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Introduction

Background: Gaussian Elimination

Generating optimized solvers for algebraic problems

Grobner basis

Generating a solver

Buchberger's Algorithm

Applications
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Specializations of Grobner Bases

Linear polynomials: Gaussian Elimination

e Univariate polynomials: Euclidean Algorithm

e Special encoding in exponents: Integer Programming
e F5: Binary Decision Diagrams
e Other special encodings: Graph colouring, geometric theorem

proving, ...
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Solver Generator

»|GBSolver|r =
p = (DB, BK, PA,IP, PC, SS, ES, SP,NR, RS, CF, OP) A
DB | Trace A
BK € BasisKind A
PA | PolynomialAlgebra C, M, T, Poly A
IP |= Input Poly, Inp A
PC |= Container Poly, ldx, Cnt A
SS | SelectionStrategy ldx, Cnt, Sel A
ES |E ExpansionStrategy ldx, Cnt, Sel, Exp A
SP |= SPoly Poly, Idx, Cnt, Sp A
NR | NormalRemainder Poly, Cnt, Nr A
RS | ReductionStrategy ldx, Cnt,Rs A
CF |E CanonicalForm Poly, Cnt, Cf A
OP |= Output Poly, Out —
fellnp — Out? A
Voes illflolo =
iCc ClX] —
6 C C[X] AN (i)=(d) A Grobner(d) A
BK € {MinimalBasis, ReducedBasis} = Minimal(5) A
BK = ReducedBasis = Reduced(d)
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Code Generation

Meta programming

Semantics of code generation in F#: Quote, Eval, and Splice

Extension to allow mixed-stage variables:

Met t =vrLasinof Tt)7

Code generation as a Domain-Specific Language (DSL)

Computation Expressions in F#
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Codegen DSL

let reduceGen (G:Expr<seq<Polynomial>>) = codegen {
use G’ = List.Empty()
for g in G do
let n = scalar g (div one (LC g))
let! m = Control.Let (Ref.Ref n)

for p in G do
yield! IfU (Bool.neq p g)
(codegen {

let r = mod (Ref.Deref m) p
yield Ref .Assign m r

b
yield List.Add G’ (Ref.Deref m)
return G’
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e Defining behaviour of systems
e Language for describing specifications
e Adding or removing details: Refinement vs. Abstraction

e Conceptualization vs. Actualization
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Formal Specifications

Predicates and states

Specification as a predicate: [P]o

Software specification with pre and post conditions

o{[P — Ql}o’ = [P]o A [Q]o; 0’

Programs are state transformers, m: ¥ — ¥

Program as an actualization (implementation) of a
specification

m|EP—- Q = VYeex [Plo = o{[P— Qm-0o
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Refinement and Specialization

e Refinement restricts the models (programs) that satisfy a
specification

SC S =Vypexr o{STto" = o{S]}o’

e Adding conjuncts or removing disjuncts both refine a
specification

e Specialization P — Q > P’ — Q' means that
P—-QLCP — Q and

Voo [PloAc{P — Qo = o{[P - Q'J}o’
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Module Specifications

e Aspects and Features
e Module interface

moduleinterface:
variable; : spec; € P

program, : softspec; € S

e Module implementation: M |= [, if:

Vprogram;e/ M.program; |= [.softspec; A
Voes{{Inv(/)[}o = {{Inv(/)[}M.program, - o
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Algebraic Modules

e Specify the modules for computer algebra

e Methods of implementing algebra modules: Type refinements,
type guarantees, type inclusions, value restrictions, grounded
value conditions, universal equalities, and value profiles

e Module generators

e Polynomial algebra modules: Monomials, terms, orderings,
and polynomials
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Algebra Modules
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Polynomial Modules
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Modular Decomposition of Buchberger's Algorithm

Specified and implemented following seven categories of modules:
(1) Computational Algebra (feature) module: Polynomial Algebra

(2) Control (aspect) modules: BA generator, Main Algorithm,
Post Process

(3) 1/O (aspect) modules
(4) Storage (feature) modules: Working Set and Polynomial
Container

(5) Processing (aspect) modules: S-Polynomial, Normal
Remainder, Expansion Strategy

(6) Post-processing (aspect) modules: Reduction and
Canonicalization

(7) Trace generation (aspect) module
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Generator's Modules
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Grobner Bases Solver Generator

e Code generator produces a final, specialized algorithm for
finding Grobner bases
e Inputs all of the modules defined above to generate the code:

val GBSolver :

Trace * BasisKind * PolynomialAlgebra<’a,’b,’c,’d> *
Input<’d,’e> * Container<’d,’f,’g> * WorkingSet<’h,’g,’i> *
ExpansionStrategy<’f,’g,’i,’j> * SPoly<’d,’h,’g,’k> *
NormalRemainder<’d,’g,’1> * ReductionStrategy<’f,’g,’m> *
CanonicalForm<’d,’g,’n> * Output<’d,’o> ->

Value<(’e -> ’0)>
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Grobner Bases Solver Generator Specification

»|GBSolver|r =
p = (DB, BK, PA,IP, PC, SS, ES, SP,NR, RS, CF, OP) A
DB | Trace A
BK € BasisKind A
PA | PolynomialAlgebra C, M, T, Poly A
IP |= Input Poly, Inp A
PC |= Container Poly, ldx, Cnt A
SS | SelectionStrategy ldx, Cnt, Sel A
ES |E ExpansionStrategy ldx, Cnt, Sel, Exp A
SP |= SPoly Poly, Idx, Cnt, Sp A
NR | NormalRemainder Poly, Cnt, Nr A
RS | ReductionStrategy ldx, Cnt,Rs A
CF |E CanonicalForm Poly, Cnt, Cf A
OP |= Output Poly, Out —
fellnp — Out? A
Voes illflolo =
iCc ClX] —
6 C C[X] AN (i)=(d) A Grobner(d) A
BK € {MinimalBasis, ReducedBasis} = Minimal(5) A
BK = ReducedBasis = Reduced(d)
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Specialized Algorithm

e Generated over 200,000 instances of Buchberger's algorithm
for testing
e Produced two more complex detailed specializations:
(1) Gaussian Elimination generator by specializing the
polynomial algebra of linear polynomials
(2) Euclidean Algorithm generator by specializing the
polynomial algebra of univariate polynomials
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Conclusion

e The end
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