Software Specialization as Applied to Computational Algebra

Pouya Larjani

McMaster University

April 3, 2013

Introduction

- Background: Gaussian Elimination
- Generating optimized solvers for algebraic problems
- Gröbner basis
- Generating a solver
- Buchberger's Algorithm
- Applications

Specializations of Gröbner Bases

- Linear polynomials: Gaussian Elimination
- Univariate polynomials: Euclidean Algorithm
- Special encoding in exponents: Integer Programming
- F₂: Binary Decision Diagrams
- Other special encodings: Graph colouring, geometric theorem proving, . . .

Solver Generator

```
_{p}|GBSolver|_{f} \models
    p = (DB, BK, PA, IP, PC, SS, ES, SP, NR, RS, CF, OP) \land
   DB \models Trace \land
    BK \in BasisKind \wedge
    PA \models PolynomialAlgebra C, M, T, Poly \land
   IP \models Input Poly, Inp \wedge
   PC \models Container Poly, Idx, Cnt \land
    SS \models SelectionStrategy Idx, Cnt, Sel \land
    ES \parallel ExpansionStrategy Idx, Cnt, Sel, Exp \wedge
    SP \parallel SPoly Poly, Idx, Cnt, Sp \wedge
    NR \parallel NormalRemainder Poly, Cnt, Nr \wedge
   RS \models ReductionStrategy Idx, Cnt, Rs \land
    CF \parallel CanonicalForm Poly, Cnt, Cf \wedge
    OP ⊫ Output Poly, Out →
    \bar{f} \in \lceil \mathsf{Inp} \rightarrow \mathsf{Out} \rceil \land
   \forall_{\sigma \in \Sigma} \ i | \llbracket f \rrbracket \sigma |_{\sigma} \models
          i \subset C[\vec{x}] \rightarrow
          \bar{o} \subset C[\vec{x}] \land \langle i \rangle = \langle \bar{o} \rangle \land Gr\ddot{o}bner(\bar{o}) \land
          BK \in \{MinimalBasis, ReducedBasis\} \Rightarrow Minimal(\bar{o}) \land
          BK = ReducedBasis \Rightarrow Reduced(\bar{o})
```

Code Generation

- Meta programming
- Semantics of code generation in F#: Quote, Eval, and Splice
- Extension to allow mixed-stage variables:

$$\lceil \mathsf{let} \ t = \lfloor a \rfloor \ \mathsf{in} \ \lfloor f \ \lceil t \rceil \rfloor \rceil$$

- Code generation as a Domain-Specific Language (DSL)
- Computation Expressions in F#

Codegen DSL

```
let reduceGen (G:Expr<seq<Polynomial>>) = codegen {
 use G' = List.Empty()
 for g in G do
     let n = scalar g (div one (LC g))
     let! m = Control.Let (Ref.Ref n)
     for p in G do
         yield! IfU (Bool.neq p g)
             (codegen {
                 let r = mod (Ref.Deref m) p
                 yield Ref.Assign m r
             })
     yield List.Add G' (Ref.Deref m)
 return G'
```

Specifications

- Defining behaviour of systems
- Language for describing specifications
- Adding or removing details: Refinement vs. Abstraction
- Conceptualization vs. Actualization

Formal Specifications

- Predicates and states
- Specification as a predicate: $\llbracket P \rrbracket \sigma$
- Software specification with pre and post conditions

$$\sigma\{\![P \to Q]\!\} \sigma' \equiv [\![P]\!] \sigma \wedge [\![Q]\!] \sigma; \sigma'$$

- Programs are state transformers, $m: \Sigma \to \Sigma$
- Program as an actualization (implementation) of a specification

$$m \Vdash P \to Q \equiv \forall_{\sigma \in \Sigma} [\![P]\!] \sigma \Rightarrow \sigma \{\![P \to Q]\!] m \cdot \sigma$$

Refinement and Specialization

Refinement restricts the models (programs) that satisfy a specification

$$S \sqsubseteq S' \equiv \forall_{\sigma,\sigma' \in \Sigma} \ \sigma\{[S']\} \sigma' \Rightarrow \sigma\{[S]\} \sigma'$$

- Adding conjuncts or removing disjuncts both refine a specification
- Specialization $P \to Q \trianglerighteq P' \to Q'$ means that $P \to Q \sqsubseteq P' \to Q'$ and

$$\forall_{\sigma,\sigma'} \ \llbracket P' \rrbracket \sigma \wedge \sigma \{ \llbracket P \to Q \rrbracket \} \sigma' \Rightarrow \sigma \{ \llbracket P' \to Q' \rrbracket \} \sigma'$$

Module Specifications

- Aspects and Features
- Module interface

```
\begin{split} & \text{moduleinterface:} \\ & \text{variable_1:} \ \textit{spec}_1 \in \mathbb{P} \\ & \vdots \\ & \text{program_1:} \ \textit{softspec}_1 \in \mathbb{S} \\ & \vdots \\ & \vdots \\ \end{split}
```

• Module implementation: $M \models I$, if:

```
\forall_{\operatorname{program}_i \in I} \ M.\operatorname{program}_i \models I.softspec_i \land \\ \forall_{\sigma \in \Sigma} \{ [\operatorname{Inv}(I)] \} \sigma \Rightarrow \{ [\operatorname{Inv}(I)] \} M.\operatorname{program}_i \cdot \sigma \}
```

Algebraic Modules

- Specify the modules for computer algebra
- Methods of implementing algebra modules: Type refinements, type guarantees, type inclusions, value restrictions, grounded value conditions, universal equalities, and value profiles
- Module generators
- Polynomial algebra modules: Monomials, terms, orderings, and polynomials

Algebra Modules

Polynomial Modules

Modular Decomposition of Buchberger's Algorithm

Specified and implemented following seven categories of modules:

- (1) Computational Algebra (feature) module: Polynomial Algebra
- (2) Control (aspect) modules: BA generator, Main Algorithm, Post Process
- (3) I/O (aspect) modules
- (4) Storage (feature) modules: Working Set and Polynomial Container
- (5) Processing (aspect) modules: S-Polynomial, Normal Remainder, Expansion Strategy
- (6) Post-processing (aspect) modules: Reduction and Canonicalization
- (7) Trace generation (aspect) module

Generator's Modules

Gröbner Bases Solver Generator

- Code generator produces a final, specialized algorithm for finding Gröbner bases
- Inputs all of the modules defined above to generate the code:

```
val GBSolver :
Trace * BasisKind * PolynomialAlgebra<'a,'b,'c,'d> *
Input<'d,'e> * Container<'d,'f,'g> * WorkingSet<'h,'g,'i> *
ExpansionStrategy<'f,'g,'i,'j> * SPoly<'d,'h,'g,'k> *
NormalRemainder<'d,'g,'l> * ReductionStrategy<'f,'g,'m> *
CanonicalForm<'d,'g,'n> * Output<'d,'o> ->
Value<('e -> 'o)>
```

Gröbner Bases Solver Generator Specification

```
_{p}|GBSolver|_{f} \models
    p = (DB, BK, PA, IP, PC, SS, ES, SP, NR, RS, CF, OP) \land
   DB \models Trace \land
    BK \in BasisKind \wedge
    PA \models PolynomialAlgebra C, M, T, Poly \land
   IP \models Input Poly, Inp \land
   PC \models Container Poly, Idx, Cnt \land
    SS \models SelectionStrategy Idx, Cnt, Sel \land
    ES \parallel ExpansionStrategy Idx, Cnt, Sel, Exp \wedge
    SP \parallel SPoly Poly, Idx, Cnt, Sp \wedge
    NR \models NormalRemainder Poly, Cnt, Nr \land
    RS \models ReductionStrategy Idx, Cnt, Rs \land
    CF \parallel CanonicalForm Poly, Cnt, Cf \wedge
    OP ⊫ Output Poly, Out →
    \bar{f} \in \lceil \mathsf{Inp} \rightarrow \mathsf{Out} \rceil \land
   \forall_{\sigma \in \Sigma} \ i | \llbracket f \rrbracket \sigma |_{\sigma} \models
          i \subset C[\vec{x}] \rightarrow
          \bar{o} \subset C[\vec{x}] \land \langle i \rangle = \langle \bar{o} \rangle \land Gr\ddot{o}bner(\bar{o}) \land
          BK \in \{MinimalBasis, ReducedBasis\} \Rightarrow Minimal(\bar{o}) \land
          BK = ReducedBasis \Rightarrow Reduced(\bar{o})
```

Specialized Algorithm

- Generated over 200,000 instances of Buchberger's algorithm for testing
- Produced two more complex detailed specializations:
 - (1) Gaussian Elimination generator by specializing the polynomial algebra of linear polynomials
 - (2) Euclidean Algorithm generator by specializing the polynomial algebra of univariate polynomials

Conclusion

• The end