Software Specialization as Applied to

Computational Algebra

Pouya Larjani
McMaster University

April 3, 2013

Pouya Larjani Software Specialization as Applied to Computational Algebra

Introduction

Background: Gaussian Elimination

Generating optimized solvers for algebraic problems

Grobner basis

Generating a solver

Buchberger's Algorithm

Applications

Pouya Larjani Software Specialization as Applied to Computational Algebra

Specializations of Grobner Bases

Linear polynomials: Gaussian Elimination

e Univariate polynomials: Euclidean Algorithm

e Special encoding in exponents: Integer Programming
e F5: Binary Decision Diagrams
e Other special encodings: Graph colouring, geometric theorem

proving, ...

Pouya Larjani Software Specialization as Applied to Computational Algebra

Solver Generator

»|GBSolver|r =
p = (DB, BK, PA,IP, PC, SS, ES, SP,NR, RS, CF, OP) A
DB | Trace A
BK € BasisKind A
PA | PolynomialAlgebra C, M, T, Poly A
IP |= Input Poly, Inp A
PC |= Container Poly, ldx, Cnt A
SS | SelectionStrategy ldx, Cnt, Sel A
ES |E ExpansionStrategy ldx, Cnt, Sel, Exp A
SP |= SPoly Poly, Idx, Cnt, Sp A
NR | NormalRemainder Poly, Cnt, Nr A
RS | ReductionStrategy ldx, Cnt,Rs A
CF |E CanonicalForm Poly, Cnt, Cf A
OP |= Output Poly, Out —
fellnp — Out? A
Voes illflolo =
iCc ClX] —
6 C C[X] AN (i)=(d) A Grobner(d) A
BK € {MinimalBasis, ReducedBasis} = Minimal(5) A
BK = ReducedBasis = Reduced(d)

Pouya Larjani Software Specialization as Applied to Computational Algebra

Code Generation

Meta programming

Semantics of code generation in F#: Quote, Eval, and Splice

Extension to allow mixed-stage variables:

Met t =vrLasinof Tt)7

Code generation as a Domain-Specific Language (DSL)

Computation Expressions in F#

Pouya Larjani Software Specialization as Applied to Computational Algebra

Codegen DSL

let reduceGen (G:Expr<seq<Polynomial>>) = codegen {
use G’ = List.Empty()
for g in G do
let n = scalar g (div one (LC g))
let! m = Control.Let (Ref.Ref n)

for p in G do
yield! IfU (Bool.neq p g)
(codegen {

let r = mod (Ref.Deref m) p
yield Ref .Assign m r

b
yield List.Add G’ (Ref.Deref m)
return G’

Pouya Larjani Software Specialization as Applied to Computational Algebra

e Defining behaviour of systems
e Language for describing specifications
e Adding or removing details: Refinement vs. Abstraction

e Conceptualization vs. Actualization

Conceptualized
4
l
l
|

More Abstract w More Refined
<+—— Specifications ——»

v
Actualized

Pouya Larjani Software Specialization as Applied to Computational Algebra

Formal Specifications

Predicates and states

Specification as a predicate: [P]o

Software specification with pre and post conditions

o{[P — Ql}o’ = [P]o A [Q]o; 0’

Programs are state transformers, m: ¥ — ¥

Program as an actualization (implementation) of a
specification

m|EP—- Q = VYeex [Plo = o{[P— Qm-0o

Pouya Larjani Software Specialization as Applied to Computational Algebra

Refinement and Specialization

e Refinement restricts the models (programs) that satisfy a
specification

SC S =Vypexr o{STto" = o{S]}o’

e Adding conjuncts or removing disjuncts both refine a
specification

e Specialization P — Q > P’ — Q' means that
P—-QLCP — Q and

Voo [PloAc{P — Qo = o{[P - Q'J}o’

Pouya Larjani Software Specialization as Applied to Computational Algebra

Module Specifications

e Aspects and Features
e Module interface

moduleinterface:
variable; : spec; € P

program, : softspec; € S

e Module implementation: M |= [, if:

Vprogram;e/ M.program; |= [.softspec; A
Voes{{Inv(/)[}o = {{Inv(/)[}M.program, - o

Pouya Larjani Software Specialization as Applied to Computational Algebra

Algebraic Modules

e Specify the modules for computer algebra

e Methods of implementing algebra modules: Type refinements,
type guarantees, type inclusions, value restrictions, grounded
value conditions, universal equalities, and value profiles

e Module generators

e Polynomial algebra modules: Monomials, terms, orderings,
and polynomials

Pouya Larjani Software Specialization as Applied to Computational Algebra

Algebra Modules

Monoid
[
Order + MonoModule
Group - hd +
[
+ i Module
Quotient Ring +
[
\ / Algebra

QuotientRing

Field

Pouya Larjani Software Specialization as Applied to Computational Algebra

Polynomial Modules

Monomial
Monoid

Term
Module

T
!
|
|

v

Polynomial
Algebra

Pouya Larjani Software Specialization as Applied to Computational Algebra

Modular Decomposition of Buchberger's Algorithm

Specified and implemented following seven categories of modules:
(1) Computational Algebra (feature) module: Polynomial Algebra

(2) Control (aspect) modules: BA generator, Main Algorithm,
Post Process

(3) 1/O (aspect) modules
(4) Storage (feature) modules: Working Set and Polynomial
Container

(5) Processing (aspect) modules: S-Polynomial, Normal
Remainder, Expansion Strategy

(6) Post-processing (aspect) modules: Reduction and
Canonicalization

(7) Trace generation (aspect) module

Pouya Larjani Software Specialization as Applied to Computational Algebra

Generator's Modules

/ \
| Input \

...... e .V‘\\ Medium //’
Input | — 00000 T===
Expansion .
S Working Set
/ Strategy N
N
N
\ !
N
Main —» S-Polynomial N 1
N |
s \ S~s
Buchberger Normal F—--
Remainder
\ ///)
Post —» Reduction /
Process 4
’
’
7z
\ Canonical- 4
ization
Output | T T N
g Output Y

Pouya Larjani Software Specialization as Applied to Computational Algebra

Grobner Bases Solver Generator

e Code generator produces a final, specialized algorithm for
finding Grobner bases
e Inputs all of the modules defined above to generate the code:

val GBSolver :

Trace * BasisKind * PolynomialAlgebra<’a,’b,’c,’d> *
Input<’d,’e> * Container<’d,’f,’g> * WorkingSet<’h,’g,’i> *
ExpansionStrategy<’f,’g,’i,’j> * SPoly<’d,’h,’g,’k> *
NormalRemainder<’d,’g,’1> * ReductionStrategy<’f,’g,’m> *
CanonicalForm<’d,’g,’n> * Output<’d,’o> ->

Value<(’e -> ’0)>

Pouya Larjani Software Specialization as Applied to Computational Algebra

Grobner Bases Solver Generator Specification

»|GBSolver|r =
p = (DB, BK, PA,IP, PC, SS, ES, SP,NR, RS, CF, OP) A
DB | Trace A
BK € BasisKind A
PA | PolynomialAlgebra C, M, T, Poly A
IP |= Input Poly, Inp A
PC |= Container Poly, ldx, Cnt A
SS | SelectionStrategy ldx, Cnt, Sel A
ES |E ExpansionStrategy ldx, Cnt, Sel, Exp A
SP |= SPoly Poly, Idx, Cnt, Sp A
NR | NormalRemainder Poly, Cnt, Nr A
RS | ReductionStrategy ldx, Cnt,Rs A
CF |E CanonicalForm Poly, Cnt, Cf A
OP |= Output Poly, Out —
fellnp — Out? A
Voes illflolo =
iCc ClX] —
6 C C[X] AN (i)=(d) A Grobner(d) A
BK € {MinimalBasis, ReducedBasis} = Minimal(5) A
BK = ReducedBasis = Reduced(d)

Pouya Larjani Software Specialization as Applied to Computational Algebra

Specialized Algorithm

e Generated over 200,000 instances of Buchberger's algorithm
for testing
e Produced two more complex detailed specializations:
(1) Gaussian Elimination generator by specializing the
polynomial algebra of linear polynomials
(2) Euclidean Algorithm generator by specializing the
polynomial algebra of univariate polynomials

Pouya Larjani Software Specialization as Applied to Computational Algebra

Conclusion

e The end

Pouya Larjani Software Specialization as Applied to Computational Algebra

