drawing text in OpenGL is to use external libraries for generat-

ing outline fonts. This approach converts each symbol of the alphabet into a polygon

that can later be used in OpenGL as a separate 3D object. It is obvious that this

method would be an excellent choice if the top priority is to display text with highest

possible quality. Furthermore, these polygons can be manipulated in every possible

way supported by the general OpenGL functionality (rotation, translation, scaling,

coloring, lighting, etc.). Unfortunately, having a polygon for each character in a cer-

tain fragment of text would require OpenGL to render each symbol every single time

a new frame is drawn to the screen. That is why this method was not utilized by the

Panoptes implementation as it would have had detrimental effects on the smoothness

of the animation.

The third method for displaying text in OpenGL is to represent the characters of

the alphabet as textures. OpenGL provides extensive support and optimization for

dealing with such textures, allowing them to be used as surface decals regardless of

the size and location of the surface. In the case of Panoptes, the set of all individual

surface units that are candidates for such decals includes all nodes and all information

boxes. Consequently, this method was modified to convert True-Type Fonts into

extremely high resolution images. Then an image containing the complete set of

symbols is parsed to separate each symbol from the others, and Panoptes loads the

whole alphabet in the form of generated OpenGL textures into the video memory.

When the program needs to display text on the screen it just sends an OpenGL

command to the video card with instructions on the textures to be used and the

format and display location. This method proved to be extremely reliable and efficient

because it completely bypasses the need for using the CPU of the system.

7.2.2.4 OpenGL Literature

Learning to do graphics with OpenGL has a steep learning curve. However, there

is a tremendous amount of literature available in the form of references (e.g. [27]),

textbooks (e.g. [29]), as well as online tutorials and guides. Most of these texts

include developing sample projects that guide the user step by step into mastering

techniques that gradually increase in difficulty. It is important to understand that

OpenGL is not a programming language—it is an API to the graphical hardware, so

it is the user’s responsibility to understand the possibilities as well as the limitations

52 7. Prototype Implementation of the System

of OpenGL when it comes to drawing graphics.

7.2.3 Graphviz

Graphviz [24] is a software package developed by AT&T Research for creat-

ing layouts for graphs. Currently the software is licensed on an open source

basis under the Common Public License stated on the following web page:

http://www.graphviz.org/License.php.

Panoptes uses Graphviz for creating a layout of the deduction graph. The prototype

describes all nodes and connections between them using a simple file format called

dot. Then Panoptes runs this file through Graphviz, which in turn renders a layout

by using sophisticated layout routines. The output is then parsed by Panoptes into

an internal data structure, which is made available to the other parts of the system.

Since the performance requirement is crucial for Panoptes, a few different tests were

created and executed to determine if Graphviz could hold up to the expectations. The

results showed that Graphviz completes generation of layouts for deduction graphs

containing a couple of thousand nodes in a fraction of a second, thus making it a

great choice for use by Panoptes.

7.3 Installation and Use

The source code of this implementation of Panoptes can be downloaded from the

following link:

http://imps.mcmaster.ca/ogrigorov/panoptes/panoptes_src.tar.gz

The file should be saved to a local folder (e.g. /home/username/panoptes), and then

uncompressed by using the following command: tar zxf panoptes src.tar.gz.

The user should run ./install, which will create a new subfolder, containing high

resolution images for each character of the alphabet. Alternatively, if the user has

the package Camlimages installed on his or her machine, executing make generator

and then ./generator will generate the required character image files.

http://www.graphviz.org/License.php
http://imps.mcmaster.ca/ogrigorov/panoptes/panoptes_src.tar.gz

7. Prototype Implementation of the System 53

Before successfully compiling Panoptes, there are a few things that must be installed

on the system. These are:

• OCaml: compiler for Objective Caml programming language.

• LablGL: OCaml implementation of OpenGL API.

• Graphviz: layout generation program.

If compiling on a Debian-based Linux, such as Ubuntu Linux, the process can be

completed with a straight forward one line command: sudo apt-get install ocaml

lablgl graphviz.

Mac OS X users need to install both Fink (http://www.finkproject.org/) and

MacPorts (http://www.macports.org/), and after making sure that they are both

up to date, to install the required programs by typing the following two commands:

sudo fink install ocaml lablgl, and then sudo port install graphviz.

Once all prerequisites are present, Panoptes can be compiled by just typing make,

which will create a binary file. Then, the system can be started by ./panoptes, and

the help screen with all available shortcuts can be called by pressing the “h” button

on the keyboard.

Note that it is vital to start a proof in IMPS3 before starting Panoptes. If this is not

done, Panoptes will look for the IMPS communication files and will not find them,

which will result in an error message displayed on the screen.

7.4 Demonstration

This prototype is graphical software with user interaction, and as such, there is no bet-

ter way of describing it than demonstrating it live. That is why the home web-page of

Panoptes (http://imps.mcmaster.ca/ogrigorov/panoptes) contains a demo that

can be downloaded and viewed with almost any contemporary software media player.

3IMPS and information on how to install it can be obtained from http://imps.mcmaster.ca.

http://www.finkproject.org/
http://www.macports.org/
http://imps.mcmaster.ca/ogrigorov/panoptes
http://imps.mcmaster.ca

54 7. Prototype Implementation of the System

7.5 Screenshots

For completeness, this section provides a few screenshots of the Panoptes prototype.

Such static images only begin to demonstrate the ease of operation and the features

the program provides (such as the effective “target zooming”), so the reader is advised

to visit the webpage mentioned in the previous section to see a live demo.

Figure 7.1: Screenshot: a deduction graph

7. Prototype Implementation of the System 55

Figure 7.2: Screenshot: slightly zoomed and repositioned

56 7. Prototype Implementation of the System

Figure 7.3: Screenshot: target zoom on “SQN-25”

7. Prototype Implementation of the System 57

Figure 7.4: Screenshot: partially collapsed

58 7. Prototype Implementation of the System

Figure 7.5: Screenshot: completely collapsed

7. Prototype Implementation of the System 59

Figure 7.6: Screenshot: a few content boxes are opened

60 7. Prototype Implementation of the System

Figure 7.7: Screenshot: content boxes and a renamed collapsed node

7. Prototype Implementation of the System 61

Figure 7.8: Screenshot: help screen, content boxes, grounded node “SQN-5” colored
in green

62 7. Prototype Implementation of the System

Figure 7.9: Screenshot: new data notification screen, renamed nodes

7. Prototype Implementation of the System 63

Figure 7.10: Screenshot: a zoomed section of a very large deduction graph

CHAPTER 8

RELATED WORK

The authors of [1] have developed a proof visualization system, which attempts to

make proofs created with the ACL2 theorem prover [15, 16, 17] more understandable.

As in IMPS, ACL2 relies on large amounts of text to represent theorems and steps

in the proof process. The developed system has different design and requirements

from Panoptes, though. First, its layout mechanism relies on a variant of the cone

tree layout algorithm, which renders the nodes in 3D space. Consequently, the user

is given the functionality to rotate the whole structure and look at it at all angles.

For making visual differentiation between the nodes, they use colors instead of labels,

where each proof command has its own color. Like Panoptes, they have implemented

a way for examining the contents of each node, although this happens in a separate

window and there is no visual connection between the node and its content box, thus

making it somewhat difficult to spot the relation between the boxes and their respec-

tive nodes. Their system was developed in Java.

The Prototype Verification System (PVS) [20] is another proof assistant that provides

capabilities for creating proofs and theories similar to IMPS. Its user interface is also

Emacs based, and if the client system has Tcl/Tk (http://www.tcl.tk) installed,

it offers the capability to graphically display proof trees. The analogous object to

the IMPS sequent node is a node that is represented by the symbol “`” in the PVS

graphical representation of the proof tree and is followed by a connection to the proof

command. If the latter exceeds a certain length, it is automatically abbreviated. The

http://www.tcl.tk

8. Related Work 65

user has the capability to click on the ` symbol, and then a window pops up with

text information about that sequent node.

The Tecton Proof System [14] is an experimental tool whose purpose is to construct

proofs for formulas in the first order logic, as well as proofs for program specifications

expressed using the Hoare’s axiomatic proof formalism [11]. One of the interesting

and related features that the system offers is proof visualization in the form of a series

of pages with aligned text boxes, each of which is hyperlinked to relevant information.

The interesting thing is how they manage the layout of these trees: they take into

account the fact that a sequent node will never have more than one child (only one

inference node). Thus, they combine each inference node with its parent sequent node

to form a single node to save space.

CHAPTER 9

FUTURE WORK

There are multiple directions, in which future work can go. Apart from implementing

the suggested new design, many new features can be added. Take positioning the

graph in 3D space for one. It would be nice if the user has the capability to move

certain branches (proof directions) in the deep space behind the graph, and then be

able to toggle through them. This idea differs from the one used in the ACL2 proof

visualization system (see Chapter 8) because rather than just representing the deduc-

tion graph as a 3D object that can be looked at from different angles, Panoptes shall

allow the user to stack the proof branches on top of each other and then bring only

the ones of interest to the front.

Furthermore, the multiscreen display was mentioned in section 5.3.4 on page 23, but

regretfully that new technology was not available at the time of writing this thesis;

therefore, testing on the multiscreen system has yet to be done. Since performance

and speed are very important for this project, adjustments might need to be done,

although preliminary testing on a system with 2 large screens, which act as one, was

successfully completed and almost no lag was noticed.

Another very useful feature of the software would be the capability of comparing

sequent nodes. That is, the program should be able to offer some numerical value,

which represents the degree (i.e. percentage) of similarity. The ACL2 visualization

system [1], mentioned in Chapter 8, has the capability to match the parse tree of

9. Future Work 67

expressions to a certain degree. Panoptes should be able to offer similar functionality

but be more open to different expression syntaxes. Speaking of which, future work

should definitely include tuning the communication and parsing modules of Panoptes

to work with other theorem provers.

Finally, the most ambitious plan includes expansion of Panoptes to completely replace

the current Emacs-based user interface of IMPS. This is going to be exceptionally

difficult, but in no way impossible. Difficult, because the user interface gives the user

complete control over the development of proofs and theories and has many things to

account for. For example, it maintains a constant connection with the concurrently

running IMPS process and “consults” with it on the availability of commands the

user can make. Also, it is responsible for updating IMPS with every choice made by

the user—from changing the working theory to loading theorems and keeping track

of proof steps. On the surface, it may not look all that complicated, but in reality

the details that need to be taken care of are numerous.

CHAPTER 10

CONCLUSION

Proof assistants are software systems that allow the user to develop formal proofs by

exercising high-level reasoning without having to worry about the large amount of

low-level details. The user interfaces of these systems usually rely on the use of text

to present the proof structures the user has developed. Often this text becomes so

lengthy that it is confusing and difficult to comprehend and work with. That is why

more effective tools for exploring such large proof structures are needed.

This work provides the requirements and design of a system called Panoptes that

demonstrates what these tools need to provide. Inspired by the famous English

idiom “a picture is worth a thousand words,” Panoptes allows the user to explore

deduction graphs created by the IMPS Interactive Mathematical Proof System in

the form of graphical visualizations. A fully functional prototype of Panoptes has

been implemented in OCaml. The prototype utilizes the powerful features offered by

today’s computer graphics technology. The result is a system that provides an easy

and effective way of exploring these proof structures, complemented by a pleasant

user experience.

CHAPTER 11

ACKNOWLEDGMENTS

First and foremost, I would like to thank my academic supervisor and mentor

Dr. William M. Farmer. Not only did he introduce the world of computerized

theorem proving to me, but he was a valuable and irreplaceable source of guidance

for me throughout the complete process of developing this thesis and implementation,

as well as during my whole stay at McMaster University. He made absolutely bril-

liant suggestions and helped me formulate and accomplish my ideas. Thank you, Bill!

I sincerely appreciate the time spent by the other members of my Examination Com-

mittee, Dr. Tom Maibaum and Dr. Spencer Smith, on reading this thesis and sug-

gesting improvements that made the thesis much better. Also, special thanks to my

colleague Pouya Larjani for his valuable programming tips, to Dr. Jacques Carette

who read my thesis proposal and suggested OCaml for implementing the prototype,

and to Dr. Wolfram Kahl for assisting me with the testing on the multiscreen machine.

I would like to thank my wife, Silvia, for her help, love and trust. Also, my daughter,

Ema, has been a great stress reliever: her smiles, hugs, and love are almost magical!

I dedicate this work to my father, Grigor, and to my mother, Donka. I do not know

another father who has fought so selflessly and hard to provide a better future for his

family, and without my mother’s advice and encouragement, I couldn’t have made it

this far. Mom and dad, I love you!

APPENDIX A—MODULE GUIDE

This appendix is separated into six sections. The first two sections (A.1 and A.2) list
the anticipated and unlikely changes on the requirements of the system that might
occur. The rest of the appendix contains a section on the module decomposition of
Panoptes, a detailed description of each module, a uses hierarchy diagram, and a
traceability matrix for easy identification of the modules that are responsible for each
particular task.

A.1 Anticipated Changes

This section lists the changes on the software that are likely to happen. They are
given names and numbers to facilitate matching them with the modules of the system
later in the Traceability Matrix (Section A.7). A modification to one of these antici-
pated changes should ideally result in the need to change only one module, although
the design is not optimized for that due to the rapid method of programming that
was used for developing the prototype (also, recall that design and implementation
occurred concurrently to the process of gathering the requirements).

AC1 Keyboard Input:
Data structure and algorithms that provide the interface between the keyboard
strokes and the system.

AC2 Mouse Input:
Data structure and algorithms that provide the interface between mouse clicks
and motion, and the system.

AC3 Screen Display of Graphics:
Data structure and algorithms that provide means for displaying graphics on
the screen.

AC4 Screen Display of Text:
Data structure and algorithms that provide means for displaying text on the
screen.

A. Appendix A—Module Guide 71

AC5 User Interface:
Data structure and algorithms that create, support, and control the user inter-
face.

AC6 User Input Format:
The format of the input from the user, and the way to transmit it from user to
system (e.g. by means of keyboard strokes, mouse clicks and movements, screen
selection, etc.).

AC7 Output Format:
The format of the output, and the way to deliver it to the user (e.g. graphics
on the screen, file dump, shell, etc.).

AC8 Graph Layout Engine:
The algorithm for generating a layout of the deduction graph on the screen.

AC9 Format of the Input from the Proof Assistant:
The format of the data describing the deduction graph that the output module
of the proof assistant creates.1

AC10 Dimensions:
Data structure and algorithms that manage the two dimensional appearance of
the graph and its components on the screen.2

AC11 Deduction Graph Shapes:
Data structure and algorithms for drawing the shapes of the different elements
of the deduction graph (e.g. arrows, different nodes, information boxes, etc.).

A.2 Unlikely Changes

This section lists the changes to the system that are unlikely to happen. It is impor-
tant to understand that if the need to make any of these changes occurs in the future,
it will inevitably result in the need to modify a large part of the system (possibly a
large number of modules). All unlikely changes are labeled with “UC” and a number
in subscript.

UC1: The deduction graph is a bipartite graph.

UC2: The edges in the deduction graph are directed.

UC3: Cycles are allowed in the deduction graph.

UC4: One of the two kinds of nodes will never have more than one parent (in the
current case study, these are the inference nodes).

1In IMPS, the text version of the deduction graph is created by the Emacs-based user interface.
2Future expansion can include a 3D appearance.

72 A. Appendix A—Module Guide

A.3 Module Decomposition

Table A.1 shows the hierarchical breakdown of the modules. The top level decompo-
sition consists of three modules:

• Hardware-Hiding Module: This module contains all parts of the system
that need to be modified if some part of the hardware changes.

• Behavior-Hiding Module: This module contains all parts of the system that
need to be modified if any of the required behavior (described in Section 5.2)
changes.

• Software Decision Hiding: This module contains all parts of the system that
implement algorithms and contain a chosen way of accomplishing tasks.

These top level modules are further broken down into smaller and more manageable
units. Consequently, the “leaf” modules (the shaded cells) are the modules that were
implemented and comprise the prototype of Panoptes.

Level 1 Level 2 Level 3

Hardware-Hiding Module
Input Module

Keyboard Input Module
Mouse Control Module
File Read/Write Module

OpenGL Module

Behavior-Hiding Module
Data Module

Parser Module
Sqn grabber Module

Drawing Module
TextGL Module
Node Module
Arrow Module

User Interface Module
Canvas Module
Panoptes Module

Software Decision Hiding
Graph Layout Module

Automatic Layout Module
Parser dot Module

Types Module

Table A.1: Module Decomposition

A.4 Description of Modules

This section provides a detailed description of each module. Each such description is
broken down into three parts: a label, a secret, and a service.

• Label: this part provides the label that is used to provide reference to the
module in the Traceability Matrix (Section A.7).

A. Appendix A—Module Guide 73

• Secret: this part describes what the module hides from the rest of the system.

• Service: this part describes the functionality that is provided by the module.

Furthermore, the word “external” in the captions of some of the subsections that
follow signify that the respective module is either imported from external libraries, or
provided by the system, which means that there is no need for it to be implemented.

A.4.1 Keyboard Input Module (external)

• Label: M1

• Secret: The data structure and algorithms for implementing the interface be-
tween the keyboard and Panoptes.

• Service: Collects the input from the user and communicates it to the other
parts of the system.

A.4.2 Mouse Control Module (external)

• Label: M2

• Secret: The data structure and algorithms for implementing the interface be-
tween the mouse and Panoptes.

• Service: Monitors the mouse for events, such as clicks and motion, and notifies
the other parts of the system.

A.4.3 File Read/Write Module (external)

• Label: M3

• Secret: The data structure and algorithms for accessing the file system.

• Service: Supplies the other parts of the system with an interface to files on
the disk.

A.4.4 Window Initialization Module (external)

• Label: M4

• Secret: The data structure and algorithms for initializing a window in the
graphical environment of the operating system for the exclusive use of Panoptes.

• Service: Upon request, reserves the necessary resources, and by following inter-
nal procedures initializes and opens a graphical window that is at the disposal
of the other parts of the system.

74 A. Appendix A—Module Guide

A.4.5 OpenGL Module (external)

• Label: M5

• Secret: The data structure and algorithms for interfacing with the graphical
hardware.

• Service: Provides the other parts of the system with a set of commands to
access and control the graphical hardware of the computer system, which runs
Panoptes.

A.4.6 Automatic Layout Module (external)

• Label: M6

• Secret: Algorithms for generating a space-constrained two-dimensional layout
of the deduction graph.

• Service: Provides a generated layout of the deduction graph in the form of
positions on the screen for each node of the deduction graph.

A.4.7 Types Module

• Label: M7

• Secret: Definitions of commonly used data types.

• Service: Provides a reference for the types to the type inferencing algorithms
of the programming language.

A.4.8 Parser Module

• Label: M8

• Secret: Data structure and algorithms for transforming the data input, sup-
plied by the proof assistant (in this case this is IMPS), into internal Panoptes
data structures. The module also hides these internal data structures, and also
hides the operations for accessing and submitting queries to them.

• Service: Provides operations on the structure of the deduction graph, such
as removal of nodes, addition of new nodes, traversing, obtaining information
about nodes, statistics on the deduction graph.

A. Appendix A—Module Guide 75

A.4.9 Sqn grabber Module

• Label: M9

• Secret: Data structure and algorithms for detecting changes on selected files
on the disk. Also, hides the algorithms for retrieving and storing of the detected
new information in these files.

• Service: Provides the functionality to poll a specific file for changes to the rest
of the system and retrieve any detected new information in it.

A.4.10 Parser dot Module

• Label: M10

• Secret: Data structure and algorithms for calling the layout module (see Sub-
section A.4.6) and parsing its output. Also, it abstracts the internal data struc-
ture used for keeping this information, as well as the algorithms for submitting
and executing queries on the data structure.

• Service: Provides means for the system to run a deduction graph through
the layout module in order to get a layout of the deduction graph. Provides
methods for accessing the result during the time of drawing performed by the
other parts of the system. This module can be globally viewed as the module
that provides the layout of the deduction graph.

A.4.11 TextGL Module

• Label: M11

• Secret: Data structures and algorithms for displaying text in an OpenGL
graphical environment. Also, hides the chosen optimization algorithms used for
increasing the runtime performance of the system.

• Service: Provides the other parts of the system with methods for displaying
text in the form of graphical textures inside the OpenGL drawing canvas. Also,
provides preliminary analysis and results about the eventual dimensions of a
text block if it were to be converted in an OpenGL graphical texture format.

A.4.12 Node Module

• Label: M12

• Secret: Data structure and algorithms for drawing a node in an OpenGL
drawing canvas.

76 A. Appendix A—Module Guide

• Service: Provides a class, which can be instantiated and represents a node
of the graph. The instantiated object has different methods that control the
location and appearance of the node.

A.4.13 Arrow Module

• Label: M13

• Secret: Data structure and algorithms for drawing a directed edge between
two nodes.

• Service: Provides the system with a class, which can be instantiated to repre-
sent an arrow between two nodes. It contains methods for drawing the arrow
on the screen, as well as keeping it connected at all times to its end points (the
two connected by the arrow nodes).

A.4.14 Canvas Module

• Label: M14

• Secret: Data structure and algorithms for most of the user induced operations
in Panoptes. This includes zooming, collapsing, dragging and movement, etc.

• Service: Provides the other parts of the system with methods that can be
called to achieve different transforming actions on the deduction graph. It
directly controls many of the other modules (see Section A.5).

A.4.15 Panoptes Module

• Label: M15

• Secret: Algorithms and machinery for initialization of a dedicated graphics
window, as well as binding all keyboard shortcuts and mouse movements and
clicks with the appropriate functionality of the system.

• Service: Serves as the starting point of system. Initializes the environment
and provides it to the other parts of the system. Directs input events to the
appropriate methods in the appropriate modules.

A.5 Uses Hierarchy

In [21] Dr. Parnas suggested that the statement “a program A uses a program B”
means that correct execution of B is necessary for A to complete its task according
to its specification. Therefore, there are situations, in which the correct functioning

A. Appendix A—Module Guide 77

of A is dependent on the correct implementation of B.

Following this principle and the decomposition of Panoptes into a few separate mod-
ules (see Section A.3), this section describes the dependence between these modules
on each other, so that they can function properly. Also, it was already shown that
each module is responsible for a different task. The complete “Uses Hierarchy” of
Panoptes is shown in Figure A.1, where all such dependancies between the modules
of the system are described in the form of a diagram.

Figure A.1: Uses Hierarchy

The diagram contains a few different kinds of elements:

78 A. Appendix A—Module Guide

• Circles represent modules that need to be implemented.

• Squares represent modules that are provided by the system or are imported
from external libraries.

• Solid arrows represent relationships (see below) between modules that need
to be implemented.

• Dashed arrows are used for relationships between modules when one of them
must be implemented and the other one is provided by the system or imported
from an external library.

The arrows in the diagram represent dependency, i.e. the correct functioning of the
module at the origin of the arrow depends on the correct functioning of the module
pointed to by the arrow. Thus, an arrow that originates at Module A and points
at Module B represents a relationship between the two modules, which means that
Module A requires that Module B is implemented and functions properly for the
former to work. Furthermore, the Module A can call the access methods of Module
B (see Section A.4 for the access methods of all modules).

A.6 Summary of Requirements

For convenience, two lists are provided below: one containing all functional require-
ments, and one containing all nonfunctional requirements, which were stated and
defined in Chapter 5. The items in the functional requirements list start with an
“R” and the number of the functional requirement in subscript, and the items in the
nonfunctional requirements list start with an “NF” and the number of the nonfunc-
tional requirement in subscript. These labels are used in the Traceability Matrix that
follows in the next section. Also, each requirement label in the list is complemented
by a short description of what it represents. For more detailed information regarding
a particular requirement, the reader should refer to the respective page number of
that requirement that is also provided below.

A.6.1 List of Functional Requirements

R1 (page 17): Nodes must be visualized on the screen.

R2 (page 17): Nodes must be visually different from each other.

R3 (page 17): Special nodes must be colored differently.

R4 (page 18): Sequent nodes must be labeled with their IMPS names.

R5 (page 18): Inference nodes must be named after the respective command they
represent in IMPS, and also must be numbered to provide information about
repetitions of the same command.

A. Appendix A—Module Guide 79

R6 (page 18): The user must be able to rename the labels of the nodes.

R7 (page 19): Each box must have an information box with detailed information,
which can be opened or closed.

R8 (page 19): The program should suggest a good initial layout of the deduction
graph.

R9 (page 20): The user must be able to manually rearrange the layout of the
deduction graph.

R10 (page 20): The user should be able to do targeted zooming on any part of the
graph.

R11 (page 20): The user should be able to collapse parts of the graph into newly
created nodes without destroying the properties of the graph.

R12 (page 21): The user should have a means of examining the collapsed boxes to
learn what they represent.

R13 (page 21): The collapsed boxes should be labeled in a way that provides the
user with a hint regarding the information hidden by them.

R14 (page 21): All user induced operations should be reversible.

R15 (page 21): A help screen with available commands should be available to the
user.

A.6.2 List of Non-Functional Requirements

NF1 (page 22): The tool should be easy to learn.

NF2 (page 22): The tool should be easy to use.

NF3 (page 22): The user should be automatically protected from making errors and
illegal operations on the deduction graph.

NF4 (page 23): Target hardware: a modern graphics card.

NF5 (page 24): A good choice of optimized algorithms for computations should be
made.

NF6 (page 25): Centralization of the part of the system that is responsible for ac-
cepting and processing the input data.

NF7 (page 25): The target operating systems should be supported.

80 A. Appendix A—Module Guide

NF8 (page 25): The design should account for the ability of Panoptes to run on large
screen walls.

NF9 (page 25): The installation should be easy.

A. Appendix A—Module Guide 81

A.7 Traceability Matrix

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 D

AC1 X
AC2 X
AC3 X X
AC4 X
AC5 X X
AC6 X
AC7 X X
AC8 X X
AC9 X X X
AC10 X
AC11 X X

R1 X X X X
R2 X X
R3 X X X
R4 X X
R5 X X
R6 X X X X X
R7 X X X X X X X X
R8 X X X X
R9 X X X X
R10 X X X X
R11 X X X X X
R12 X X X X X
R13 X
R14 X X
R15 X X

NF1 X
NF2 X
NF3 X X
NF4 X
NF5 X X
NF6 X
NF7 X X X
NF8 X X X
NF9 X X

Table A.2: Traceability Matrix

Table A.23 provides the Traceability Matrix, which shows the coupling of the antici-
pated changes, the functional requirements, and nonfunctional requirements with the
modules of the system. The labeling of the modules comes from Section A.4, and the
labels of the anticipated changes come from Section A.1. The labels for the functional
and the non-functional requirements come respectively from Sections A.6.1 and A.6.2.

3The last column named “D” represents the instructions for installing the Panoptes prototype,
which are provided in Section 7.3 on page 52.

APPENDIX B—DOCUMENTATION OF
THE IMPLEMENTATION

This appendix contains a detailed method description for each module of the system
(except the modules that are either imported from external libraries or are provided
by the system4). A separate section is dedicated for each module, which contains
information on all implemented methods and their types within the module. In
addition, all used variables are included with descriptions of their purposes. For best
understanding and clarity, the reader is advised to have the source code available as
the names of the arguments passed to the methods are self-explanatory in most cases.

4These external modules are indicated by the word “external” that follows the module’s name in
Section A.4 on page 72.

B. Appendix B—Documentation of the Implementation 83

B.1 Module Sqn grabber

class sqn grabber : string ->

object

val mutable last_modtime : float

This variable holds an indicator of the time format, which is platform
dependent (in OS X and Linux it is in the form of a real number). It is
used for comparison with the current timestamp of the file that is
monitored for changes. Every time the file changes, the object of this
class will detect this as an event and will update this variable accordingly.

method stop : unit -> unit

This method stops the thread and removes the backup file from the disk
(the file, which is used for storing any detected new data).

method poll : unit -> bool

This method “polls” the file that is being monitored. If an update is
detected, then it creates a backup of the newly introduced data. Also, it
transmits a notification message to the Panoptes module, letting it know
that it should notify the user about the detection of new data.
Consequently Panoptes displays an indication on the screen that prompts
the user to press the “UPDATE” shortcut in the user interface.

end

B.2 Module Types

type kindT =

| SQN

| INF

This type is used to indicate whether something represents a sequent node or
an inference node.

84 B. Appendix B—Documentation of the Implementation

type specialT =

| Nil

| Repeated

| Grounded

| Box

This type is provided for use by the parser. The different kinds of nodes in the
deduction graph are labeled differently. Recall that IMPS automatically labels
repeating and grounded nodes in its text representation of the deduction
graph. The “Box” value is used later in the implementation to signify a node
that represents a collapsed part of the graph.

type nodeT =

| Node of kindT * string * specialT * nodeT list

This is a recursive type that is used for representing nodes in the graph. Each
record of this type consists of a tuple of elements: the kind of the node, its
name (or label), its special characteristics, and a list of other nodes it is
connected to. This resembles the design of a linked list.

type sqnT = (int * specialT * string) list

This is used to represent a collection (or list) of nodes. This type is not very
important, but its presence makes implementation more convenient and less
confusing. When programming in OCaml it is important to specify the types
in advance, so that the built in type inference system of the compiler produces
performs better.

val pi : float

The number Pi to be used throughout the modules of Panoptes that import
this module. Here it is calculated to a great enough precision to accommodate
some graphical calculations used in the other modules.

B.3 Module TextGL

class font :

object

val mutable chars :

(int, ([‘rgb], [‘ubyte]) GlPix.t * int * int) Hashtbl.t

A hash table that is indexed by an integer that represents a character of
the alphabet. Each record contains a tuple, consisting of the graphical
image of that character and its width and height in pixel units.

B. Appendix B—Documentation of the Implementation 85

val mutable chars_texture :

(int, GlTex.texture_id * int * int) Hashtbl.t

A hash table that is indexed by an integer that represents a character of
the alphabet. Contrary to the hash table described above, this hash table
does not keep an image but the pre-generated OpenGL texture for the
character. This is needed to skip the time consumed for generating a new
OpenGL texture each time such texture is needed. Such need usually
occurs during synchronization of the deduction graph in Panoptes with
the one in IMPS. As stated many times already, speed performance in
Panoptes is critical for a pleasant user experience.

method initialize : unit -> unit

This method initializes the font by creating two empty hash tables (as
described above) that will contain the images and textures of all
characters in the alphabet. Then the method calls the make image

method (see below) that is used to populate these hash tables.

method private input_binary :

int -> ([‘rgb], [‘ubyte]) GlPix.t * int * int

Opens a pregenerated binary image file that contains contains a sequence
of all characters in the alphabet. Then it loads it into an internal data
structure that is returned along with its dimension in pixel units.

val mutable char_width : int

val mutable char_height : int

These are two global variables that respectively hold the width and the
height of the characters in the alphabet (measured in pixel units).

method private make_image : unit -> unit

Loads the font by traversing the data structure that is returned by
input binary method, and extracts each individual character from it.
The data describing each character is then stored in the hash table chars

for further use.

method get_char : int ->

([‘rgb], [‘ubyte]) GlPix.t * int * int

This is a public method that returns the pregenerated OpenGL texture
of the requested by the argument character.

method get_text : string ->

([‘rgb], [‘ubyte]) GlPix.t * int * int

86 B. Appendix B—Documentation of the Implementation

Similarly to the method described above, this is a public method that
generates and returns an OpenGL texture that represents the supplied by
the argument string of characters.

method private clean_text_newlines : string -> string * int

This method is used to clean the supplied by the argument string from
the characters used to represent new lines. These characters are replaced
by the symbol ‘@’, which facilitates the formating of the text (shift new
lines down and to the left when generating a new texture from a string of
characters) done by other client methods.

method private add_texture :

int -> ([‘rgb], [‘ubyte]) GlPix.t * int * int -> unit

This private method is used to load the texture that is associated by the
argument into the video memory of the graphical card. This is extremely
important as the hardware can then use it immediately when needed
instead of sending queries to the main memory. This pre-loading of
textures method proved to be very efficient through direct testing done
with Panoptes.

method printGL : string -> unit

This method displays a line of text directly in the OpenGL drawing
window (see printGL block below for more detailed description of this
process).

method private find_longest_line : string -> int

This private method is used to preliminary analyze a block of text in
order to determine the length of the longest line contained in it. This is
used to correctly determine the right amount of memory that needs to be
reserved for the image that will eventually represent this block of text.

method calc_ratio_block : string -> float

This method calculates the ratio between the width and the height of the
block of text supplied by the argument. For example, if the text consists
of 4 lines, the longest of which contains 10 symbols, then the ratio will be
10
4

= 2.5. This is used by the objects of Node class in order to do the
right calculation for proportionate scaling and positioning of the node
and its components (the frame and the label).

method printGL_block : string -> unit

B. Appendix B—Documentation of the Implementation 87

This is a very popular public method as it is used extensively by other
parts of the system. It allows immediate display of the text provided by
the argument in the OpenGL window. Therefore, this method is not only
responsible for calling the other private methods associated with this
process (such as the method for cleaning the text from newlines and the
method for generating a texture in case when it does not already exist),
but also it is responsible for calling the OpenGL procedures to draw the
text on the screen. The reader should know that prior to calling this
method, the position of the text to be displayed should be set in the
OpenGL engine.

method get_texture : int -> GlTex.texture_id * int * int

This method takes an ASCII code of a character (supplied by the
argument), and then returns the index number that is associated with
that character in the hash table that holds the pregenerated OpenGL
textures.

end

B.4 Module Parser

class graph data class : string * string * string ->

object

val mutable sqn_data :

(String.t, Types.specialT * string * ’a list) Hashtbl.t

This hash table holds the details for the information boxes of each
sequent node. The table is indexed by the text name of the sequent node
in IMPS, and it contains a tuple of the following elements: one indicating
whether the node is special (repeated, grounded, etc.) and one that holds
a string of text that contains the details of the node. The third element
of the tuple is not used. It is added for convenience and eventual future
expansion of functionality.

val mutable sqn_list :

(String.t, Types.specialT * String.t list * String.t list)

Hashtbl.t

88 B. Appendix B—Documentation of the Implementation

The elements of this hash table comprise the set of all sequent nodes in
the deduction graph. They are indexed by their IMPS names, and the
tuple of information contains their specialty and two separate lists of
strings: one for all children of the node and one for all parents of the
node.

val mutable inf_list :

(String.t, Types.specialT * String.t list * String.t list)

Hashtbl.t

Similarly to sqn list this hash table stores all inference nodes in the
deduction graph. They are are indexed by their names in IMPS and their
assigned numbers in the parser method of this class.

method remove_node : String.t -> unit

This method removes the existence of the node indicated by the
parameter name. After this method completes its operation, the indicated
node does not appear in any of the data structures of this class.

method graph_stats : int * int * int * int

This method returns four integers: the number of sequent nodes, the
number of inference nodes, the number of grounded nodes, and the
number of nodes that are repeated and form a cycle in the deduction
graph.

method private make_dot_string : string

This method returns a string that represents the deduction graph in a
format that is recognizable by the Graphviz external software. Recall
that this software is used for generating the initial layout of the
deduction graph in Panoptes.

method update : unit

This method groups the calls to all other methods of this class to achieve
a “reset and recollect” operation regarding all information that describes
the deduction graph.

method get_node_parents : String.t -> String.t list

This method returns a list of strings. These strings contain the names of
all parents of the node indicated by the parameter of the call.

method find_the_way_back : String.t -> String.t list

B. Appendix B—Documentation of the Implementation 89

This method returns a list of node names in the form of strings. These
nodes comprise the path from the indicated by the parameter node, all
the way to the root node in the deduction graph (the oldest sequent node
in the graph, a.k.a.˜the main goal).

method get_node_children : String.t -> String.t list

This method, similarly to get node parents, returns a list of all children
of the indicated by the parameter node.

method find_the_way_forward : String.t -> String.t list

This method returns a list of nodes. These nodes represent all successors
of the indicated by the parameter node.

method find_path_to_from : String.t -> String.t -> String.t list

This method returns a list of nodes, which comprise the path between
the two nodes indicated by the two arguments. If there is not a direct
path between these two nodes, then the resulting list will remain empty.

method get_node_details : String.t ->

Types.specialT * Types.kindT * string

This method accepts the name of the node as an argument, and returns a
tuple consisting of three things: the specialty of the node (repeated,
grounded, etc.), the kind of the node (sequent or inference node), and its
detailed information (supplied in the form of a string).

method write_dot_file : string -> string -> unit

This method writes to the disk the result from the method mentioned
above: make dot string. The resulting file on the disk will be used in a
subsequent step as an input to the external program GraphViz that is
used to generate the initial layout of the deduction graph in Panoptes.

method private sqn_clean : string -> String.t

This private method replaces the letter sequence “IMPS SQN ” with
“SQN ” in the supplied by the argument string.

method private inf_clean : string -> String.t

This private method adds a number to the name of an inference node.
This number shows how many times the inference rule that is represented
by that node has been used in the deduction graph until that point.

method print_dg : unit

90 B. Appendix B—Documentation of the Implementation

This method is used only for debugging purposes. It implements a textual
pretty printer of the deduction graph, the result of which is very similar
to the format used internally in the IMPS user interface. It displays its
output in the active shell window that was used to start Panoptes.

method add_new :

Types.kindT -> String.t -> Types.specialT ->

String.t list -> unit

This method adds a new node to the deduction graph. It can be
considered polymorphic in the sense that it can be used for adding both
kinds of nodes—sequent and inference nodes. Also, if known, a list of
children of the node to be added can be supplied. If such list is not
available at the time of calling this method, then the list argument can
accept an empty list.

method add_new_to_parent_list :

Types.kindT -> String.t -> String.t -> unit

This method adds a parent node to the list of parents of the indicated by
the argument node. Again, the kind of the target node (the one, whose
list of parents is to be updated), must be passed as an argument.

method add_new_to_list :

Types.kindT -> String.t -> String.t -> unit

Similarly to the method mentioned above (add new to parent list),
this method adds a new child node to the list of children of the indicated
by the argument node.

method private read_dg_file : string -> unit

This is a very lengthy method, whose purpose is to read the IMPS file
that describes the structure of the deduction graph. After that is done, it
parses the information and with the help of the other methods builds and
populates the internal data structure used for storing the deduction
graph. For the parsing part, a lexer is created at the beginning, which
separates the input into individual tokens. The parser then matches
these tokens according to the rules of the deduction graph abstract
syntax tree, and populates the structure recursively.

method private duplicate_DG_file_no_hyphens : string -> unit

In order to protect the parser from confusion when a few known to be
problematic special characters are present, all such characters are
replaced by equivalent in their meaning other strings. Then the file can
be used safely by the lexer and parser in the read dg file method of
this class.

B. Appendix B—Documentation of the Implementation 91

method print_sqn : unit

This is a pretty printer for displaying the details of all sequent node in
the command shell. This method is used mainly for debugging purposes.

method private duplicate_SQN_file_no_formfeed : string -> unit

The file that contains the details of the sequent nodes is returned by
IMPS in a special format. Basically, IMPS uses the formfeed character to
separate the information of the sequent nodes from each other, which
confuses the parser. Consequently, this method was created and used to
replace all occurrences of this character in the file with another “dummy”
character that is used to indicate the separation points.

method private read_sqn_file : string -> unit

This method creates a string from the file that holds the details of the
sequent nodes. Consequently, the method makes calls to the parser in an
incremental manner by simultaneously populating the data structure
(represented by the hash table sqn data).

end

The arguments for instantiation of this class consist of three strings. The first
argument provides the system path to the current directory, which is needed
for dealing with a compatibility issue on some Mac systems. The second and
third string provide the filenames for the IMPS deduction graph and the
sqn grabber storage files respectively.

B.5 Module Node

class node : string * (Types.specialT * Types.kindT) *

GlTex.texture id * string *

(float * float) * float * float * float * float * float *

< calc ratio block : string -> float; printGL block :

string -> ’a; .. >

Pervasives.ref * int * float ->

object

92 B. Appendix B—Documentation of the Implementation

method get_all_specs :

(float * float) * float * float * float *

float * float * float * float *

float * float * float * float

This method returns a tuple of values. Each value represents a certain
piece of information about the node. The argument names, which can be
found in the source code, are self-explanatory.

method get_kind : Types.kindT

Returns the kind of the node represented by the particular object of this
class. The kind can be a sequent node or an inference node.

val mutable name_texture : GlTex.texture_id

A variable that represents a pointer to the OpenGL texture containing
the display name of the node.

val mutable x : float

val mutable y : float

val mutable z : float

The x, y, and z coordinates of the initial layout location of the node.

val mutable width : float

val mutable height : float

The width and the height of the node.

val mutable content_text : string

A string that contains the detailed information of the node. It represents
the contents of the associated with this node information box.

val mutable content_ratio : float

The ratio between the width and the height of the information box if it
were to be drawn to the OpenGL window.

method rename_node : GlTex.texture_id -> string -> int -> unit

This method renames the node and then calls all other appropriate
methods that update the variables, which describe the content box
(e.g.˜the content box ratio, text, etc.

val mutable rx : float

val mutable ry : float

val mutable rz : float

B. Appendix B—Documentation of the Implementation 93

The x, y, and z distances from the initial layout location of the node.
These can also be understood as the relative positions to the permanent
position of the node. This is used for implementing the ability to revert
back to the initial layout of the deduction graph upon request by the user.

method private get_rx : float

method private get_ry : float

method private get_rz : float

This method makes the previous three positions available to other parts
of the system.

val mutable hovered_flag : int

A flag that indicates whether the mouse cursor is hovering over the node
at any particular moment.

val mutable selected_flag : int

A flag that indicates whether the content box is currently open (if it is
visible).

val mutable path_flagged : bool

A flag that indicates whether the node participates in a path
visualization procedure.

val mutable cont_w : float

The initial and default width of the information box associated with the
node.

val mutable center_box_x : float

val mutable center_box_y : float

val mutable center_box_z : float

Coordinates of the current position of the content box.

method get_x : float

method get_y : float

method get_z : float

These three methods return the current global position of the node in the
OpenGL window. They take into account the initial layout position, as
well as the relative position of the node.

94 B. Appendix B—Documentation of the Implementation

method get_width : float

method get_height : float

These methods return the width and the height of the node in OpenGL
distance units.

method calc_x : float -> float

method calc_y : float -> float

These two methods convert the supplied by the arguments coordinates
into global positions in respect to the current layout and node
transformations (location translation, relative positions, scaling, etc.).

method get_name : string

This method returns the string name of the node. It can be further used
for identification of the node in the other parts of the system and their
data structures.

method get_box_x : float

method get_box_y : float

method get_box_z : float

These methods make the coordinates of the content box position
available to the other parts of the system.

method get_path_flag : bool

method set_path_flag : bool -> unit

These two methods respectively return and set the flag that indicates
whether the node participates in a path visualization procedure.

method draw_content_box : unit -> unit

This method draws (displays) the information content box of the node on
the screen (if it is in a visible state).

method is_selected : bool

This method can be used by other parts of the system to learn whether
the content box of the node is currently open (visible).

method draw : unit -> unit

This is the method that draws the node in the OpenGL drawing space.

method reposition_box : float * float * float -> unit

B. Appendix B—Documentation of the Implementation 95

This method allows moving of the content box to a new position in the
OpenGL drawing space.

method reposition_node : float * float * float -> unit

This method allows moving of the node to a new position in the OpenGL
drawing space.

method rdraw : float * float * float -> unit

Same as above, but instead of a new position, the arguments of this
method represent values of the distances from the current position of the
node to the original location of the node in the initial layout generated
by GraphViz.

method hovered : int -> unit

Sets the flag when the mouse cursor is over the node and unsets it when
mouse leaves.

method toggle_selected : unit -> unit

Toggle the flag that indicates whether the content box is open or closed.

method scale_content_box : float -> unit

Scales the content box by a certain amount. This creates the effect of
zooming for the content box. Notice that zooming of the content boxes is
achieved via different method than the zooming performed on the whole
graph: the graph is zoomed by moving it closer or further away from the
viewer.

method change_cont_ordering : float -> unit

This method is used to pull the content box above all other content boxes
of all other nodes. This functionality is useful in the events when content
boxes overlap and the user wants to focus on this particular content box.
Of course, the higher the order (supplied by the argument), the lower
priority there is for this content box to be displayed, which is a
machinery to facilitate the design of the Canvas class.

end

There is one instantiation of this class for each node in the deduction graph.
Referring to the source code and the names of the arguments, it can be
understood what each of them means as the names of the arguments are
meaningful.

96 B. Appendix B—Documentation of the Implementation

B.6 Module Arrow

class arrow : Node.node * Node.node * (float * float) list ->

object

val origin : Node.node

A reference pointer to the object representing the originating node of the
arrow.

val destination : Node.node

A reference pointer to the object representing the destination node of the
arrow (the node that the arrow points at).

val mutable pairs : (float * float) list

This is a list of control points for the edge. This method consequently
became obsolete: these points are used for drawing bezier curves, which
were disabled at the point in the implementation when the functionality
for allowing manual repositioning of the nodes in the graph was
introduced. Before that, these control points were being generated upon
deduction graph initialization by the program that generates the
automatic layout for the graph (Graphviz).

method get_origin : Node.node

method get_destination : Node.node

These two methods return the reference pointers to the objects that
represent the origin and destination nodes respectively.

method draw : unit -> unit

This method draws (displays) the arrow in the OpenGL drawing space.

end

This class is instantiated to represent an edge in the deduction graph in
Panoptes. Complying with the properties of the graph, each edge is associated
with two different nodes.

B. Appendix B—Documentation of the Implementation 97

B.7 Module Parser dot

class parser dot :

object

val mutable nodes : (string, float * float * float * float)

Hashtbl.t

A variable that represents a hash table with all of the nodes (indexed by
their string names). Each record contains four numbers: the x and y
positions, the width and the height of the respective node.

val mutable edges : (string * string, (float * float) list)

Hashtbl.t

A variable that represents a hash table with all of the edges. Each edge is
indexed by a tuple of two strings: the string names of the originating and
destination nodes. Each record consists of a list of tuples of two real
numbers. Each tuple represents a control point of the position of the
edge. Thus, the first and last points will coincide with the positions of
the two connected nodes, while the pairs in between represent control
points that can be used for building Bezier curves.

method get_nodes : (string, float * float * float * float)

Hashtbl.t

method get_edges : (string * string, (float * float) list)

Hashtbl.t

These two methods make the hash tables that keep the information
about all nodes and edges of the deduction graph available to the other
parts of the system.

method private read_dot_file : string -> unit

This method implements the parser for the ouput result, generated by
the automatic layout generator Graphviz.

method process_dot : string -> unit

This method invokes the automatic layout generator Graphviz.

end

98 B. Appendix B—Documentation of the Implementation

This class provides the parser for the output generated by the layout program
Graphviz. It invokes this program and then processes its result. Contrary to
the Parser module, which deals with parsing the IMPS ouput and builds the
internal structure that represents the deduction graph, this module collects
the information about the actual locations of all nodes and edges.

B.8 Module Canvas

class view : < add new : Types.kindT ->

String.t -> Types.specialT -> String.t list -> unit;

add new to list : Types.kindT -> String.t -> String.t -> ’a;

add new to parent list : Types.kindT -> String.t ->

String.t -> unit;

find path to from : String.t -> String.t -> String.t list;

find the way back : String.t -> String.t list;

find the way forward : String.t -> String.t list;

get node children : String.t -> String.t list;

get node details : String.t -> Types.specialT *

Types.kindT * string;

get node parents : String.t -> String.t list;

remove node : String.t -> unit; .. >

Pervasives.ref ->

object

val mutable screenWidth : float

val mutable screenHeight : float

These two variables comprise the current resolution of the OpenGL
window. Upon initial initialization, the size is 800 pixels by 600 pixels by

B. Appendix B—Documentation of the Implementation 99

default (although the user is allowed to resize the window without
limitations).

val fovy : float

This variable holds the field of view (FOV) angle in degrees. Refer to the
OpenGL documentation of the Implementation chapter of this thesis to
find more explanation about FOV and how it works.

val mutable x1 : float

val mutable y1 : float

val mutable z1 : float

These variables specify the coordinates of the absolute center of the space
(this space can be viewed as the complete universe, in which the
deduction graph resides). The location of every single component from a
mere point to a large and complicated shape has certain coordinates that
are relative to the coordinates represented by these three variables. Of
course, since we do not utilize the ability to move this center of space to
achieve certain effects in Panoptes, the coordinates are conveniently reset
to zeroes.

val init_z : float

The initial z coordinate of the deduction graph. It must be deep in space
to be visible (away from the user) in order to be visible and within sight
(the sight is defined by the FOV and other parameters, which are
described later).

val mutable nodes : (String.t * Node.node) list

A list of tuples. Each tuple contains a node name (in string format) and
a reference to a created object of the Node class, which is associated with
that node. This list comprise all nodes of the deduction graph, which
were created during initialization and are available for the program for
direct OpenGL display.

val mutable arrows : Arrow.arrow list

A list of all created arrows (edges). Similarly to the previous list, this list
contains all arrows in the deduction graph, which were created during
initialization and are available for direct OpenGL display.

val mutable parser_dg :

(< add_new : Types.kindT ->

String.t -> Types.specialT -> String.t list ->

100 B. Appendix B—Documentation of the Implementation

unit;

add_new_to_list : Types.kindT -> String.t -> String.t -> ’a;

add_new_to_parent_list : Types.kindT -> String.t ->

String.t -> unit;

find_path_to_from : String.t -> String.t -> String.t list;

find_the_way_back : String.t -> String.t list;

find_the_way_forward : String.t -> String.t list;

get_node_children : String.t -> String.t list;

get_node_details : String.t -> Types.specialT *

Types.kindT * string;

get_node_parents : String.t -> String.t list;

remove_node : String.t -> unit; .. >

as ’b)

Pervasives.ref

Instantiation of Parser. In fact notice that this object was passed to the
current class upon initialization of this class. Therefore, this variable
keeps a reference pointer to object that was already created.

val mutable dedotter : Parser_dot.parser_dot

A new instantiation of Parser dot that will be used for running the
deduction graph through the layout generation program GraphViz.
Notice how the current class serves as a bridge between all other classes.
In this case, the previous parser dg will collect all information that
describes the deduction graph. The current class will then retrieve this
information and send it to dedotter for processing, which in turn will
return the suggested by Graphviz locations of all nodes.

val mutable selection_names : (String.t, int) Hashtbl.t

This is needed by OpenGL in order to implement the selection technique.
Usually, each object in the window is assigned a “selection value” upon
instantiation. A special function then prompts OpenGL to run an
imaginary linear ray from a certain point in space towards a certain
direction. When this ray hits a target, the selection value of that target
is returned. This value can then be matched against the tuples of this
hash table to discover the name of the object that was hit. Of course,
this object can be any possible element of the deduction graph that has a
selection name assigned to it. In our case, such objects are the nodes and
the information boxes, although the arrows are assigned a unique, but
the same for all arrows, for facilitating the process of debugging. This
selection values technique is hereby used to detect the object the user
clicks on.

B. Appendix B—Documentation of the Implementation 101

val mutable locked_node : bool * String.t * float *

float * float

When the user presses down and holds the left mouse button over a
certain node (notice that this class provides the functionality, while the
actual event listeners are implemented in the Panoptes class), then the
boolean of this variable becomes TRUE until the user releases the
button. The other three values keep the 3D coordinates of the node at
the moment the mouse button was pressed. Other methods, described
below, access the values of this tuple every time a new screen frame must
be drawn. If the first element is true, these other methods perform
appropriate actions.

val mutable locked_dg_drag : bool * float * float

Similar to the above variable, this variable signifies a lock on the whole
deduction graph. Its purpose is mainly used to notify the other methods
that the user is dragging the graph with the mouse.

val mutable content_box_ordering : (String.t, float) Hashtbl.t

This variable keeps the z coordinates of all open (visible) content boxes.
As such, some content boxes will be closer to the screen while others will
be further away. This is important to achieve control over the focus of
the content box that the user wants to be completely visible, especially
when the content boxes are arranged in an overlapping manner.

val mutable added_arrows :

(Arrow.arrow * String.t * String.t) list

This variable keeps a list of all newly added arrows. Such arrows are
usually added when a collapsing procedure is performed. Recall the
Design chapter, which stated that all collapsing procedures produce new
nodes. It is logical that if there is a new node, it will be connected to
other nodes through new links (in this thesis we usually call these links
arrows). Furthermore, to facilitate the reversibility of all user induced
actions (as requested by the Requirements chapter), these new arrows are
conveniently stored in this separate list. Thus the original arrangement of
the graph is always preserved.

val mutable collapsed :

(String.t,

String.t * (String.t * String.t list * String.t list) list *

String.t)

Hashtbl.t

102 B. Appendix B—Documentation of the Implementation

A hash table that keeps information about all created by that point
collapsed nodes. Each element of the hash table contains information
about the nodes it hides, the arrows it is associated with, as well as other
useful information.

method reset_all_data : unit

This method resets all variables of this class. It is called when the user
decides to reset Panoptes, which usually happens when the development
of a new proof is started in IMPS.

method fit_to_screen : unit -> unit

This method resets the location and zoom level of the deduction graph to
the screen according to the generated initial layout. This is useful when
the user manually relocates the deduction graph and later decides to
revert back and fit everything in the screen.

method private create_DG : unit

This method builds the deduction graph. It creates instances of Node and
Arrow for each graph node and edge. Verbose information is displayed in
the command shell during this process, as this may sometimes take more
than a second for graphs that contain hundreds of nodes. Additional
things that are accomplished by this method include calculation and
initialization of the initial ordering of content boxes, as well as
assignment of selection values to all components of the deduction graph
(the notion of selection values was described earlier in this section).

method private is_it_in_collapsed : String.t -> bool

The argument of this method is a string that holds the name of
particular node. The return result of the method is a boolean value that
is set to true when the supplied by the argument node is a part of a
collapsed part of the graph.

method private draw_DG : unit

This method displays the deduction graph on the screen. When there is
activity, such as dragging of objects on the screen, zooming or other
visual movement, this method is called approximately 30 to 60 times per
second (depending on how fast the graphical processing unit (GPU) is).

val font : TextGL.font Pervasives.ref

This variable holds a reference pointer to the instantiation of the TextGL
class. Only the reference to this object is kept here, because it is later
passed and used by the all instances of the Node class to draw the text
labels of each node.

B. Appendix B—Documentation of the Implementation 103

method add_node :

String.t ->

Types.specialT * Types.kindT ->

float * float ->

float -> float -> float -> float -> float -> string ->

int -> float -> unit

This method instantiates a new object of the Node class. Then the
method includes the newly created object in all relevant data structures
and processes of the current class.

method add_arrow : Node.node -> Node.node ->

(float * float) list -> unit

This method, similarly to the method described above, instantiates a new
object of the Arrow class, and then includes it in all relevant data
structures and processes of the current class.

method get_arrow : String.t -> String.t -> Arrow.arrow

This method returns the reference pointer to an Arrow object. This
object represents the arrow that connects the supplied by the two
arguments of the method nodes in the deduction graph.

method new_texture : String.t -> GlTex.texture_id * int * int

This method takes the string that is provided by the argument and
creates a new OpenGL texture that can be used by OpenGL to display
that string. Also, the method loads the texture into the video memory in
order to make it available for immediate use upon need.

method get_node : String.t -> Node.node

This method retrieves the reference pointer to the object of class Node
that is associated with the node represented by the string in the
argument.

method get_hit_object_name : int -> String.t

This method matches the integer that is supplied by the argument with a
selection value (described earlier). This is useful for finding the string
name of the object that is assigned the selection value.

val mutable path_flag_list : String.t list

This list holds the string names of all nodes that participate in a
visualization of a path between certain nodes in the deduction graph. It
is used by other methods as a reference on which parts of the graph must
be highlighted.

104 B. Appendix B—Documentation of the Implementation

method private clear_path_hit : unit

This method resets (nullifies) the path flag list variable described
above.

method show_back_path_hit : int -> unit

Based on the supplied by the argument selection value, which is possibly
associated with some node, this method populates the path flag list

that was specified above with all nodes that are traversed in order to
reach the top node in the deduction graph (the main goal).

method show_forward_path_hit : int -> unit

Similarly to the show back path hit method described above, this
method populates the path flag list with all nodes that are traversed
in order to reach all leaves in the graph by starting at the node
associated with the supplied by the argument node selection value.

val mutable collapse_selection : bool * String.t * String.t

In order to collapse a section of the deduction graph, the user needs to
select two nodes that represent the endpoints of the part to be collapsed.
This variable holds the string names of these two nodes, which are stored
in a tuple together with a boolean value that is true only when the user
has finished choosing both endpoint nodes. This positive truth value
provides indication to the other methods that the collapsing procedure is
ready to proceed upon request by the user.

method begin_collapse_selection : int -> unit

This method is called when the user makes his or her selection of the first
node that represents an endpoint node in a yet to be executed collapsing
procedure.

method end_collapse_selection : int -> unit

Similarly to the begin collapse selection method described above,
this method is called when the user selects the second node that
represents an endpoint in a yet to be executed collapsing procedure.

method show_children : int -> unit

This method is used only for debugging purposes. It outputs in the
command shell the names of the children of the node associated with the
selection value provided by the argument.

B. Appendix B—Documentation of the Implementation 105

val mutable temporary_uncollapsed :

bool * String.t * String.t * float * float

This variable holds the information associated with the “temporary
uncollapse procedure” as defined in the Design chapter.

method temporary_uncollapse : int -> unit

This method executes the temporary uncollapse procedure upon the
user’s request. To accomplish the procedure, the method relies on the
information contained in the temporary uncollapsed variable that is
described above.

method collapse_back_the_temporary_uncollapsed : unit

This method voids the results achieved by the temporary uncollapse

method that is described above. In other words, it is used to restore the
collapsing effect of the parts of the graph that were initially collapsed
(before calling the temporary uncollapse procedure).

method uncollapse : int -> unit

This method permanently uncollapses a collapsed node. It completely
restores the collapsed section of the deduction graph that was represented
by the collapsed node associated with the supplied by the argument
selection value.

method private collapse_procedure : String.t -> String.t -> unit

This method executes a collapsing procedure based on the preliminary
selection of beginning and end nodes (see above). It not only instantiates
a new object of the Node class and configures it, but also creates the new
arrows connecting it to the other parts of the deduction graph, includes
the collapsed parts of the graph in a list of objects to be made invisible,
and deals with all peculiarities and algorithms mentioned in the
collapsing section of the Design chapter.

val mutable collapse_history : (String.t * String.t) list

This variable contains a list tuples that represent the history of all
collapsing procedures done so far in the process of exploring and
manipulating the deduction graph in Panoptes. Each tuple holds two
strings: the first string is the beginning node and the second string is the
ending node for each collapsing procedure that was ever done. This way
the comprehensive history of these operations is saved, so that when the
user updates the graph with new incoming from IMPS information,
Panoptes has a record of all collapsing procedures that need to be
performed.

106 B. Appendix B—Documentation of the Implementation

val mutable renaming_history : (String.t * String.t) list

Similarly to the above variable, this variable keeps a comprehensive
history of all occasions of user induced renaming of nodes in the
deduction graph.

method clear_history : unit

This method resets the history lists in the case of a global reset of
Panoptes. Such events usually occur when the user starts developing a
brand new proof in IMPS. Of course, this reset is requested by the user
rather than happening automatically.

method execute_collapse : bool -> unit

This method invokes the collapsing procedure. The boolean value in the
argument provides information to the system about whether the
collapsing is a result of a direct request by the user, or it is an automatic
history recall.

method rename_node : String.t -> String.t -> unit

This method is called when the user initiates a renaming procedure on a
certain node. The string supplied by the first argument provides the old
name (used by the method to identify the node to be renamed). The
string supplied by the second argument contains the new name of the
node.

method renaming_procedure : int -> unit

This method calls the rename node method that is described above. It
first identifies the node associated with the selection value provided by
the argument.

val mutable dragged_node : bool * String.t * float *

float * float

This variable holds a tuple of a few values. The boolean value is set to
true if the user is dragging a node at the present moment, while the
other values represent the name of the dragged node and its position
coordinates at the moment the dragging started.

method mouse_left_button : int -> float -> float -> unit

This method is called each time the user presses down on the left mouse
button. Based on the selection value and click location supplied by the
arguments, the method calls all appropriate methods in order to process
this event.

B. Appendix B—Documentation of the Implementation 107

method mouse_left_button_release : unit

This method is called every time the user releases the left mouse button.
Basically, the method clears all variables holding information regarding
certain actions, such as the locked node, the locked dg drag, and the
dragged node variables, all of which were described above.

method mouse_left_button_dragging : float -> float -> unit

This method is called when the user drags the mouse while holding down
the left button.

method mouse_right_button : int -> unit

This method is called when the user presses the right mouse button over
a certain object on the screen, which is identified by the selection value
provided by the argument.

method mouse_hover : int -> unit

This method is obsolete at the moment, but it used to provide
functionality for highlighting the nodes when the mouse cursor hovers
over them. Subsequently, this feature of Panoptes was disabled as it
severely degrades the performance of the system.

method scan_for_hits : float -> float -> int

This method utilizes the OpenGL functionality to send an imaginary ray
from a certain location (supplied by the arguments) in order to obtain
the object the ray hits (the ray travels perpendicularly to the computer
screen, away from the user). The result is the selection value of the hit
object, or a zero if the hit list is empty.

method init : unit -> unit

This method resets all class variables. It is also called during
initialization when the class is first instantiated into an object.

val mutable new_data_available : bool

This is a variable that holds a boolean value. A true value indicates that
the system should provide a notification message to the user regarding
availability of new IMPS data, and prompt him or her to click the
keystroke associated with the “update” function.

method new_data_available_message : bool -> unit -> unit

This method occasionally checks to determine if there is new IMPS data
available.

108 B. Appendix B—Documentation of the Implementation

method draw_new_data_available_message : unit -> unit

This method displays the message that notifies the user when new IMPS
data is available.

val mutable help_text : bool

This variable indicates the status of the help screen. Its value is set to
true if the help screen should be currently visible, and false otherwise.

method toggle_help_text : unit

This method toggle the status of the help screen between visible and
invisible states.

method display_help_text : unit

This method displays the help screen.

method draw : unit -> unit

This method redraws the whole frame. It is called 30-60 times per second
on average, which depends on how powerful the graphical card of the
host machine is.

method reshape : w:int -> h:int -> unit

This method is called each time the Panoptes window is resized by the
user. It contains functionality to be used for integrating additional
functionality in Panoptes to control multiple screens independently (see
Future Work chapter).

method zoom_content_box : float -> int -> unit -> unit

This method performs a zoom on a content box. The float number
supplied by the argument is the chunk, by which the zoom should
happen. It can be negative for zooming in or positive for zooming out.
The integer number is the selection value of the content box to be
zoomed on.

method zoom : float -> int * int -> unit -> unit

This method performs a zoom on the whole deduction graph by moving
it further away or closer to the user in order to achieve zoom out or zoom
in effect respectively.

B. Appendix B—Documentation of the Implementation 109

method setOrthoProjection : unit

method resetPerspectiveProjection : unit

method bitmap_text : float -> float -> string -> unit

method renderBitmapString :

float -> float -> float -> Glut.font_t -> string -> unit

These methods are used as a supplement by other methods for achieving
different supporting operations.

end

This whole class can be considered as the main Panoptes engine. Most of the
user induced operations are implemented in this class. In addition, the class is
responsible for coordinating and invoking all drawing procedures used for
visualizing all possible components of the deduction graph (nodes, arrows,
paths, information boxes, collapsed boxes, help screen, new data notification,
etc.).

B.9 Module Panoptes

val testing : bool

A variable of type boolean. A true value would run Panoptes in testing mode.
This mode is used for obtaining input from test files instead of IMPS.

val dg_filename : string

The filename that contains the IMPS deduction graph.

val sqn_filename : string

The filename that contains the detailed information about the sequent nodes
in the deduction graph.

val grabber : Sqn_grabber.sqn_grabber Pervasives.ref

An instance of the “sqn grabber” class that is used for monitoring the changes
occurring to the file that holds the detailed information of the sequent nodes.

val dg : Parser.graph_data_class Pervasives.ref

An instance of the “graph data class” class that is used for parsing the IMPS
deduction graph file. The class also creates the internal data structure to hold
the deduction graph information. Also, it collects the detailed information of
all sequent nodes.

110 B. Appendix B—Documentation of the Implementation

val content_box_scroll_chunk : float Pervasives.ref

A constant that is used to regulate the rate of scaling when using that
operation on an information box.

val scene_scroll_chunk : float Pervasives.ref

A constant that is used to regulate the rate of zooming when using that
operation on the graph.

val main_GLUT : unit -> unit

Initializes the OpenGL window and creates all keyboard and mouse event
listeners. This is the main “loop” of Panoptes.

BIBLIOGRAPHY

[1] C. Bajaj, S. Khandelwal, J Moore, and V. Siddavanahalli. Interactive Symbolic
Visualization of Semi-automatic Theorem Proving. Technical Report TR-03-37,
University of Texas at Austin, 2003.

[2] E. Chailloux, P. Manoury, and B. Pagano. Developing Applications With Objec-
tive Caml. O’REILLY, Paris, France, 2000.

[3] Flying Frog Consultancy. C++ vs OCaml: Ray tracer comparison,
2007. Online at http://www.ffconsultancy.com/languages/ray_tracer/

comparison.html.

[4] W. M. Farmer. What is formalized mathematics. Online at http://www.cas.

mcmaster.ca/~wmfarmer/CAS-734-06/slides/01-formalized-math.pdf.

[5] W. M. Farmer, J. D. Guttman, and F. J. Thayer. imps: System description.
In D. Kapur, editor, Automated Deduction—CADE-11, volume 607 of Lecture
Notes in Computer Science, pages 701–705. Springer-Verlag, 1992.

[6] W. M. Farmer, J. D. Guttman, and F. J. Thayer. imps: An Interactive Mathe-
matical Proof System. Journal of Automated Reasoning, 11:213–248, 1993.

[7] W. M. Farmer, J. D. Guttman, and F. J. Thayer. The imps user’s manual.
Technical Report M-93B138, The mitre Corporation, 1993.

[8] J. Garrigue. An Objective Caml interface to OpenGL, 2007. Online at http:

//wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgl.html.

[9] Gold Standard Group and SGI. Survey Of OpenGL Font Technology, 2007.
Online at http://www.opengl.org/resources/features/fontsurvey/.

[10] Gold Standard Group and SGI. OpenGL—The Industry Standard for High
Performance Graphics, 2008. Online at http://www.opengl.org.

http://www.ffconsultancy.com/languages/ray_tracer/comparison.html
http://www.ffconsultancy.com/languages/ray_tracer/comparison.html
http://www.cas.mcmaster.ca/~wmfarmer/CAS-734-06/slides/01-formalized-math.pdf
http://www.cas.mcmaster.ca/~wmfarmer/CAS-734-06/slides/01-formalized-math.pdf
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgl.html
http://wwwfun.kurims.kyoto-u.ac.jp/soft/olabl/lablgl.html
http://www.opengl.org/resources/features/fontsurvey/
http://www.opengl.org

112 BIBLIOGRAPHY

[11] C. A. R. Hoare. An axiomatic basis for computer programming. pages 367–383,
2002.

[12] INRIA. The French National Institute for Research in Computer Science and
Control, 2008. Online at http://www.inria.fr/index.en.html.

[13] INRIA. The Caml Language, 2008. Online at http://caml.inria.fr.

[14] D. Kapur and D. R. Musser. An overview of the Tecton proof system. Theor.
Comput. Sci., 133(2):307–339, 1994.

[15] M. Kaufmann and J Moore. Design goals of ACL. Technical Report 101, Com-
putational Logic, Inc., August 1994.

[16] M. Kaufmann and J Moore. An Industrial Strength Theorem Prover for a Logic
Based on Common Lisp. Software Engineering, 23(4):203–213, 1997.

[17] M. Kaufmann, J Moore, and P. Manolios. Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[18] X. Leroy, D. Doligez, K. Garrigue, D. Remy, and J. Vouillon. The Objective Caml
System: Documentation and User’s Manual. Institut National de Recherche en
Informatique et en Automatique, France, May 16, 2007.

[19] K. Murphy. Why OCaml?, December 3, 2002. Online at http://www.cs.ubc.

ca/~murphyk/Software/Ocaml/why_ocaml.html.

[20] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System
Guide, Version 2.4. SRI International, Menlo Park, CA, USA, November 2001.

[21] D. L. Parnas. Designing software for ease of extension and contraction. In
Proceedings of the 3th international conference on Software engineering, pages
264–277, 1978.

[22] D. L. Parnas and P. C. Clements. A rational design process: how and why to fake
it. In Proceedings of the International Joint Conference on Theory and Practice
of Software Development (TAPSOFT) on Formal Methods and Software, Vol.2:
Colloquium on Software Engineering (CSE), pages 80–100, New York, NY, USA,
1985. Springer-Verlag New York, Inc.

[23] D. Rémy. Using, Understanding, and Unraveling the OCaml Language. In Gilles
Barthe, editor, Applied Semantics. Advanced Lectures. LNCS 2395., pages 413–
537. Springer Verlag, 2002.

[24] AT&T Research. GraphViz–Graph Visualization Software, 2008. Online at
http://www.graphviz.org.

[25] P. Rudnicki. An Overview of the Mizar Project. 1992.

http://www.inria.fr/index.en.html
http://caml.inria.fr
http://www.cs.ubc.ca/~murphyk/Software/Ocaml/why_ocaml.html
http://www.cs.ubc.ca/~murphyk/Software/Ocaml/why_ocaml.html
http://www.graphviz.org

BIBLIOGRAPHY 113

[26] SGI. GLUT–The Opengl Utility Toolkit, 2008. Online at http://www.opengl.
org/resources/libraries/glut/.

[27] D. Shreiner. OpenGL Reference Manual: The Official Reference Document to
OpenGL, Version 1.2. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

[28] Wikipedia. Argus Panoptes — Wikipedia, The Free Encyclopedia, 2007.
Online (accessed 16-July-2007) at http://en.wikipedia.org/w/index.php?

title=Argus_Panoptes&oldid=144163854.

[29] R. S. Wright, B. Lipchak, and N. Haemel. OpenGL SuperBible (4th Edition).
Addison-Wesley, Boston, MA, USA, 2007.

http://www.opengl.org/resources/libraries/glut/
http://www.opengl.org/resources/libraries/glut/
http://en.wikipedia.org/w/index.php?title=Argus_Panoptes&oldid=144163854
http://en.wikipedia.org/w/index.php?title=Argus_Panoptes&oldid=144163854

	Abstract
	1 Introduction
	1.1 Formalized Mathematics
	1.2 Proof Assistants
	1.3 Objectives of the Thesis
	1.4 Organization of the Thesis

	2 Background
	2.1 IMPS
	2.2 Sequents
	2.3 Proof Representation
	2.3.1 Prescriptive Approach
	2.3.2 Descriptive Approach
	2.3.3 Deduction Graphs
	2.3.4 Grounded Nodes

	3 Problem
	3.1 Navigating Through the Deduction Graph
	3.2 Detecting Nodes with Similar Semantics
	3.3 Avoiding Redundant Work

	4 Solution
	4.1 New Tool
	4.2 Targeted Users
	4.3 Who was Panoptes?
	4.4 List of Synonyms

	5 Requirements of the System
	5.1 Overview
	5.2 Functional Requirements
	5.2.1 Visualization of Nodes
	5.2.2 Naming Conventions
	5.2.3 Information Boxes
	5.2.4 Positioning of Nodes
	5.2.5 Zooming Function
	5.2.6 Collapsing Parts of the Graph
	5.2.7 Undoing Operations
	5.2.8 Helping the User

	5.3 Nonfunctional Requirements
	5.3.1 User Characteristics
	5.3.2 Usability
	5.3.3 Hardware Considerations
	5.3.4 Performance Characteristics
	5.3.5 System Interfacing
	5.3.6 Portability
	5.3.7 Management Issues

	6 Design of the System
	6.1 Overview
	6.2 Revisiting the Functional Requirements
	6.2.1 Visualization of Nodes
	6.2.2 Naming Conventions
	6.2.3 Information Boxes
	6.2.4 Positioning of Nodes
	6.2.5 Zooming Function
	6.2.6 Collapsing Parts of the Graph
	6.2.6.1 Single Subgoal Chain of Deduction Steps
	6.2.6.2 Multiple Subgoals Deduction Steps
	6.2.6.3 Multiple Proof Directions (Branching)
	6.2.6.4 Cycles
	6.2.6.5 Converging Branches
	6.2.6.6 Examining Collapsed Nodes
	6.2.6.7 Naming of Collapsed Nodes

	6.3 Integration with IMPS
	6.3.1 How IMPS Works
	6.3.2 Actions, Induced by IMPS and Its User Interface
	6.3.3 Actions, Induced by the User
	6.3.4 Integrating Panoptes In the Process
	6.3.4.1 Flow of Commands (Messages)
	6.3.4.2 Data Flow

	6.3.5 History of Operations Between Deduction Steps

	6.4 Structuring the System
	6.5 Shortcomings of the Design

	7 Prototype Implementation of the System
	7.1 Overview
	7.2 Programming Choices
	7.2.1 Objective Caml (vs. C/C++)
	7.2.2 OpenGL
	7.2.2.1 Three-dimensional Space and Zooming
	7.2.2.2 User Interface Elements
	7.2.2.3 Text in OpenGL
	7.2.2.4 OpenGL Literature

	7.2.3 Graphviz

	7.3 Installation and Use
	7.4 Demonstration
	7.5 Screenshots

	8 Related Work
	9 Future Work
	10 Conclusion
	11 Acknowledgments
	Appendix A---Module Guide
	A.1 Anticipated Changes
	A.2 Unlikely Changes
	A.3 Module Decomposition
	A.4 Description of Modules
	A.4.1 Keyboard Input Module (external)
	A.4.2 Mouse Control Module (external)
	A.4.3 File Read/Write Module (external)
	A.4.4 Window Initialization Module (external)
	A.4.5 OpenGL Module (external)
	A.4.6 Automatic Layout Module (external)
	A.4.7 Types Module
	A.4.8 Parser Module
	A.4.9 Sqn_grabber Module
	A.4.10 Parser_dot Module
	A.4.11 TextGL Module
	A.4.12 Node Module
	A.4.13 Arrow Module
	A.4.14 Canvas Module
	A.4.15 Panoptes Module

	A.5 Uses Hierarchy
	A.6 Summary of Requirements
	A.6.1 List of Functional Requirements
	A.6.2 List of Non-Functional Requirements

	A.7 Traceability Matrix

	Appendix B---Documentation of the Implementation
	B.1 Module Sqn_grabber
	B.2 Module Types
	B.3 Module TextGL
	B.4 Module Parser
	B.5 Module Node
	B.6 Module Arrow
	B.7 Module Parser_dot
	B.8 Module Canvas
	B.9 Module Panoptes

