
Software Specialization as
Applied to Computational

Algebra





Software Specialization as
Applied to Computational

Algebra

By

Pouya Larjani, M.Sc.

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
Department of Computing and Software

McMaster University

c© Copyright by Pouya Larjani, April 22, 2013



ii

DOCTOR OF PHILOSOPHY (2012) McMaster University
(Computer Science) Hamilton, Ontario

TITLE: Software Specialization as Applied to Computational
Algebra.

AUTHOR: Pouya Larjani, M.Sc. (McMaster University)

SUPERVISOR: Dr. William M. Farmer

NUMBER OF PAGES: viii, 198



iii

Abstract

A great variety of algebraic problems can be solved using Gröbner bases, and com-

putational commutative algebra is the branch of mathematics that focuses mainly on

such problems. In this thesis we employ Buchberger’s algorithm for finding Gröbner

bases by tailoring specialized instances of Buchberger’s algorithm via code generation.

We introduce a framework for meta programming and code generation in the F# pro-

gramming language that removes the abstraction overhead of generic programs and

produces type-safe and syntactically valid specialized instances of generic programs.

Then, we discuss the concept of modularizing and decomposing the architecture of

software products through a multistage design process and define what specializa-

tion of software means in the context of producing special instances. We provide

a domain-specific language for the design of flexible, customizable, multistage pro-

grams. Finally, we utilize the aforementioned techniques and framework to produce a

highly parametrized, abstract and generative program that finds Gröbner bases based

on Buchberger’s original algorithm, which, given all the proper definitions and fea-

tures of a specific problem in computational algebra, produces a specialized instance

of a solver for this problem that can be shown to be correct and perform within the

desired time complexity.



iv

Acknowledgements

Many people have helped me during my graduate studies who deserve my eternal

thanks. First and foremost, I would like to express my gratitude towards my advisor,

Dr. William Farmer, for helping me out through the many years that I have been at

McMaster and his excellent guidance. Thank you for giving me the opportunity to

do this research.

I am thankful to the members of my supervisory committee for their invaluable

advice and reviews of my work: Dr. Jacques Carette for giving me the base idea for

this thesis with his work in the generation of Gaussian Elimination algorithms and

guiding me with the meta programming and code generation aspects of my research.

Dr. Jeff Zucker for all the interesting conversations we had (both on and off topic)

and his interest in my research on software specializations.

I would also like to thank my family for encouraging me and their support in

every step of the way. My colleagues who kept my company throughout my graduate

studies and patiently listened to my attempts, ideas, and troubles that I encountered,

Marc and Gord, you have my thanks.



Contents

1 Introduction 1

1.1 Objectives and Components . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Computational Algebra 10

2.1 Polynomial Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Basic Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Monomials and Terms . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Term Orderings . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.4 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Computation on Polynomials . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Evaluation of Polynomials . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Solving Systems of Equations . . . . . . . . . . . . . . . . . . 24

2.2.3 Ideal Membership . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.4 Polynomial Rewrite Systems . . . . . . . . . . . . . . . . . . . 28

2.2.5 Gröbner Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.6 Elimination and Extension . . . . . . . . . . . . . . . . . . . . 33

2.3 Buchberger’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 S-Polynomials and Normal Forms . . . . . . . . . . . . . . . . 35

2.3.2 Buchberger’s Algorithm . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Minimal and Reduced Gröbner Bases . . . . . . . . . . . . . . 37

2.3.4 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Applications of Gröbner Bases . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . 42

v



vi CONTENTS

2.4.2 Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.3 Integer Programming . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.4 Graph Colouring . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.5 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Meta Programming 45

3.1 Meta Programming in F# . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 The F# Programming Language . . . . . . . . . . . . . . . . . 47

3.1.2 Splicing and Quasiquotations . . . . . . . . . . . . . . . . . . 49

3.1.3 A Compiler Extension . . . . . . . . . . . . . . . . . . . . . . 51

3.1.4 Staged Value Types . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 State and Continuation Passing . . . . . . . . . . . . . . . . . 57

3.2.2 State Operations . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.3 Code Combinators . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.4 Code Generation DSL . . . . . . . . . . . . . . . . . . . . . . 64

4 Software Specialization 69

4.1 Software Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Specifications and Programs . . . . . . . . . . . . . . . . . . . 73

4.1.2 Refinements and Specializations . . . . . . . . . . . . . . . . . 78

4.1.3 A Detailed Example . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Program Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Generic Programming . . . . . . . . . . . . . . . . . . . . . . 83

4.2.2 Features and Aspects as Modules . . . . . . . . . . . . . . . . 84

4.2.3 Program Families . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.4 Modular Decomposition of Software Architectures . . . . . . . 89

5 The Generative Approach to Algebraic Computations 94

5.1 Algebraic Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 The Little Theories Method . . . . . . . . . . . . . . . . . . . 96

5.1.2 Parametric Types and Shapes . . . . . . . . . . . . . . . . . . 97

5.1.3 Interfaces for Algebraic Objects . . . . . . . . . . . . . . . . . 99

5.1.4 Implementing Algebra Modules . . . . . . . . . . . . . . . . . 106

5.1.5 Polynomial Algebras . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Modular Decomposition of Buchberger’s Algorithm . . . . . . . . . . 131



CONTENTS vii

5.2.1 Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.2 Post Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2.3 Full Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 Generative Version of Buchberger’s Algorithm . . . . . . . . . . . . . 137

5.3.1 Interfaces for Modules . . . . . . . . . . . . . . . . . . . . . . 137

5.3.2 Implementation of the Generation Algorithm . . . . . . . . . . 141

5.3.3 Sample Implementations . . . . . . . . . . . . . . . . . . . . . 146

6 Specializations of Gröbner Bases Computation Algorithms 161

6.1 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.1.1 Properties of Linear Polynomials . . . . . . . . . . . . . . . . 161

6.1.2 Linear Polynomial Algebra . . . . . . . . . . . . . . . . . . . . 167

6.1.3 Module Specializations for Gaussian Elimination . . . . . . . . 169

6.1.4 Generation of Gaussian Elimination Specialization . . . . . . . 172

6.1.5 Fraction-Free Gaussian Elimination . . . . . . . . . . . . . . . 174

6.2 Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.2.1 Univariate Polynomial Algebra . . . . . . . . . . . . . . . . . 176

6.2.2 Euclidean Algorithm Specialization . . . . . . . . . . . . . . . 179

6.2.3 Generation of Euclidean Algorithm . . . . . . . . . . . . . . . 182

7 Conclusion 184

7.1 Achieved Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.3.1 Micro Specializations . . . . . . . . . . . . . . . . . . . . . . . 189

7.3.2 Transformation Matrix . . . . . . . . . . . . . . . . . . . . . . 189

7.3.3 Providing Correctness Proofs . . . . . . . . . . . . . . . . . . 190



List of Figures

2.1 The relations between monomial divisors and multiples . . . . . . . . 17

2.2 A confluent rewrite system. . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Syntax of the Domain-Specific Language for Code Generation . . . . 66

4.1 Breakdown of a building construction project . . . . . . . . . . . . . 71

4.2 General architecture of the KWIC indexing program . . . . . . . . . 92

4.3 The “pipe and filter” specialization of the KWIC architecture . . . . 93

5.1 Basic algebra objects as little theories . . . . . . . . . . . . . . . . . . 96

5.2 Interfaces and relations for algebraic objects . . . . . . . . . . . . . . 99

5.3 Interfaces and relations for polynomial objects . . . . . . . . . . . . . 115

5.4 Parameters of the Polynomial Algebra Generator . . . . . . . . . . . 127

5.5 Architecture of main part of Buchberger’s algorithm . . . . . . . . . . 133

5.6 Post-processing architecture for reduced and minimal Gröbner bases . 135

5.7 General architecture of Buchberger’s algorithm . . . . . . . . . . . . . 136

5.8 Comparison of Algorithm 2.56 and the result of GBSolver code generator152

5.9 Specializations Provided For Each Module . . . . . . . . . . . . . . . 160

viii



Chapter 1

Introduction

Many applications of computer programs come in the form of computational algebra

problems. For example, finding the inverse of a matrix, solving a Sudoku puzzle,

finding the maximum flow of a network, or even proving geometric identities are all

special instances of such algebraic problems. All of these sample problems as well as

many other computational algebra problems fall within specific classes of problems

for which there exist finely tuned, specialized algorithms for solving them. The ex-

amples given above are instances of Gaussian Elimination, Graph Colouring, Linear

Programming, and Geometric Theorem Proving problems, respectively. Historically,

there have been many algorithms developed to solve these problems, each with its

own strengths and weaknesses [22], but these algorithms often share little in common

with each other.

Each of these problems can be expressed as a statement about membership of a

polynomial ideal. In fact, it is shown that any problem in computational commutative

algebra — as defined by Kreuzer et al. [48] — can be expressed as a membership

query within a polynomial ideal. In this case, it is sensible to attempt to solve

all such problems together as a general ideal membership problem. At the heart

of computational algebra lies a very specific kind of basis for a polynomial ideal

called the Gröbner basis which provides a straight-forward and simple method for

determining membership within a given ideal. Thus we can provide the answers to

any computational commutative algebra problem by expressing the question as an

ideal membership problem and then finding a Gröbner basis for this ideal.

There are thousands of such problems in computational algebra that may be solved

via Gröbner bases; many of these problems have their own special algorithms, but

1



2 1. Introduction

most of them (many of which are not even named) do not possess such fine tuned

or specialized methods. The goal of this thesis is to be able to provide programs

which solve any of these problems — even the future possibilities of new classes of

problems — in such a way that the computed solution can be shown to be correct,

that the performance of the program is acceptable for the specific problem, and that

the solution is automatically generated given reasonable user input.

With such a grand vision for generating algorithms to computational commutative

algebra problems, it is evident that the entire solution revolves around Gröbner bases

and their computation. There are a few known methods for computing Gröbner bases

for polynomial ideas, such as Buchberger’s algorithm by Bruno Buchberger [12] and

the F4/F5 algorithms by Jean-Charles Faugère [35, 36]. Although these algorithms

on their own can be directly used to solve the given algebraic problems, they suffer

from certain difficulties that render them unusable for this goal:

• The user is required to perform the encoding of the problem as a polynomial

ideal and then to reinterpret the corresponding basis back into the original

domain of the problem.

• The performance of these algorithms is usually unacceptable for the majority of

algebraic problems due to the fact that finding Gröbner bases is a hard problem

in general (doubly exponential in the worst case) [54].

• Finding the right implementation and optimization of these algorithms may

require more programming and knowledge of Gröbner bases by the user than

implementing the specialized algorithm for that specific problem originally re-

quired.

We seek to address these difficulties by generating specialized instances of Buch-

berger’s algorithm according to the mathematical and behavioural properties of the

specific problem defined by the user. A toolkit library of many customized and para-

metric implementations of each individual feature and aspect used in this algorithm

is provided to ease the task of choosing the right optimized instance for the user,

and a proof framework is provided in such a way that users can develop a proof of

correctness for each individual generated algorithm when required.



1. Introduction 3

1.1 Objectives and Components

We started with a clear research goal defined for this thesis: to develop a code gener-

ator that produces specialized instances of Gröbner bases solvers, tailored specifically

for each computational algebra problem as defined by the user. Moreover, we have

further refined this goal by basing the solver on Buchberger’s algorithm for find-

ing Gröbner bases. We achieve this goal via defining smaller sub-tasks and related

objectives that will be addressed during this research:

(1) Describe the mathematical background for Gröbner bases: Carefully define the

mathematical requirements for computational algebra and specifically, define

the background required for expressing algebraic problems as ideal membership

questions. This task also requires us to define the algebraic objects and algo-

rithms in such a way that every element can be represented programmatically in

a mechanized environment. This task is mostly based on the work by Kruezer

and Robbiano [48, 49] in the CoCoA framework [3] and by Buchberger and

Winkler [13] in applications of Gröbner bases.

(2) Design a framework for code generation: Develop a code generation framework

in a programming language that supports all the features required to produce

specializations of Buchberger’s algorithm. The programming language we chose

for this thesis is F# [85], and we develop, both formally and programmatically,

a framework for code generation using the meta programming features provided

by F#. Additionally, we produce a domain-specific language for the developed

code generator to further advance the flexibility and the readability of the gen-

erators.

(3) Formalize software specification and specialization: Define the theoretical neces-

sities and the practical machinery required to correctly produce software spe-

cializations according to the formal specifications for the software components.

This task requires a careful definition of specifications in a logical framework

when concerned with properties of a software system, the logical relationship of

the specifications between refinements and abstractions of software, the mean-

ing and notation for instantiating or implementing a specification as a computer

program, and the formal definition of software specialization and generaliza-

tion1. We also require the definition of a module structure which properly de-

1We are only concerned with specialization in the context of specification of software components.



4 1. Introduction

composes the architecture of the software into specific and orthogonal modules

in such a way that we can specify and specialize each module independently

from the rest of the architecture. The modular breakdown is based on early

work by D. L. Parnas [65].

(4) Design the architecture for generating Gröbner bases solvers: Decompose Buch-

berger’s algorithm into orthogonal modules — module signatures and individu-

ally tailored modules instantiations — as per the earlier definition of a modular

software design. This also requires an implementation of all the individual

modules as abstract and extensible interfaces in F#, as well as the formal spec-

ifications of each module. The code generator uses specializations of these

modules to generate the final instance of the algorithm according to the choice

of specializations and the other properties of the solution.

(5) Design a computational algebra library: Develop a mathematical framework for

performing computational algebra in the programming language of choice. In

addition to a formal specification and a computer implementation of each alge-

braic object, we require the development of the code generators for instantiating

and performing computations on these modules. These modules reflect all the

mathematical objects defined earlier and form a basis for development of any

specializations of the modules in the decomposition of Buchberger’s algorithm.

(6) Develop the code generator for Buchberger’s algorithm: Ultimately, program the

code generator for instantiating specialized solvers for finding Gröbner bases in

this code generation framework that uses the earlier-defined algebra libraries

and is based on the modular breakdown of Buchberger’s algorithm as defined

earlier. This code generator must take into consideration every choice of spe-

cialization and optimization as provided by the user and produce a final pro-

gram that is tailored specifically for the problem at hand. The code generator

must be sufficiently general to produce both a full generic implementation of

Buchberger’s algorithm as well as a computationally optimized and specialized

instance of this algorithm that is tailored specifically for a well defined and small

computational algebra problem with a far (complexity-wise) simpler algorithm.

(7) Generate some specialized sub-algorithms: Finally, to demonstrate the usability

and versatility of this code generator, produce and test many sample instances



1. Introduction 5

of this algorithm which cover a wide range of possible specializations, opti-

mizations, and limitations to show both the correctness and the simplicity of

generating such fine-tuned instances of Buchberger’s algorithm.

In addition to the seven components above, we have some more ambitious objec-

tives that we attempt to partially answer within this thesis:

(8) Demonstrate the usability of software specialization as defined by the speci-

fications framework defined in this thesis. This objective is more focused on

the usability of these specializations when code generation is concerned. Some

earlier work by J. Carette [14, 16] in the generation of Gaussian Elimination

software motivated this objective to demonstrate the usefulness of such pro-

gramming techniques for other computer algebra problems, and perhaps for

other non-algebra-related computer programs in the future.

(9) Show that Buchberger’s algorithm can be specialized and tailored in such a way

as to resemble the algorithms of other fine-tuned and restricted domain algo-

rithms that were made specifically for a limited class of computational algebra

problems. Evidence of this objective would be the generation of an instance of

Buchberger’s algorithm for solving a linear system of polynomial equations that,

not only textually resembles an instance of the Gaussian Elimination algorithm,

but also matches its performance in terms of run time and space complexity.

(10) Show that it is possible to provide a proof of correctness for a specialization of a

software product that we generated. This relies on an assumption that the gen-

eralized algorithm — being the full implementation of Buchberger’s algorithm

in the context of this thesis — is correct since we are not concerned with proving

whether a certain computer program conforms to its specification or whether

an algorithm is a solution to a given problem. However, we are concerned that,

given a program which implements a specification for a problem, we can auto-

matically deduce that a mechanically generated specialization of this program

is an implementation of the specification for the specialized problem. We set

up the formal framework for reasoning with specializations of software specifi-

cations and reasoning with the implementations of specifications, but providing

the proof generator as a companion to the code generator is out of the scope of

this thesis.



6 1. Introduction

(11) Using this code generator for specialized instances of Buchberger’s algorithm,

we plan to produce some instances of the Gröbner bases solvers for a specific

set of problems that have not been seen previously. This does not mean that we

aim to produce genuinely new algorithms that were unknown to mankind before,

but instead we are producing an algorithm for a problem with a very specific

case of parameters and conditions by composing components from different

implementations in such a way that this newly composed algorithm was not

programmed before. This is especially useful for cases of problems where the

current solution is simply to employ a full version of Buchberger’s algorithm

(or any of the derivative algorithms) without ever fine tuning the algorithm for

this specific problem.

1.2 Organization

The organization of the chapters in this thesis follows closely the path set by the work

plan as defined in §1.1.

Chapter 2 starts off with an overview of the mathematical background required to

understand the theory of Gröbner bases and its applications in computational algebra.

We also lay the foundations for the algebraic objects as they will be specified and

programmed in later chapters. Finally, this chapter presents a version of Buchberger’s

algorithm that will be used directly as the foundation of our code generator.

Chapter 3 — independently of the previous chapter — describes the elements of

meta programming in F# and defines a theoretical framework for reasoning about

meta programs. Although we will not directly use this framework in the code gener-

ator or any of the proof techniques in this thesis, it defines the required theoretical

background for the domain-specific language that we developed for this thesis. In ad-

dition to the meta programming framework and the code generation DSL, this chapter

also introduces a new extension to the F# compiler and libraries that we programmed

specifically for this research to accommodate nested quotations and splicing. This

extension greatly enhances the abilities and the readability of multistage programs in

F# and is necessary for the code generator presented here.

Chapter 4 outlines an approach to writing and reasoning with software specifi-

cations that we utilize in the course of this thesis. We provide a proper distinction

between the multiple meanings of the word “abstraction” as commonly used in the



1. Introduction 7

software literature and derive four concepts from this definition: Abstraction, re-

finement, conceptualization and actualization. Then we use the formal framework of

writing software specifications to properly define each of these terms, and finally define

specialization and generalization of software components that is consistent with the

existing software engineering literature in order to use them to prove the correctness

of specialized algorithms. Finally, we define what a “module” means in the context

of software architecture and briefly discuss the methods for decomposing software

architectures into the modules we defined.

The heart of this research, Chapter 5, uses the foundations set up by the last

three chapters to create the main code generator. We first start by writing a formal

specification for each algebraic object as defined in §2 as a module using the same

language and module design defined in §4. Then, we implement each of these modules

as an interface in F# and program a generator for each of these algebraic objects using

the framework defined in §3. We perform the same tasks on defining the modules,

interfaces and generators for the polynomial algebra for computational algebra. Next,

we provide a modular decomposition of the version of Buchebrger’s algorithm outlined

in §2 and produce the module specifications, implementation and generators for each

of these modules. Finally, we list the main code generator that uses all of these

modules to generate specialized instances of Buchberger’s algorithm and provide some

samples of the usage and algorithms produced by this generator.

In Chapter 6 we demonstrate the most powerful aspect of the code generator

from the previous sections to generate specialized algorithms for some sub-problems

of Gröbner basis, such as those highlighted in §2.4. We will tailor the design and

generation of these algorithms in such a way that they no longer resemble the full

version of Buchberger’s algorithm, but instead can clearly be seen as specialized in-

stances of the sub algorithms defined. We choose the example of linear polynomial

systems to generate a solver program that not only solves the system of equations

in the same time-complexity class of Gaussian Elimination, but also resembles the

algorithm for Gaussian Elimination textually and functionally. Chapter 6 also de-

fines a simple specialization of Buchberger’s algorithm for univariate polynomials to

generate an instance of the Euclidean Algorithm.

In the conclusion, we will revisit the objectives outlined in §1.1 and recap how

they were addressed throughout this thesis with references to the related sections.

We also discuss the long-term objectives for this research and discuss what objectives

were addressed by this research and what still remains at large.



8 1. Introduction

1.3 Contributions

It is customary and important to individually list each contribution that we have

made throughout the course of this research. We repeat here the parts of the thesis

described above that we have contributed:

(1) A simple framework for reasoning about the syntax of F# using its meta pro-

gramming elements (§3.1.1 and §3.1.2). The complete details of frameworks for

reasoning about syntactic structures is in the process of publication as a series

of papers by W.M. Farmer and P. Larjani [31].

(2) An extension to the splicing mechanism in F# compiler and libraries (§3.1.3)

that allows variables defined within a quotation to be used within an inner

spliced expression while ensuring that the variables do not escape their scope.

This was a shortcoming in the F# language where such usage of variables was

not compilable. This work was inspired by a similar feature in MetaOCaml by

Walid Taha [89].

(3) A pretty-printer for F# quotations that prints out an expression in F# syntax

instead of the abstract syntax tree printer that is provided by the F# libraries.

This is a cosmetic feature that greatly improved the readability of the quotations

produced by the code generator. All of the results presented in this thesis have

been produced using this extension. Our pretty-printer is described in §3.1.3.

(4) A code generation domain-specific language is presented in §3.2 and is pro-

grammed as a very specific “computation expression’’ in F#. In addition to

this DSL, many code combinators are also provided to ease the task of writing

code generators. All of the generators in this thesis are programmed using this

language.

(5) The distinction and disambiguation between the multiple uses of the word “ab-

straction” in the standard software engineering literature is made in §4 where we

distinguish between the ideas of abstraction and conceptualization — and their

counterparts of refinement and actualization which are perhaps more important

in usage — to present orthogonal definitions of the two concepts.

(6) A formal definition of software specialization within the context of specifications

is defined in §4.1.2. We aim to make this definition in a consistent manner



1. Introduction 9

with the current usage of the word “specialization” within most of the software

engineering literature as well as to produce a logical definition with which we

can prove correctness of specialized implementations of software specifications.

(7) The specifications for the algebraic modules within the context of computa-

tional algebra are defined in §5.1 using the same software specification language

established in §4. This section also implements a library of F# interfaces and

generators for these algebraic modules in addition to the module specifications,

interfaces and implementations of polynomial algebra objects. This section

establishes a rich algebra library for implementing — both in standard func-

tions and in code generators — computational algebra programs in F#. This

framework is similar to those used in other computer algebra and mechanized

mathematics systems but has the advantage that we can directly program the

algebraic algorithms within the F# programming language and take advantage

of other .NET framework libraries without the need of an external system.

(8) A modular breakdown of Buchberger’s algorithm is presented in §5.2 in a simi-

lar fashion of the modular decomposition methodology described by D.L. Par-

nas [65]. These modules are specified in the same language and framework

defined earlier and the F# interfaces for these modules are provided. We also

provide the generator for these modules and some generic and sample imple-

mentations which utilize the same algebra framework established earlier.

(9) The final code generator for producing specialized instances of Buchberger’s

algorithm is provided in §5.3. This generator is also programmed in the code

generation DSL contributed by this thesis and generates the possible architec-

tures corresponding to the modular breakdown in §5.2. The elements of this

generator closely resemble the algorithms defined in §2. Several generated in-

stances of Buchberger’s algorithm are provided to demonstrate the extent of

configuration and specialization provided by this generator with the focus on

their resemblance to the classical algorithms for solving the corresponding prob-

lems.



Chapter 2

Computational Algebra

As mentioned in the introduction section, we are using Gröbner bases as a method of

solving for ideal membership within systems of multivariate, non-linear, polynomial

equations. This chapter is dedicated to the definition and explanation of Gröbner

bases and the computational algorithms for finding them. No prior knowledge of

Gröbner bases is required for the reader and this chapter contains the relevant infor-

mation needed for the rest of the thesis. We also provide a brief overview of (com-

mutative) abstract algebra and polynomial rings; however, we assume the reader is

familiar with mathematical logic and basic algebra.

A Gröbner basis is a specific choice of basis elements for a polynomial ideal —

which is not necessarily the smallest basis — that has a special property regard-

ing polynomial division: The remainder of dividing any polynomial by these basis

members is always unique, regardless of the order of the dividing elements. A pre-

cise explanation of this definition will be discussed later in this chapter and several

competing, yet equivalent, definitions will be provided. The reader may also refer

to Bruno Buchberger’s original paper [11] for a full description. Weispfenning and

Becker [96] and Kreuzer and Robbiano [48] also provide several algebraic approaches

to defining Gröbner bases while Cox, Little and O’Shea [24] provide a geometric

approach to presenting this definition.

We demonstrate the importance of having a unique remainder by the following

example:

Example 2.1 Consider the polynomial ring R[x] and the pair of polynomials 〈b1, b2〉
where b1 = x2 and b2 = x2 + 1. The goal is to determine if the polynomial p = x3 + x

can be represented as a linear combination of b1 and b2. That is, for some polynomials

10



2. Computational Algebra 11

p1 and p2, we have p = p1b1 + p2b2. In other words, we would like to decide if the

polynomial p is a member of the ideal spanned by 〈b1, b2〉. An automated method may

attempt to repeatedly divide this polynomial by the basis elements until the remainder

of the division is no longer divisible by any of the elements and, if this remainder is 0,

then we have a representation of p in this basis. For this example, dividing x3 + x by

x2 would lead to a divisor x and a remainder x. This remainder is no longer divisible

by either b1 or b2, and thus we have the decomposition p = xb1 + 0b2 +x which might

suggest that p is not a member of the ideal 〈b1, b2〉; however, it can be easily seen that

p = 0b1 + xb2 (with no remainder) if we were to divide by b2 first instead of b1. This

example demonstrates that some choices of the ordering for the basis elements may

lead to incorrect decisions when testing for ideal membership using division. What

makes this choice more difficult is that the “correct” choice of ordering differs from

one polynomial to the other. For example, the polynomial q = x3 can only be seen as

a member of 〈b1, b2〉 if we divide by b1 first and then by b2, completely the opposite

of the order needed for p.

2

In general, if there are n basis elements for an ideal, one would have to make n!

attempts at division in the worst case to be certain that a polynomial is a member of

this ideal or not — one attempt for every possible permutation of the basis elements.

Clearly, this is not acceptable in terms of practicality and efficiency. A Gröbner basis

for an ideal solves this issue (and many more!) by making the ordering of the basis

elements irrelevant to the outcome of the algorithm.

This chapter is organized into four sections. The first section gives a brief overview

of the algebraic preliminaries required for defining Gröbner bases. Readers who are

well familiar with commutative algebra may only need to review §2.1.2 for some

important terminology regarding quotients that will be used throughout this thesis.

For more background information on algebraic concepts, readers may refer to Dummit

and Foote [29] for abstract algebra and Kreuzer et al. [48, 49] for polynomial algebra

definitions.

The second section of this chapter defines the computational aspects of polyno-

mials over commutative rings and defines Gröbner bases and the problems that led

to their discovery. This section also gives a brief overview of other problems that

are either special (reduced) cases of Gröbner basis computation or can be encoded

into one. Several of the references mentioned earlier [24, 48, 96] may also be used as



12 2. Computational Algebra

supplementary material for readers.

The third section of this chapter explains Buchberger’s algorithm [11] for the com-

putation of Gröbner bases and discusses the time/space complexity of this algorithm

as well as several extensions and optimizations available for this computation.

Finally, we conclude this chapter by showing some of the important applications

of Gröbner bases computation as either specializations of the problem or embeddings

of other problems as finding Gröbner bases.

2.1 Polynomial Algebra

Before describing any of the computational challenges concerning polynomials, we

will review some of the basic concepts in algebra and define the required theoreti-

cal background for working with polynomials. We emphasize that a “polynomial”

throughout this thesis is defined as a general multivariate polynomial and univariate

polynomials are the special case of polynomials in which only one variable is used. For

an n-variable polynomial, we will use the notation ~x to mean the vector of variables

x1, x2, . . . , xn. When no confusion may arise and n ≤ 3, we may also refer to variables

x1, x2, x3 as x, y, and z, respectively.

2.1.1 Basic Algebra

We will start this section by reviewing the most basic structures that are used in

this thesis. The notion of an algebra consists of a carrier set with some constants

and operators. For example we may define the algebra A = (Γ, ?Γ) as a carrier set Γ

and a binary operator ?Γ : Γ × Γ → Γ. For brevity, we may sometimes refer to the

operators and constants by their unscripted names when there is no ambiguity.

Definition 2.2 (Commutative Monoid) A commutative monoid is a set Γ to-

gether with a commutative1 associative2 binary operation ? : Γ × Γ → Γ and an

element ε ∈ Γ such that ∀γ∈Γ ε ? γ = γ ? ε = γ. We can represent this monoid as the

algebra M = (Γ, ε, ?).

Definition 2.3 (Group) A group is an algebra G = (Γ, ε, ?, −1) such that (Γ, ε, ?) is

a monoid and −1 : Γ→ Γ is a unary operator such that ∀γ∈Γ γ ? γ
−1 = γ−1 ? γ = ε.

1Commutativity of an operator ? : Γ× Γ→ Γ is defined by the axiom ∀α,β∈Γ α ? β = β ? α.
2Associativity of an operator ? : Γ×Γ→ Γ is defined by the axiom ∀α,β,γ∈Γ (α?β)?γ = α?(β?γ).



2. Computational Algebra 13

Definition 2.4 (Ring) A ring is an algebra R = (Γ, 0, 1,+,−, ∗) such that

(Γ, 0,+,−) is a group (called the additive group) and (Γ, 1, ∗) is a commutative monoid

(called the multiplicative monoid) such that the distributivity law ∀α,β,γ∈Γ α∗(β+γ) =

α ∗ β + α ∗ γ holds.

Readers familiar with ring theory may have already noticed that by “ring” we mean

a “commutative ring with identity”. This convention will be followed throughout this

text.

Definition 2.5 (Field) A field K = (Γ, 0, 1,+,−, ∗, −1) is a ring (Γ, 0, 1,+,−, ∗)
such that (Γ\{0}, 1, ∗, −1) is a group3 (called the multiplicative group).

When permitted, we may use other compound operators for brevity:

• Given any additive group, the binary operation − is defined as α−β = α+(−β).

• Given any field, the binary operation / is defined as α/β = α ∗ (β−1) when

β 6= 0 and undefined otherwise.

• Given any ring, the unary operation n when n ∈ N is defined as γn = γ∗γ∗· · ·∗γ
(multiplication repeated n times — this is valid since ∗ is associative), with the

following special cases4,5: γ0 = 1Γ and γ−n = (γn)−1.

So far we have only defined some of the base structures in algebra. Before mov-

ing on to describing more structures, we first need to study two important meta-

structures. These definitions do not directly define an algebra, but they first need to

be applied to other algebras in order to produce the desired object.

Definition 2.6 (Homomorphism) A homomorphism of an algebra is a mapping

which preserves all of the constants and operators of that algebra. For exam-

ple, for any two rings (Γ, 0Γ, 1Γ,+Γ,−Γ, ∗Γ) and (∆, 0∆, 1∆,+∆,−∆, ∗∆), a ring ho-

momorphism is a map ϕ : Γ → ∆ such that ϕ(0Γ) = 0∆, ϕ(1Γ) = 1∆ and

∀α,β∈Γ ϕ(α +Γ β) = ϕ(α) +∆ ϕ(β), etc.

30−1 is undefined.
4Note that the ring constant 1Γ has been marked as being the multiplicative identity of R in

order to avoid the confusion with the natural numbers used here.
5In general, 00

Γ is undefined.



14 2. Computational Algebra

An endomorphism is a homomorphism of an object into itself, i.e., a homomorphism

ϕ : Γ→ Γ is called an endomorphism.

Definition 2.7 (Sub-algebra) Given a set Γ and some algebra A over this set, a

subset Γ′ ⊆ Γ defines a sub-algebra A′ of A if Γ′ is closed under all the operations of

A and contains all of the constants while all the axioms of A are necessarily satisfied

by A′. For example, given a group G = (Γ, ε, ?, −1) and a set ∆ ⊆ Γ such that ε ∈ ∆,

∀α,β∈∆ α ? β ∈ ∆ and ∀δ∈∆ δ−1 ∈ ∆ then H = (∆, ε, ?∆,
−1

∆) is a sub-group of G
where ?∆,

−1
∆ are restrictions of the functions ?, −1 to the set ∆ respectively. This

relation of a sub-algebra A′ to an algebra A is written as A′ ≤ A.

Notice that the image of an endomorphism always defines a natural sub-algebra.

We now have the required background to define the composite algebras that we need

in order to describe polynomial algebras. For the following definitions, assume R =

(Γ, 0, 1,+,−, ∗) is a ring defined as above.

Definition 2.8 (R-MonoModule) An R-monomodule (M, ·) is a monoid M =

(∆, ε, ?) together with an external ring of coefficients R and a binary operation · :

Γ ×∆ → ∆ called the scalar multiplication such that the identity, associativity and

distributivity laws are satisfied:

(1) (Identity) ∀δ∈∆ 1 · δ = δ.

(2) (Associativity) ∀α,β∈Γ,δ∈∆ (α ∗ β) · δ = α · (β · δ).

(3) (Additive Distributivity) ∀α,β∈Γ,δ∈∆ (α + β) · δ = (α · δ) ? (β · δ).

(4) (Multiplicative Distributivity) ∀γ∈Γ,α,β∈∆ γ · (α ? β) = (γ · α) ? (γ · β).

Definition 2.9 (R-Module) An R-module (G, ·) is a group G = (Γ, ε, ?, −1) with an

external ring of coefficients R and scalar multiplication · : Γ×∆→ ∆ which satisfies

the same axioms as above. Alternatively, an R-module (G, ·) is an R-monomodule

(G, ·) such that G is also a group.

Definition 2.10 (R-Algebra) An R-algebra (S, ϕ) is a ring S = (Γ, 0, 1,+,−, ∗)
with a ring homomorphism ϕ : Γ → ∆ of R called the structural homomorphism.

Notice that if we define · as ∀γ∈Γ,δ∈∆ γ · δ = ϕ(γ) ∗∆ δ, then (S, ·) is an R-module.



2. Computational Algebra 15

There are many other interesting definitions and theorems that arise from these

structures which we cannot fully describe here. Readers may refer to the references

mentioned earlier for more information. One very important sub-algebra of rings

which will be the centre of computations in this thesis is the notion of an ideal.

Definition 2.11 (Ideal) An ideal I of a ring R is a subset I ⊆ Γ which defines

a subgroup of the additive group of R such that ∀γ∈Γ,δ∈I γ ∗ δ ∈ I (or for short:

Γ ∗ I ⊆ I). For some γ ∈ Γ, we denote 〈γ〉 to be the smallest ideal I ⊆ Γ such that

γ ∈ I. Similarly, for ∆ ⊆ Γ, 〈∆〉 ⊆ Γ is the smallest ideal which contains all the

elements of ∆.

In general, the ideal 〈∆〉 can be defined as the set of all linear combinations of

elements of Γ with elements of ∆, i.e. for all elements δ1, · · · , δn ∈ ∆ and γ1, · · · , γn ∈
Γ we have that δ1 ∗ γ1 + · · · + δn ∗ γn is also in 〈∆〉. If for an ideal I we have that

I = 〈∆〉 such that |∆| < ∞, then we say that the ideal I is finitely generated and

the set ∆ forms a basis for I. A ring R is said to be finitely generated if the trivial

ideal 〈1R〉 = R is finitely generated. We are only concerned with finitely generated

rings and ideals in this thesis; thus we will always assume that by a ring R we mean

a finitely generated commutative ring with identity.

2.1.2 Monomials and Terms

Fix R = (Γ, 0, 1,+,−, ·) to be a ring for the rest of this section. We are using the

symbol · for ring multiplication from here on and reserving the symbol ∗ for monomial

multiplication. Let ~x = x1, . . . , xn be a vector of one or more variables in Γ. In this

section we will explore how these variables form equations over the ring and the

natural operations that arise from this definition.

Definition 2.12 (Monomial) A monomial m is a product
∏n

i=1 xi
mi = x1

m1 ·
x2

m2 · · ·xnmn of variables where m1, . . . ,mn ∈ N and exponentiation in R is defined

as earlier.

Monomials are the basic building blocks of equations using the variables in ~x. We

define the degree of a monomial to be the sum of exponents deg(
∏n

i=1 xi
mi) =

∑n
i=1mi

with the usual addition on N.



16 2. Computational Algebra

Let M be the set of all the monomials of R that can be made using ~x, then there

is an obvious isomorphism log : M → Nn such that log(x1
m1 · · ·xnmn) = [m1, . . . ,mn]

sometimes referred to as the multidegree of m.

Let 1M ∈ M =
∏n

i=1 xi
0N , i.e., log(1M) = [0N, . . . , 0N] and ∗ : M ×M → M be

the binary operator such that m ∗ n = (
∏n

i=1 xi
mi) ∗ (

∏n
i=1 xi

ni) =
∏n

i=1 xi
(mi+ni), i.e.

log(m ∗n) = log(m) +Nn log(n) where +Nn is the normal pointwise vector addition on

natural numbers. Then M = (M, 1M , ∗) is a monoid called the monomial monoid of

R over indeterminates ~x.

We now need to explain the notions of divisors and multipliers between monomials:

Definition 2.13 Let m,n ∈M be monomials such that m,n 6= 1M .

(1) m is a multiple of n and n is a divisor of m if ∃d∈M m = n ∗ d. Then n divides

m, written as n|m, if m is a multiple of n.

(2) g ∈ M\{0M} is the greatest common divisor of m and n if g|m and g|n, and if

any other non-zero monomial g′ divides both m and n, then g′ must also divide

g. The greatest common divisor of m and n is unique and may be written as

gcd(m,n) or gcdm,n.

(3) l ∈M is the least common multiple of m and n if m|l and n|l and l divides any

other element l′ that has this property. This may also be written as lcm(m,n)

or lcmm,n.

(4) τ ∈ M is the crossfactor of m to n if m ∗ τ = lcmm,n. The crossfactor of m to

n may be written as τm,n.

Figure 2.1 demonstrates the relations between these concepts. Notice that gcd,

lcm and τ always exist and in the extreme case scenario for m and n, gcdm,n = 1M ,

lcmm,n = m∗n and τm,n = n. In such a case we say that m and n are relatively prime.

A simple way of defining the greatest common divisor is gcd(
∏
xi
mi ,

∏
xi
ni) =∏

xi
min(mi,ni) where min is the minimum function defined over N. Similarly, we can

define lcm using maximums of the exponents.

Example 2.14 Let m = x1x
2
2x

5
3 and n = x3

2x
3
3 be two monomials in M . Then

m∗n = x1 ·x2
2 ·x5

3 ·x3
2 ·x3

3 = x1x
5
2x

8
3 is the product of the two monomials. Both m and

n are divisible by g = x2
2x

3
3 which is the greatest common divisor gcdm,n obtained by



2. Computational Algebra 17

m n

gcdm,n

lcmm,n

m ∗ n

τn,m τm,n

τm,n τn,m

n m

g
cd
m
,n

Figure 2.1: The relations between monomial divisors and multiples

taking the minimum exponent of each variable within the given monomials. We can

easily verify that g|m and g|n.

Similarly, by taking the maximum exponent of the m and n we obtain l = x1x
3
2x

5
3

which is the least common multiple lcmm,n of m and n. We can also verify easily that

m|l, n|l, l|m ∗ n, and that g ∗ l = m ∗ n.

Finally, we compute that τm,n = lcmm,n/m = n/ gcdm,n = x2 and that τn,m =

lcmm,n/n = m/ gcdm,n = x1x
2
3. This completes all the relations shown in Figure 2.1.

2

We now consider the monomials in M with coefficients in Γ denoted as t = c ·m
where c ∈ Γ and m ∈M . The choice of using · as the scalar multiplication here is not

coincidental since after evaluation of the monomials with some variable assignment

(~x ← ~v ∈ Γn) this operation becomes the multiplication operator · of R. The

process of evaluation will be properly defined in §2.2. The · operation defines an

R-monomodule by the following definition:

Definition 2.15 (Term) A term of variables ~x in R is an element t = c ·m where

c ∈ Γ is a constant (scalar) andm ∈M is a monomial with variables in ~x. The induced

R-monomodule T = (Γ×M, 1T , ∗, ·) of these elements is called the term monomodule

of R over the variables ~x where 1T = 1Γ · 1M and ∗ defined as (c1 ·m1) ∗ (c2 ·m2) =

(c1 ·R c2) · (m1 ∗M m2).



18 2. Computational Algebra

The notion of terms also entails some natural extensions of the ring and monomial

operations. For example, the distributivity laws of · defines a partial summation

(c1 · m) + (c2 · m) = (c1 +R c2) · m. Notice that this + operator fails to define the

addition of two terms whose corresponding monomials are not equal. We will later

expand on these ideas to properly define addition and multiplication of polynomials.

When ~x has n variables, we may sometimes refer to the term monomodule of R
over variables ~x as T n.

2.1.3 Term Orderings

Before we can fully explain the notion of polynomials here, we first need to define

what ordering means between the elements of a term module. Assume R, ~x,M, T
are defined as earlier.

The purpose of ordering the elements of a set is to have a method of comparing

individual items. In this chapter we are concerned about being able to compare terms

and monomials (and later on, polynomials) to decide which one is “bigger”. Ideally,

we would like this definition of ordering to be consistent with the definition of least

common multipliers and greatest common divisors that we defined earlier, so that

the gcd is actually the biggest element (with respect to the ordering) in the set of all

common divisors, and similarly have the lcm as the smallest (by the ordering) of the

common multiples.

An order is a reflexive, transitive, antisymmetric relation on a set Γ. The following

definition explains these terms and defines what a monomial ordering is.

Definition 2.16 (Monomial Ordering) Let M = (Γ, 1Γ, ∗) be some monomial

monoid of R over ~x. A relation σ is a monomial ordering ofM, denoted by the inline

comparison operator ≥σ, if for all γ1, γ2, γ3 ∈ Γ, we have:

(1) (Least Element) γ1 ≥σ 1Γ.

(2) (Reflexivity) γ1 ≥σ γ1.

(3) (Antisymmetry) γ1 ≥σ γ2 ∧ γ2 ≥σ γ1 ⇒ γ1 = γ2.

(4) (Transitivity) γ1 ≥σ γ2 ∧ γ2 ≥σ γ3 ⇒ γ1 ≥σ γ3.

(5) (Monotonicity) γ1 ≥σ γ2 ⇒ γ1 ∗ γ3 ≥σ γ2 ∗ γ3.



2. Computational Algebra 19

We use other related notations to ≥σ for convenience, such as γ1 ≤σ γ2 to mean

γ2 ≥σ γ1, γ1 >σ γ2 to mean γ1 ≥σ γ2, and γ1 6= γ2, and also a similar definition for

<σ. For brevity, when a σ is defined in context, we may simply refer to these relations

as ≥ etc.

Before continuing with examples of some orderings and their role in polynomials,

we would like to know if the definition of ordering defined above is consistent with

the meaning of the words “greatest” and “least” as defined for gcd and lcm.

Lemma 2.17 LetM = (Γ, 1, ∗) be a monomials monoid and ≥ a monomial ordering

of M. Then for any m,n ∈ Γ such that m|n, we have n ≥ m.

Proof Let d ∈ Γ be the divisor such that n = m ∗ d. We know such d exists by

2.13(1) because m|n.

d ≥ 1 by 2.16(1)

⇒ d ∗m ≥ 1 ∗m by 2.16(5)

⇒ n ≥ m
2

Theorem 2.18 LetM = (Γ, 1, ∗) be a monomial monoid and≥ a monomial ordering

of M. Then for any m,n, d ∈ Γ such that d|m and d|n we have gcdm,n ≥ d. i.e. the

gcd of two monomials is the largest of their common divisors with respect to ≥.

Proof Let m,n ∈ Γ be two monomials and d ∈ Γ such that d|m and d|n. We know

that d| gcdm,n by 2.13(2). Lemma 2.17 proves gcdm,n ≥ d. 2

Corollary 2.19 Let M and ≥ be the same as in Theorem 2.18 and let m,n, d ∈ Γ

be such that m|d and n|d, then d ≥ lcmm,n.

We can extend the definition of a monomial ordering ≥σ onM to a term ordering

on T n by the relation (c1 · m1) ≥σ (c2 · m2) ⇐⇒ m1 ≥σ m2. Notice that this

extension does not depend on any orderings that might exist on R. We may now use

≥σ freely as both an ordering on M and T n without ambiguity.

We will now define some of the common term orderings that will be used in this

thesis. A desirable property for a term ordering is to be able to sort single-variable

monomials by order of the variables, e.g. x1 ≥ x2 ≥ x3 ≥ · · · . We would also like the

monomials with different exponents of the same variable to be sorted in ascending

order of their exponents, e.g. x1 ≤ x2
1 ≤ x3

1 · · · . The following definition expands

these requirements into the multivariate case:



20 2. Computational Algebra

Definition 2.20 (Lexicographical term ordering) For any t1, t2 terms of T n, we

define a lexicographical term ordering ≥Lex such that t1 ≥Lex t2 if and only if either

t1 = t2 or the first non-zero component of log(t1)−Nn log(t2) is positive.

It is easy to confirm that this definition satisfies the requirements of term orderings

and matches the two properties desired earlier. Another desirable property of a term

ordering is to be degree-compatible, meaning that t1 ≥σ t2 ⇒ deg(t1) ≥N deg(t2). The

following defines such an ordering:

Definition 2.21 (Degree-reverse-lexicographic term ordering) For any t1, t2

terms of T n, we define degree-reverse-lexicographic term ordering ≥DRL such that

t1 ≥DRL t2 if and only if t1 = t2 or deg(t1) >N deg(t2) or, in the case that deg(t1) =

deg(t2) and t1 6= t2, the last non-zero component of log(t1)−Nn log(t2) is negative.

There are many other interesting term orderings and related results that will not

be used in this thesis. For more information refer to Kreuzer et al. [48] Chapter 1.4.

2.1.4 Polynomials

We would like to generalize the notion of an equation with indeterminates within

a ring. Earlier we explored how monomials can represent any product (using the ·
operation in ring) of variables and the concomitant concepts associated with them

such as greatest common divisors. The concept of terms introduced the addition

of scalar multiplication by ring elements to monomials, which added the support for

scalars, constants (scalar multiplication by the monomial 1Γ) and negations. The only

ring operation missing from our definition of equations is the + addition operator,

which leads to the definition of polynomials. In this section we will define polynomials

and show some of the basic operations and properties of polynomials.

Let R = (Γ, 0, 1,+,−, ·) be a ring, ~x = [x1, · · · , xn] be a vector of n variables in

R and M = (M, 1, ∗) be the monomial monoid of ~x variables over R.

Definition 2.22 (Polynomial) ρ : M → Γ is a polynomial of n variables in R if

only finitely many monomials assume a non-zero value by ρ. Alternatively, if only for

i = 1, . . . , k; k <∞ we have ρ : mi 7→ ci, ci 6= 0, then we can view ρ as a set of terms

{c1 ·m1, . . . , ck ·mk} ⊂ T n such that no two terms in the set share the same monomial.

Polynomials are frequently written as a sum of terms: ρ = c1 ·m1 + · · ·+ ck ·mk. The

set supp(ρ) = {m1, . . . ,mk} is called the support of ρ.



2. Computational Algebra 21

Similar to the choice of · for scalar multiplication, we chose the + symbol for

representation of the polynomials since it closely relates to the ring + operation

during evaluation. Evaluation of polynomials is defined in §2.2.

There is a natural transformation from a monomial to a term defined as m→ 1Γ·m
and another transformation from a term to a polynomial defined as t → {t}. Thus

any monomial or term could also be seen as a polynomial without ambiguity. The

special cases of polynomials {} and {1T} (= {1Γ · 1M}) are represented as 0ρ and 1ρ

respectively.

Define a + operation between polynomials as the sum of their combined terms:

(c1 ·m1+· · ·+ck ·mk)+ρ(d1 ·n1+· · ·+dj ·nj) = c1 ·m1+· · ·+ck ·mk+d1 ·n1+· · ·+dj ·nj.
This definition is not yet complete since it does not necessarily lead to a polynomial

as result. For example, the sum of two polynomials (c1 ·m+ · · · ) +ρ (c2 ·m+ · · · ) =

c1 ·m + c2 ·m + · · · does not form a function M → Γ as the monomial m assumes

two values by this sum. This problem is fixed by combining similar terms according

to the partial rules of + defined earlier between terms which define the distributivity

over ·: c1 ·m+ c2 ·m = (c1 + c2) ·m. Thus we define addition of polynomials as the

sum of their combined terms after collecting similar terms. An immediate corollary

to this definition is that for any polynomial ρ, ρ+ρ 0ρ = ρ.

Multiplication of polynomials is described as the sum of the pairwise term prod-

ucts: ρ1 ·ρ ρ2 =
∑

t1∈ρ1,t2∈ρ2 t1 ∗T t2. Similarly, we define the negation −ρ(c1 ·m1 +

· · ·+ck ·mk) = (−c1) ·m1 + · · ·+(−ck) ·mk. Is it easy to confirm that all the constants

and operators defined here form a ring.

Definition 2.23 (Polynomial Ring) Let P be the set of all polynomials with in-

determinates ~x in R, then R[~x] = (P, 0ρ, 1ρ,+ρ,−ρ, ·ρ) is a ring of polynomials called

the polynomial ring of R over variables ~x.

Let ϕ be a ring homomorphism of R to R[~x] that defines the natural embedding

of constants as polynomials: ϕ : γ 7→ γ ·1M . The homomorphism ϕ defines R[~x] as an

R-Algebra and the scalar multiplication γ ·ρ = (γ ·1M)·ρ = (γ ·c1)·m1+· · ·+(γ ·ck)·mk.

We will callR[~x] the polynomial algebra ofR over ~x variables for the rest of this thesis,

and the homomorphism above shows that we can use this R-algebra to refer both

the coefficient ring R and the polynomial ring R[~x] without ambiguity. We may also

refer to the carrier set of the polynomial algebra simply by the name R[~x] when no

confusion arises.



22 2. Computational Algebra

The notion of a term ordering induces a sorted structure on the terms within

a polynomial such that for any given polynomial ρ and a term ordering ≥σ, we

can always find an enumeration of the terms within this polynomial such that ρ =

t1 + t2 + · · · + tk and t1 >σ t2 >σ · · · >σ tk
6. The sorting of the terms within a

polynomial produces a canonical representation of polynomials written in decreasing

order of the terms.

Definition 2.24 (Leading Term) Let ρ ∈ R[~x] be a polynomial and σ a term

ordering on R[~x]. The leading term of ρ is a term LTσρ ∈ ρ such that ∀t∈ρ LTσρ ≥σ t,
i.e., t is the first term that appears in the canonical representation of ρ with respect

to σ. If ρ = 0ρ then we set LTσρ = 0 · 1M . When LTσρ = c ·m, then LCσρ = c is the

leading coefficient of ρ and LMσρ = m is the leading monomial of ρ. A polynomial ρ

is called monic if LCσρ = 1.

Finally, we will expand the definition of ≥σ for polynomials and define the poly-

nomial ordering: ρ1 ≥σ ρ2 ⇐⇒ LTσρ1 ≥σ LTσρ2 (i.e. LMσρ1 ≥σ LMσρ2) and the

degree of a polynomial: degσ(ρ) = deg(LMσρ). When σ is degree-compatible, then

we additionally have degσ(ρ) = maxµ∈supp(ρ) deg(µ).

2.2 Computation on Polynomials

We mentioned that the computational aspects of polynomials is a key topic in this

thesis. A common constraint imposed on computational problems is that every data

representation and execution must be finite due to the limitations of computer sys-

tems. This means that we will always be working with finitely generated rings, and

more generally, finitely generated polynomial algebras. In this section we will look

at a key computational aspect in algebra, the evaluation of polynomials. Although

the question of what a polynomial evaluates to is not a complex problem, the con-

verse question is more intriguing: For what variable assignments does a polynomial

evaluate to a certain value? More generally, for which variable assignments do two

or more polynomials attain the same value? We will explain this question and its

ramifications in this section.

6The equality case of ≥σ is excluded since if i 6= j, ci ·mi ≥σ cj ·mj and cj ·mj ≥σ ci ·mi then
mi = mj by definition of term ordering and thus ρ would not be a polynomial.



2. Computational Algebra 23

2.2.1 Evaluation of Polynomials

Earlier during the definition of polynomials we hinted that the polynomial operators

behave similarly to the base ring operations under evaluation. Recall that the defini-

tion of homomorphism required the transformation between two algebras to preserve

all the operators of their respective structures. We will utilize the earlier hints to

define evaluation as an R-algebra homomorphism.

Let R[~x] be the polynomial algebra defined in §2.1, T n be the term monomodule,

M be the monomial monoid, and S be an R-algebra.

Definition 2.25 (Variable Assignment) Let S be the underlying set of elements

for the R-algebra S. A variable assignment is a map ψ : ~x→ S which assigns a value

in set S for each indeterminate in ~x, i.e. ψ : xi 7→ si for i = 1 . . . n.

A variable assignment ψ may simply be written as a vector of n values ψ = ~v ∈ Sn

when ψ : xi 7→ vi is the assignment.

Definition 2.26 (Polynomial Evaluation) Let ϕ : R → S be the structural ho-

momorphism of S and ψ be a variable assignment of ~x in S. For any ρ ∈ R[~x],

t1, t2 ∈ T n, m ∈ M, xi ∈ ~x, γ ∈ R, the evaluation of a polynomial ρ with respect to

ϕ and ψ, Eψ
ϕ(ρ), is the R-algebra homomorphism R[~x]→ S inductively defined using

the following rules:

• Eψ
ϕ(xi) = ψ(xi)

• Eψ
ϕ(γ ·T m) = ϕ(γ) ·S Eψ

ϕ(m)

• Eψ
ϕ(t1 ∗T t2) = Eψ

ϕ(t1) ·S Eψ
ϕ(t2)

• Eψ
ϕ(t1 +T t2) = Eψ

ϕ(t1) +S Eψ
ϕ(t2)

This also includes the axioms of ϕ as a ring homomorphism and Eψ
ϕ as an R-algebra

homomorphism.

When ϕ is the identity endomorphism of R, we may write the evaluation of

polynomials as Eψ or simply E if the variable assignment ψ is unambiguous from the

context. If ψ is the variable assignment ~x 7→ ~v then we may write ρ(~v) = Eψ(ρ) for

brevity.



24 2. Computational Algebra

2.2.2 Solving Systems of Equations

Evaluation of polynomials is a simple computational task, but a natural question

that arises from this definition is: For which variable assignments does a polynomial

evaluate to a given value? Or equivalently: When is the value of a polynomial zero?

We will have a brief look at such equations and simultaneous solutions to systems of

equations.

Definition 2.27 (Polynomial Equations) Let ϕ be the structural homomorphism

of the R-algebra S, ρ ∈ R[~x] be a polynomial and γ ∈ S a constant. An equation

is a formula of type ρ = γ and the solution to this equation is the set of variable

assignments {ψ | Eψ
ϕ(ρ) = γ}.

When no specific value is provided, a polynomial ρ implicitly defines an equation

ρ = 0 with ϕ being the identity homomorphism, and its solution set is the kernel of

the homomorphism Eϕ(ρ) : Rn → R. For the remainder of this thesis we will assume

that an equation ρ always means this equation. We do not lose any generality since

an equation ρ = γ may always be written in the form (ρ− γ) = 0. The solutions to

the polynomial equation ρ = 0 are also called the roots of ρ.

Example 2.28 R[x, y] is the polynomial algebra with variables x and y and coeffi-

cients in R. Let p = x2 − y be both a polynomial and an equation of this algebra.

The set of solutions to p is the set {x 7→ t; y 7→ t2|t ∈ R}. For brevity, this may also

be expressed as {(t, t2) | t ∈ R}. Notice that the solutions corresponding to x and y

can be expressed as polynomials in R[t]. More importantly, the solution to y can be

expressed as a polynomial py = x2 in R[x]. Thus, we have effectively eliminated the

variable y from the solutions.

2

The above example demonstrates that we may express solutions to an equation as

polynomials in the same polynomial algebra. We can define an equivalence relation

between polynomials such that the polynomials within the same class share the same

set of solutions. It is obvious to see that if ρ1 = ρ2 (i.e. they assign the same coefficient

for every monomial) then they have the same solutions, but the converse question is

more interesting: If two polynomials have the same set of solutions, are they equal?

We will attempt to answer this question in a later section. First, we will examine a

set of equations and the intersection of their solutions:



2. Computational Algebra 25

Definition 2.29 (Systems of Equations) Let P = {ρ1, . . . , ρk} ⊆ R[~x] be a set

of k polynomials in R[~x]. The resulting system of equations is the set of equations

ρ1 = 0; . . . ; ρk = 0 and the solution to this system of equation is the assignment ~x = ~r

where ~r is the set of their common roots: {ψ | Eψ
ϕ(ρ1) = 0 ∧ · · · ∧ Eψ

ϕ(ρk) = 0}.

In general, finding the solution to a system of equations is a difficult problem.

Later we will see how a Gröbner basis leads to a solution for a system of equations, and

Buchberger’s algorithm provides a computational method of computing a Gröbner

basis. There are other algorithms for solving special cases of systems of equations, for

example, given a system of linear equations7 we may use the Gaussian Elimination

technique to find solutions.

We now consider some of the problems that can be expressed as solutions of system

of equations.

Theorem 2.30 Let ρ1, · · · , ρk ∈ R[~x] be polynomials, I ⊆ R[~x] an ideal such that

I = 〈ρ1, · · · , ρk〉, and let Γ ⊆ Rn be the set of solutions to the system of equations

{ρ1; · · · ; ρk}. Then for any ρ ∈ I and ~x = γ ∈ Γ, γ is a root of ρ.

Proof Let ρ ∈ I and γ ∈ Γ, we know that there exists polynomials %1, · · · , %k such

that ρ =
∑
%i · ρi for i = 1 · · ·n by the definition of ideal. Then:

ρ(γ) = Eγρ

= Eγ(
∑
%i · ρi)

=
∑

Eγ(%i · ρi)
=

∑
(Eγ%i · Eγρi)

=
∑

(Eγ%i · 0)

= 0
2

Thus finding a solution for an ideal basis provides a solution for any member of

that ideal.

Definition 2.31 (Affine Varieties) Let ρ1, · · · , ρk ∈ R[~x] be a set of polynomials,

the affine variety V(ρ1, · · · , ρk) ⊆ Rn is the set of all points γ ∈ Rn such that

ρ1(γ) = · · · = ρk(γ) = 0.

It is easy to see that the affine variety generated by a set of polynomials is the

same as the set of solutions to the system of equations they produce. Affine varieties

7Polynomial ρ is linear if deg(ρ) ≤ 1.



26 2. Computational Algebra

provide a method of algebraically describing geometric shapes. For example, in R[x, y]

the variety V(x2 + y2 − 1) describes a circle in R2 of radius 1 at the origin.

Let I be an ideal of R[~x], then V(I) is the set of points γ ∈ Rn such that

∀ρ∈I ρ(γ) = 0. Theorem 2.30 shows that for any P ⊂ R[~x]k such that P is a basis for

the ideal I (i.e. I = 〈P 〉), then V(I) = V(P ).

Conversely, let V = V(ρ1, · · · , ρk) be some affine variety, then the set I(V ) gen-

erated by this variety is the set of polynomials ρ ∈ R[~x] such that ∀γ∈V ρ(γ) = 0. It

is easy to confirm that I(V ) forms an ideal.

We may now attempt to answer a question posed earlier: If two polynomials

share the same set of solutions, are they the same polynomial? More generally, if two

systems of equations have the same set of common solutions, do they span the same

ideal? We may pose the question as I(V(I))
?

⊇ I.

Definition 2.32 (Radical Ideals) Let I be an ideal of R[~x], then the radical ideal√
I is the set of all polynomials ρ ∈ R[~x] such that ∃i∈N>0 ρi ∈ I. Note that

√
I ⊇ I

trivially.

Theorem 2.33 (Nullstellensatz) Let K be an algebraically closed field and I an

ideal of K[~x]. Then I(V(I)) =
√
I.

This theorem is due to David Hilbert [24] and answers the question posed earlier for

algebraically closed fields. These are all important computational questions posed as

solving systems of equations.

2.2.3 Ideal Membership

Let us revisit the problem in Example 2.1 and what we learned from it. Given the pair

of polynomials ρ1 = x2
1; ρ2 = x2

1 + 1, we would like to know if any given polynomial

ρ ∈ K[~x] is a linear combination of them. In other words, we would like to know if

a given polynomial is a member of an ideal: ρ
?
∈ 〈ρ1, ρ2〉. If we set up a system of

equations from ρ1 and ρ2 we quickly realize that there are no solutions to this system,

i.e., V(ρ1, ρ2) = ∅ and 〈ρ1, ρ2〉 = R[~x], thus any polynomial is a member of this ideal

and can be represented as a linear combination of these elements. Two questions arise

from this result: Firstly, if we know ρ ∈ I, how can we find out a representation of

ρ as a linear combination of basis elements I? Secondly, if the answer to the system

of equations was not as simple as above, how can we check if ρ is a member of I?



2. Computational Algebra 27

We mentioned in Example 2.1 that we use polynomial division for finding out the

membership in this ideal, dependent on the ordering. In this section we will survey

how polynomial quotients work.

Definition 2.34 (Quotient Ring) Let I be an ideal of R and S an R-algebra with

structural homomorphism ϕ : R → S such that kerϕ = I, i.e.:

I = {γ ∈ R | ϕ(γ) = 0S}

Then the image of ϕ forms a subring of S with members ϕ(γ) represented as γ + I

for any γ ∈ R. We also define the operations (γ1 + I) +S (γ2 + I) = (γ1 +R γ2) + I

and (γ1 + I) ·S (γ2 + I) = (γ1 ·R γ2) + I. This ring is called the quotient ring R/I.

We may now pose the question differently: Given a polynomial ρ, an ideal I ⊂ R[~x]

and the quotient ring with the homomorphism ϕ : R[~x] → R[~x]/I, is ϕ(ρ)
?
∈ 0 + I?

In order to answer this question, we first need to define polynomial division.

Definition 2.35 (Polynomial Division) Let p, q ∈ R[~x] be two polynomials such

that q 6= 0, σ a term ordering, then we can represent p with two other polynomials

d, r such that p = d · q + r and LTσr 6 | LTσq and r <σ q. In this case, d is called the

divisor of p/q and r is the remainder of p/q.

When the ring R is a Euclidean Domain, then the divisor and remainder in R[~x] both

exist and are unique [48] and can be obtained using the following algorithm:

Algorithm 2.36 (Division Algorithm)
// Inputs p, q ∈ R[~x], q 6= 0, returns (d, r) such that p = d · q + r and LTσr 6 | LTσq.

let rec Divide(p, q) =

if LTσp 6 | LTσq then

return 0, p

else

let d′ = (LCσp/LCσq) · (LMσp/LMσq) // i.e. LTσp/LTσq

let p′ = p− d′ · q
let d, r = Divide(p′, q)

return (d′ + d, r)

Polynomial division provides a natural homomorphism ϕ : R[~x]→ R[~x]/〈q〉 such

that if r is the remainder of the division p/q, then ϕ(p) = r + 〈q〉. Similarly, define



28 2. Computational Algebra

I = 〈ρ1, · · · , ρk〉 ⊆ R[~x] and ρ ∈ R[~x], let r1 = the remainder of ρ/ρ1, r2 = the

remainder of r1/ρ2, . . . , rk = remainder of rk−1/ρk, then ϕ : R[~x] → R[~x]/I can be

defined as ϕ(ρk) = rk + I. Recall from Example 2.1 that rk might be a different

representative of the same element in quotient ring for different orderings of ρ1 . . . ρk,

but if for any ordering, rk = 0 then this division leads to a representation of ρ as a

linear combination of ρ1 . . . ρk and proves ρ ∈ I. We would like to find a basis for I

such that this division would lead to a unique representative for ρ regardless of the

ordering.

2.2.4 Polynomial Rewrite Systems

We will now investigate the polynomial division question from the perspective of term

rewriting. We will assume that the reader has some familiarity with term rewriting,

but will briefly define the required terminology for polynomial rewriting in this section.

Refer to J. W. Klop [46] for a comprehensive introduction to term rewriting systems.

We will assume that R has a field structure when concerned with polynomial

rewrite systems.

Definition 2.37 (Polynomial Rewrite Rule) A polynomial rewrite rule is a spe-

cial rewrite rule of the form r : m 7→ p such that m is a monomial and p is a

polynomial. Unlike generic term rewriting, a polynomial rewrite rule respects the

associativity and commutativity of the polynomial algebra when rewriting the terms;

thus given a polynomial ρ ∈ R[~x], any term t of ρ that is divisible by monomial m

can be rewritten using the following rule:

∀ρ∈R[~x] ∀t∈supp(ρ) m|t⇒ t 7→ (t/m) · p

i.e., every occurrence of the monomial m in any term is replaced by the polynomial

multiplication of that term (as a polynomial) by p.

Given a polynomial f ∈ R[~x] and a term ordering σ, we define the rewrite rule
f→ to be the polynomial rewrite rule LMσf 7→ − (LC−1

σ f) · (f − LTσf). That is, if

f = c ·m + f ′ with LTσf = c ·m then
f→: m 7→ −c−1 · f ′. Let F = {f1, . . . , fm} ⊂

R[~x] be a set of polynomials, then
F
� is the reflexive transitive closure of the set of

polynomial rewrite rules { f1→, . . . , fm→}.



2. Computational Algebra 29

Definition 2.38 (Reduction) Given the polynomials f, ρ ∈ R[~x], if there exists a

polynomial ρ′ such that ρ
f→ ρ′ then we say that ρ reduces to ρ′ using rewrite rule f

and ρ
f→ ρ′ is the reduction step. Similarly, if F ⊂ R[~x], ρ ∈ R[~x], ρ′ ∈ R[~x]\{ρ} and

ρ
F
� ρ′, then ρ reduces to ρ′ using F . If no such ρ′ 6= ρ exists such that ρ

F
� ρ′, then

ρ is irreducible with respect to F .

There are two important results that arise from the definition of polynomial re-

ductions: First is the relation of reduction to remainders of division, which links

polynomial rewriting to the ideal membership problem defined earlier; second is the

concept of confluence of a rewrite system which draws the link to the two questions

posed earlier. We will explore these relations briefly.

Theorem 2.39 Let p, f, r ∈ R[~x] be polynomials and choose a term ordering on

R[~x], then p
f→ r if and only if r is the remainder of p/f .

Proof Let σ be a term ordering on R[~x] for this proof, and let f = c ·m+ f ′ such

that c = LCσf and m = LMσf (i.e. c ·m = LTσf).

⇒: Assume p
f→ r. Let t ∈ supp(p) such that t|m and let p = t+ p′, then

f→ rewrites

t to (−c−1) · (t/m) · f ′; therefore:

r = (−c−1) · (t/m) · f ′ + p′

= (−c−1) · (t/m) · f ′ + (p− t) since p = t+ p′

= p− (c−1 · t/m · f ′ + t)

= p− c−1 · t/m · f since f = f ′ + c ·m
Let d = c−1 · t/m, then p = d · f + r. We also know that LTσr 6 | m since it was not

rewritten by
f→. Then LTσr 6 | LTσf .

Therefore r is the remainder of the division p/f .

⇐: Assume r is the remainder of p/f , i.e. ∃d ∈ R[~x] such that p = d · f + r and

LTσr 6 | LTσf , then p = d · c ·m + d · f ′ + r. We know that no terms of f ′ divide m

since LTσf >σ f
′; therefore the term d · c ·m is the only part of p that is rewritten

by
f→:

p = d · c ·m+ d · f ′ + r
f→ (d · c ·m/m) · (−c−1 · f ′) + d · f ′ + r

= (−d · f ′) + d · f ′ + r

= r

Therefore p
f→ r.

2



30 2. Computational Algebra

An immediate usage of this theorem is to show that every chain of rewrite rules

is eventually stationary and ends in a “minimal” element. We can use the well-

ordering principle on term orderings together with the following result to show that

such minimal element exists and that the rewrite rule
F
� is finite:

Corollary 2.40 ρ
f→ ρ′ ⇒ ρ ≥σ ρ′.

Proof Direct result of Lemma 2.17 and Theorem 2.39.

2

Given a set of polynomials F = {f1, . . . , fm} ⊂ R[~x] and a polynomial ρ ∈ R[~x],

we can conclude through our investigation in §2.2.3 and Theorem 2.39 that if ρ
F
� 0

then ρ ∈ 〈F 〉, but we have already seen that the result of this reduction is highly

dependent on the order which the polynomial rewrite rules
f1→, · · · , fm→ are applied.

This brings us to the following definition:

Definition 2.41 (Confluent Rewrite System) A rewrite system
F
� is called con-

fluent if ∀ρ1, ρ2, ρ3 ∈ R[~x] such that ρ1

F
� ρ2 and ρ1

F
� ρ3, then ∃ρ4 ∈ R[~x] such that

ρ2

F
� ρ4 and ρ3

F
� ρ4.

ρ1

ρ2 ρ3

ρ4

F F

F F

Figure 2.2: A confluent rewrite system.

Given a confluent and terminating polynomial rewrite system, we can reliably

solve the ideal membership problem — and as we will see later, solve the systems of

equations through elimination — by checking if a polynomial ρ rewrites to 0 using

the rewrite system. This brings us two fundamental questions:

(1) Given a basis {f1, . . . , fm} for an ideal I ⊆ R[~x], how do we algebraically define

an alternative basis {g1, . . . , gk} for I such that the resulting polynomial rewrite

system
G
� exists and is confluent?



2. Computational Algebra 31

(2) How do we compute such a basis?

The first question is answered by the definition of a Gröbner basis in §2.2.5. Al-

though it is tempting (and possible!) to modify and use the Knuth-Bendix Completion

algorithm [47] for computing the confluent polynomial rewrite system and re-interpret

the result back as a set of polynomials, we have an algebraic method called Buch-

berger’s Algorithm at our disposal that we will define in §2.3 to answer the second

question [58]8.

2.2.5 Gröbner Bases

We have defined the problem of obtaining a “special” basis for an ideal such that

the order of division does not change the final remainder when deciding the ideal

membership question — alternatively, a basis for an ideal that leads to a confluent

polynomial rewrite system. We will call this basis a Gröbner basis:

Definition 2.42 (Gröbner Basis) Let R[~x] be a polynomial ring, σ a term order-

ing on R[~x], G = {g1, . . . , gk} ⊂ R[~x] and I = 〈G〉 be the ideal spanned by G. Then

G is a σ-Gröbner basis for I if for any ρ ∈ I, there are f1, · · · , fk ∈ R[~x] such that

ρ =
∑k

i=1 fi · gi and LTσρ ≥σ LTσ(fi · gi) for all 1 ≤ i ≤ n.

Equivalently, we can say G is a Gröbner basis if
G
� is confluent.

Before describing the uses for Gröbner bases and the methods for solving the

questions posed earlier, we first need to ensure that every ideal in a polynomial ring

has a Gröbner basis associated with it. Later we will define what is required to make

such bases unique.

Theorem 2.43 (Hilbert Basis Theorem) If R is a finitely generated ring, then

every ideal I ⊆ R[~x] has a finite basis.

Proof See [24] Theorem 4.

2

Knowing that there always exists a finite set of polynomials f1, . . . , fm such that

I = 〈f1, . . . , fm〉, we now only need to know that given a finitely generated ideal,

there exists a Gröbner basis for it:

8In fact, the link between Buchberger’s algorithm and Knuth-Bendix completion was unknown
for years after Buchberger’s discovery [12].



32 2. Computational Algebra

Theorem 2.44 (Existence of a σ-Gröbner Basis) Let I ⊆ R[~x] be a finitely

generated ideal such that I 6= {0} and σ be a term ordering on the terms of R[~x],

then there exists G = {g1, . . . , gk} such that I = 〈G〉 and G is a σ-Gröbner basis.

Proof See [48] Theorem 2.4.3.

2

The existence of a Gröbner basis is an important result, but it does not mean

that a σ-Gröbner basis of an ideal is unique. For example, both sets G1 = {x} and

G2 = {2x} span the same ideal in R[x] and it is easy to check that G1, G2 are both

Gröbner bases9. The set G3 = {x, x2} is also a Gröbner basis for the same ideal.

We may deduce that the bases G2 and G3 are not minimal because they contain

“redundant” polynomials that are linear combinations of other basis members (such

as x2 ∈ G3) or they may further be simplified by a constant factor (such as 2x ∈ G2).

Definition 2.45 (Minimal Gröbner Basis) A σ-Gröbner basis G for a polyno-

mial ideal I ⊆ R[~x] is minimal if:

(1) Every basis member is monic: ∀gi∈G LCσgi = 1R.

(2) For all gi ∈ G, LTσgi does not divide the leading term of any polynomial in

G\{gi}.

A minimal Gröbner basis of I ensures that the size of the basis is minimal with

respect to all the other Gröbner bases of I and that every basis element is monic.

It is important to note that minimality of a Gröbner basis still does not entail its

uniqueness. Let G4 = {x, y} and G5 = {x+ y, y}, then both G4 and G5 are minimal

Gröbner bases with respect to ≥LEX term ordering (as per Definition 2.20). In fact, for

any g, h ∈ G such that g ≥σ h and G is a minimal Gröbner basis, we may replace g

by g′ = g+a ·h for any constant a ∈ R to obtain a new, equivalent, minimal Gröbner

basis.

Definition 2.46 (Reduced Gröbner Basis) A σ-Gröbner basis G for a polyno-

mial ideal I ⊆ R[~x] is reduced if:

(1) G is a minimal σ-Gröbner basis.

(2) For all polynomials gi ∈ G and terms t ∈ supp(gi), t does not divide the leading

term of any polynomial in G\{gi}.
9When there is no confusion, we may skip the term ordering σ on the Gröbner bases.



2. Computational Algebra 33

Theorem 2.47 (Uniqueness of Reduced σ-Gröbner Bases) Let I ⊆ R[~x] be a

finitely generated ideal such that I 6= {0} and σ be a term ordering on the terms of

R[~x] and G be a reduced σ-Gröbner basis for I. Then G is unique.

Proof See [48] Theorem 2.4.13.

2

Therefore every polynomial ideal has a unique reduced Gröbner basis. This fact

entails that every ideal I ⊆ R[~x] has a canonical representation of finitely many

elements10.

2.2.6 Elimination and Extension

Before discussing the method of computation for Gröbner bases, we may now review

the questions posed earlier in this chapter and attempt to answer them. The ideal

membership problem (second question) and the confluent polynomial rewrite system

problem (third question) may now directly be solved using the reduced Gröbner

basis for the corresponding ideals. The problem of solving systems of equations

(first question), however, requires more explanation and draws on the important link

between the ideals in algebra and varieties in geometry.

Theorems 2.30 and 2.33 showed that given an algebraically closed field K, an ideal

I ⊆ K[~x] such that I is a radical ideal, and any basis {ρ1, . . . , ρk} spanning I, then the

solutions to the system of equations {ρ1 = 0; · · · ; ρk = 0} defines the variety V(I).

We will study the case of choosing the reduced Gröbner basis of I as the choice of

basis for solving the system of equations. Although we will not discuss the case when

I is not radical, the solutions to the bases of a non-radical ideal only differ from the

variety by multiplicity of roots [76].

Definition 2.48 (Elimination Ideal) Let I ⊆ R[x1, . . . , xn] be a polynomial ideal

of n variables in R, then the i-th elimination ideal of I is the ideal Ii = I ∩
R[xi+1, . . . , xn].

Given some ideal I, in the ideal Ii the first i variables in the polynomial field are

eliminated and consequently any polynomial in I that uses the variables x1 . . . xi is

eliminated from Ii. Thus the solutions to In−1 (which only uses one variable xn) can

be solved using any known methods of finding the roots of a univariate polynomial.

10For the case of I = {0}, the empty set ∅ is the representation.



34 2. Computational Algebra

Then the results may be extended to solutions of In−2 (using two variables xn−1 and

xn) by backwards substitution of occurrences of variable xn to obtain new univariate

polynomials of variable xn−1. The same process of solving for one variable can be

applied to find values of xn−1 and repeat the extension step until all solutions for the

0-th elimination ideal I0 = I are found. The following theorem shows that a basis for

each elimination ideal can easily be found by using Gröbner bases:

Theorem 2.49 (The Elimination Theorem) Let I ⊆ R[x1, . . . , xn] be a polyno-

mial ideal of n variables in R, σ be the lexicographical term ordering on terms of

R[~x], and G be the reduced σ-Gröbner basis of I. Then for any 0 ≤ i ≤ n, the set

Gi = G ∩R[xi+1, . . . , xn] is a Gröbner basis of the i-th elimination ideal Ii.

Proof See [24] Theorem 2.

2

Example 2.50 Consider the following system of equations in C[x, y, z]:
x2 + y + z = 1

x+ y2 + z = 1

x+ y + z = 1

Let f1 = x2 +y+z−1; f2 = x+y2 +z−1; f3 = x+y+z−1 be the corresponding

set of polynomials to this system and I be the ideal 〈f1, f2, f3〉. Using lexicographical

term ordering, the reduced Gröbner basis for I is G = {g1 = x + y + z − 1; g2 =

y2 − y; g3 = yz + 1
2
z2 − 1

2
z; g4 = z3 − z}. §2.3.5 shows how this basis is computed.

The second elimination ideal I2 — that is, eliminating variables x and y — has

Gröbner basis G2 = {g4} according to Theorem 2.49. To find the solutions to g4 =

z3 − z = 0 we factor g4 to z(z − 1)(z + 1) and conclude that the possible values for z

are {0;−1; 1}.
By substituting the possible values of z into the Gröbner basis for the first elim-

ination ideal I1, G1 = {g2; g3; g4} we can obtain the possible values for y. First,

substitute the choices z = −1 and z = 1 into g3 = yz + 1
2
z2 − 1

2
z = 0 to obtain the

(partial) solution (y, z) ∈ {(1,−1); (0, 1)}, but for the remaining choice z = 0 we have

infinitely many solutions (y, z) ∈ {(y, 0) | y ∈ C}. Next, we substitute these solutions

in equation g2 = y2 − y = 0 which only has solutions y = {0, 1}. Thus, the final set

of solutions to the first elimination ideal is (y, z) ∈ {(1,−1); (0, 1); (0, 0); (1, 0)}.



2. Computational Algebra 35

Finally, we may substitute the solutions of I1 into the 0th elimination ideal I0 = I

for the full set of solutions. By substituting (y, z) ∈ {(0, 0); (0, 1); (1, 0); (1,−1)}
in the equation g1 = x + y + z − 1 = 0 we obtain the solutions (x, y, z) ∈
{(1, 0, 0); (0, 0, 1); (0, 1, 0); (1, 1,−1)} to the above system of equations.

2

2.3 Buchberger’s Algorithm

Definition 2.42 for Gröbner bases is a non-constructive definition which does not in-

spire an immediate algorithm — unlike Definitions 2.45 and 2.46 which embody the

methods for refining a Gröbner basis into the corresponding minimal and reduced

Gröbner bases. This section defines Buchberger’s Algorithm for computing Gröbner

bases [12] and explores some improvements and optimizations to the original state-

ment of the algorithm.

2.3.1 S-Polynomials and Normal Forms

Definition 2.51 (S-Polynomial) Let ρ1, ρ2 ∈ R[~x] be two polynomials and σ be a

term ordering on terms of R[~x]. Let τσ,ρ1,ρ2 = τLMσρ1,LMσρ2 be the extension of the

crossfactor τ from Definition 2.13 to polynomials, then the S-polynomial of ρ1 and ρ2

is defined as:

Sσ,ρ1,ρ2 = τσ,ρ1,ρ2 · ρ1 − τσ,ρ2,ρ1 · ρ2

When the choice of term ordering σ is unambiguous, we may simply refer to the

S-Polynomial as Sρ1, ρ2.

The S-polynomial of ρ1 and ρ2 multiplies both polynomials by their respective

crossfactors11 to homogenize the leading terms to be the least common multiple of

both and then subtracts the two resultants to obtain a new polynomial with a different

leading term. The following result is immediate from the definition of ideals and S-

polynomials:

Proposition 2.52 Let I ⊆ R[~x] be a polynomial ideal, then ρ1, ρ2 ∈ I ⇒ Sρ1,ρ2 ∈ I.

11Note that this term is made of both the crossfactor of the leading coefficients and the crossfactor
of the leading monomials.



36 2. Computational Algebra

Definition 2.53 (Normal Remainder) Let {f1, . . . fk} ⊂ R[~x]\{0} be a set of

polynomials for some k ≥ 1 and F = (f1, . . . , fk) be an ordered k-tuple. Given a

polynomial ρ ∈ R[~x] and a term ordering σ, let d1, . . . , dk, r ∈ R[~x] be the divisors

and the remainder such that ρ =
∑k

i=1 fidi + r where each di is obtained by applying

the division algorithm with fi to the remainder of the previous step ri−1 — we assume

r0 = ρ. Then the normal remainder of ρ with respect to the polynomials F and the

ordering σ is defined as NRσ,F (ρ) = r. When σ can be determined by context, we

may refer to the normal remainder as NRF (ρ).

Computation of normal remainders is similar to that defined in §2.2.3 when the

ordering of the quotients is predetermined by the ordering of the dividing polynomials

and uses Algorithm 2.36. The following result is immediate from the definition of

Gröbner bases:

Proposition 2.54 Let G be a σ-Gröbner basis for ideal I, then ρ ∈ I ⇔ NRσ,Gρ = 0.

Moreover, the two earlier propositions entail that ρ1, ρ2 ∈ I ⇒ NRGSρ1,ρ2 = 0.

2.3.2 Buchberger’s Algorithm

Theorem 2.55 (Buchberger’s Criterion) Let G = {g1, . . . , gk} ⊂ R[~x]\{0} be a

set of non-zero polynomials, σ a term ordering on terms T n and I = 〈G〉 be a polyno-

mial ideal. Then G is a σ-Gröbner basis for I if and only if ∀gi,gj∈G NRσ,GSσ,gi,gj = 0.

This is a constructive alternative to Definition 2.42 which can be implemented

simply by computing the S-polynomials and adding the non-zero normal remainders

to the basis until this condition is satisfied:

Algorithm 2.56 (Buchberger’s Algorithm)

Inputs F ⊂ R[~x]\{0}, returns G ⊂ R[~x] such that 〈G〉 = 〈F 〉 and G is a Gröbner

basis.

1 let Gröbner(F) =

2 let G = F

3 let B = {〈i, j〉 | 1 ≤ i < j ≤ |G|}
4 while B 6= ∅ do

5 for 〈i, j〉 ∈ B do

6 B ← B − {〈i, j〉}
7 let s = SGi,Gj



2. Computational Algebra 37

8 let s′ = NRGs

9 if s′ 6= 0 then

10 G← G ∪ {s′}
11 B ← B ∪ {〈i, |G|〉 | 1 ≤ i < |G|}
12 return G

The computation of normal remainders in Buchberger’s algorithm can be done

either by performing long division on polynomials or through polynomial rewriting.

Theorem 2.39 showed that the remainder obtained using the two methods is always

equal. We will analyse the termination and run-time complexity of this algorithm in

§2.3.4.

2.3.3 Minimal and Reduced Gröbner Bases

Algorithm 2.57 (Minimal Gröbner Basis)

Inputs a Gröbner basis G, returns GM such that 〈G〉 = 〈GM〉 and GM is a minimal

Gröbner basis.

let MinimalGröbner(G) =

let G′ = G and GM = ∅
for g ∈ G do

G′ ← G′ − {g}
if ∀g′∈G′ LTσg

′ 6 | LTσg then

GM ← GM ∪ {monicσ(g)}
return GM

Algorithm 2.58 (Reduced Gröbner Basis)

Inputs a polynomial p and basis G, reduces p with respect to G such that

∀t∈supp(p),g∈G t 6 | LTσg.

let rec Reduce(p,G) =

let p′ = p

for t ∈ supp(p) do

for g ∈ G do

if t | LTσg then

p′ ← p− (t/LTσg) · g
if p 6= p′ then

return Reduce(p′, G)

else

return p



38 2. Computational Algebra

Inputs a minimal Gröbner basis G, returns the reduced Gröbner basis GR such that

〈G〉 = 〈GR〉.

let ReducedGröbner(G) =

let GR = ∅
for g ∈ G do

GR ← GR ∪ {Reduce(g,G\{g}}
return GR

2.3.4 Optimizations

The complexity of Buchberger’s algorithm is shown by Mayr [54] to be doubly ex-

ponential (O(22n)) in the number of variables in R[~x] and polynomial in the total

degree of the polynomials of the input set. Mayr and Meyer [55] demonstrated a

worst-case scenario that for a given number of variables, n, there always exists a set

of polynomials F ⊂ R[~x] such that, for all f ∈ F , deg(f) ≤ 5 and any Gröbner basis

for F contains O(22n) many elements. This puts a theoretical lower-bound on the

(worst-case) complexity of any Gröbner bases computation algorithm.

We seek to improve the average-case complexity of Buchberger’s algorithm and

reduce the number of critical pairs that are being analysed by removing any redun-

dant critical pairs and testing some conditions to determine if the normal form of

a computation is zero. The following two criteria were introduced and proved by

Buchberger [11]:

Lemma 2.59 (Buchberger’s First Criterion) Let ρ1, ρ2 ∈ R[~x] be two polyno-

mials. If lcm(LMσρ1,LMσρ2) = LMσρ1 · LMσρ2 — i.e., the leading monomials of the

two polynomials are relatively prime — then NRσ,GSσ,ρ1,ρ2 = 0.

Lemma 2.60 (Buchberger’s Second Criterion) During the analysis of the crit-

ical pair 〈ρ1, ρ2〉 ∈ G×G in Algorithm 2.56, if there exists a polynomial ρ3 ∈ G such

that ρ3 | lcm(LMσρ1,LMσρ2), and the pairs 〈ρ1, ρ3〉 and 〈ρ2, ρ3〉 have previously been

considered in the computation of G, then NRσ,GSσ,ρ1,ρ2 = 0. The tuple 〈ρ1, ρ2, ρ3〉 is

called a Buchberger triple.

The two criteria above provide a test for determining before-hand if the result of

a critical pair computation would lead to zero — however it is not guaranteed for

the result to be non-zero if the test fails. The following algorithm combines these



2. Computational Algebra 39

criteria in Buchberger’s algorithm. Assume Criterion1 and Criterion2 are predicates

that determine if a critical pair of polynomials satisfies Buchberger’s first and second

criterion, respectively.

Algorithm 2.61 (Buchberger’s Improved Algorithm)

Inputs F = {f1, . . . , fk} ⊂ R[~x]\{0}, returns G ⊂ R[~x] such that 〈G〉 = 〈F 〉 and G

is a Gröbner basis.

1 let ImprovedGröbner(F ) =

2 let G = F and t = |G|
3 let B = {〈i, j〉 | 1 ≤ i < j ≤ t}
4 while B 6= ∅ do

5 let 〈i, j〉 ∈ B
6 B ← B − {〈i, j〉}
7 if ¬Criterion1(fi, fj) then

8 let s = Sfi,fj
9 let s′ = NRGs

10 if s′ 6= 0 then

11 t← t+ 1

12 let ft = s′

13 G← G ∪ {ft}
14 B ← B ∪ {〈i, t〉 | 1 ≤ i < t ∧ ¬Criterion2(fi, ft, B)}
15 return G

As mentioned earlier, the performance of Buchberger’s algorithm will always have

the worst-case complexity of O(22n) even with the aforementioned improvements [55].

In §6 we will see how specific subsets of problems can lead (constructively) to algo-

rithms specialized from Buchberger’s algorithm that have better overall complexity.

2.3.5 Examples

We will now revisit the sample ideal from Example 2.50 to see how the reduced

Gröbner basis is computed.

Example 2.62 Let

f1 = x2 + y + z − 1, f2 = x+ y2 + z − 1, f3 = x+ y + z − 1

be polynomials in R[~x] = R[x, y, z] and F = {f1, f2, f3}. We will compute the

Gröbner basis for the ideal I = 〈F 〉 with term ordering σ =≥Lex using Algorithm 2.56.



40 2. Computational Algebra

First, the algorithm sets up the basis set G = {f1, f2, f3} and the working set

B = {〈1, 2〉, 〈1, 3〉, 〈2, 3〉}. Next we will traverse the critical pairs one by one:

• 〈1, 2〉: Computing the S-Polynomial of f1 and f2 leads to: Sf1,f2 = 1·f1−x·f2 =

x2 + y + z − 1 − (x2 + xy2 + xz − x) = −xy2 − xz + x + y + z − 1. Since the

leading term xy2 is divisible by LTσf2 = x, we have −xy2−xz+x+y+z−1
f2→

y4 + 2y2z − 2y2 + y + z2 − z which is not divisible by any other polynomials in

G. Thus, we add the new polynomial

f4 = NRGSf1,f2 = y4 + 2y2z − 2y2 + y + z2 − z

to the basis G← G ∪ {f4} and add 〈i, 4〉 i = 1 . . . 3 to the working set B.

• 〈1, 3〉: Computing the S-Polynomial and its normal form leads to

f5 = NRGSf1,f3 = y3 + y2z − y2 + yz + z2 − z

which is added to the set G and the related pairs are added to the working set

B.

• 〈2, 3〉: The new polynomial

f6 = NRGSf2,f3 = y2 − y

is augmented to G and the working set expanded. At this point we analyse the

new pairs.

• 〈1, 4〉: Sf1,f4 = −2x2y2z+2x2y2−x2y−x2z2+x2z+y5+y4z−y4, but Sf1,f4
f1,f3→ 0

and no new polynomial is added.

• 〈2, 4〉: NRGSf2,f4 = 0.

• 〈3, 4〉: Sf3,f4 = −2xy2z + 2xy2 − xy − xz2 + xz + y5 + y4z − y4, and Sf3,f4
f2,f4→

−2yz − z2 + z, thus

f7 = −2yz − z2 + z

is added to G. Notice that this normal form does not reduce to 0 even though

the leading terms of f3 and f4 are relatively prime since the algorithm for normal

form computes the remainder by dividing by f2 first before considering f3.



2. Computational Algebra 41

• 〈1, 5〉: Adding new polynomial to G:

f8 = −1

2
z3 +

1

2
z

• 〈2, 5〉, 〈3, 5〉, 〈4, 5〉, 〈1, 6〉, 〈2, 6〉, 〈3, 6〉, 〈4, 6〉, 〈5, 6〉 all reduce to normal form of 0.

• 〈1, 7〉, . . . , 〈6, 7〉 and 〈1, 8〉, . . . , 〈7, 8〉 have normal form = 0.

Thus, G = {f1, . . . , f8} is a Gröbner basis for F .

2

Example 2.63 Let G = {f1, . . . , f8} be a Gröbner basis as computed above. We

will compute the minimal Gröbner basis for G using Algorithm 2.57. Set GM = ∅
and iterate through each polynomial in G:

• f1: Since LMσf2 | LMσf1, this polynomial is discarded.

• f2: LMσf3 | LMσf2 and thus f2 is also discarded.

• f3: No other polynomials divide the leading term of f3, therefore the monic

polynomial f3 is added to the set GM .

• f4: LMσf5 | LMσf4.

• f5: LMσf6 | LMσf5.

• f6: The monic polynomial f6 is added to the set GM .

• f7: The monic polynomial

f ′7 = yz +
1

2
z2 − 1

2
z

is added to the set GM .

• f8: The monic polynomial

f ′8 = z3 − z

is added to the set GM .

Thus, GM = {f3, f6, f
′
7, f

′
8} is the minimal Gröbner basis for G. 2



42 2. Computational Algebra

Example 2.64 Let GM = {f3 = x+ y + z − 1, f6 = y2 − y, f ′7 = yz + 1
2
z2 − 1

2
z, f ′8 =

z3−z} be a minimal Gröbner basis as computed above. We will compute the reduced

Gröbner basis for GM using Algorithm 2.58. Set GR = ∅ and iterate through each

polynomial in GM :

• supp(f3) = {x, y, z} and no leading terms in GM (which are {x, y2, yz, z3})
divides the elements in support of f3, therefore no reduction is needed and f3

is added to the set GR.

• supp(f6) = {y2, y}, supp(f ′7) = {yz, z2}, and supp(f ′8) = {z3, z} are also not

reducible and are directly added to GR.

Thus, GR = {f3, f6, f
′
7, f

′
8} is also the reduced Gröbner basis for GM . 2

David Cox provides some more tutorials of Gröbner bases computations in [23]

that are out of the scope of this thesis.

2.4 Applications of Gröbner Bases

Three problems were introduced earlier in this chapter which can be solved by finding

(reduced) Gröbner basis of the corresponding set of polynomials, namely:

• §2.2.2: Solving systems of polynomial equations,

• §2.2.3: Determining ideal membership,

• §2.2.4: Finding a confluent polynomial rewrite system.

Given an algebraic problem that is reducible to any of the above questions, we may

solve the original problem by finding the Gröbner basis for the reduced problem —

which possibly involves interpreting the resultant basis back into the domain of the

original problem. In this section we briefly discuss some applications of Gröbner bases

as problems that can be reduced to the questions above.

2.4.1 Gaussian Elimination

We can perform Gaussian Elimination on a set of linear polynomials using Buch-

berger’s Algorithm. It can be shown [36, 92] that given a set of linear polynomials



2. Computational Algebra 43

(i.e., the degree of each polynomial is 0 or 1), the resulting basis from Buchberger’s

Algorithm is also a set of linear polynomials. Furthermore, computing the reduced

Gröbner basis on this set leads precisely to the same set of polynomials that Gaussian

Elimination provides. Providing a lex ordering, we can furthermore use elimination

theory to back-propagate the variables and solve a system of equations purely using

Gröbner bases.

2.4.2 Euclidean Algorithm

Given a set of univariate polynomials (i.e., polynomials of only one variable, |~x| = 1),

we can show that the reduced Gröbner basis is a basis of a single element which

is the greatest common divisor of all the input univariate polynomials. Moreover,

we can show that the result of executing Buchberger’s Algorithm on this set per-

forms precisely the steps required to execute the Euclidean algorithm for polynomial

gcds [13].

2.4.3 Integer Programming

Another interesting application of Gröbner bases is a special encoding of linear opti-

mization problems as computing the reduced Gröbner basis of a toric ideal as shown

by Sturmfels [81]. Hosten [43] shows that the Integer Programming method for lin-

ear optimization problems is a special case of Buchberger’s algorithm using a special

encoding technique.

2.4.4 Graph Colouring

As Loera demonstrated [51], we can implement combinatorial optimization problems

by solving systems of polynomial equations. Hillar [41] builds on this theory by

choosing a special set of polynomials over the complex field C that encode a graph

colouring problem as a question of finding the Gröbner basis. This also demonstrates

that other combinatorial optimization problems can be similarly encoded and solved

using Buchberger’s algorithm.



44 2. Computational Algebra

2.4.5 Other Applications

There are many more computation problems that can be shown to be special applica-

tions of Gröbner bases and Buchberger’s algorithm, many of which are highlighted in

a series of tutorials by Buchberger and Winkler [13]. Some samples of other such ap-

plications are solving boolean satisfiability problems [18, 91], algebraic geometry [76],

geometric theorem proving [95] and more.



Chapter 3

Meta Programming

Meta programming is the act of writing programs that manipulate other programs.

The primary purpose of meta programming in this thesis is to generate code for the

specialized programs and instances of the main algorithm used throughout this the-

sis: Buchberger’s algorithm. Although we will attempt to keep the discussion general

within this chapter, we will only focus on the aspects and ideas of meta program-

ming and code generation that are of interest in our implementation of Buchberger’s

algorithm.

There are three main requirements of code generation within the context of this

thesis. We require the generated code to satisfy the following properties:

• Syntactic Correctness: The generated program must be free of syntax errors

and be a valid program in the programming language of choice.

• Type Correctness: The generated program must satisfy all the type correctness

criteria for compilation. The specialized instances of sub-programs must have

compatible data types when composing larger programs, and the type correct-

ness of the composed program must be checked during each operation.

• Semantic Correctness: Generated programs must not only be compilable and

valid in the selected programming language, but they must also satisfy a certain

contract which defines the behaviour of the programs during execution.

We will address the first two concerns listed above for syntactically correct, type

safe code generation in this chapter. The question of semantic correctness in generated

programs can only be partially addressed by automatically carrying the specifications

45



46 3. Meta Programming

that a program fragment satisfies during code composition to obtain evidence of the

correctness for the generated code. This point will be the subject of Chapter 4.

3.1 Meta Programming in F#

Throughout the history of computer programming many different definitions have

been given for meta programming — e.g., manipulating strings representing code or

handling representations of abstract syntax trees, template meta programming, and

multi stage code compilation [72, 77, 90] — but they all share the same common goal:

To manipulate or reason about other programs1. With advancements in the concepts

of programming languages we see more tools and machinery available for writing

better meta programs. In this thesis we are concerned about language integrated

meta programming, where the components of a meta program are available constructs

inside the language itself and there is no need for a meta language to write such

programs. In this case “meta program” is perhaps a misnomer and a suggested

name of multi stage programming [16, 89] is more apt where the focus is on multiple

stages of compilation for obtaining code. We will assume the two terminologies are

interchangeable in this chapter.

Language integrated meta programming has three main components as were first

introduced in Lisp (see [9] for a full description):

(1) Quote: To obtain a representation of the code inside the quotation as a value

in the program.

(2) Eval: To run the piece of code that a value represents.

(3) Splice: To compose different fragments of code together.

The concept of the splice operation is possibly the most complicated of this list

and deserves more explanation. The real power of meta programming lies within

the splice operation for composing code fragments together as we can modify the

code and produce new combinations of code fragments using the splice operation.

Moreover, we may perform computations on code, such as variable renaming, partial

code compilation [84], or even provide optimizations by replacing specialized routines

depending on the context of the code [14, 16].

1The “other” program may even be the code of the meta program itself, in the case of self-
modifying programs.



3. Meta Programming 47

Having such power over code generation may lead to some undesirable results

where the produced code is meaningless, but with the development of more orga-

nized meta programming components integrated into languages such as MetaML [90],

MetaOCaml [72], Haskell [77] and F# [86] we have access to more expressive meta

programming features, such as static guarantees and type safety of splicing to ensure

that the produced code fragments can be compiled.

We have chosen the F# programming language [85] as the programming language

of choice for the implementation of the Gröbner bases solver generator program in

this thesis.

3.1.1 The F# Programming Language

F# is a hybrid functional/object-oriented programming language from Microsoft Re-

search [85]. The syntax of F# is similar to OCaml [44] with some elements from the

C# programming language. We will assume that the reader has some familiarity with

functional programming and the basic syntax of F# in this thesis, but we will briefly

describe the syntax and mechanism of quotation and evaluation in F# that is required

for meta programming.

Don Syme introduced the meta programming components in F# programming

language and its uses in the generation of dynamic queries and data parallel programs

in his paper “Leveraging .NET Meta-programming Components from F#” [86]. This

section will provide an overview of the meta programming elements introduced in

Syme’s paper with the addition of some basic semantics for quotation and evaluation.

Definition 3.1 (F# Language and Values Domain) Let L be the language of F#

as described by msdn [63], Σ be the set of all possible memory states and variable con-

figurations in the .net environment, and D be the domain of all values representable

by all data types in .net. This domain of values includes —but is not limited to—

all the basic value types (integers, floats, strings, etc.), object values (instances of any

class type), all type values (members of the Type data type), exception values (special

type Exception), and function types and representations.

A formal framework for representation and operations on the states will be pre-

sented in §4.1.1.

Definition 3.2 (Semantic Valuation in F#) Given an F# expression e ∈ L, let

JeK : Σ→ D be the partial valuation function as defined by the operational semantics



48 3. Meta Programming

of the programming language and the runtime environment. For a state σ ∈ Σ, the

value of JeKσ is the (typed) value returned by F# interactive (fsi) when e is evaluated

in the current state σ of execution. In the cases of compile-time or syntax errors, run-

time errors, uncaught exceptions, and non-termination, the value of JeKσ is simply

undefined.

Example 3.3 Let e1 be the F# expression fun x→ x+ 1 and σ1 be an initial state

of execution for fsi. Then Je1Kσ1 is a value of type int→ int which is the compiled

function represented by e1. Let σ2 be the same state as σ1 with the additional value

assignment t ←[ Je1Kσ1 and e2 be the expression t 5, then Je2Kσ2 = 6 is the result of

applying the above function to argument value 5. This may be represented by the

following transcript in fsi:

> let t = fun x -> x + 1;;

val t : int -> int

> t 5;;

val it : int = 6

The variable t is unassigned in state σ1, thus the value of e2 when the current

state is σ1 produces a compilation error and remains undefined.

2

Definition 3.4 (Quotation) A typed code quotation in F# is constructed by sur-

rounding a syntactically valid and typed code fragment between <@ and @> symbols.

For ease of notation, we will use the symbols p·q instead of <@· · ·@> for quoting syntax

in writing. Given a state σ ∈ Σ and an expression e ∈ L such that JeKσ is defined

and has the type ′t, the quotation peq ∈ L is another expression where JpeqKσ is a

value of type Expr〈′t〉. The Expr data type represents the syntax of an expression and

is implemented as an inductive data type. The expression peq is sometimes called the

lifted expression of e.

Example 3.5 Following Example 3.3, let e3 be the expression pfun x → x + 1q,

then Je3Kσ2 is a value of type Expr〈int → int〉 which represents the syntax of the

expression e3, transcribed as:

> <@ fun x -> x + 1 @>;;

val it : Expr<(int -> int)> =

Lambda (x,

Call (None, Int32 op_Addition[Int32,Int32,Int32](Int32, Int32),

[x, Value (1)]))



3. Meta Programming 49

2

Definition 3.6 (Evaluation) As an inverse to the lifting operation, to evaluate (or

“run”) a quoted expression, F# uses the extension method Eval as provided by the F#

PowerPack [57], which compiles a quoted expression into linq [10] computation trees

and evaluates it. The evaluation of an expression e ∈ L is represented by the syntax

e.Eval() which we will denote by E e for ease of notation. Given a state σ ∈ Σ and

an expression e ∈ L such that JeKσ is an expression of type Expr〈′t〉, the evaluation

E e ∈ L is another expression such that JE eKσ is an expression of type ′t if the

evaluation of e is defined.

The combined semantics of quotation and evaluation in F# satisfies the law of

disquotation: Given an expression e ∈ L and a state σ ∈ Σ, JEpeqKσ = JeKσ whenever

both JeKσ and JEpeqKσ are defined. To be more precise:

∀e∈L,σ∈Σ (∃e′∈L,σ′∈Σ JeKσ = Jpe′qKσ′)⇒ (JE eKσ .
= Je′Kσ′)

where the quasi-equality
.
= means the values are equal whenever they are both defined,

or both undefined.

Example 3.7 Continuing Example 3.5, let σ3 be the same state as σ2 with the

additional value assignment q ←[ Je3Kσ2 and e4 be the expression E q. Then, Je4Kσ3 is

a function of type int→ int as the evaluation of the quotation above. Additionally

the expression e5 = (E q) 5 has the same value as the expression e2 from Example 3.3.

The following transcript shows these calculations in fsi:

> let q = <@ fun x -> x + 1 @>;;

val q : Expr<(int -> int)> = ...

> q.Eval();;

val it : (int -> int) = <fun:ToFSharpFunc@3053-1>

> (q.Eval()) 5;;

val it : int = 6

2

3.1.2 Splicing and Quasiquotations

The quote and eval operations defined earlier provide the necessary mechanism for

representing code fragments that are syntactically correct and type-safe. We would



50 3. Meta Programming

like to be able to compose and modify code fragments in a similar fashion with

the same static guarantees as p·q and E have. Essentially we need a mechanism

for embedding the expression represented by a quotation within a larger quotation

such that the syntax of the sub-expression is preserved and a post-composition type

checking is performed. F# provides the splicing syntax for performing such code

compositions:

Definition 3.8 (Splicing) A spliced expression is a specially marked sub-expression

within a quotation — represented by the unary operator % before the marked expres-

sion — such that the value of this sub-expression is of type Expr. We will use the

symbols x·y to mark a spliced sub-expression for ease of notation. Let e ∈ L be an

expression which has a marked sub-expression e1, such that e = · · · xe1y · · · . Then,

given a state σ ∈ Σ, the value JpeqKσ = Jpe′qKσ such that e′ is obtained by sub-

stituting the occurrence of e1 within e with the expression that represents Je1Kσ.

A quotation that includes spliced expression may also be called a quasiquotation to

be consistent with Quine’s terminology of quotation theory [93], especially as it is

popular within Lisp literature.

Let e ∈ L be an expression and e1, . . . , en be pairwise non-overlapping marked sub-

expressions of e. Then the value of the quasiquotation peq = p· · · xe1y · · · · · · xeny · · ·q
is obtained by first syntactically replacing every marked expression e1, . . . , en within e

by (typed) temporary place holder variables2 x1, . . . , xn. Then, this new expression e′

is evaluated in the context σ by the usual rules defined by Je′Kσ, and finally the value

of the placeholders x1, . . . , xn in Je′Kσ are replaced by the values of JE e1K, . . . , JE enK,
respectively. If for any i, 1 ≤ i ≤ n, the value JE eiK is undefined or does not have

the same type as the placeholder xi, then the value of JpeqKσ is also undefined.

Let S be simultaneous syntactic substitution as defined by Andrews [4], such that

given expressions x, x1, . . . , xn, x
′
1, . . . , x

′
n ∈ L, Sx1,...,xnx′1,...,x

′
n
x is obtained by the replace-

ment of xi in x with x′i for i = 1 . . . n.

Then:

∀σ∈Σ JpeqKσ .
= Sx1,...,xnJEe1Kσ,...,JEenKσJpS

xe1y,...,xeny
x1,...,xn

eqKσ

where x1, . . . , xn are placeholders in the expression.

2In fact, the symbol for these holes in F# is an . We will refrain from using this notation in the
expressions for the purpose of visual clarity.



3. Meta Programming 51

Example 3.9 The expression fun a b → pxay + xbyq represents a function of type

Expr〈int〉 → Expr〈int〉 → Expr〈int〉 which splices two quoted expressions of integer

type to make another expression representing their sum. Let σ be the state which

contains the assignment f ←[ Jfun a b→ pxay + xbyqKσinit where σinit is some initial

state, then Jf p1q p2qKσ = Jp1 + 2qKσ. The following transcript shows the above

example at runtime:

> let f = fun a b -> <@ %a + %b @>;;

val f : Expr<int> -> Expr<int> -> Expr<int>

> f <@ 1 @> <@ 2 @>;;

val it : Expr<int> =

Call (None, Int32 op_Addition[Int32,Int32,Int32](Int32, Int32),

[Value (1), Value (2)])

> (f <@1@> <@2@>) = <@ 1 + 2 @>;;

val it : bool = true

2

3.1.3 A Compiler Extension

One shortcoming of the splice operation in F# as defined in §3.1.2 is that the spliced

sub-expressions are evaluated in the context of the parent quotation, and thus the

spliced sub-expressions are not connected to any state changes — e.g., introduction

of new variables — that may happen within the quoted expression. Consider the

following example:

Example 3.10 Let σ be the state as defined in Example 3.9 which carries the as-

signment f ←[ Jfun a b → pxay + xbyqKσinit. Additionally, let e be the expression

plet t = 1 in xf ptq ptqyq. Then the value of this quasiquotation JeKσ first evaluates

the marked sub-expression in the context σ, Jf ptq ptqKσ which is undefined due to

the variable t not existing in this context. F# has a special built-in mechanism to

avoid such staging errors. The following transcript demonstrates this error:

> let f = fun a b -> <@ %a + %b @>;;

val f : Expr<int> -> Expr<int> -> Expr<int>

> <@ let t = 1 in %(f <@t@> <@t@>) @>;;

error FS0446: The variable ’t’ is bound in a quotation but is used as part of a

spliced expression. This is not permitted since it may escape its scope.

2



52 3. Meta Programming

In order to accommodate such statements, we need to modify the definition of

quasiquotation from Definition 3.8 to allow for accessing state between multiple

stages. This introduces a new challenge of stage safety for variable access: When

is it safe and correct for a spliced sub-expression or an inner quotation to access the

variables from outside its scope?

Definition 3.11 (Stage Index) Let e ∈ L be an expression and let ν be a variable

that appears in e. The stage index of a usage of ν is the number of (nested) quotations

textually surrounding the appearance of ν minus the number of nested splices that

contain it.

Theorem 3.12 (Scope Safety) Let e ∈ L and variable ν be as defined in Defini-

tion 3.11. Then the variable ν does not escape its scope within e if every usage of ν

has a stage index greater than or equal to the stage index of the declaration of ν. An

expression e satisfies the stage safety criterion if no variables in e escape their scope.

Proof Due to Walid Taha [89].

2

The extension to the quotation mechanism that we are contributing is performed

by adding variable arguments to the “holes” which carry the spliced sub-expressions.

These arguments are the variables from the previous stages that are being used in

the current splice. The process has two stages:

(1) Pickling: When pickling (serializing) a quotation at compile time, we add

a list of arguments to each hole for all he variables that are used within the

expression from previous stages. The hole object itself is now a function from

a list of variables to an expression3. These arguments will be supplied at run

time.

(2) Unpickling: The unpickling (deserializing) of a quotation is performed during

run time by the core libraries. At this stage, all the information for running and

evaluating the quotation and the (partial evaluation of) spliced sub-expressions

is available. At this stage the quotations library supplies the appropriate vari-

able expressions — which have now been computed — as the arguments to the

holes which represent the spliced sub expressions. A final dynamic type test is

performed after the evaluation of the splice in order to ensure type safety of the

final code fragment.

3The holes were originally just expression templates in the official F# release.



3. Meta Programming 53

The following example demonstrates the usage of this extension.

Example 3.13 Let σ and e be the same state and expression as in Example 3.10. The

following transcript shows the value of JeKσ after installing the compiler extension:

> <@ let t = 1 in %(f <@t@> <@t@>) @>;;

val it : Expr<int> =

Let (t, Value (1),

Call (None, Int32 op_Addition[Int32,Int32,Int32](Int32, Int32), [t, t]))

2

Another contribution that we made to the F# libraries is a pretty-printer for

quoted expressions which prints a much more reader-friendly output when generating

code fragments. The standard printer for the Expr type in F# prints the (parsed)

expression tree for a given quotation which is much more verbose. For the remainder

of thesis, we will always produce transcripts using the contributed expression printer.

3.1.4 Staged Value Types

Code quotations and the splice operation provide the mechanism for partial evaluation

of code. In Example 3.13 we saw that the function f was partially evaluated using the

template variable t and all the references to the function call were eliminated. Partial

evaluation of code is an important advantage in multi stage programming [52] that

reduces the amount of abstraction overhead [16] and code duplication [84]. However,

if all the information for a computation of a statement is readily available at the

current stage of compilation, there is no need for delayed or partial evaluation of code

and a full evaluation of an expression can be performed at compile time. In order to

support both partial and full evaluation of expressions within the same context, we

need to introduce a staged type for the values:

Definition 3.14 (Staged Values) The staged value type is an algebraic data type

with contains either ground values or code values. The ground values encapsulate the

data that is available “now” at the current stage of compilation, and the code values

encapsulate the data that will be available “later” at a future stage of compilation

(or execution).

type Value<’a> =

| V of ’a

| E of Expr<’a>



54 3. Meta Programming

We may also force future evaluation of a ground term by lifting the value to an

expression, or force the evaluation of a delayed expression to be performed now. Note

that the GetV function may fail if the value is an expression which is not available for

evaluation yet.

let GetV = function V a -> a | E a -> Quote.Eval a

let GetE = function V a -> <@ a @> | E a -> a

The staged type allows us to make decisions in the code on whether an operation

can be performed right now or if we need to create a new expression that will compute

the result at a future stage. For example, to form pairs (tuples) or to extract elements

from a pair, we can define the following operators that contain the definitions for both

the “now” and the “later” values:

let Pair = function

| V a,V b -> V (a,b)

| a,b -> E <@ %(GetE a),%(GetE b) @>

let Fst = function V a -> V(fst a) | E a -> E <@ fst %a @>

let Snd = function V a -> V(snd a) | E a -> E <@ snd %a @>

This definition of a staged value can be extended to define multi-stage constants

and operators. Each staged operator contains two implementations of the operation:

One that works on ground terms and computes the result now, and another that

works on expression terms and composes a compound expression which computes

the result later. Any multi-valued operator that receives mixed parameters (i.e. both

ground and code values) will need to delay the computation of ground values to a

future stage and compose a code fragment from the lifted values.

There are a few special “pipe” operators of F# that we use extensively throughout

this chapter and later on in the implementation of the code generator. We will only

provide the definitions of these operators as defined in the F# standard library for

reference:

let (|>) x f = f x

let (<|) f x = f x

let (>>) f g x = g (f x)

let (<<) g f x = g (f x)

Definition 3.15 (Constants) Staged constants are defined similar to value types.

The two methods GenV and GenE generate a constant from either a ground value or an

expression, respectively.



3. Meta Programming 55

type Constant<’a> = Value<’a>

module Constant =

let GenV v = V v

let GenE ev = E ev

We wrap the utility and generation methods within a module to separate the

scope of each method. For example, the two functions defined above will be accessed

by calling Constant.GenV and Constant.GenE, respectively.

Definition 3.16 (Unary Operators) Staged unary operators are functions of type

Value〈′a〉 → Value〈′b〉 which accept a staged value of type ′a and produce a staged

value of type ′b. The generator function requires both the “now” implementation

of the function of type ′a → ′b and the “later” implementation of type Expr〈′a〉 →
Expr〈′b〉 and produces the staged unary operator of type Value〈′a〉 → Value〈′b〉. The

two applicator methods produce either of the implementations from a staged unary

operator upon request.

type UnaryOp<’a,’b> = Value<’a> -> Value<’b>

module UnaryOp =

let Gen f ef = function

| V v -> f v |> V

| E e -> ef e |> E

let AppV u v = v |> V |> u |> GetV

let AppE u e = e |> E |> u |> GetE

Definition 3.17 (Binary Operators) Similar to unary operators, the staged bi-

nary operators are functions of type Value〈′a〉 → Value〈′b〉 → Value〈′c〉 with a generator

function and two related applicators.

type BinaryOp<’a,’b,’c> = Value<’a> -> Value<’b> -> Value<’c>

module BinaryOp =

let Gen f ef = fun x y ->

match x,y with

| V v1,V v2 -> f v1 v2 |> V

| E e1,E e2 -> ef e1 e2 |> E

| _ -> ef (GetE x) (GetE y) |> E

let AppV b v w = b (V v) (V w) |> GetV

let AppE b e f = b (E e) (E f) |> GetE



56 3. Meta Programming

The definitions of the algebraic objects earlier in §2 only required constants, unary

and binary operators. We also define a TernaryOp type similar to the definitions above

which will be utilized in some special operators in the future. Since one goal of this

thesis is to have a staged implementation of such algebras, we only define the above

four types in this chapter.

Additionally, we provide a lifted Value version of the common library functions

that we use throughout this project. We will separate the lifted operators in modules

grouped by the functionality, in a similar approach to that used by Elsheikh, et. al. in

Generative Geometry Kernel [15]. We have currently defined the following modules

that provide Value operations for various tasks. We will not provide the source code

for these modules as their implementation is straight forward:

• Control module provides operations for program control and flow, such as con-

ditional statements, loops, variable assignments, etc.

• Function module provides the operations for abstracting and applying Value

functions.

• Bool module provides the logical and Boolean-valued operators.

• Tuple module provides the operations for constructing or deconstructing pairs

of values.

• Ref module provides the operations for reference cells.

• Option module provides the operations for option types.

• Array, List and Seq modules provide the required array, list and sequence oper-

ations, respectively.

Example 3.18 (Tuple operators) As a sample for the lifted operations defined

above, we provide the implementation of the Tuple module as defined earlier:

module Tuple =

let Fst x = UnaryOp.Gen (fun x -> fst x) (fun x -> <@ fst %x @>) x

let Snd x = UnaryOp.Gen (fun x -> snd x) (fun x -> <@ snd %x @>) x

let Pair a b = BinaryOp.Gen (fun a b -> a,b) (fun a b -> <@ %a,%b @>) a b

2



3. Meta Programming 57

3.2 Code Generation

We have addressed the main topics with meta programming in F# to generate code.

With the ability to generate code fragments that are syntactically valid and strongly

typed with guarantees on syntax correctness, type correctness and variable scope

correctness, we can now compose code fragments using our combinators to generate

derivative programs.

There are two main advantages to code generation: First, we are able to substitute

appropriate specializations of different sub-programs within the code and be able to

provide some proof of correctness in the generation of the new program. This matter

will be the main subject of discussion in §4. In this case, code generation allows us to

produce complete instantiated algorithms which contain all the selected optimization

without the execution overhead caused by abstraction. The other advantage of code

generation lies within the concept of compile-time beta reductions for partial evalu-

ation using the splicing operation of quasiquotations as per discussion of §3.1.2 and

§3.1.3.

Ideally, we would like to have a domain-specific language (DSL) that captures all

the required code generation routines in a convenient environment. In most mod-

ern functional programming languages (Haskell, OCaml, and F# for instance) we can

eliminate the need for an external DSL by using the special features in the language

such as the development of custom operators for code combinators and special mon-

ads for composing code fragments. This section is dedicated to the code generation

mechanism used for generating the instances of Buchberger’s algorithm in this thesis.

3.2.1 State and Continuation Passing

Continuation-Passing Style (CPS) [83] is a method of programming where the usual

sequential flow of statement execution is replaced by passing a continuation as an

argument to each method that determines how the execution is to be continued. In

essence, the continuation represents the future of a computation. Continuations are

specially useful here for using a value (by its name) that has not been generated

yet. For example, a piece of generated code in an inner expression may require

the program to have an extra parameter or a new variable to be introduced prior

to the execution of the code. In this section we will briefly introduce the concept

of computing with continuations and threading a state through the code generators



58 3. Meta Programming

using F#’s “computation expressions” feature.

First we will briefly show the F# equivalent of the CPS programming techniques

as it was first shown by Swadi, et al. [84] in OCaml and used by Carette and Kiselyov

[16] to generate code for Gaussian Elimination.

Definition 3.19 (StateCPS Function) A continuation is a representation of the

control state of the program [71]. A continuation is represented as a higher-order

function from an intermediate result to the final result. Continuations have the

type (′value → ′answer) → ′answer. A continuation with state function requires

an additional state value (see §3.2.2) that is passed through by every intermediate

computation. In this case, a CPS function accepts the state and a continuation

as parameters and invokes the continuation on the result of the function after the

computation is performed. A state/continuation function has the type

type StateCPS<’state, ’value, ’answer> =

’state -> (’state -> ’value -> ’answer) -> ’answer

In order to use the state and continuation passing methods, we need to convert

all the code generators to the generators of type StateCPS. Generating a piece of

code (of type Expr<’t>) from a code generator needs an initial continuation k0 and

an initial state s0. We temporarily define these initial values as k0 = fun s v → v and

s0 = []. Given a generator gen : StateCPS<_,_,_> we generate the code by running

gen s0 k0.

Example 3.20 (Let Generation) Generating a let statement may be done using

the simple function LetGen a f = p let t = xay in xf ptqyq. The same generator con-

verted to continuation-passing style is:

> let LetGenCPS a = fun s k -> <@ let t = %a in %k s <@ t @> @>;;

val LetGenCPS : Expr<’a> -> StateCPS<’b, Expr<’a>, Expr<’c>>

To produce the result similar to Example 3.13, we need a generator for the addition

function as well. In this case we will make a simple double generator that adds a

value to itself:

> let DoubleGenCPS a = fun s k -> k s <@ %a + %a @>;;

val DoubleGenCPS : Expr<int> -> StateCPS<’a, Expr<int>, ’b>

And finally, we may combine the two generators to make a new generator. This new

generator provides the application of DoubleGenCPS as the continuation to the LetGenCPS

generator:



3. Meta Programming 59

> let gen = fun s k -> LetGenCPS <@ 1 + 2 @> s (fun s’ k’ -> DoubleGenCPS k’ s’ k)

;;

val gen : StateCPS<’a, Expr<int>, Expr<’b>>

The expression p1 + 2q is chosen as an example here to demonstrate the avoidance of

code duplication [84] by using let-generation. Running the above generator provides

the result:

> gen s0 k0

val it : Expr<int> = <@ let t = 1 + 2 in t + t @>;;

2

The “binding” mechanism that was used in Example 3.20 to construct the gen

function can be extended into a general Bind combinator which sequences the result

of one generator to another one. This, in addition to a basic Return combinator, forms

the basis of a monad [60]. Using the computation expressions4 notation in F#, this

monadic generator is defined as follows:

Definition 3.21 (StateCPS Monad) The monadic construction of a state+CPS

generator consists of a return method which lifts a basic expression into a trivial

generator and a bind method which combines two generators by supplying one gener-

ator as the continuation of another. The following code defines the scps computation

expression which defines a basic domain-specific language for working within this

monad:

type SCPSBuilder() =

member x.Return a = fun s k -> k s a

member x.Bind (m,f) = fun s k -> m s (fun s’ k’ -> f k’ s’ k)

let scps = SCPSBuilder()

Example 3.22 (Let Generation with Monads) The same generator as Exam-

ple 3.20 coded using the scps monad is demonstrated in the following code. The

monadic code is placed in a block surrounded by { and }, preceded by the name of

the monad (in this case, scps):

let gen() = scps {

let! t = LetGenCPS <@ 1 + 2 @>

let! r = DoubleGenCPS t

4A computation expression in F# is an equivalent notion to monads with some extensions as
demonstrated in [88].



60 3. Meta Programming

return r

}

Which, after running the generator5, produces the same result as Example 3.20. The

notation let!, return, . . . will be explained in Figure 3.1

2

3.2.2 State Operations

In §3.2.1 we used the empty list [ ] as the initial state for running the generators.

In this section we will discuss the approach taken in this thesis to provide the state

for the code generators which supports a collection of values with heterogeneous data

types and provides methods for extending and searching the open records.

In order to retrieve or store the state, we need two special “generators”. The

Fetch method invokes its continuation with the current state as both parameters, and

the Store method overwrites the current state with its argument before invoking the

continuation. These methods are defined as:

let Fetch s k = k s s

let Store v _ k = k v ()

We maintain the state that is threaded through all the generators by using a list

of named objects. The approach taken in this thesis is similar to property lists [59]

and open records [16]. The named records in the state are well-typed and unique, and

any operation on a typed record is performed through an accessor/modifier object.

Definition 3.23 (States and Records) A State is a list of F# strings and objects

that is threaded through every generator in the StateCPS monad.

type State = list<string*obj>

Although the state itself is a sequence of untyped objects, we will only allow access to

the records through a strongly typed class that provides the same type safety as open

records [16]. A StateRecord is a special class for accessing and modifying a named

record in the State object. An instance of StateRecord is parametrized by its name

and value type, and contains the methods to find, add, remove, or modify this field

from the state:

5The gen value is defined as a trivial function here to circumvent the monomorphism restriction
that F# enforces on non-function values.



3. Meta Programming 61

type StateRecord<’a>(name:string) =

member sr.Name = name

member sr.Find (s:State) def : ’a =

match List.tryFind (fun e -> fst e = name) s with

| None -> match def with

| None -> failwith <| "Failed to locate field " + name

| Some d -> d

| Some a -> unbox(snd a)

member sr.Store (v:’a) (s:State) : State =

match List.tryFind (fun e -> fst e = name) s with

| Some _ -> failwith <| "Field " + name + " is already present."

| _ -> (name,box v)::s

member sr.Remove (s:State) : State = List.filter (fun e -> fst e <> name) s

member sr.Modify v s = sr.Store v <| sr.Remove s

3.2.3 Code Combinators

Example 3.20 introduced special code generators made for generating let statements.

Ideally, during the construction of a higher-level generator, we would like such basic

generators to be already available. These operations are called code combinators.

This section defines some of the more important elements in the combinator library

that is used in this thesis.

Generating new variable names

When generating new variables — such as the let statements we encountered earlier

— F# produces a new unique identifier for variables which is used internally to bind

and differentiate the usages of each variable. The textual name of the variable — such

as t in Example 3.20 — are only used for printing and reporting purposes and do not

identify the variable during the evaluation. This produces an undesirable artifact to

the users: multiple uses of the generators such as LetGenCPS produce variables that

are unique to the internals of the code generation framework, but appear the same

to the users6.
6This artifact is only associated with F#. The MetaOCaml implementation of this combinator is

unaffected.



62 3. Meta Programming

Example 3.24 Consider the following code generator:

let gen() = scps {

let! t1 = LetGenCPS <@ 1 @>

let! t2 = LetGenCPS <@ 2 @>

return <@ %t1 + %t2 @>

}

which generates the following code fragment:

> let q = gen () [] k0;;

val q : Expr<int> = <@ let t = 1 in let t = 2 in (t) + (t) @>

At first glance, it may appear to the user that the variable t is redefined in the

second let binding and the final result of this code, when evaluated, should be 4;

however, F# has an internal distinction between the two t variables above, and upon

evaluation we see that the t1 and t2 variables in the generator are properly defined

in the generated code:

> Quote.Eval q;;

val it : int = 3

2

As the let generator is one of the most important combinators in code generation,

we utilize the states as shown in §3.2.2 to generate new, indexed, variable names such

that when two let bindings are nested and use the same variable name, then they are

produced with different indexed names.

Definition 3.25 (Let Combinator) The state records with the prefix vars_ track

the usage — and the highest index — of each variable introduced by any bindings.

The helper method GetNewVar modifies the state and returns a unique indexed name

for the requested variable.

let GetNewVar(n,s) =

let cnt = StateRecord<_>("vars_" + n)

let cv = cnt.Find s (Some <| ref 1)

let n = n + "_" + (!cv).ToString()

incr cv

let s = cnt.Modify cv s

n,s

The let-generator uses the above method to generate let bindings with unique

names. The state that is threaded through the code generator is augmented or mod-

ified to track the nested bindings.



3. Meta Programming 63

let Let a = fun s k ->

let n,s’ = GetNewVar("t",s)

Quote.Let n (a s’ k0) (k s’)

Example 3.26 Revisiting Example 3.24 using the new Let combinator, we have:

let gen() = scps {

let! t1 = Let (Return <@ 1 @>)

let! t2 = Let (Return <@ 2 @>)

return <@ %t1 + %t2 @>

}

which generates the code fragment

<@ let t_1 = 1 in let t_2 = 2 in (t_1) + (t_2) @>

when executed, this evaluates to the same result as Example 3.24, but the (printed)

names of the variables are uniquely identified.

2

Sequencing generators

Code generation often requires a sequencing of code fragments from different (im-

perative) generators. In F#, the ; operator is used for sequencing such statements.

We define two distinct sequencing combinators: One for appending a sequence of

generators one after another; and another “prepend” combinator for injecting a code

fragment before a block of code — such as initiation routines or declarations.

let Sequence a b = fun s k -> k s <@ %a s k0; %b s k0 @>

let Prepend a c = fun s k -> <@ %a s k0; %k s c @>

Conditional generators and loops

The other important code combinator used in this project are code control combina-

tors which generate conditional if-statements and while-loops.

let If cd th el = fun s k -> k s <@ if %cd then %th s k0 else %el s k0 @>

let While c b = fun s k -> k s <@ while %c s k0 do %b s k0 @>

Generating equivalent of for-loops can be generalized to the concept of iterators,

where a special function iterates on a given code generator. A usage for this iterator

is provided in §3.2.4.



64 3. Meta Programming

let Iterate it l f = fun s k ->

let n,s’ = GetNewVar("i",s)

k s’ <@ (%it) (%Quote.Lambda n (fun i -> f i s’ k0)) %l @>

3.2.4 Code Generation DSL

This section defines the domain-specific language (DSL) that we use for the remainder

of this thesis for the code generators.

Definition 3.27 (Code Generator) A code generator is a special sub-type of the

state/continuation monad which only performs on Expr code types and threads the

state variables of type State through the generator. This type is defined as:

type CodeGen<’v,’w> = StateCPS<State,Value<’v>,Value<’w>>

A code generator of type CodeGen<’v,’w> ultimately generates values of type Value

<’w> which contain either an expression representing the generated program (i.e., the

E branch in Value type), or the computed value of this code fragment (as the V branch).

This generator is defined as:

let Generate m = m [] k0

We utilize more extensions from the computation expressions feature of F# to

define this DSL. These expressions are an extension to the monad defined in Def-

inition 3.21 and declare more language primitives specific to the domain of code

generation. The primitives of the code generation DSL are outlined in Table 3.1.

Definition 3.28 (Code Generator DSL) The codegen computation expression is

defined using the StateCPS monad from §3.2.1 and the combinators from §3.2.3 as

described in Table 3.1:

type CGBuilder() =

inherit SCBuilder()

member x.Delay f = f()

member x.Bind (m,f) = Bind m f

member x.Return a = Return a

member x.Yield a = Return a

member x.ReturnFrom a = a

member x.YieldFrom a = a

member x.Zero() = Return Unit

member x.For(l,f) = Iterate Seq.Iter l f



3. Meta Programming 65

member x.While(c,e) = While (c()) e

member x.Combine(a,b) = Sequence a b

member x.Using(m,f) = fun s k ->

let n,s’ = GetNewVar("t",s)

Control.Let n m (fun v -> f v s’ k)

let codegen = CGBuilder()

Note that this is a rather unconventional usage of the Using member in F# com-

putation expressions. In general, the use notation introduces the binding of an object

which requires to be disposed after the execution of the code block. In the case of

the code generator in this thesis, however, it is used to indicate a new variable that

is local only within the context of the code block and is “abandoned” (or possibly

reused) afterwards.

Example 3.29 (Reduced Gröbner Bases) In this example we will attempt to

code some of the data processing needed for reduced Gröbner bases from §2.3.3.

This code generator assumes there is a module named Polynomial which contains the

operations of polynomial algebra from §2.1.4.

let gen (G:Expr<seq<Polynomial>>) = codegen {

use G’ = List.Empty()

for g in G do

let n = scalar g (div one (LC g))

use m = Ref.Ref n

for p in G do

yield! IfU (Bool.neq p g)

(codegen {

let r = mod (Ref.Deref m) p

yield Ref.Assign m r

})

yield List.Add G’ (Ref.Deref m)

return G’

}

This code generator uses majority of the features of the DSL we introduced for

code generation. To generate the reduce function which produces reduced Gröbner

bases, we wrap the generator in a function expression using the Fun combinator defined

in the library:

let reduce = gen |> Fun |> Generate

which produced the following code transcript:



66 3. Meta Programming

Notation Method Description
codegen {

· · ·
}

Delay Wrap the entire computation expression as a
generator function.

let! t = cgen
· · · Bind Combine code generators by binding the re-

sult of cgen as a monadic variable t to be
used by any following sequenced generators.

do! cgen
· · · Bind Combine and sequence cgen generator in the

same style as let!, but does not bind the re-
sult to any monadic variables.

return r

yield r

Return

Yield
Returns (yields) a value of type ’v as a trivial
code generator of type CodeGen<’v,’w>.

return! cgen

yield! cgen

ReturnFrom

YieldFrom
Returns (yields) the code generator cgen as
the result of the current generator.

use! t = cgen
· · · Using Combine code generators similar to let! no-

tation, but introduces the new variable t as a
let binding inside the generated code as well.
See comment in Definition 3.28.

cgen1; cgen2 Combine Combines and sequences two code genera-
tors by generating a sequencing operation (a
semicolon) in between the code result of the
other two generators.

for t in expr do
cgen

For Generates a for loop which introduces a new
variable t within the body of the loop — it-
erating through the sequence represented by
code fragment expr — and runs the genera-
tor cgen for each iteration.

while expr do
cgen

While Generates a while loop which runs the gen-
erator cgen until the condition in code expr
evaluates to false.

Zero Generates an empty code of type unit for
empty clauses — such as if-statements which
do not have an else clause.

Figure 3.1: Syntax of the Domain-Specific Language for Code Generation



3. Meta Programming 67

val reduce : Value<(seq<Polynomial> -> List<Polynomial>)> =

E <@

fun g ->

let t_1 = new List<int> () in

Seq.iter

(fun i_1 ->

let t_2 = ref (scalar ((1N) / (lc (i_1)), i_1)) in

Seq.iter

(fun i_2 ->

if (i_2) <> (i_1)

then (t_2) := (mod (! (t_2), i_2))

else (),

g);

t_1.Add (! (t_2)),

g);

t_1

@>

2

Example 3.30 (Power Generation) It is traditional (and somewhat overused) in

the code generation literature to produce an example of generating the power function.

Given a (commutative) monoid M = (M, ε, ?) and an integer p ≥ 0, how do we

produce a function that for every m ∈ M computes the exponentiation mp in an

optimal manner? The following code generator produces a specialized and optimal

routine for computing just that:

let power e mul p =

let rec gen p m = codegen {

if p = 0 then return e

else if p = 1 then return m

else

let p2 = p / 2

use! r2 = gen p2 m

let r = mul r2 r2

if p % 2 = 0 then return r

else

return mul m r

}

gen p |> Fun |> Generate

For example, to produce the twelfth power of any integer, we can generate the func-

tion:



68 3. Meta Programming

> let pow12 = power Algebra.ZI.one Algebra.ZI.mul 12;;

val pow12 : Value<(int -> int)> =

E <@

fun m ->

let t_1 = m in

let t_2 = (m * (t_1 * t_1)) in

let t_3 = (t_2 * t_2) in

(t_3 * t_3)

@>

2



Chapter 4

Software Specialization

A major objective of this thesis is to provide the knowledge and the machinery for

generating specialized instances of software products. This chapter describes software

specifications in both formal and informal settings and methods of modularizing and

specializing software according to its specifications. We will assume that the reader

has some familiarity with computer programming and logic, but no prior knowledge

of software engineering is required for this chapter.

We start this chapter with a non-software example of design in civil engineering

and construction to draw parallels with design and implementation of software. The

first section defines software specifications in the context of this thesis with a focus

on abstractions and refinements of specifications. These definitions are closely re-

lated to those provided by the Refinement Calculus [6]. Next, we define the ideas

behind software product lines and program families with a discussion of the ben-

efits and drawbacks of generating instances of program families. This section also

reviews the methodologies and differences between aspect-oriented programming and

feature-oriented programming as highlighted by Apel et al. [5]. The third section in

this chapter introduces a different approach to abstraction and idealization of spec-

ifications which defines some very important terminology for the remainder of this

thesis. Finally, we conclude this chapter by revisiting a classic example of modular

decomposition of a software product —kwic— as described by D.L. Parnas [65] and

provide some partial implementation of instances of this program family in the F#

programming language.

We will start this chapter by a motivating example of design and implementation

process which will be referenced throughout this text for parallels to the concepts

69



70 4. Software Specialization

introduced:

Example 4.1 Consider the process of a new construction project where we are given

the task of planning and constructing a new building. The following example is a

sample process that may take place to complete this project.

We may start this project by collecting ideas and brainstorming on what is re-

quired. For example, we may start with immediate aspects of the building such as

location, area, height, parking, etc. Then we may iteratively add details to this plan

by adding requirements (in words) or objectives to the list as more decisions are made

about the building.

The next step of the process is to make the blueprints and the plans for this

building. This step requires the designers or architects of the project to interpret the

requirements from the previous step in a more formal environment such as detailed

floor plans, wiring charts, etc. This process is not necessarily a one-way transforma-

tion from requirements to blueprints and there is the potential for dialectic design

as more refinements are performed on the blueprints. It is important to note that

although every refinement on the blueprint can translate to an added detail on the

requirements, the converse is not necessarily true. In essence, the blueprints are closer

to the reality of the building than the ideas and requirements in the previous step.

Additionally, the blueprints may be broken down into smaller, modular plans for

better understanding and customization of the project. For example, the electrical

wiring map and the plumbing plans may be presented as two separate documents

where each one can be refined independently into a new revision of the plans. This

allows for easier understanding and refinement of the sub-projects, especially if each

module is delegated to a different specialist in its respective field. Also note that this

breakdown of the project does not necessarily start at this stage of the design: If

the systems were separated during the requirements planning phase of the project,

then each blueprint would be an interpretation of its respective requirements docu-

ment, and the additional details provided on the documents may provide separate

specializations of the blueprints for each sub-project.

The next step in the design is for the engineers to provide a model of the building

by actualizing the plans from the previous step into a computer simulation of the

physical environment. Similar to the previous step, many lessons may be learned

about the constraints of the building during the modelling phase which can be trans-

lated back into refinements of the blueprints and plans, but not every refinement



4. Software Specialization 71

Ideas

(informal writing)

less details more details

interpret

Blueprints

(formal description and plots)

more simplified more refined

model

Simulation

(computer assisted simulation)

less parameters more parameters

construct

Building

(physical construction)

less detailing more detailing

Figure 4.1: Breakdown of a building construction project

of the blueprint can be modelled into the computer simulation as they may not be

feasible additions. Again, this model is closer to the reality of the building than the

blueprints in the previous step, but still no amount of adding parameters to the model

may bring this construction project into physical reality.

Lastly, the actual construction of the building takes place by actualizing the com-

puter simulation and the floor plans from the earlier stages, but similar to the stage

transformation from previous steps, this requires the builder to interpret the plans in

another domain. Similar to the modular breakdown of the previous stages, this task

may also be broken down into separate construction projects of each sub-project. The

same concept of specialization of smaller construction projects applies at this level

in accordance with the refinements performed on earlier stages of the construction.

Figure 4.1 shows the process of this development from pure ideas into a concrete

implementation of the building.

2



72 4. Software Specialization

Remark 4.2 We will highlight the lessons from this example and later in this chapter

we will draw parallels between the software design concepts and the ideas in the

construction project:

(1) Having the vision of an actual product, we first start the planning by mapping

the objectives, requirements and specification of the project in a more concep-

tual environment. There may be several revisions and improvements to these

plans before the implementation.

(2) We gain benefits of easier customization, understanding, and delegation of tasks

by breaking down the project into smaller sub-projects where each of these

modules can be developed and analysed separately, but they all ultimately join

together in the same project.

(3) Within each stage of the project, we have the freedom to add and remove details

to and from the task. Removing details helps with making more fundamental

decisions and changes to the task and yields a better understanding of the large-

scale features. On the other hand, we can iteratively add details to each task

to provide a series of refinements on the inner workings of the system.

(4) Each stage is an interpretation of the previous stage in another domain. No

amount of refinement or abstraction can transform the task from one domain

into another. Each successive stage is an instantiation of the previous stage.

Unlike refinement, there is a lower bound to this substantiation where we arrive

at the target domain of representation for the project.

(5) Every refinement step may be reinterpreted as a refinement of a model at a

higher (more conceptual) stage, but the converse is not necessarily true: Not

every refinement can be actualized into a refinement in a more concrete (actu-

alized) stage.

(6) There may be multiple implementations possible for each task, and the choice

of which instantiation is better suited at the time of implementation depends

on the refinements of the details at a higher, more conceptual stage.



4. Software Specialization 73

4.1 Software Specification

A software specification is a definition of what a computer program is required to

accomplish without defining how it should be done [6]. There are many methods of

writing software specifications, such as writing an informal requirements document

or design specifications in a semi-formal language such as UML [75]. In this thesis

we are only concerned about formal specifications written as logical statements that

describe the initial and final states of programs1.

In this section we will formally define programs and specifications in this context

and the meaning of satisfying a specification. Next, we define methods of composing

programs and specifications, and finally we define refinements, actualizations, special-

ization and their relations. Finally, we conclude this section with a detailed example

of the function of these concepts and the relationships.

4.1.1 Specifications and Programs

We will formalize the language of writing specifications in a higher-order set-theoretic

logic (such as Simple Type Theory [4, 33]) and assume that the reader is familiar

with logic and mathematics. Let the logic contain the symbols T (true), F (false), ∧
(conjunction), ∨ (disjunction), ¬ (negation),⇒ (implication), ≡ (logical equivalence,

which may also be represented at ⇔), ∀ (universal quantification) and ∃ (existential

quantification).

Definition 4.3 (State) Let V be a (possibly infinite) domain of variable names

and D be some domain of values. A state σ is a state of computation for variable,

expressed as partial assignment of variables from V to values within D. Let Σ be the

state space containing all such states V → D. States may be defined as assignments

of some of the variables written in the set form {x := v; . . . } where x ∈ V is a variable

and v ∈ D is a value. The set of variables in a state σ is represented as vars(σ) ⊆ V .

Definition 4.4 (State Valuation) The state valuation of a variable x is a function

JxK : Σ→ D such that, given a state σ, JxKσ = v if σ contains an assignment x := v

and is undefined otherwise. Thus, JxKσ is defined for all σ ∈ Σ such that x ∈ vars(σ).

1When concerned with functions, this is analogous to profiling the inputs and outputs of a
function.



74 4. Software Specialization

In fact, states are generalizations (and formalizations) of variable assignments and

F# states introduced earlier in Definition 2.25; thus, a variable assignment ψ in some

algebra trivially defines a state ψ ∈ Σ as well, and JxiKψ = Eψxi.

A state σ is contained in a state σ′ if all the variables defined in σ are also defined

in σ′ and have the same value:

σ ⊆ σ′ ≡ vars(σ) ⊆ vars(σ′) ∧ ∀x∈vars(σ) JxKσ = JxKσ′

Two states are equal if they assign the same value to each variable; hence σ = σ′ ⇒
σ ⊆ σ′ ∧ σ′ ⊆ σ.

Definition 4.5 (State Modification) A state modification σ[x := v′] is a new state

σ′ which contains all the variables vars(σ) \ {x} as defined in σ while the variable x is

assigned the new value v′ in the new state σ′. Thus vars(σ′) = vars(σ)∪{x}, JxKσ′ = v′

and ∀y∈vars(σ)\{x} JyKσ = JyKσ′. Let σ; γ be a special state modification where all the

variables in γ are renamed by adding a bar on the top and appended to the state σ

such that σ; γ ≡ σ[x̄ := JxKγ | x ∈ vars(γ)].

An immediate utility of states is the ability of expressing logical predicates that

contain variables within them:

Definition 4.6 (Predicate) A predicate p is a boolean expression using the logical

constructs and values from D and variables from V such that the value of p is either

true or false when all the variables have been replaced by values within D by some

state valuation. The set of all predicates is denoted by P.

The valuation of a predicate p is a partial function JpK : Σ→ B (= {T,F}) such

that for σ ∈ Σ, JpKσ is the value of p when any variable x used in p is replaced by

its value JxKσ. Note that since states are partial assignments of variables, then JpK
might also be partial.

Similar to the variables set of a state, vars(p) for a predicate p is the set of all the

variables used in p.

Two predicates p and p′ are equivalent, written as p ≡ p′, if for all states σ ∈ Σ,

JpKσ ≡ Jp′Kσ whenever both JpKσ and Jp′Kσ are defined.

Definition 4.7 (Partial Evaluation) Given a predicate p and a state σ, if σ does

not contain a definition for every variable used in p — i.e., vars(p) \ vars(σ) 6= ∅ —

then the partial evaluation of p in σ is a predicate p′ such that p ≡ p′ and vars(p′) ⊆
vars(p) \ vars(σ).



4. Software Specialization 75

Another usage for states is to represent a computer program as a state transformer

that can be used for reasoning within a logical framework:

Definition 4.8 (Program) A program is a partial state transformer m : Σ → Σ.

Given an initial state σ ∈ Σ for a machine, m ·σ is the final state of the machine after

executing the program m whenever it terminates. The domain of m, dom(m) ⊆ Σ,

is the set of all the initial states σ such that m · σ is defined (i.e., m terminates on

initial state σ).

Conceptually, a program models the behaviour of a computer program and is

typically tied to an implementation, programmed in some computer programming

language.

Similar to predicate equivalence, two programs m and m′ are equivalent if the

have the same domain and for all states σ in their domain, m · σ = m′ · σ. vars(m) is

defined as the set of variables used in program m.

Definition 4.9 (Function Reification) Let f be a function f : A → B and ~x, ~y

be vectors of variables of type A and B, respectively. Then the function reification

~x|f |~y is a program such that for a state σ ∈ Σ, it evaluates the function f on the value

of ~x in the context σ — if it is defined — and returns a new state which assigns the

result of the function to the variable ~y, i.e.: ~x|f |~y · σ = σ[~y ← f(J~xKσ)]. We may also

write this reification as the program ~y := f(~x) when no confusion may arise.

Note that the function reification relies heavily on the fact that the programs

are partial state transformers, since many mathematical functions cannot be directly

translated into computable total programs.

We now have all the required machinery to define specifications and how a program

may satisfy a specification. First, we look at a general definition of a specification,

and then we define a software specification as a set of the preconditions and postcon-

ditions of a state transformer. Specifying a program in terms of its preconditions and

postconditions is one of the most popular methods of program specification which is

embodied in Hoare logic [42].

Definition 4.10 (Predicate Specification) A predicate specification P ⊂ P is a

set of predicates that define the properties of some software component. A state

σ ∈ Σ satisfies a specification P , written as {[P ]}σ or σ |= P , if ∀pi∈P JpiKσ.



76 4. Software Specialization

Definition 4.11 (Software Specification) Let P,Q ⊂ P be predicate specifica-

tions. A software specification S — also called a pre/post-condition specification —

is a statement of the form P _ Q where the symbol _ is defined as a syntactic

separator2 between the two specifications P and Q. A specification P _ Q means

that if the precondition specification P is satisfied, then the postcondition specifica-

tion Q must also be satisfied. The set of all the software specifications is denoted by

S = ℘(P) _ ℘(P).

Given a software specification S, the predicate {[S]} describes whether the specifi-

cation S is satisfied given an initial state σ and a final state σ′, written as σ{[S]}σ′. Let

P _ Q be a software specification. Then the satisfiability of P _ Q with the initial

and final states σ, σ′ ∈ Σ is defined as σ{[P _ Q]}σ′ ≡ {[P ]}σ ∧ {[Q]}(σ;σ′) where

the ; operation between states is defined as state modification as per Definition 4.5.

We will later see, via Example 4.20, why the postconditions need to be evaluated

within the context σ;σ′.

Definition 4.12 Let S ∈ S be a software specification, we define the predicates,

programs and functions satisfying the specification S by:

• Given an initial state σ and a postcondition predicate q,

σ{[S]}q ≡ ∀σ′∈Σ σ{[S]}σ′ ⇒ JqKσ′

• Given a precondition predicate p and a postcondition predicate q,

p{[S]}q ≡ ∀σ,σ′∈Σ JpKσ ∧ σ{[S]}σ′ ⇒ JqKσ′

• A program m satisfies S = P _ Q, m |= S, defined as:

m |= P _ Q ≡ ∀σ∈dom(m) {[P ]}σ ⇒ σ{[P _ Q]}(m · σ)

• A function f : A→ B satisfies S, f |= S, if there exists variables ~x, ~y such that

~x|f |~y |= S.

Two software specifications S, S ′ ∈ S are considered equivalent if and only if, for

all states σ, σ′ ∈ Σ, σ{[S]}σ′ ⇔ σ{[S ′]}σ′. This is often referred to as observational

equivalence.

Specifications may be composed to obtain new —more complex— specifications,

such as sequential or parallel definitions of actions.

2Note the critical difference between the symbol _ and the arrow → in the text.



4. Software Specialization 77

Definition 4.13 (Specification Composition) Composition of software specifica-

tions is defined inductively as follows:

• A software specification S ∈ S is a composite specification trivially.

• (Sequential) Let S1, S2 be composite specifications, S1;S2 is a composite spec-

ification that sequences two specifications, defined as:

σ{[S1;S2]}σ′ ≡ ∃γ∈Σ σ{[S1]}γ ∧ γ{[S2]}σ′

• (Angelic Choice) S1 t S2 is a composite specification that represents a choice

for either specification to be satisfied, defined as:

σ{[S1 t S2]}σ′ ≡ σ{[S1]}σ′ ∨ σ{[S2]}σ′

• (Demonic Choice) S1 u S2 is a composite specification that represents an

obligation for both specifications to be satisfied, defined as:

σ{[S1 u S2]}σ′ ≡ σ{[S1]}σ′ ∧ σ{[S2]}σ′

Definition 4.14 (Program Composition) Let m,n be two programs, define m;n

to be the program, called the composition of m and n, which sequences the execution

of n after the execution of m on some initial state, such that (m;n) · σ = n · (m · σ).

Program composition has some immediate consequences:

Proposition 4.15 Let f : A → B and g : B → C be functions, then x|f |y; y|g|z ≡
x|g ◦ f |z, assuming all three values exist.

Proof For all σ ∈ Σ,

(x|f |y; y|g|z) · σ
= y|g|z · (x|f |y · σ)

= y|g|z · σ[y ← f(JxKσ)]

= σ[z ← g(JyK(σ[y ← f(JxKσ)]))]

= σ[z ← g(f(JxKσ))]

= x|g ◦ f |z · σ
∴ |f |; |g| ≡ |g ◦ f |.
2



78 4. Software Specialization

Proposition 4.16 Let m1,m2 : Σ→ Σ be programs and S1, S2 ∈ S be specifications

such that m1 |= S1 and m2 |= S2. Then, m1;m2 |= S1;S2.

Proof Assume m1 |= S1 and m2 |= S2.

By Definition 4.12 we know that ∀σ∈dom(m1) σ{[S1]}m1 ·σ and ∀σ∈dom(m2) σ{[S2]}m2 ·
σ. Let dom(m1;m2) = {σ ∈ Σ | σ ∈ dom(m1) ∧m1 · σ ∈ dom(m2)} be the domain of

m1;m2. Then ∀σ∈dom(m1;m2) (m1 · σ){[S2]}(m2 ·m1 · σ).

Thus, for any σ ∈ Σ, there exists a γ ∈ Σ — namely γ = m1 · σ — such that

σ{[S1]}γ and γ{[S2]}m2 · γ. This satisfies the definition of sequential specifications,

then: ∀σ∈dom(m1;m2) σ{[S1;S2]}m2 ·m1 · σ.

∴ m1;m2 |= S1;S2.

2

We will only use the pre/post-condition method of expressing software specifica-

tions in this thesis, and the extension of each definition or statement for composite

specifications is assumed to be derived inductively using the constructs in Defini-

tion 4.13.

4.1.2 Refinements and Specializations

Let us draw some parallels between the definitions in §4.1.1 and some of the ideas

learned from Remark 4.2 on page 72.

The specification for a program is more conceptual than the implementation, and

a standard approach to software design would be to specify a software product before

implementing it. This is a similar approach to 4.2(1). We also learned in 4.2(4) that

the stages of the development (such as writing the specifications or the implementa-

tion) are connected via an interpretation step. The definition of a program satisfying

a software specification is similar to this notion, but lacks some details that we will

cover in Definition 4.17. We also need to define how to abstract a specification to

remove some details and how to refine a specification to add details similar to 4.2(3).

Finally, we explain the relationship between refinements of software specifications

that reflect the refinements at a more concrete domain (4.2(5)) and the choice of

multiple specialized implementations for a given refinement (4.2(6)).

Definition 4.17 (Actualization) Let S ∈ S be a specification and m : Σ → Σ

be a program such that m |= S, then m is an actualization of S, m ||= S — or m



4. Software Specialization 79

implements S or S conceptualizes m — if every state that satisfies the preconditions

of S is included in the domain of m:

m ||= P _ Q ≡ ∀σ∈Σ {[P ]}σ ⇒ σ ∈ dom(m) ∧ σ{[P _ Q]}m · σ

This notion can further be generalized to cover other interpretations of a spec-

ification — such as compiling a program to a lower level language. Although such

generalization is interesting, it is out of the scope of this thesis.

Definition 4.18 (Refinement) Let P, P ′ ⊂ P be predicate specifications. P ′ is a

refinement of P and P is an abstraction of P ′, written as P v P ′, if every state that

satisfies P ′ also satisfies P , i.e. ∀σ∈Σ {[P ′]}σ ⇒ {[P ]}σ. Let S, S ′ ∈ S be software

specifications, then S v S ′ ≡ ∀σ,σ′∈Σ σ{[S ′]}σ′ ⇒ σ{[S]}σ′.

Given a specification P ⊂ P, there are three fundamental refinements that can

be performed. Let p1, p2 ∈ P be predicates, then adding a new predicate, or adding

a conjunction to a predicate, or removing a disjunction from a predicate are all

refinements:

(1) P v P ∪ {p1}.

(2) P ∪ {p1} v P ∪ {p1 ∧ p2}.

(3) P ∪ {p1 ∨ p2} v P ∪ {p1}.

These special refinements are called one-step refinements. Essentially, such refine-

ments embody a single design decision on how a specification is to be implemented.

If there exists a sequence of one-step refinements from a specification S to another

specification S ′, then S ′ is a stepwise refinement of S. In general, we will always be

working with stepwise refinements in this thesis as the design decisions and imple-

mentation of refinements are the focus of software specifications.

Definition 4.19 (Specialization) Let S = P _ Q and S ′ = P ′ _ Q′ be software

specifications such that S v S ′. If any initial and final states that satisfy both S and

the precondition P ′ also satisfy S ′ entirely, then S ′ is a specialization of S and S is a

generalization of S ′, written as S D S ′:

S D P ′ _ Q′ ≡ S v P ′ _ Q′ ∧ ∀σ,σ′ {[P ′]}σ ∧ σ{[S]}σ′ ⇔ σ{[P ′ _ Q′]}σ′



80 4. Software Specialization

Let m,m′ : Σ→ Σ be programs and S, S ′ ∈ S be software specifications such that

m ||= S and m′ ||= S ′, then m′ specializes m on S ′, m DS′ m′, if S D S ′. When the

choice of S and S ′ are unambiguous by context, we may simply write this relation as

m D m′.

This definition entails that a specialized program may be a replacement for a

more generalized one at any point when the precondition assumptions of the refined

specification are met. This allows the specializations of a program to exploit the

additional information available by the refinement without affecting the satisfiability

and the correctness of the original specification. We will extensively use software spe-

cializations to generate specialized instances of Buchberger’s algorithm in the future

chapters.

4.1.3 A Detailed Example

The following example demonstrates the meaning and relations of the concepts intro-

duced in this section.

Example 4.20 Let Ω be the set of all words defined over some alphabet. Given a

word ω ∈ Ω, denote by |ω| the length of the word ω, and by ωi the ith character

in ω, where 1 ≤ i ≤ |ω|. The operator + concatenates two words, and the special

operation ω − ωi when 1 ≤ i ≤ |ω| removes the ith character of ω and returns a new

word.

An anagram of a word is any word which contains all the same characters but

not necessarily in the same order. For example, the words “stop” and “spot” are

anagrams. A circular shift of a word is any word where the same characters appear in

the two words in the same order but shifted such that some of the characters from one

end appear at the other end. For example, the word “stop” shifted by one character

to the left is “tops”. The reverse of a word is the word which contains all the same

characters in the reverse order. For example, the reverse of the word “stop” is “pots”.

The following predicates decide if two words define any of the concepts above:

anagram(ω, ω′) ⇔ ω = ω′ ∨ ∃i,1≤i≤|ω| ωi = ω′1 ∧ anagram(ω − ωi, ω′ − ω′1)

shift(ω, ω′) ⇔ ∃i,1≤i≤|ω|(∀j,i≤j≤|ω| ωj = ω′j−i+1 ∧ ∀k,1≤k<i ωk = ω′i+k)

reverse(ω, ω′) ⇔ ∀i,1≤i≤|ω| ω|ω|−i+1 = ω′i



4. Software Specialization 81

Define the following specifications for the programs that compute the words above:

Anagram ≡ ω ∈ Ω _ ω̄ ∈ Ω ∧ anagram(ω, ω̄)

Shift ≡ ω ∈ Ω _ ω̄ ∈ Ω ∧ shift(ω, ω̄)

Reverse ≡ ω ∈ Ω _ ω̄ ∈ Ω ∧ reverse(ω, ω̄)

Notice that the symbols ω and ω̄ in the postconditions of each specification refer

to the values of variable ω at the initial and the final states, respectively:

JωKσ;σ′ = JωKσ, Jω̄Kσ;σ′ = JωKσ′

By the predicate definitions we can deduce that every shifted word and every

reversed word is an anagram:

∀ω,ω′∈Ω (shift(ω, ω′)⇒ anagram(ω, ω′)) ∧ (reverse(ω, ω′)⇒ anagram(ω, ω′))

Similarly, using the specification definitions we can show that the specification for

shifts and for reverses refine that of anagrams:

Anagram v Shift, Anagram v Reverse

The following F# functions implement the concepts introduced above:

let rng = System.Random()

let rec anagram ω =

if ω = ”” then ω

else anagram(ω.Substring 1).Insert(rng.Next ω.Length, string ω.[0])

let shift ω =

if ω = ”” then ω

else let i = rng.Next ω.Length in ω.Substring i + ω.Substring(0, i)

let rec reverse ω =

if ω = ”” then ω

else reverse(ω.Substring 1) + string ω.[0]

Then these function provide implementations for the specifications introduced earlier:

ω|anagram|ω ||= Anagram ω|shift|ω ||= Shift ω|reverse|ω ||= Reverse

Moreover, the functions shift and reverse actualize the specifications for Anagram:

ω|shift|ω ||= Anagram ω|reverse|ω ||= Anagram



82 4. Software Specialization

Note that in this thesis we are not concerned with the methods of proving if a given

program is an implementation of a specification; however, we will require proving that

composing two programs (via code generation) is an implementation of the composite

specification. This will be discussed in future sections.

Now let us try some specializations of these software specifications. We know that

in general the reverse of a word is not a shift of it, but given a word of length two,

it is easy to see that the reverse is also a shift. In fact, when the length of the word

|ω| = 2, every anagram of the word ω is a shift. Then we have the following property:

∀ω,ω′∈Ω |ω| = 2⇒ (anagram(ω, ω′)⇒ shift(ω, ω′))∧ (reverse(ω, ω′)⇒ shift(ω, ω′))

Define the following refinements on the specifications defined earlier:

Anagram2 ≡ ω ∈ Ω ∧ |ω| = 2 _ ω̄ ∈ Ω ∧ anagram(ω, ω̄)

Shift2 ≡ ω ∈ Ω ∧ |ω| = 2 _ ω̄ ∈ Ω ∧ shifts(ω, ω̄)

Reverse2 ≡ ω ∈ Ω ∧ |ω| = 2 _ ω̄ ∈ Ω ∧ reverse(ω, ω̄)

Now we can see that Anagram v Shift v Shift2, and the property above holds when

the preconditions of Shift2 are satisfied. Thus, we can prove that Anagram D Shift2.

Since ω|anagram|ω ||= Anagram2 and ω|shift|ω ||= Shift2, we may also conclude that

anagram DShift2 shift.

2

4.2 Program Families

One aspect of Remark 4.2 that we have not covered yet is part (2) where we men-

tion easier customization and better understanding of the design process by dividing

the project into smaller, more manageable modules3 or sub-projects. In this section

we will briefly introduce the concepts of modular design and the methods of decom-

posing a software architecture into such modules. A modular design with a flexible

architecture and multiple options for each module implementation provides the basis

for a program family or a software product line. Later, we will discuss how writing

the specifications for each module provides the means of provably correct instances

of program families using code generation.

3It is important to note the difference between a module as a software unit and the modules as
algebraic objects as introduced in §2.



4. Software Specialization 83

We first start this section by explaining the generic programming techniques for

designing software libraries. Then we define modules as software units and describe

the differences between a module as a feature against aspect modules. Next, we

define the terms for program families and software product lines in the process of

software design. Finally, we end this section by describing the methods of modular

decomposition that we use in this thesis for designing a family of programs that

compute Gröbner bases.

4.2.1 Generic Programming

Generic Programming [26] is the methodology of designing and implementing software

by decomposing programs into independent, orthogonal and reusable components.

These components are designed and implemented separately and can be arbitrarily

combined to produce different variations of software.

We take a generic programming approach to designing and implementing pro-

gram families. This methodology is similar to that described by A. Stepanov [64]

for designing algorithm-oriented generic libraries. In this approach, we analyze the

architecture of the algorithm and provide a component-wise (modular) decomposition

of the software. These components are designed by identifying various concerns and

aspects of the software. Later in §4.2.4 we define the exact criteria for a modular

break down of the architecture into orthogonal modules.

Next, we provide the specifications for each module using the methods described

earlier in this chapter. The interface of each module must be provided in the most

generalized form (as per Definition 4.19) that defines the minimal required behaviour

of the component. To provide the most flexible and general form for each method,

certain features — such as containers, algebras, etc. — are abstracted away from the

components that use them. §4.2.2 describes the differences between these two module

types and the method of specifying and parametrizing them.

Finally, we must specify the algorithm such that the specification uses the gen-

eralized module interfaces for each module and defines how the (specialized) module

implementations are combined in order to produce the implementation of the algo-

rithm.

To design a generic library for an algorithm, we must provide at least one imple-

mentation of each module for the use of the generic implementation of the algorithm.

Different implementations for the same module must all actualize the specification of



84 4. Software Specialization

that module. Since the module interface defines the minimal behaviour required to

perform the desired operation, each individual implementation is a specialization of

the generic module.

4.2.2 Features and Aspects as Modules

There are two popular methods in the literature for creating complex software archi-

tectures: Aspect-Oriented Programming (AOP) [45] and Feature-Oriented Program-

ming (FOP) [8]. There is much research on aspects and features of software design

which we will refrain from discussing as they are out of the context of this thesis. We

will only focus on basic definitions and topics in the two programming paradigms as

tools for distinguishing the different types of modules that are presented throughout

this chapter and how the ideas of AOP and FOP may work in harmony.

Definition 4.21 (Aspect) An aspect is an encapsulation of (sub-)programs which

organizes the code related to a specific concern in one place. By decomposing a

software architecture, we maintain a separation of concerns [19] between the fragments

of code which would otherwise be entangled across different sections of the program.

Here, our approach to aspects is much more similar to Dijkstra’s original ideas

of “separation of concerns” [27, 28] than the modern object-oriented approaches of

aspects in code [79, 80].

Definition 4.22 (Feature) A feature is a reflection of some architectural require-

ment or design decision which is embodied as a programming unit. Features contain

an implementation of basic ideas and concepts that form the structural workings of

the software and are incrementally refined to reflect changes in the design of the

software [5].

Features are closer to the specification layer of the software design process than

to the implementation layer; in general, modifications to a feature have effects on the

overall design and architecture of the software [67] whereas the changes to an aspect

are locally contained. This is a generalization of the concept of container access

components by Stepanpov [64].

Definition 4.23 (Module) A module is a basic building-block of software that or-

ganizes the program into separate responsibility assignments [65]. We use modules



4. Software Specialization 85

to separate the tasks performed in a program to allow the implementation of each

module to be (re-)written with little knowledge of the implementation of other mod-

ules (regardless of their dependencies). To achieve this, modules are only aware of

the specifications and the interface of other modules and do not rely on the imple-

mentation and inner code of relevant modules.

There are two types of modules:

(1) Aspect Modules: These modules encapsulate an aspect as per Definition 4.21

which organizes the relevant code to a specific concern in the design. An aspect

module is often a collection of definitions (variables and programs4) that share

the same underlying concept but are not necessarily required to be in a collection

other than for organization and aesthetics purposes. An example of an aspect

module is a logging module which contains a collection of tracing, printing and

recording methods.

(2) Feature Modules: A feature module is a collection of related definitions that

form the implementation of a specific feature in the design of the software as

per Definition 4.22. Unlike aspect modules, the variables and programs in a

feature module are necessary to be presented together and have deep depen-

dencies between them. A modification to an element in a feature module often

requires other related concerns in the same feature to be modified as well, and a

refinement (addition) to a feature causes global changes to the whole program.

An example of a feature module is the implementation of a ring structure (Defi-

nition 2.4) where any constant and operator in the structure is only useful when

the entire ring module is present.

In general, a module may share a common set of information that is local to the

functions in that module only and is “hidden” from the external modules. Accessing

or modifying this “secret” is only possible through the methods provided by the

module, and any changes to this secret only has local effects on the implementation

of the module and any external access to this information is unchanged. The concept

of information hiding was first proposed by Parnas [68] and we will use this concept

extensively in the design of the code generator in this thesis.

4In object-oriented programming, a module variable is typically called a field and a module
program is called a method.



86 4. Software Specialization

A software architecture is always divided into modules of either type. In §4.2.4 we

will discuss the methods and the criteria for this decomposition. We split the concept

of a “module” into two different aspects: an interface and an implementation.

Definition 4.24 (Module Interface) The interface of a module is a collection of

specifications that govern the behaviour of the module members (variables and pro-

grams) and their relationship to the module’s secret. The variables in the module are

specified as a pair of a name and a predicate specification that uses this variable. The

programs in the module are similarly defined as pairs of names and software specifi-

cations. Let M be the set of all module interfaces. A module interface is written as

follows:

moduleinterface:

variable1: spec1 ∈ P
...

variablen: specn ∈ P
program1: softspec1 ∈ S
...

programm: softspecm ∈ S

The variable specifications in a module interface are called the invariants of the

module. A program specification P _ Q in a module interface has the covariant

specification P and the contravariant specification Q.

Definition 4.25 (Module Implementation) The implementation of a module is

a collection of variables and programs that satisfy the specifications provided in the

interface of the module. Given an interface I ∈M, let Inv(I) ∈ P be the conjunction

of all the invariants spec1∧· · ·∧specn. Let M be a module which contains the variables

M.variable1, . . . ,M.variablen and the programs M.program1, . . . ,M.programm. Then

M implements (or actualizes) the interface I, written as M ||= I, if:

∀programi∈I M.programi ||= I.softspeci ∧∀σ∈Σ{[Inv(I)]}σ ⇒ {[Inv(I)]}M.programi ·σ

Designing the software architecture by defining the interface for modules has the

advantage that implementations of modules are replaceable as long as they actualize

the same interface. Since the other modules in the software only rely on the specifi-

cation of the methods and not on their specific implementation, a replacement for a

specific module does not require a reassembly of the software product. Thus, if we



4. Software Specialization 87

can prove that a specialization of a program (within a module) is possible due to the

refined specifications, then the module can be replaced by its specialization without

affecting the correctness of any of the other modules and programs. We will use this

technique to specialize the modules in this thesis.

Definition 4.26 (Parametrized Module Interface) In special cases, a module

interface may depend on other (already-defined) module interfaces to specify some

variables or programs. A module interface I ∈M is parametrized by the module inter-

faces I1, . . . , Im ∈M if the statement of any of the variable or program specifications

in I requires some implementation of these modules. We use the following notation

to specify a parametrized module interface:

moduleinterface M1, . . . , Mk:

M1 ||= I1 ∈M
...

M1 ||= Ik ∈M
variable1: spec1 ∈ P
...

variablen: specn ∈ P
program1: softspec1 ∈ S
...

programm: softspecm ∈ S

The specifications spec1, . . . , softspec1, . . . may use any variables M1.variable1, . . .

or programs M1.program1, . . . in their statement.

4.2.3 Program Families

The terms “program family” and “software product line” commonly appear in the

software engineering literature when modularization or generation of programs are

topical. In this section we address the differences between the two terminologies in

the context of this thesis and define the program family that will later be utilized in

§5.

It is possible — either by code generation or by manual linking — to produce

software by assembling a program together from a common pool of modules. A

library or toolkit is a collection of modules — both in interface and implementations

of them — which provides the functionality for producing programs. Essentially,

when a library is “complete” within a certain context, it provides the framework for



88 4. Software Specialization

producing any programs which fall within that very specific context; the only coding

required from the programmer is choosing the specific implementations within that

framework and perhaps some of the necessary “piping” between the modules. This

forms a very domain-specific framework for production of software, which is commonly

known as a software product line. Carnegie Mellon University’s Software Engineering

Institute (SEI) [78] defines:

A software product line (SPL) is a set of software-intensive systems that share

a common, managed set of features satisfying the specific needs of a particular

market segment or mission and that are developed from a common set of core

assets in a prescribed way.

The concept of a software product line can then be further specialized into a

specific line of products which share both the same set of common modules and

features, and also the same goal in the outcome of the products. In this case, all

the generated products from the SPL are essentially different implementations of the

same program which only differ in the specifics of their implementation and in possible

refinements in the common specification. This tightly bound product line generates

a family of products:

Definition 4.27 (Program Family) A product family [66] is a group of software

products that share the same set of common properties defining the behaviour of each

instance within the family. Each member of the family is a specific product from an

SPL which satisfies all the common properties of the family; thus, it is beneficial to

describe and study this common specification first before analysing each individual

instance of the family.

It should come as no surprise to the reader that the ultimate goal of this research is

to produce a family of products which all compute Gröbner bases, but differ vastly in

their choice of modules and implementation depending on the properties of the input

data and the details required of the output data. Ideally, a choice of a “simpler” set

of input polynomials or requesting less information in the output should simplify the

(generated) member of the family both in terms of time and space complexity. For

example, knowing that the set of input polynomials is always linear (i.e., of degree 1)

should simplify the generated solver to perform Gaussian Elimination more efficiently

compared to the average-case performance of Buchberger’s algorithm.



4. Software Specialization 89

4.2.4 Modular Decomposition of Software Architectures

When creating the architecture for a software product, it is often helpful to start with

a more generic, less detailed plan of the product and refine or actualize the design to

the specifications for a specific instance of the product, similar to the plan described

in Example 4.1. To properly design the architecture of a software product, we first

define a generic version of the product that encompasses all possible members in the

product family [26]. This generic “super product” may then be specialized into each

instance within the family.

At this point the lesson learned from 4.2(2) may be applied to properly breakdown

the architecture of the software into more manageable modules that separate the

concerns in the products into disjoint programming units. The specifications for the

interface of these modules, which can either be an aspect module or a feature module,

defines a modular decomposition of the software architecture. D.L. Parnas [65] first

described the criteria for determining the module structures and their relationships.

According to Parnas, the modular design of software has the following benefits:

• Managerial: Development time should be shortened because separate groups

would work on each module with little need for communication

• Product Flexibility: it should be possible to make drastic changes to one module

without a need to change others

• Comprehensibility: it should be possible to study the system one module at a

time. The whole system can therefore be better designed because it is better

understood.

As we learned from 4.2(6), each interface for these modules may have multiple

implementations which actualize it. Assuming that there exists a proof (either by

formal means or as an informal proof) that the specifications for an implementation

is a specialization of the specifications in the interface5, then we have the ability

to replace the implementation of each module in the architecture as long as the

specialization is applicable.

We aim to be producing specialized instances of Buchberger’s algorithm by a

proper decomposition of its architecture into modules, and then applying the fine-

tuned specializations of each module that are only applicable in the context of a

5A module specification is a specialization of another module if every invariant and program
specification is a specialization of the respective specification in the interface.



90 4. Software Specialization

specific instance to generate a new member of the program family for Gröbner bases

solvers. This (prescription of) proof for the specialization of the modules provides a

partial proof of correctness for the generated member of the family by removing the

task from the code generator and instead relying on the machinery defined in §4.1 to

infer the correctness of the finished product.

Much in the same way as product families in manufacturing factories (such as

automobiles, etc.), it is possible for a specific member of the family to not contain

an implementation for a module that is not used by it — or more precisely, replacing

the implementation of a module by a “dummy” version.

Example 4.28 (KWIC: KeyWord-In-Context) The KeyWord In Context ex-

ample introduced by Parnas [65] is an often-used example for software design and

architecture. Although the description and implementation of the problem is quite

simple, the main advantage of using this example is the wide variety of architectural

and design possibilities for implementing the problem [38, 74, 94].

A KWIC program reads an input of text (in this example we specifically talk

about the titles of the books, journals, or articles within some index) and makes

all the circular word shifts for each title. Then, it sorts the shifted titles for quick

indexing and searching. Finally, it returns the sorted index of all the shifts as some

form of output.

A circular word shift — similar to the definition of Shift in Example 4.20 — is

defined as all the possible shifts of the words (as opposed to the letters) in a phrase.

Given a title (alternatively, a sentence or a phrase), we can view this phrase as a list

of words that construct it. For example, the title of the book (and TV series) “A

Game of Thrones” is broken down into an ordered list of four words. By performing

all the circular shifts on the words in this title, we obtain four possible representations

for this book: “A Game of Thrones”, “Game of Thrones A”, “of Thrones A Game”,

and “Thrones A Game of’. When searching for the title of the book, any of the four

titles mentioned above should refer to the same book (with the possible addition of

commas in the title for clarity).

The KWIC system is broken down into four main processing modules:

(1) Input: Reads, parses, and stores the input data.

(2) Shift: Makes circular shifts of each title.

(3) Sort: Sorts all the shifted titles alphabetically for indexing.



4. Software Specialization 91

(4) Output: Produces the output of the indexes for consumers of the system.

In addition, there is often an implicit Control module that connects these modules

and the data flow; however, it is possible to have an explicit controller as we will see

in the sample implementations. The control module is responsible for sequencing of

the calls involving the other modules and handling errors in case they are not directly

addressed by the other modules.

These processing modules correspond exactly to the major processing steps taken

during the execution of the program as one may even draw them on a flowchart. Es-

sentially, this decomposes the architecture of KWIC into five distinct aspect modules.

A model using only these modules suffers from a major architectural challenge: What

happens when design decisions change? Such as the choice of data structure used, the

input and output formats, or even online sorting of the index on demand. For some

of these changes — such as a data structure change — all of the processing modules

now need to be re-implemented to accommodate the changed architecture. We can

abstract the choice of data structures and storage as feature modules to avoid this.

For some other changes — such as changing the behaviour of Sort to perform

on-demand partial sorting — we need to alter the behaviour of the modules to be

more flexible and general in the way that data flows in the software. In this case we

only need to generalize the specification of the modules to allow such specializations

between different implementations.

Some implementations of KWIC require storage for their data — this is an evolu-

tion to the Line Storage module defined in the enhanced decomposition of the KWIC

problem by Parnas. For example, the Input module might be saving the titles in a

database for the Shift module to operate on. Thus, some additional modules are

required that might need to be present in certain implementations:

(1) Store: The storage for the strings in KWIC index.

(2) Shifts: The storage for the circularly shifted strings.

(3) Sorted: The storage for the sorted strings.

Notice that the method of storage is decided by each specific design — whether the

strings in Shifts and Sorted are stored as full text or references to previous indexes is

open to implementation, and the modules Shift and Sort need not know about these



92 4. Software Specialization

Control

Input Shift Sort Output

Store Shifts Sorted

Input
Medium

Output
Medium

Procedure call Process module

Legend: Data access Storage module

I/O access External medium

Figure 4.2: General architecture of the KWIC indexing program

decisions. In this case the choice is hidden from higher level processing modules. A

basic architecture of the KWIC problem is presented in Figure 4.2.

There are many design decisions to be made when implementing the KWIC exam-

ple, such as: Is the data stored, or passed between modules? How would the data be

stored, as text, or indexes? How do modules communicate with each other? Should

all of the data be processed at start, or only on demand? What are the types of

data being processed? And other such questions. There are four main architectures

proposed for this problem [38, 74]:

(1) Shared data model

(2) Data abstraction model

(3) Event based model



4. Software Specialization 93

(4) Pipes and filters model

All of these models can be obtained using different choices for each module or

connection from Figure 4.2. For example, by making some of the connections trivial

and storage as simple data pipes, one could arrive at a design that looks like Figure 4.3.

Input Shift Sort Output

Legend: Data flow I/O access Process module

Figure 4.3: The “pipe and filter” specialization of the KWIC architecture

In order to avoid making a new implementation of the system for every design

change, we created an experimental software product line for generating implementa-

tions (members of family) of KWIC programs according to the design decisions and

options that we choose.

There are many more possible specializations of this architecture. For example,

KWIC has been implemented as a meta program by Michael VanHilst and David

Notkin as C++ templates [94].

2



Chapter 5

The Generative Approach to

Algebraic Computations

Having carefully defined the mathematical background needed to analyse Gröbner

basis solving algorithms and computational algebra in §2, we now turn to the soft-

ware architecture design methodology described in §4 to decompose Buchberger’s

algorithm into a modular design similar to the KWIC example (Example 4.28) and

design a generic interface and specifications for any specializations of Buchbeger’s

algorithm1. We can then implement these modules as F# types — an interface for

each module interface and an object type per module implementation — to construct

a framework for implementing solvers for computational algebra problems. Finally,

we apply the code generation DSL as defined in §3 to construct a generator which

produces any instance of the program family for solving Gröbner basis problems. This

code generator is parametrized by all the modules in the decomposition of Buchbeger’s

algorithm and the base modules in the algebra that define the working environment.

We also provide some implementations of each module to generate some sample pro-

grams.

In §5.1 we carefully define the module interfaces for all the algebraic objects and

polynomial types as defined in §2.1. These provide the main feature modules in the

code generator for this thesis, and any other modules performing algebraic computa-

tions are parametrized by the algebra modules. Any changes to the choice of these

modules (such as those for a base ring structure or ordering) makes fundamental

changes to the inner workings of the generated program.

1Some of the more important specializations were highlighted in §2.4.

94



5. The Generative Approach to Algebraic Computations 95

Next, in §5.2 we provide a decomposition of Buchbeger’s algorithm into aspect

modules (which are, in turn, parametrized by the algebra feature modules) with

careful generalization of the specifications to allow generation of many specializations

of Buchberger’s algorithm.

Finally, §5.3 defines the code generator (in the codegen DSL) which implements

this product family. This generator is, in fact, very similar to the pseudo-code for

Buchberger’s algorithm in §2.3, but can be highly specialized through code generation

to produce any instance of the special sub-algorithms. Showing that any implemen-

tation of the aforementioned modules is a specialization of the generic interface, we

can provide a partial proof for the correctness of the generated instance.

5.1 Algebraic Objects

Recall the definitions of basic algebraic objects from §2.1. In this section we define the

interfaces and implementations of the feature modules that embody these objects. We

start the design process with a carrier object, which consists only of a set, and refine

this interface to define monoids, groups, etc. The MathScheme library [53] contains

an extensive definition of algebraic objects — most of which are out of the scope

of this project. We take a similar approach in this section and define the algebraic

objects both axiomatically as specifications and programmatically as type definitions.

Defining the algebraic feature modules in this manner requires an incremental

refinement of modules, starting from a carrier set and refining in small steps to the

more complex structures such as fields or algebras. We will take the approach of little

theories as defined in §5.1.1 to define these.

Next, to be able to implement the algebraic modules in F# we require the pro-

gramming techniques to define both the interfaces and the implementations of these

modules in such a way that the implementations are open-ended types and contain

at least the functionality dictated by the interface, as well as taking advantage of

the typing system in F# to define the refinement relation between modules as object

inheritance. §5.1.2 defines the concepts of parametric types and shapes using object

expressions in F#.

Next, we apply these techniques to program the interfaces for the algebraic feature

modules in §5.1.3 and provide some module implementations of the most common

usage for these types.



96 5. The Generative Approach to Algebraic Computations

Finally, §5.1.5 follows the same footsteps to define the interface of the objects for

polynomial algebras — i.e., monomials, terms and polynomials — as parametrized

modules over the base algebra types. We also provide a module implementation of a

generic multivariate polynomial algebra using both dense and sparse terms.

5.1.1 The Little Theories Method

The little theories method [34] uses a network of theories to formalize a portion

of mathematics by “small” step refinement relations between theories. In the little

theories method, every theory (or module interface, in case of the definitions used

here) is an extension (or refinement, respectively) of some prior theory defined in the

library — with the obvious exception of the base object types. In contrast, an ad-hoc

“big theory” method requires a full definition of every theory (interface) as a part of

a single big theory (interface) with no inheritance relation.

In the little theories method, we define every interface by a series of one-step re-

finements. These refinements consist of either an addition of a new member (variable

or program), or a refinement to the specification of a previously-defined member.

These refinements are all related to natural algebraic extensions of the base types

that are being refined or joined.

For example, Figure 5.1 shows the incremental little theory refinements from a

definition of a carrier set to a monoid and further on to a group, where each refinement

step adds the respective values and functions that extend the theory of one algebraic

object to the next. In this figure we only define the types of the operations that are

added, and we assume that the reader can infer what axioms are added from the

definitions of these objects given earlier.

Carrier

S : Set

Monoid

e : S
∗ : S×S → S

Group

−1 : S → S

Legend: Theory refinement Algebraic theory

Figure 5.1: Basic algebra objects as little theories

More complex interfaces are then constructed by either refining or joining dif-



5. The Generative Approach to Algebraic Computations 97

ferent module interfaces as required. We seek to design the interfaces for all the

algebraic objects necessary in this chapter using the little theories method for easier

categorization and organization of the modules.

5.1.2 Parametric Types and Shapes

As mentioned earlier, the feature modules introduced in this chapter form a basis

for all the other modules that utilize the computational algebra library. In this case,

every aspect module (and in fact, some of the more complex feature modules) are

parametrized by the types defined by one or more feature modules. For example, the

aspect module which is in charge of maintaining the working set and critical pairs of

polynomials in Buchberger’s algorithm is dependent on the type of polynomials and

the operators defined in the polynomial algebra module. Furthermore, the selection

of critical pairs may also be dependent not only on the polynomial algebra, but on

the choice of term ordering as well.

The generic programming features [62] of F# provide a simple mechanism for

parametrizing interfaces and module implementations by generic types. Additionally,

it is possible for the implementation of a module to contain more definitions than the

provided interface — as long as the required variables and programs are present and

satisfy the type and specification requirements. In this case, every implementation of

the module is an instance of an unnamed class which satisfies the module’s interface.

We utilize the object expressions [40] syntax in F# to define this specific construction

of module implementations. Such object interfaces are called shapes. See Hardin and

Rioboo [1] for earlier uses of this technique.

To demonstrate the usage of shapes and parametric types, we define a simple

interface and implementation for ordered sets.

Interface 5.1 (Order) Given a set S, an ordering relation is a reflexive, antisym-

metric, transitive binary relation ≥: S × S → B on the elements of the set S. We

define the module interface for an ordered set parametrized over the choice of the

underlying set by introducing a cmp binary operator which performs both comparison

(an order relation) and equality (an equivalence relation) on the set S. Given an

ordering relation ≥, the following interface represents the comparison operation:

Order S:

x,y|ge|b: x ∈ S ∧ y ∈ S _ b̄ ∈ B ∧ b̄⇔ x ≥ y



98 5. The Generative Approach to Algebraic Computations

For practical programming purposes, we use an altered version of this interface

with a standard cmp function where cmp(x,y) is a negative number when x < y

(i.e. ¬x ≥ y), zero when x = y (x ≥ y ∧ y ≥ x) and positive when x > y:

Order S:

x,y|cmp|c: x ∈ S ∧ y ∈ S _
c̄ ∈ {−1, 0, 1} ∧
(c̄ ≥ 0⇔ x ≥ y) ∧
(c̄ ≤ 0⇔ y ≥ x) ∧
(c̄ = 0⇔ x ≥ y ∧ y ≥ x) ∧
cmp(y, x) = −c̄ ∧
∀z∈S cmp(y, z) = c̄⇒ cmp(x, z) = c̄

The last two lines of the above specification contain redundant clauses that can be

derived from the earlier clauses. Later in §5.1.4 we will show how such statements

can aid the implementation of a module.

Assuming that the type ’s defines a carrier set, the Order interface is defined as

the F# type:

type Order<’s> =

abstract cmp: BinaryOp<’s,’s,int>

We implement this parametric interface using an object expression which uses the

comparison type in F#, which provides a compare method for values of type ’t when

’t: comparison:

let GenOrderFromType<’t when ’t: comparison> =

{ new Order<’t> with

member o.cmp = Compare

}

This defines a new unnamed class implementing the Order interface, and constructs

a new object of this type, which is in turn returned as the result of the order gen-

erator function above. Compare is a BinaryOp (binary operator as per Definition 3.17)

defined in our libraries which calls the standard comparison function when a type ’t

implements the interface comparison.

Note that although the antisymmetry and transitivity of the ordering relation is

specified in the interface, we were not able to reflect this specification in the imple-

mentation. We will discuss this in more detail in §5.1.4.



5. The Generative Approach to Algebraic Computations 99

5.1.3 Interfaces for Algebraic Objects

We now possess all the required skills, techniques and the machinery for defining

the algebraic objects defined earlier as F# module interfaces. Figure 5.2 shows the

module breakdown of the base algebraic objects. These feature modules are defined

similarly to the design used in Mei [98] for forming a module system for mechanized

mathematics.

Order

Quotient

Monoid

Group

Ring

QuotientRing

Field

MonoModule

Module

Algebra

Legend: Module refinement Algebraic module

Module inclusion

Figure 5.2: Interfaces and relations for algebraic objects

Interface 5.2 (Monoid) We start the algebraic objects by defining the interface of

the Monoid module as an additive monoid. The monoids are defined additively (with

0 and +) as opposed to multiplicatively (with 1 and ∗) for practical reasons in the

code, as the additive monoid is used more often as a parent interface for rings than

its multiplicative counterpart.



100 5. The Generative Approach to Algebraic Computations

Monoid S:

zero: zero ∈ S
x,y|add|z: x ∈ S ∧ y ∈ S _

z̄ ∈ S ∧
add(y, x) = z̄ ∧
∀w∈S add(c̄, w) = add(x, add(y, w)) ∧
x = zero⇒ z̄ = y ∧
y = zero⇒ z̄ = x

Similar to the case of antisymmetry and transitivity of the Order module, the

commutativity and associativity of the method add in the monoids will not be im-

plemented. This is for practical reasons since F# does not possess the necessary

machinery for verification of these properties. This property may be feasible to define

in the future with the help of theorem proving additions to the .NET framework such

as Z3 [25].

The interface for the Monoid feature module is defined as the F# type:

type Monoid<’s> =

abstract zero: Constant<’s>

abstract add: BinaryOp<’s,’s,’s>

Note that the axioms for associativity and commutativity of the add operator are not

implemented here since the F# type system is not powerful enough to express these

requirements.

Interface 5.3 (Group) The first refinement relation between the algebra modules

is the introduction of inverse elements to monoids which produces a group structure.

We define the specification for the Group object as a refinement of the Monoid object

as follows:

Group S w Monoid S:

x|neg|y: x ∈ S _
ȳ ∈ S ∧
add(x, ȳ) = zero ∧
x = zero⇒ ȳ = zero

x,y|sub|z: x ∈ S ∧ y ∈ S _
z̄ ∈ S ∧
add(x, neg(y)) = z̄ ∧
x = y ⇒ z̄ = zero ∧
x = zero⇒ z̄ = neg(y) ∧
y = zero⇒ z̄ = x



5. The Generative Approach to Algebraic Computations 101

The subtraction operator is not a necessary definition in group theory as it can be

defined in terms of addition and negation operators. We chose to include a separate

definition of the sub operator in the structure here for both presentation and opti-

mization purposes, as a distinctly generated subtraction operator can be specialized

and optimized independently from other operations.

The syntax in F# for expanding a module interface is:

type Group<’s> =

inherit Monoid<’s>

abstract neg: UnaryOp<’s,’s>

abstract sub: BinaryOp<’s,’s,’s>

The inheritance relation between the Monoid and Group interfaces allows a type-

safe static casting between the generated module implementations. Hence, any code

generator or parametrized modules that require the presence of a Monoid object could

automatically use any Group structures as well since we can prove that Monoid v Group.

Note that in all of the F# interfaces above (Order, Monoid and Group) only the

type of the variables and programs are defined that reflect the type inclusion clauses

of the specifications. The rest of the specifications are left “open” as the F# type

system is not powerful enough to define these as a part of the definition. We address

the enforcing of these clauses in the generators for these module implementations in

§5.1.4.

None of the methods specified so far were at their minimal specification form.

One may rightfully claim that many of the clauses in the specifications — such as

the last three lines in the sub specification for groups — are not necessary and can

be derived from the rest of the specification. We are including these “special” cases

in the interface for these modules and the implementations may take advantage of

these results during code generation. For example, when the implementation for the

sub method of some group has the information available at compile time (i.e. the V

branch of the Value type) that y is, in fact, zero, then it is able to completely avoid

the generation of any subtraction operation within the code and simply return the

code fragment pxq.

Interface 5.4 (Ring) The Ring module is defined as a refinement of the Group mod-

ules using the same axioms defined in Definition 2.4. Recall that after defining ring

objects in Definition 2.4 we established that throughout this thesis we will only use

finitely generated commutative rings with identity.



102 5. The Generative Approach to Algebraic Computations

Ring S w Group S:

one: one ∈ S ∧ one 6= zero

x,y|mul|z: x ∈ S ∧ y ∈ S _
z̄ ∈ S ∧
mul(y, x) = z̄ ∧
∀w∈S mul(c̄, w) = mul(x,mul(y, w)) ∧
x = one⇒ z̄ = y ∧
y = one⇒ z̄ = x

x = zero ∨ y = zero⇒ z̄ = zero

x,p|pow|y: x ∈ S ∧ p ∈ N ∧ ¬(x = zero ∧ p = 0) _
ȳ ∈ S ∧
x = zero⇒ ȳ = zero ∧
x = one⇒ ȳ = one ∧
p = 0⇒ ȳ = one ∧
p > 0⇒ ȳ = mul(x, pow(x, p− 1))

type Ring<’s> =

inherit Group<’s>

abstract one: Constant<’s>

abstract mul: BinaryOp<’s,’s,’s>

abstract pow: BinaryOp<’s,int,’s>

Defining the quotient ring object from Definition 2.34 requires the introduction of a

new object for quotients. These objects do not necessarily define a new algebraic type,

but are used as a “bundle” of refinement relations and method definitions which add

long division (i.e. division with remainder) to other structures. In the sense of aspect

modules, this is a separation of all the methods that are concerned with division,

remainders, greatest common divisors, least common multiples and crossfactors.

Interface 5.5 (Quotient Ring) The QuotientRing module implements a quotient

ring object from Definition 2.34 that adds the concepts of division with remainder,

gcd, lcm, and τ from Definition 2.13 to any ring structure:

QuotientRing S w Ring S:

x,y|longdiv|d,r: x ∈ S ∧ y ∈ S _
d̄ ∈ S ∧ r̄ ∈ S ∧
x = add(mul(y, d̄), r̄) ∧
longdiv(r̄, y) = (zero, r̄) ∧
x = zero⇒ d̄ = zero ∧ r̄ = zero ∧
y = zero⇒ d̄ = zero ∧ r̄ = x ∧
y = one⇒ d̄ = x ∧ r̄ = zero ∧



5. The Generative Approach to Algebraic Computations 103

x = y ⇒ d̄ = one ∧ r̄ = zero

x,y|div|d: x ∈ S ∧ y ∈ S _
d̄ ∈ S ∪ {None} ∧
d̄ 6= None⇔ longdiv(x, y) = (d̄, zero)

x,y|rem|r: x ∈ S ∧ y ∈ S _
r̄ ∈ S ∧
∃d∈S longdiv(x, y) = (d, r̄)

x,y|gcd|g: x ∈ S ∧ y ∈ S _
ḡ ∈ S ∧
div(x, ḡ) 6= None ∧ div(y, ḡ) 6= None ∧
∀g′∈S div(x, g′) 6= None ∧ div(y, g′) 6= None⇒ div(g, g′) 6= None

x,y|lcm|l: x ∈ S ∧ y ∈ S _
l̄ ∈ S ∧
div(l̄, x) 6= None ∧ div(l̄, y) 6= None ∧
∀l′∈S div(l′, x) 6= None ∧ div(l′, y) 6= None⇒ div(l′, l) 6= None

x,y|τ |τ: x ∈ S ∧ y ∈ S _
τ̄ ∈ S ∧
mul(τ̄ , x) = lcm(x, y) ∧
mul(τ̄ , gcd(x, y)) = y ∧

As we mentioned earlier, it is more convenient programmatically to abstract out

the quotient operations into a separate aspect module and refine other interfaces

such as quotient rings, fields, monomial monoids and polynomial algebras by means

of inheritance.

type Quotient<’s> =

abstract longdiv: BinaryOp<’s,’s,’s*’s>

abstract div: BinaryOp<’s,’s,’s option>

abstract rem: BinaryOp<’s,’s,’s>

abstract gcd: BinaryOp<’s,’s,’s>

abstract lcm: BinaryOp<’s,’s,’s>

abstract τ: BinaryOp<’s,’s,’s>

Finally, appending the Quotient aspect module to the Ring feature module leads

to the new QuotientRing module which contains the specification above as the rings

where the Euclidean algorithm (division with remainder) is possible:

type QuotientRing<’s> =

inherit Ring<’s>

inherit Quotient<’s>

The next logical step is to expand the definition of a quotient ring to have guar-

anteed fraction-free division, which also leads to unique inverses.



104 5. The Generative Approach to Algebraic Computations

Interface 5.6 (Field) The Field module refines the QuotientRing module by adding

unique multiplicative inverses to the non-zero elements of the ring. This leads to a

refinement of the specification for the div program to always have zero remainders.

Additionally, the pow exponentiation program is refined in a way to define negative

integers in the exponent:

Field S w QuotientRing S:

x|inv|y: x ∈ S\{zero} _
ȳ ∈ S ∧
mul(x, ȳ) = one ∧
x = one⇒ ȳ = one

x,y|div|z: x ∈ S ∧ y ∈ S\{zero} _
z̄ ∈ S ∧
mul(x, inv(y)) = z̄ ∧
longdiv(x, y) = z̄, zero

x,p|pow|y: x ∈ S ∧ p ∈ Z ∧ ¬(x = zero ∧ p = 0) _
ȳ ∈ S ∧
x = zero⇒ ȳ = zero ∧
x = one⇒ ȳ = one ∧
p = 0⇒ ȳ = one ∧
p > 0⇒ ȳ = mul(x, pow(x, p− 1)) ∧
p < 0⇒ ȳ = inv(pow(x,−p))

In the F# definition of the Field interface, the pow method does not require any

signature refinements; however, the div method’s signature is redefined to reflect

the changes to the remainder-free division algorithm. In this case the Field module

contains two separate interfaces for the div method: one that is inherited from refining

the quotient ring interface, and a new one that reflects the new field division.

type Field<’s> =

inherit QuotientRing<’s>

abstract div: BinaryOp<’s,’s,’s>

abstract inv: UnaryOp<’s,’s>

The definition of an R-MonoModule (Definition 2.8) and similar composite struc-

tures require a type inclusion of an external ring of coefficientsR into another algebraic

structure. We achieve this by parametrizing the module in the type of both of the

involved objects. The following interfaces demonstrate this technique:

Interface 5.7 (R-MonoModule) An R-MonoModule M is parametrized by the ring

of coefficients R and the monoid M containing the base elements:



5. The Generative Approach to Algebraic Computations 105

MonoModule R, M w Monoid M:

coefficients: coefficients ||= Ring R

s,x|scalar|y: s ∈ R ∧ x ∈M _
ȳ ∈M ∧
s = coefficients.one⇒ x = ȳ ∧
∀r∈R scalar(coefficients.mul(r, s), x) = scalar(r, ȳ) ∧
∀r∈R scalar(coefficients.add(r, s), x) = add(scalar(r, x), ȳ) ∧
∀z∈M scalar(s, add(z, x)) = add(scalar(s, z), ȳ)

type MonoModule<’r,’m> =

inherit Monoid<’m>

abstract coefficients: Ring<’r>

abstract scalar: BinaryOp<’r,’m,’m>

Interface 5.8 (R-Module) An R-Module2 refines both the MonoModule and Group

modules to impose an additional group structure on the base elements, but does

not refine either the ring of coefficients or the scalar multiplication operator.

Module R, G w MonoModule R, G ∪ Group G

type Module<’r,’g> =

inherit MonoModule<’r,’g>

inherit Group<’g>

In Definition 2.10, we defined an R-Algebra S using a structural homomorphism

from the ring of scalars to the ring of elements that lifts a member of R into domain

of S. In order to write a specification for this feature module, we first need to define a

homomorphism axiomatically. Unfortunately, at this time we do not have the required

machinery in F# to axiomatically define a homomorphism as per Definition 2.6 and

thus we will leave the specification of homomorphism open at this point and define

this object as a pure code module.

Interface 5.9 (Homomorphism) A Homomorphism is defined as a mapping from an

algebra (module type) O1 to algebra (module type) O2 with the carrier sets (types)

S1 and S2, respectively. Additionally, a Homomorphism object also contains objects from

the structures O1 and O2 for reference.

2The font distinction between the words “Module” and “Module” plays a significant role in some
of the definitions.



106 5. The Generative Approach to Algebraic Computations

type Homomorphism<’s1,’s2,’o1,’o2> = {

s: ’o1

d: ’o2

ϕ: UnaryOp<’s1,’s2>

}

type Endomorphism<’s,’o> = Homomorphism<’s,’s,’o,’o>

Interface 5.10 (R-Algebra) Similar to an R-Module, an R-Algebra S refines both

the Module and Ring modules and imposes an additional ring structure on the base

elements. Moreover, an embedding homomorphism (the structural homomorphism)

between the rings R and S is added to the specification which lifts the elements from

the scalars domain to the elements domain. The scalar multiplication is refined to

reflect this embedding:

Algebra R, S w Module R, S ∪ Ring S:

embedding: embedding ||= Homomorphism (Ring R → Ring S)

s,x|scalar|x: s ∈ R ∧ x ∈ S _
x̄ ∈ S ∧
mul(x, embedding.ϕ s) = x̄ ∧
x = coefficients.one⇒ x = x̄ ∧
∀r∈R scalar(coefficients.mul(r, s), x) = scalar(r, x̄) ∧
∀r∈R scalar(coefficients.add(r, s), x) = add(scalar(r, x), x̄) ∧
∀y∈M scalar(s, add(y, x)) = add(scalar(s, y), x̄)

type Algebra<’r,’s> =

inherit Module<’r,’s>

inherit Ring<’s>

abstract embedding: Homomorphism<’r,’s,Ring<’r>,Ring<’s>>

5.1.4 Implementing Algebra Modules

In this section we show how each algebraic interface defined above is implemented

in such a way that the specifications of the respective module are enforced on the

implementation of each method.

In all the module specifications defined in §5.1.3 we only specified the properties

of the algebraic objects (both in variables and in programs) which can be program-

matically enforced in F# either by some static guarantees (such as type checking) or

dynamic guards (such as sanity checks and conditional evaluation). We may break



5. The Generative Approach to Algebraic Computations 107

down the clauses in the variable/program specifications into the following seven cri-

teria and implement each one accordingly:

(1) Type Refinements: These module refinements appear in the declaration of

the module and specify the base modules that are refined and extended to make

this new object type. The type refinements commonly appear in the form

module w module1 ∪ module2 . . .

and are implemented as interface inheritance in the code. The inheritance

relation between these types also guarantees safe static up casting within the

instances of the module.

(2) Type Guarantees: These clauses in the specification bind the type of a speci-

fied variable to a specific object type. Although in the formal specification these

clauses are posed as set membership assertions such as

variable ∈ type

they are carefully specified such that they are directly translated to type con-

straints in F#. The signature of the function or the type of the value in the

code implements this type of specifications.

(3) Type Inclusion: Type inclusions were first demonstrated in Interface 5.7 for

the ring of coefficients. This type of specification has the form of

variable ||= module

and generally binds one or more of the type parameters to have an algebraic

structure defined in another module. The specified variable in this case contains

an instance object which implements a certain module interface. For example,

in the case of the MonoModule interface, the coefficients variable contains an

implementation of the Ring object which defines the ring structure on the type

(set) R. The type inclusion specifications are implemented by binding the type

of the variable as the interface for the included module — possibly parametrized

by one of the module’s own type parameters.

(4) Value Restrictions: Restricted values for variables (especially function pa-

rameters) are a special form of type guarantees which not only bind the type



108 5. The Generative Approach to Algebraic Computations

of a variable to a specific type, but also restrict the domain to disallow certain

special cases. This refinement to the type guarantee specification generally has

the form

variable ∈ type\{value1, value2, . . . }

and is implemented similarly to the type guarantees specification by defining the

signature of the function (or the type of the value) and an additional run-time

dynamic check on the value of this parameter (or variable). A simple example

of such restrictions is the exclusion of zero as the denominator in quotients.

Implementation 5.12 demonstrates the implementation of value restrictions in

the div method of fields.

(5) Grounded Value Conditions: The conditional specifications impose some

additional value properties or define new behavioural properties when certain

predicates are satisfied. The value condition clauses in specifications generally

have the form

variable = value ⇒ property1 ∧ property2 . . .

where the equality condition could simply be replaced by other comparison pred-

icates such as ≥, etc. These specifications are enforced in the implementation

at execution time by conditional guards such as if statements or pattern match-

ing. Implementation 5.11 demonstrates the (additive) identity specifications

imposed on monoid structures in the implementation of the add method.

(6) Universal Equality: These specifications define the behaviour of a program

(method) in terms of other binding properties of some other programs and

values and have the general form of

∀variable∈type property1 ∧ property2 . . .

where the quantified properties depend on the bound variable. In general,

these specifications cannot be implemented in F#. We attempt to not define

such statements in the specifications of the modules when the implementation

is not possible (or infeasible). Requirements such as commutativity or associa-

tivity of the operators are examples of universal statements that will not be

enforced. Implementation 5.14 demonstrates the implementation of universal



5. The Generative Approach to Algebraic Computations 109

equality for the scalar function in an R-Algebra as defined per specifications of

Interface 5.10.

(7) Value Profiles: Similar to the universal binding specifications defined above,

the value profiles enforce a certain relation between two properties of the spec-

ification. Value profiles have the following form:

property1 = property2

where the equality could be replaced by other comparison predicates such as

6= or ≥ in a similar fashion to value condition specifications. These specifica-

tions are often restrictive statements about properties of some values and are

generally not enforceable within the F# code. The relationship between the

negations neg and the add function within Group is an example of a value profile

that cannot be implemented in code, but it presented in the specifications due

to its important nature in the definition of the operations. Other profiles such as

the relationship between div and inv functions within a field is partially imple-

mentable in the code when only one of the method implementations is present.

Implementation 5.12 shows how this is implemented for the field division when

an implementation of inv method is provided.

Before providing any implementations, we need to warn the reader about the

module keyword in F#. A module in F# is merely a collection of types, variables

and functions that are only bound together by a common namespace. Although this

is not very different from our definition of an aspect module in this thesis, we will

not be using F#’s modules to provide any module implementations. Instead, we are

using these entities to organize the generators and miscellaneous methods that are

related to our own modules. In the following implementation, the method Monoid.Gen

generates an instance of type Monoid<’m>. At this point, the font difference between

the words “module”, “Module” and “module” may play an important semantic role in

the meaning of any text or code.

Implementation 5.11 (Monoid Generator) This example shows the generation

of a monoid object that implements the Monoid module specified in Interface 5.2 and

the corresponding F# interface for it. Given two functions zero and add such that

zero ||= Monoid.zero and add ||= Monoid.add, the Gen function produces an object

of type Monoid<’s> such that Monoid.Gen(zero,add) ||= Monoid.



110 5. The Generative Approach to Algebraic Computations

module Monoid =

let Gen(zero,add) =

{ new Monoid<_> with

member this.zero = zero

member this.add = fun x y ->

match x,y with

| z,a | a,z when z = zero -> a

| _,_ -> add x y

}

The additional pattern matches on the add method are activated when either of

the parameters to the addition operator is the monoid’s zero element, in which case

the value conditions (criterion 5 in the above table) are programmatically enforced

on the generated monoid add operand to ensure its specification is satisfied.

In this thesis we are only concerned about the correctness of the generated methods

and modules. In the example above, we can show that the generated object actualizes

the specifications for a monoid module (by the definitions in §4) if the provided

program for add and the value provided for zero satisfy their respective specifications.

It would be näıve to attempt (or even assume possible) to formally prove that a

F# function for add satisfies the specification of Monoid.add as we have no formal

framework or denotational semantics for such formal proof in F#. However, we can

informally claim that a given code listing satisfies the given specification by simple

analysis and examination of the program.

Implementation 5.12 (Field Generator) The field generator, very similar to the

monoid generator, requires the field constants zero and one and the operators neg, add,

mul, inv, sub, div,and pow to be supplied to the generator and satisfy their correspond-

ing specifications. However, the methods sub, div and pow are optional parameters

where the user may opt to pass no implementation (using the None value of the option

type). When an implementation of any of these methods is omitted, a corresponding

method is generated by using various techniques for the specification criteria defined

earlier to satisfy the specification of the module members. For example, the div func-

tion may be generated using the value profiles defined in Interface 5.6 for division

using the supplied inv and mul functions.

In this example we can see many of the specification criteria discussed earlier in

the implementation of fields.



5. The Generative Approach to Algebraic Computations 111

module Field =

let Gen(zero,one,neg,add,mul,inv,sub,div,pow) =

let div = fun x y ->

match x,y,div with

| a,z,_ when z = zero -> raise(DivideByZeroException())

| z,a,_ when z = zero -> zero

| a,o,_ when o = one -> a

| o,a,_ when o = one -> inv a

| a,b,_ when a = b -> one

| x,y,None -> mul x (inv y)

| x,y,Some d -> d x y

let r =

QuotientRing.Gen(

zero,one,neg,add,mul,sub,pow,

None,

Some(fun x y -> Option.Some (div x y)),

Some(fun _ _ -> zero),

Some(fun _ _ -> one),

Some mul,

Some(fun _ x -> x))

{ new Field<_> with

member this.zero = r.zero

member this.one = r.one

member this.neg = r.neg

member this.add = r.add

member this.mul = r.mul

member this.sub = r.sub

member this.div = div

member this.div = r.div

member this.rem = r.rem

member this.gcd = r.gcd

member this.lcm = r.lcm

member this.τ = r.τ

member this.longdiv = r.longdiv

member f.inv = function

| z when z = zero -> raise(DivideByZeroException())

| o when o = one -> one

| a -> inv a

member f.pow = fun x y ->

match pow with

| Some p -> p x y

| None ->



112 5. The Generative Approach to Algebraic Computations

let y = GetV y

if y < 0 then f.inv(r.pow x (V -y))

else r.pow x (V y)

}

It may be worthwhile to analyze some common instances of the Field object to

show how we can generate module instances that implement this module interface.

Recall the definition of Value type from Definition 3.14. Here, we will see the first

instance of these value types in action, as each one of the operators contains both an

implementation on “static” values, which are the expressions that are computed at

calling time, and an implementation on “dynamic” values, which are the expressions

that are computed at run time by evaluation3.

Example 5.13 (Rationals Field Instance) Recall the definitions of UnaryOp from

Definition 3.16, BinaryOp from Definition 3.17 and V as type constructor of Value

objects from Definition 3.14. The object QQ defines a field of rational numbers

using BigRational objects defined in .NET libraries, represented at a quotient of two

BigInteger values.

let QQ =

let zero = V 0N

let one = V 1N

let neg = UnaryOp.Gen (fun x -> - x) (fun x -> <@ - %x @>)

let add = BinaryOp.Gen (fun x y -> x + y) (fun x y -> <@ %x + %y @>)

let mul = BinaryOp.Gen (fun x y -> x * y) (fun x y -> <@ %x * %y @>)

let inv = UnaryOp.Gen (fun x -> 1N / x) (fun x -> <@ 1N / %x @>)

let sub = BinaryOp.Gen (fun x y -> x - y) (fun x y -> <@ %x - %y @>)

let div = BinaryOp.Gen (fun x y -> x / y) (fun x y -> <@ %x / %y @>)

let pow = BinaryOp.Gen (fun x y -> BigRational.PowN(x,y))

(fun x y -> <@ BigRational.PowN(%x,%y) @>)

Field.Gen(zero, one, neg, add, mul, inv, Some sub, Some div, Some pow)

Notice that the generated object provides the implementation for subtraction,

division, an exponentiation which are all optional. Instead of generating an imple-

mentation to these methods, we have provided the native operands which are much

more efficient. The values provided for zero and one are only presented in the static

form (using the V type constructor) as they can simply be resolved at compile time,

but may also be lifted (trivially) to a dynamic expression if needed.

3Alternatively, these dynamic expression operators are often called transformers.



5. The Generative Approach to Algebraic Computations 113

We claim that, assuming the implementation of rationals in .NET library is cor-

rect, then this object implements a field, i.e. QQ ||= Field.

2

Similar to the example above, we may define an implementation of (pseudo-)Field

CC for approximation of complex numbers C using the Complex library in .NET:

let CC = Field.Gen(V Complex.Zero, V Complex.One, · · ·)

We also define some similar implementations of QuotientRing module. Namely, ZI

for machine integers — which have a well-known division with remainder algorithm

— and ZZ for true integers using the BigInteger library.

Implementation 5.14 (Algebra Generator) The first step towards implement-

ing an algebra module is to properly define the type (interface) of homomorphisms for

the specific modules that are involved. Recall from Interface 5.9 that the Homomorphism

object does not follow the conventional style of the other object types in this chapter

and is instead parametrized in both the algebraic modules of the mapping and their

respective underlying data sets. In this case we need to refine the definition of a

homomorphism for each specific module type in this library. For example, the ring

homomorphism type is defined as:

module Ring =

type Homomorphism<’s,’t> =

Homomorphism<’s,’t,Ring<’s>,Ring<’t>>

Similarly, an R-algebra homomorphism from R-algebra S to R-algebra T is defined

as:

module Algebra =

type Homomorphism<’r,’s,’t> =

Homomorphism<’s,’t,Algebra<’r,’s>,Algebra<’r,’t>>

The generator for an Algebra object type requires only the ring homomorphism

for the structural embedding of the coefficients ring to the elements rings. The scalar

multiplication operator can then be automatically generated from the specifications

from Interface 5.10. We will continue the definition of the module Algebra and add

the following generator4:

4The vertical ellipses will always mean that the body of this module is being continued from an
earlier definition.



114 5. The Generative Approach to Algebraic Computations

module Algebra =

...

let Gen(embed: Ring.Homomorphism<’s,’t>) =

let coef = embed.s

let elem = embed.d

{ new Algebra<_,_> with

member this.zero = elem.zero

member this.one = elem.one

member this.neg = elem.neg

member this.add = elem.add

member this.mul = elem.mul

member this.sub = elem.sub

member this.pow = elem.pow

member this.coefficients = coef

member this.embedding = Homomorphism.Gen(coef,elem,embed.ϕ)

member this.scalar = fun x y -> this.mul (embed.ϕ x) y

}

Thus, we can infer that given a ring homomorphism ϕ : S → T , such that

ϕ ||= Homomorphism (Ring S → Ring T ), then we can generate an R-algebra S

such that Algebra.Gen ϕ ||= Algebra R, S.

Example 5.15 (Algebra Instances) A ring R corresponds to a trivial R-algebra

R using the identity structural homomorphism, i.e. the scalar multiplication and ring

multiplication are identical. This allows us to automatically lift any ring, quotient

ring, or field to an algebra.

let GenAlgebraFromRing(r:Ring<_>) = Algebra.Gen(Homomorphism.Gen(r,r,id))

Such that, r ||= Ring R ⇒ GenAlgebraFromRing r ||= Algebra R, R.

For example,

let ZZ = GenAlgebraFromRing QuotientRing.ZZ

let ZI = GenAlgebraFromRing QuotientRing.ZI

let QF = GenAlgebraFromRing Field.QF

let QQ = GenAlgebraFromRing Field.QQ

let CC = GenAlgebraFromRing Field.CC

2



5. The Generative Approach to Algebraic Computations 115

5.1.5 Polynomial Algebras

We may now apply the same break-down of module interfaces and implementation

techniques from §5.1.3 and §5.1.4 to define the object types for monomials and terms

from §2.1.2 and polynomials from §2.1.4. Recall that monomials form a monoid,

terms form a monomodule over these monomials, and polynomials form an algebra

over the terms. Figure 5.3 defines the hierarchy of type refinements and inclusions

among these objects and the other algebraic types defined earlier.

Monoid

MonoModule

QuotientRing

Algebra

Quotient

Order

Monomial
Monoid

Term
Module

Polynomial
Algebra

Legend: Module refinement Algebraic module

Module inclusion
Type with ex-
ternal relations

Figure 5.3: Interfaces and relations for polynomial objects

These objects form the three main feature modules that are used in the main

algorithm for generation of program family members in this thesis. All these modules

are parametrized over the other algebraic feature modules described in §5.1.3, but

contain some very specific additional structure — such as monomials having a quotient

structure with divisions, gcds, etc. but not quite forming a quotient ring — which we



116 5. The Generative Approach to Algebraic Computations

define in this section.

Interface 5.16 (Monomial Monoid) As we showed in §2.1.2, monomials over a

vector of variables ~x = [x1, . . . , xn] form a monoidM over the set M with elements of

the form
∏n

i=1 x
mi
i where 1M =

∏n
i=1 x

0N
i and

∏n
i=1 x

mi
i ∗M

∏n
i=1 x

ni
i =

∏n
i=1 x

mi+ni
i .

In the interface of the Monoid module, we chose to represent monoids additively,

i.e. using 0M and +M for the choice of the identity and the monoid operation. Mono-

mials, however, are a natural occurrence of a multiplicative monoid. Here we will use

a direct method of theory interpretation or transport [32] to define a 1M constant and

a ∗M binary operator that are defined to be equal to the zero and add values inherited

from Monoid interface. This is a cosmetic change in code and does not mean that the

monomial monoid has a ring form. We will take extra care to document this notation

whenever it is used to resolve the confusion.

Additionally, monomials have gcd, lcm, crossfactors and divisibility operations as

per Definition 2.13. The division operation here has no remainders, meaning that a

monomial is either fully divisible by another monomial with zero remainder, or not

divisible — this is due to the fact that monomials do not form a ring structure. We

will implement these methods by overriding the quotient object defined earlier, but

will refine the specifications to fully reflect this property.

The monomials interface also defines the access methods for obtaining the degree

and logarithm of a monomial when requested, as well as an additional method vars

which allows us to analyse every variable and its respective exponent that appears in

the monomial. This allows us to maintain an abstract definition of a monomial while

being able to access the crucial information in computing with monomials. Lastly, as

an inverse transform to log and vars, every monomial monoid implementation must

provide constructor functions that create a monomial from either a log value or an

ordered set of variables and exponents.

Let n be the number of variables used in ~x for the monomials,

MonomialMonoid M w Monoid M:

one: one = Monoid.zero

m,n|mul|p: m ∈M ∧ n ∈M _
p̄ = Monoid.add(m,n)

m,n|div|d: m ∈M ∧ n ∈M _
d̄ ∈M ∪ {None} ∧
d̄ = None⇔ n 6 |m ∧
d̄ 6= None⇔ m = mul(n, d̄) ∧



5. The Generative Approach to Algebraic Computations 117

n = one⇒ d̄ = m ∧
m = n⇒ d̄ = one

m,n|gcd|g: m ∈M ∧ n ∈M _
ḡ ∈M ∧
div(m, ḡ) 6= None ∧ div(n, ḡ) 6= None ∧
∀g′∈M div(m, g′) 6= None ∧ div(n, g′) 6= None⇒ div(g, g′) 6= None

m,n|lcm|l: m ∈M ∧ n ∈M _
l̄ ∈M ∧
div(l̄, m) 6= None ∧ div(l̄, n) 6= None ∧
∀l′∈M div(l′,m) 6= None ∧ div(l′, n) 6= None⇒ div(l′, l) 6= None

m,n|τ |τ: m ∈M ∧ n ∈M _
τ̄ ∈M ∧
mul(τ̄ ,m) = lcm(m,n) ∧
mul(τ̄ , gcd(m,n)) = n ∧

m|deg|d: m ∈M _
d̄ ∈ N ∧
d̄ = deg(m)

m|log|l: m ∈M _
l̄ ∈ Nn ∧
l̄ = log(m)

m|vars|v: m ∈M _
v̄ ∈ (N× N)n ∧
m =

∏
i,e∈v̄ x

e
i

l|fromLog|m: l ∈ Nn _
m̄ ∈M ∧
log(m̄) = l

v|fromVars|m: v ∈ (N× N)n _
m̄ ∈M ∧
vars(m̄) = v

type MonomialMonoid<’m> =

inherit Monoid<’m>

inherit Quotient<’m>

abstract deg: UnaryOp<’m,int>

abstract log: UnaryOp<’m,seq<int>>

abstract vars: UnaryOp<’m,seq<int*int>>

abstract fromLog: UnaryOp<seq<int>,’m>

abstract fromVars: UnaryOp<seq<int*int>,’m>



118 5. The Generative Approach to Algebraic Computations

Implementation 5.17 (Monomial Monoid Generator) The implementation of

monomial monoids is similar to the other instance generators we encountered in §5.1.4.

The following method generates an object which implements MonomialMonoid:

module MonomialMonoid =

let Gen(one,mul,deg,log,vars,mkLog,mkVars,div,gcd,lcm,τ) =

let m = Monoid.Gen(one,mul)

let q = Quotient.Gen(one,None,None,Some div,None,Some gcd,Some lcm,Some τ)

{ new MonomialMonoid<_> with

member this.zero = m.zero

member this.add = m.add

member this.deg = deg

member this.log = log

member this.vars = vars

member this.fromLog = mkLog

member this.fromVars = mkVars

member this.longdiv = q.longdiv

member this.div = q.div

member this.rem = q.rem

member this.gcd = q.gcd

member this.lcm = q.lcm

member this.τ = q.τ

}

There are many ways of implementing monomials, but the two most common

methods are dense and sparse representations.

Definition 5.18 (Dense Monomials) A dense monomial representation stores all

the exponents of the variables x1, . . . , xn even if an exponent is zero. This is essentially

equivalent to representing monomials by their logarithm and is useful when most of

the variables are used in each monomial (i.e. when it is dense). In this case, the

add method of the monomial monoid (monomial multiplication) is addition of the

logarithm vectors: log(m ∗ n) = log(m) +Nn log(n). Additionally, the degree of a

monomial is simply the sum of all the exponents in the logarithm vector: deg(m) =∑
i∈log(m) i. A dense monomial is implemented in the following way:

module MonomialMonoid =

...

let LogToVars lg = seq {



5. The Generative Approach to Algebraic Computations 119

let c = ref 0

for e in lg do

if e > 0 then yield !c,e

incr c

}

let VarsToLog vs = seq {

let n = ref 0

for i,e in vs do

while !n < i do

incr n

yield 0

incr n

yield e

}

let SortVars vs = Seq.sortBy fst <| seq { for _,e as v:int*int in vs do if e > 0

then yield v }

let DenseMap2 f a b =

let rec loggen = function

| l,[] | [],l -> l

| e1::l1,e2::l2 -> (f e1 e2)::loggen(l1,l2)

loggen(Seq.toList a, Seq.toList b) |> Seq.ofList

let Dense =

let map2 f = TernaryOp.Lift DenseMap2 <@ DenseMap2 @> (BinaryOp.Flatten f)

Gen(V Seq.empty,

map2 Idx.add,

UnaryOp.Lift Seq.sum <@ Seq.sum @>,

id,

UnaryOp.Lift LogToVars <@ LogToVars @>,

id,

UnaryOp.Gen (fun a -> VarsToLog(SortVars a))

(fun a -> <@ VarsToLog(SortVars %a) @>),

(fun m n -> codegen {

use d = map2 Idx.sub m n

let c = Seq.Exists (UnaryOp.Flatten <| Bool.gt Idx.zero) d

return Control.If c (V None) (Option.Some d)

}) |> Fun2 |> Generate |> Function.Apply2,

map2 Min,



120 5. The Generative Approach to Algebraic Computations

map2 Max,

map2 (fun a b -> Max Idx.zero (Idx.sub b a)))

By code analysis, we claim that MonomialMonoid.Dense ||= MonomialMonoid.

Definition 5.19 (Sparse Monomials) In contrast to the dense implementation of

monomials, the sparse representation only stores those variables whose exponents are

non-zero. This is equivalent to storing the monomials as the vars list as a sequence

of pairs of numbers, (i, e), where the first number i defines the variable xi and the

second number describes the exponent of this variable. Sparse representations are

particularly useful when the number of variables in a polynomial algebra is large, but

the size of each monomial is small in contrast. We implement the sparse monomials

in the following way:

module MonomialMonoid =

...

let SparseMap2 f a b =

let rec vargen: _ -> (int*int)list = function

| l,[] | [],l -> l

| (i1,e1)::v1,(i2,e2)::v2 when i1 = i2 -> (i1,f e1 e2)::vargen(v1,v2)

| (i1,_ as p1)::v1,((i2,_)::_ as n2) when i1 < i2 -> p1::vargen(v1,n2)

| n1,p2::v2 -> p2::vargen(n1,v2)

vargen(Seq.toList a, Seq.toList b) |> Seq.ofList

let Sparse =

let map2 f = TernaryOp.Lift SparseMap2 <@SparseMap2@> (BinaryOp.Flatten f)

Gen(V Seq.empty,

map2 Idx.add,

UnaryOp.Gen (fun m -> Seq.sumBy snd m)

(fun m -> <@ Seq.sumBy snd %m @>),

UnaryOp.Lift VarsToLog <@ VarsToLog @>,

id,

UnaryOp.Lift LogToVars <@ LogToVars @>,

UnaryOp.Lift SortVars <@ SortVars @>,

(fun m n -> codegen {

use d = map2 Idx.sub m n

let f = Tuple.Snd >> Bool.gt Idx.zero

let c = Seq.Exists (UnaryOp.Flatten f) d

return Control.If c (V None) (Option.Some d)



5. The Generative Approach to Algebraic Computations 121

}) |> Fun2 |> Generate |> Function.Apply2,

map2 Min,

map2 Max,

map2 (fun a b -> Max Idx.zero (Idx.sub b a)))

Similarly, we claim that MonomialMonoid.Sparse ||= MonomialMonoid.

Note that since the arrays and lists in F# are 0-indexed, we refer to the variables

in ~x by x0, . . . , xn−1 instead of x1, . . . , xn.

Combining the monomial monoid with a ring of coefficients leads to a natural

monomodule structure for the terms:

Interface 5.20 (Term MonoModule) The term monomodule is a parametrized

feature module which depends on an external ring of coefficients C, implemented

as a QuotientRing (to support term division) and a monoid of monomials M as the

elements of the base monoid. The type of the terms T is left as an open abstract type

to be decided by the implementation.

The term monomodule interface contains accessor methods for retrieving either

the coefficient or the monomial of a term, and a constructor method to create a term

in T from a coefficient in C and a monomial in M :

TermModule C, M, T w MonoModule C, T:

CR: CR ||= QuotientRing C

MM: MM ||= MonomialMonoid M

one: one = Monoid.zero

t,s|mul|p: t ∈ T ∧ s ∈ T _
p̄ = Monoid.add(t, s)

t,s|div|d: t ∈ T ∧ s ∈ T _
d̄ ∈ T ∪ {None} ∧
d̄ = None⇔ s 6 | t ∧
d̄ 6= None⇔ t = mul(s, d̄) ∧
s = one⇒ d̄ = t ∧
t = s⇒ d̄ = one

t|c|c: t ∈ T _
c̄ ∈ C ∧
∀s∈T CR.mul(c̄, c(s)) = c(mul(t, s))

t|m|m: t ∈ T _
m̄ ∈M ∧
∀s∈T MM.mul(m̄,m(s)) = m(mul(t, s))

c,m|make|t: c ∈ C ∧m ∈M _
t̄ ∈ T ∧



122 5. The Generative Approach to Algebraic Computations

c(t̄) = c ∧ m(t̄) = m

type TermModule<’c,’m,’t> =

inherit MonoModule<’c,’t>

abstract CR: QuotientRing<’c>

abstract MM: MonomialMonoid<’m>

abstract div: BinaryOp<’t,’t,’t option>

abstract c: UnaryOp<’t,’c>

abstract m: UnaryOp<’t,’m>

abstract make: BinaryOp<’c,’m,’t>

Implementation 5.21 (Term Generator) Unlike the previous implementations,

the generator for term monomodule requires a quotient ring of coefficients to already

be defined. This generator — similar to the Algebra generator — defines a feature

module which is parametrized by other feature modules.

module TermModule =

let Gen(cr:QuotientRing<_>,mm,one,mul,div,scalar,getc,getm,make) =

let e = Monoid.Gen(one,mul)

let m = MonoModule.Gen(e,cr,scalar)

{ new TermModule<_,_,_> with

member this.zero = m.zero

member this.add = m.add

member this.scalar = m.scalar

member this.coefficients = cr :> Ring<_>

member this.CR = cr

member this.MM = mm

member this.div = div

member this.c = getc

member this.m = getm

member this.make = make

}

There are many possible implementations of terms which we will cover for each

specific instance of the problem. For example, if we know that the problem requires

only polynomials of degree one (in the case of linear polynomials which define a

Gaussian Elimination problem), then we know that each term contains at most only

one variable with multiplicity one and can specialize the implementation of the terms



5. The Generative Approach to Algebraic Computations 123

to reflect that property. The following example shows the most generic purpose

implementation of the terms:

Example 5.22 (Generic Terms) The most generic form of term is implemented

as a pair of a coefficient and a monomial, where the user specifies the choice of a

quotient ring for the coefficients (called cr in this code) and a monomial monoid for

the monomials (called mm) and the term accessor methods are simply projections on

these underlying types.

module TermModule =

...

let Generic(cr,mm) =

Gen(cr, mm,

Pair cr.one mm.zero,

(fun a b -> Pair (cr.mul (Fst a) (Fst b)) (mm.add (Snd a) (Snd b))),

(fun a b -> Generate <| codegen {

use c = cr.div (Fst a) (Fst b)

use m = mm.div (Snd a) (Snd b)

return! If ((IsSome c) ^&& (IsSome m))

(Return <| Some(Pair (UnOption c) (UnOption m)))

(Return <| Option None)

}),

(fun s t -> Pair (cr.mul s (Fst t)) (Snd t)),

Fst, Snd, Pair)

2

Finally, the ultimate feature module in the polynomial algebra library is the spe-

cialization of the Algebra module which specifies and implements the polynomial al-

gebra as per Definition 2.22.

Interface 5.23 (Polynomial Algebra) The polynomial algebra is a parametrized

feature module that depends on an external ring of coefficients C and a term module

T which uses these coefficients. Additionally, a monomial monoid M is also required

due to the dependency of the term monomodule. The final type of polynomials P is

defined as an open type to be implemented by individual specialization of polynomial

algebra.

The polynomials P are treated as a generic collection of terms, where the only

accessors for the terms are the methods LT which returns the leading term of the



124 5. The Generative Approach to Algebraic Computations

polynomial according to the term ordering defined by the polynomial algebra, and

RT which returns the polynomial with its leading term removed. The method RT is

essentially equivalent to lifting the leading term as a polynomial and subtracting

it from the original value but is provided as a separate method in order to allow

optimizations in the implementation. Similarly, the methods LM and LC access the

leading monomial and coefficient of the polynomial respectively.

In addition to refining the Algebra feature module, the polynomial algebra module

also refines the Quotient aspect module to define the division and remainder operations

among polynomials. Additionally, polynomial algebra also refines the Order feature

module on the monomials which defined the term ordering as defined in §2.1.3.

PolynomialAlgebra C, M, T, P w Algebra C, P ∪ Order M:

CR: CR ||= QuotientRing C

TM: TM ||= TermModule C, M, T

p,q|longdiv|d,r: p ∈ P ∧ q ∈ P _
d̄ ∈ P ∧ r̄ ∈ P ∧
p = add(mul(q, d̄), r̄) ∧
longdiv(r̄, q) = zero, r̄ ∧
p = zero⇒ d̄ = zero ∧ r̄ = zero ∧
q = zero⇒ d̄ = zero ∧ r̄ = p ∧
q = one⇒ d̄ = p ∧ r̄ = zero ∧
p = q ⇒ d̄ = one ∧ r̄ = zero

p,q|div|d: p ∈ P ∧ q ∈ P _
d̄ ∈ P ∪ {None} ∧
d̄ 6= None⇔ longdiv(p, q) = d̄, zero

p,q|rem|r: p ∈ P ∧ q ∈ P _
r̄ ∈ P ∧
∃d∈S longdiv(p, q) = d, r̄

p|terms|~t: p̄ ∈ P _
~t ⊂ T ∧
supp(p) = ~t

p|deg|d: p̄ ∈ P _
d̄ ∈ N ∧
deg(p) = d̄

p|isZero|z: p̄ ∈ P _
z̄ ∈ B ∧
z̄ ⇔ p = zero

p|LT|t: p ∈ P _
t̄ ∈ T ∧
t̄ ∈ supp(p) ∧
∀t′∈supp(p) cmp(TM.m(t),TM.m(t′)) > 0



5. The Generative Approach to Algebraic Computations 125

p|LM|m: p ∈ P _
m̄ ∈M ∧
m̄ = TM.m(LT(p))

p|LC|c: p ∈ P _
c̄ ∈ C ∧
c̄ = TM.c(LT(p))

p|RT|q: p ∈ P _
q̄ ∈ P ∧
supp(q̄) = supp(p)\{LT(p)}

~t|formTerms|p: ~t ⊂ T _
p̄ ∈ P ∧
supp(p̄) = ~t

c,m|FromTerm|p: c ∈ C ∧m ∈M _
p̄ ∈ P ∧
supp(p̄) = {TM.make(c,m)}

type PolynomialAlgebra<’c,’m,’t,’p> =

inherit Order<’m>

inherit Algebra<’c,’p>

inherit Quotient<’p>

abstract CR: QuotientRing<’c>

abstract TM: TermModule<’c,’m,’t>

abstract terms: UnaryOp<’p,seq<’t>>

abstract deg: UnaryOp<’p,int>

abstract isZero: UnaryOp<’p,bool>

abstract LT: UnaryOp<’p,’t>

abstract LM: UnaryOp<’p,’m>

abstract LC: UnaryOp<’p,’c>

abstract RT: UnaryOp<’p,’p>

abstract fromTerm: BinaryOp<’c,’m,’p>

abstract fromTerms: UnaryOp<seq<’t>,’p>

Implementation 5.24 (Polynomial Algebra Generator) The polynomial alge-

bra generator requires a quotient ring of coefficients, a term monomodule, and a

polynomial ring to generate an algebra of polynomials as described by Interface 5.23.

Figure 5.4 shows the parameters used by this generator and their type dependencies.

If a degree-compatible term ordering is provided and the deg parameter is not



126 5. The Generative Approach to Algebraic Computations

supplied, a degree operation is automatically generated which returns the degree of

the leading term. Similarly, if the LM and LC operators are not supplied, a standard

implementation is generated which returns the projections of the leading term.

module PolynomialAlgebra =

let Gen(cr:QuotientRing<_>,tm,pr:QuotientRing<_>,

scalar,cmp,terms,deg,iszero,lt,lm,lc,rt,make,mkterm) =

let a = Algebra.Gen(Homomorphism.Gen(cr:>Ring<_>,pr:>Ring<_>,scalar))

{ new PolynomialAlgebra<_,_,_,_> with

member this.zero = a.zero

member this.one = a.one

member this.neg = a.neg

member this.add = a.add

member this.mul = a.mul

member this.sub = a.sub

member this.pow = a.pow

member this.coefficients = a.coefficients

member this.embedding = a.embedding

member this.scalar = a.scalar

member this.cmp = cmp

member this.CR = cr

member this.TM = tm

member this.terms = terms

member this.deg = match deg with

| Some deg -> deg

| _ -> fun p -> tm.MM.deg(tm.m(lt p))

member this.isZero = iszero

member this.LT = lt

member this.RT = rt

member this.LM = match lm with

| Some lm -> lm

| _ -> fun p -> tm.m(lt p)

member this.LC = match lc with

| Some lc -> lc

| _ -> fun p -> tm.c(lt p)

member this.fromTerms = make

member this.fromTerm = mkterm

member this.longdiv = pr.longdiv

member this.div = pr.div

member this.rem = pr.rem

member this.gcd = pr.gcd

member this.lcm = pr.lcm



5. The Generative Approach to Algebraic Computations 127

Name Type Description
cr QuotientRing<’C> The ring of coefficients C for polynomial alge-

bra. This should normally be the same object
as the coefficients of the term monomodule.

tm TermModule<’C,’M,’T> The term monomodule T of the terms used in
the polynomials.

pr QuotientRing<’P> The polynomial ring P defines the internal op-
erations and the division algorithm on the poly-
nomials.

scalar UnaryOp<’C,’P> The scalar lifting operator defines how a scalar
C is embedded as a constant polynomial P .

cmp BinaryOp<’M,’M,int> The ordering operation between the monomials
of type M implements the Order interface for
polynomial algebra.

terms UnaryOp<’P,seq<’T>> The projection operator from a polynomial P
to its support as a set of terms T .

deg UnaryOp<’P,int> (optional) The unary operator deg returns the
degree of the polynomial P . A standard imple-
mentation is generated if this value is None.

isZero UnaryOp<’P,bool> Provides a shorthand for code generators for
quickly test a polynomial against the zero poly-
nomial.

lt UnaryOp<’P,’T> The lt operator returns the leading term of
the polynomial. Must be compatible with the
monomial ordering provided.

lm UnaryOp<’P,’M> (optional) Returns the leading monomial of the
polynomial.

lc UnaryOp<’P,’C> (optional) Returns the leading coefficient of the
polynomial.

rt UnaryOp<’P,’P> Removes the leading term from a polynomial
and returns the remaining terms as a new poly-
nomial.

fromTerms UnaryOp<seq<’T>,’P> Creates a polynomial object P from a set of
terms in T .

fromTerm BinaryOp<’C,’M,’P> Creates a polynomial P as the lifting of a term.
This method must be equivalent to the make con-
structor method.

Figure 5.4: Parameters of the Polynomial Algebra Generator



128 5. The Generative Approach to Algebraic Computations

member this.τ = pr.τ

}

The PolynomialAlgebra feature module is the basis of the algebra library in this

thesis and provides specialized routines for all the operations on polynomials. The

specializations of this module define the most important optimizations that may be

performed on specific problems. For example, a specialized implementation of polyno-

mial algebra for linear (degree one) polynomials is what defines a problem of Gaussian

Elimination instead of a generalized computation of a Gröbner basis. Similarly, a spe-

cial implementation of univariate polynomials is the feature that defines the Euclidean

algorithm for polynomials GCDs.

Before showing an example of a generic polynomial algebra, we first need to show

some implementations of term ordering that we may use.

Example 5.25 (Term Ordering for Dense Monomials) Implementation of the

term orderings is highly dependent on the choice of monomials used. In this example

we will cover the four standard term orderings (Lex, RevLex, DegLex and DegRevLex) for

dense monomials as implemented in Definition 5.18.

The following two methods show an implementation of lexicographical term or-

dering and reverse lexicographical ordering given the logarithms of two monomials:

let rec lex = function

| [],[] -> 0

| _,[] -> 1

| [], _ -> -1

| e1::l1,e2::l2 ->

match compare e1 e2 with

| 0 -> lex (l1,l2)

| x -> x

let rec revlex o = function

| [],[] -> o

| _,[] -> -1

| [], _ -> 1

| e1::l1,e2::l2 ->

match compare e1 e2 with

| 0 -> revlex o (l1,l2)

| x -> revlex -x (l1,l2)



5. The Generative Approach to Algebraic Computations 129

Using these methods, we may simply implement the aforementioned term order-

ings as:

module TermOrder =

let Lex (m:#MonomialMonoid<_>) =

let cmp (a:seq<int>) b = lex (Seq.toList a, Seq.toList b)

Order.Gen (fun a b -> Function.Apply2 (E<@cmp@>) (m.log a) (m.log b))

let RevLex (m:#MonomialMonoid<_>) =

let cmp (a:seq<int>) b = revlex 0 (Seq.toList a, Seq.toList b)

Order.Gen (fun a b -> Function.Apply2 (E<@cmp@>) (m.log a) (m.log b))

let DegLex (m:#MonomialMonoid<_>) =

let cmp (d1:int,m1:seq<int>) (d2,m2) =

match compare d1 d2 with

| 0 -> lex (Seq.toList m1, Seq.toList m2)

| n -> n

Order.Gen (fun a b -> Function.Apply2 (E<@cmp@>)

(Tuple.Pair (m.deg a) (m.log a))

(Tuple.Pair (m.deg b) (m.log b)))

let DegRevLex (m:#MonomialMonoid<_>) =

let cmp (d1:int,m1:seq<int>) (d2,m2) =

match compare d1 d2 with

| 0 -> revlex 0 (Seq.toList m1, Seq.toList m2)

| n -> n

Order.Gen (fun a b -> Function.Apply2 (E<@cmp@>)

(Tuple.Pair (m.deg a) (m.log a))

(Tuple.Pair (m.deg b) (m.log b)))

Notice that if the monomial monoid provided to these order generating functions

is a sparse implementation, the resulting Order object is still correct and functional,

but it is not optimal as each comparison method forces the monomials to be converted

to the logarithm representation before comparison. A similar implementation may

be provided for operating on the variables list of sparse monomials instead.

2

Example 5.26 (Generic Polynomials) We may now implement a generic version

of the polynomial algebra using the terms defined in Example 5.22. Provided a term

monomodule (such as the ones generated by TermModule.Generic) and a term ordering

on compatible monomials (such as those generated in Example 5.25), we generate a

generic term algebra as a list of terms as follows:

module PolynomialAlgebra =



130 5. The Generative Approach to Algebraic Computations

...

let Generic(tm:TermModule<_,_,_>,o:Order<_>) =

let app0,app1,app2 = GetV, UnaryOp.AppV, BinaryOp.AppV

let getm,getc = app1 tm.m, app1 tm.c

let sort = List.sortWith (fun a b -> - app2 o.cmp (getm a) (getm b))

let rec collapse = function

| [] -> []

| x::y::ts when app2 o.cmp (getm x) (getm y) = 0 -> app2 tm.make (app2

tm.CR.add (getc x) (getc y)) (getm x) :: ts |> collapse

| x::ts when getc x = app0 tm.CR.zero -> collapse ts

| x::ts -> x :: collapse ts

let coefmap f = List.map (fun t -> app2 tm.make (app1 f (getc t)) (getm t))

let scalar s = [app2 tm.make s (app0 tm.MM.zero)] |> collapse

let neg p = coefmap (tm.CR.neg) p

let add p g = p @ g |> sort |> collapse

let sub p g = add p (neg g)

let mul (p:_ list) (g:_ list) = [for t in p do yield! [for s in g do yield

app2 tm.add t s]] |> sort |> collapse

let longdiv p g =

let rec div x y =

match x,y with

| t,[] -> [],t

| [],_ -> [],[]

| m::ts,n::ss ->

match app2 tm.div m n with

| None -> [],x

| Some q ->

let d,r = div (sub ts (mul ss [q])) y

q::d,r

let d,r = div p g

d |> sort |> collapse, r

let pr =

QuotientRing.Gen(

scalar (app0 tm.CR.zero) |> V,

scalar (app0 tm.CR.one) |> V,

UnaryOp.Lift neg <@neg@>,

BinaryOp.Lift add <@add@>,

BinaryOp.Lift mul <@mul@>,

BinaryOp.Lift sub <@sub@> |> Some,

None,

BinaryOp.Lift longdiv <@longdiv@> |> Some,



5. The Generative Approach to Algebraic Computations 131

None, None, None, None, None)

Gen(tm.CR, tm, pr,

UnaryOp.Lift scalar <@scalar@>,

None,

o.cmp,

List.ToSeq,

Some (fun p -> Control.If (List.IsEmpty p) Idx.zero

(tm.MM.deg (tm.m (List.Head p)))),

List.IsEmpty,

List.Head,

None, None,

List.Tail,

UnaryOp.Gen (fun ts -> collapse(sort(Seq.toList ts)))

(fun ts -> <@ collapse(sort(Seq.toList %ts)) @>),

fun c m -> tm.make c m |> List.Singleton)

2

5.2 Modular Decomposition of Buchberger’s Al-

gorithm

Recall from §4.2.4 that we provide the members of a program family by decomposing

the architecture of the family into orthogonal and functional aspect modules and

provide different implementations and connections between these modules according

to the specializations available. In Example 4.28 we showed a sample decomposition

of the KWIC software architecture following the criteria for this decomposition. We

are now going to analyse and decompose Buchberger’s algorithm in this section to

provide a similar decomposition to be used in our code generator.

During this decomposition, we will break down Buchberger’s algorithm in two

different parts:

(1) The main algorithm: This is the main Buchberger’s algorithm that computes

Gröbner bases as per Algorithm 2.56 and further improved in Algorithm 2.61.

The modules in this part correspond exactly to the computations performed by

Buchberger’s algorithm.

(2) The post processing algorithms: These parts are not included in Buchberger’s

algorithm originally, but are required to compute minimal Gröbner bases as per



132 5. The Generative Approach to Algebraic Computations

Algorithm 2.57 and reduced Gröbner bases as per Algorithm 2.58. The modules

in this part of the breakdown perform all the operations required to compute

these derivatives of Gröbner bases.

5.2.1 Main Algorithm

The main part of Buchebrger’s algorithm is decomposed into two feature modules

and three distinct aspect modules:

(1) Container: This feature module represents a (polynomial) container for the

current basis elements. The container module provides methods for adding new

polynomials and retrieving them — either one at a time given a path index or

the entire basis as a set of polynomials.

(2) Working Set: This feature module is responsible for storage and retrieval of

critical pairs of polynomials to compute the S-polynomial. Buchberger’s algo-

rithm originally contained a straight-forward implementation of this module to

analyse every pair of polynomials, but the two criteria in Lemmas 2.59 and 2.60

may be implemented as part of this selection strategy to provide better opti-

mization. This module provides methods for adding, removing, and querying

for critical pairs.

(3) S-Polynomial: This aspect module computes the S-polynomial of two given

polynomials. This module may simply be implemented as defined in Defini-

tion 2.51 using the operations in the supplied polynomial algebra, but some

instances of the problem may specialize to much simpler algorithms for this

module.

(4) Normal Remainder: This aspect module is responsible for computing the

normal remainder (residual) of a polynomial against the current basis mem-

bers. If the residual of the S-polynomial from a selected pair is non-zero, then

a new basis element is to be added. We have already seen two methods of im-

plementing this module: either as remainder of the repeated division by basis

elements (as defined in Definition 2.53) or as the normal form from a polyno-

mial rewrite system as defined in §2.2.4. Theorem 2.39 showed that these two

specializations are equivalent.



5. The Generative Approach to Algebraic Computations 133

(5) Expansion Strategy: This aspect module works complementary to the selec-

tion strategy to expand the working set of critical pairs to be considered. A

direct implementation of this module would add new critical pairs every time

a new basis element is added to the Gröbner basis; however, some implementa-

tions may consider other expansions such as considerations of Buchberger triples

as defined in Lemma 2.60 to the working set.

Control

Expansion
Strategy

S-Polynomial

Normal
Remainder

Working
Set

Container

Legend: Procedure call Process module

Data access Storage module

Figure 5.5: Architecture of main part of Buchberger’s algorithm

Finally, we are introducing a control module at the top layer which controls the

flow of data between the earlier modules. The relationship between these modules

and the access and data flow are depicted in Figure 5.5.

It should come at no surprise that the container and working set feature modules

are parametrized in the choice of polynomial algebra, and that the three processing

aspect modules and the controller aspect module are parametrized by both the choice

of the polynomial algebra and the choice of the container.



134 5. The Generative Approach to Algebraic Computations

5.2.2 Post Processing

Similar to the main section of Buchberger’s algorithm, the post processing component

of the algorithm is decomposed into individual aspect modules for each of the actions.

The principal difference between the aspect modules defined in here and those in §5.2.1

is that the post processing modules have the option of not being provided at all, and

this translates to the choice of having a standard, a minimal, or a reduced Gröbner

basis. The algorithm is broken down into the following aspect modules:

• Reduction: This module is responsible for the removal of superfluous poly-

nomials in the computation of minimal Gröbner bases. Note that even though

this is reducing the size of the basis, the result of a full implementation for this

module leads to a minimal basis (not a reduced Gröbner basis). This mod-

ule could be skipped by the controller if computation of the minimal basis is

not required, but it could also be implemented by a divisibility test of leading

terms as described by Definition 2.45 and Algorithm 2.57, or by other means

of computing superfluous polynomials in combination with other modules such

as the method described by Passmore and Moura [69]. This module provides a

method for deciding whether a polynomial is reducible or not.

• Canonicalization: This module computes the canonical form of each polyno-

mials in a minimal Gröbner basis to compute the reduced Gröbner basis for

the input set of polynomials. Similar to the reduction module, the controller

may choose not to pass data to this module when computation of the reduced

basis is not required. When implemented, this module may produce the same

canonical forms as defined in Definition 2.46 and Algorithm 2.58 for the choice

of the polynomial algebra. Moreover, the implementer might choose a differ-

ent specialization of this module with respect to a different canonicalization

method, such as only computing monic polynomials (this is, in fact, equivalent

to producing a row-echelon matrix when linear polynomials are involved). This

module provides a method to canonicalize a basis element.

The post processing architecture shares the same polynomial container feature

module as that used in the main algorithm, since it needs to perform computations

on the same set of polynomials. The controller module for the post processing may

choose which post processing operations are to be executed, and whether the same



5. The Generative Approach to Algebraic Computations 135

Control

Reduction

Canonicalization

Container

Legend: Procedure call Process module

Data access Storage module

Figure 5.6: Post-processing architecture for reduced and minimal Gröbner bases

container should be used to output the result of the computation or a new container

is to be created. Figure 5.6 demonstrates this decomposition.

Similar to the main algorithm, the two processing modules defined here are both

parametrized by the choices for the polynomial algebra and the container of the

polynomials.

5.2.3 Full Decomposition

Finally, we may combine the two architectures from the main processing section and

the post processing section to provide a full decomposition of the software used in

this thesis. This decomposition contains both the modules from Buchberger’s algo-

rithm and the related modules for processing the data to produce different variations

and flavours of minimal and reduced bases. Additionally, this combined architecture

unifies the polynomial container module used in both part of the algorithm and intro-

duces a new controller module which directs the execution and the data flow between

the multiple involved algorithms. Figure 5.7 provides the full decomposition of the

software used in this thesis. This provides the modular design for the code generator

that we program in the next section.

This architecture introduces two new aspect modules that the main controller

uses for the input set of parameters from the user and the output basis result. The

specialization provided by these modules defines the link between the statement of the

original problem and the translation of this problem to a Gröbner basis computation

problem:



136 5. The Generative Approach to Algebraic Computations

Buchberger

Input

Main

Post
Process

Output

Expansion
Strategy

S-Polynomial

Normal
Remainder

Reduction

Canonical-
ization

Container

Working
Set

Input
Medium

Output
Medium

Procedure call Process module

Legend: Data access Storage module

I/O access External medium

Figure 5.7: General architecture of Buchberger’s algorithm

• Input: The input module is responsible for transforming the problem from the

input domain into a set of polynomials to be solved using the computation of

the Gröbner bases. In §2.4 we provided some of the most popular problems

that can be solved using Gröbner bases and the methods for transforming the



5. The Generative Approach to Algebraic Computations 137

statement of the problem to a question of ideal membership within some poly-

nomial ideal and then interpreting the result as the solution to the proposed

problem. This module performs the computation necessary for the first part of

this transformation.

• Output: As a counterpart to the Input module, this module is responsible

for the second part of the transformation where the result of the algorithm —

provided as a set of polynomials for the Gröbner basis — is translated back into

the domain of the problem to provide the answer.

5.3 Generative Version of Buchberger’s Algorithm

We now have everything that we need for implementing the code generator to instan-

tiate specializations of Buchberger’s algorithm. We have the algebra framework in

F# to use and compute with polynomial algebras, we have a code generation DSL to

program the generator for this algorithm, and we have the modular breakdown for

this program with the theoretical requirements to specialize them. In this section,

we will finally assemble all the topics discussed in this thesis to program the code

generator and show some examples of it.

5.3.1 Interfaces for Modules

We will first define the interfaces for all the modules introduced in §5.2. This includes

the module for polynomial containers, and the aspect modules for input, output,

selection strategy, expansion strategy, S-polynomial, normal remainder, reduction

strategy, and canonical form operations. We do not have the interface for the control

module, and the next section will program the control module as a part of the code

generator.

These aspect modules are closely related to the idea of separation of concerns and

abstract a programmatic section of the code in each method. The methods provided

by these modules are either code generators or state operators. We will refrain from

giving a formal mathematical interface for these modules at this point.

Interface 5.27 (Input Module) The Input module requires an open type ’inp that

defines the type of the input to the problem. The task of this module is to convert

the input of the problem to a set of polynomials — given as the generic type ’itm.



138 5. The Generative Approach to Algebraic Computations

The Process method initializes the Input module and converts the input parameter

to a sequence of polynomials to return to the main controller.

type Input<’itm,’inp> =

abstract Process: Value<’inp> ->

CodeGen<seq<’itm>,’w>

Interface 5.28 (Output Module) Similar to the Input module, the Output module

is responsible to converting the computed Gröbner basis — given as a set of polyno-

mials of generic type ’itm — to the final output type of the problem which has the

type ’out.

The Process method initializes the Output module with the computed Gröbner

basis and converts it to the output data type.

type Output<’itm,’out> =

abstract Process: Value<seq<’itm>> ->

CodeGen<’out,’w>

Interface 5.29 (Container Module) The Container module provides all the stan-

dard container access methods to maintain a set of polynomials. The open type ’cnt

is the type of the container object used. Some examples of container types that may

be used are arrays, lists (vectors), or database access objects.

Similar to the earlier usage in Input and Output modules, the type ’itm designates

the type of polynomials used. Furthermore, an index access type ’idx for polynomials

in the container is provided for referring to the elements in this container. In the case

of standard in-memory data structures such as lists and arrays, this “index” could

simply be the polynomial itself, or in more complex implementations the index is the

identifier for accessing the items from an external storage.

We have not included the removal operations in the container in this interface.

This is due to the fact that the code generator in the next section does not delete any

polynomials from the container, and thus we have not specified the removal operations

to make the container type in the most generalized form.

type Container<’itm,’idx,’cnt> =

abstract Init: Value<seq<’itm>> ->

CodeGen<’cnt,’w>

abstract Add: Value<’cnt> -> Value<’itm> ->

CodeGen<’idx,’w>

abstract Get: Value<’cnt> -> Value<’idx> ->



5. The Generative Approach to Algebraic Computations 139

CodeGen<’itm,’w>

abstract All: Value<’cnt> ->

CodeGen<seq<’itm>,’w>

abstract Indexes: Value<’cnt> ->

CodeGen<seq<’idx>,’w>

Interface 5.30 (Working Set Module) The WorkingSet is provided as the open

type ’ws with parameters ’idx as the index of polynomials within the container and the

container type ’cnt. The methods in this module perform their respective operations

when provided with both the working set and the basis container.

This module provides a code generator Init for initializing the working set of

polynomial pairs and selection strategy, a code generator HasMore which determines

if there are more critical pairs to be computed, a code generator Pick to generate (or

retrieve) a new critical pair (as a tuple of indices) to compute, the Add and Del code

generators to add or remove new pairs to or from the working set of critical pairs,

and finally a code generator All that outputs the sequence of all remaining critical

pairs for analysis purposes.

Note that the working set is essentially a specialization of a container with addi-

tional functionality for altering the storage method depending on the chosen selection

strategy.

type WorkingSet<’idx,’cnt,’ws> =

abstract Init: Value<’cnt> ->

CodeGen<’ws,’w>

abstract Add: Value<’ws> -> Value<’cnt> * Value<’idx>*Value<’idx> ->

CodeGen<unit,’w>

abstract Del: Value<’ws> -> Value<’cnt> * Value<’idx>*Value<’idx> ->

CodeGen<unit,’w>

abstract Pick: Value<’ws> -> Value<’cnt> ->

CodeGen<’idx*’idx,’w>

abstract HasMore: Value<’ws> -> Value<’cnt> ->

CodeGen<bool,’w>

abstract All: Value<’ws> -> Value<’cnt> ->

CodeGen<seq<’idx*’idx>,’w>

Interface 5.31 (Expansion Strategy Module) The ExpansionStrategy module is

parametrized by the type of indices ’idx, the container ’cnt, and the working set ’ws.

The open type ’exp provides the access to the expansion strategy.



140 5. The Generative Approach to Algebraic Computations

The only methods provided by the expansion strategy are the Init code generator

and the Expand code generator. Given the basis container and the selection strategy,

the code generated by Expand function expands the working set by the critical pairs

that contain the newly added polynomial. The expansion strategy decides which

critical pairs are superfluous and omits their inclusion in the working set. The strategy

could take into consideration any signature-based expansion algorithms such as those

defined by Sun and Wang [82].

type ExpansionStrategy<’idx,’cnt,’ws,’exp> =

abstract Init: Value<’cnt> * Value<’ws> ->

CodeGen<’exp,’w>

abstract Expand: Value<’exp> -> Value<’cnt> * Value<’ws> * Value<’idx> ->

CodeGen<unit,’w>

Interface 5.32 (S-Polynomial Module) The SPoly module is implemented as the

open type ’sp and is parametrized by the polynomial type ’poly in the polynomial

algebra, the choice of polynomial basis container ’cnt and the indices of the elements

’idx.

The methods provided by the SPoly module are an initialization generator routine

Init and the σ code generator which, given the container and two polynomial indices

within this container, computes the S-polynomial of the two polynomials. Note that

this resultant S-polynomial is returned as a polynomial value ’poly since it has no

index in the container yet. It is the responsibility of the expansion algorithm to insert

the normal form of this polynomial in the container in the future.

type SPoly<’poly,’idx,’cnt,’sp> =

abstract Init: Value<’cnt> ->

CodeGen<’sp,’w>

abstract σ: Value<’sp> -> Value<’cnt> * Value<’idx>*Value<’idx> ->

CodeGen<’poly,’w>

Interface 5.33 (Normal Remainder Module) The NormalRemainder module is a

generic type ’nr parametrized by the type of polynomials ’poly and the basis container

’cnt and provides a code generator NR which given a polynomial computes its normal

form.

type NormalRemainder<’poly,’cnt,’nr> =

abstract Init: Value<’cnt> ->

CodeGen<’nr,’w>



5. The Generative Approach to Algebraic Computations 141

abstract NR: Value<’nr> -> Value<’cnt> * Value<’poly> ->

CodeGen<’poly,’w>

Interface 5.34 (Reduction Strategy Module) The ReductionStrategy module of

type ’rs provides a code generator Reduce as a part of the post processing algorithm

which, given an index of type ’idx and its container of type ’cnt, decides whether the

given polynomial is reducible with respect to the other polynomials in the container.

This module is only initialized and used when the control is computing a minimal or

a reduced basis.

type ReductionStrategy<’idx,’cnt,’rs> =

abstract Init: Value<’cnt> ->

CodeGen<’rs,’w>

abstract Reduce: Value<’rs> -> Value<’cnt> * Value<’idx> ->

CodeGen<bool,’w>

Interface 5.35 (Canonical Form Module) The CanonicalForm module of type ’cf

provides a code generator Canonicalize as a part of the post processing algorithm that

computes the canonical form of a given polynomial of type ’poly with respect to the

basis container of type ’cnt. The control module only initializes and calls this module

if computation of the reduced Gröbner bases is needed.

type CanonicalForm<’poly,’cnt,’cf> =

abstract Init: Value<’cnt> ->

CodeGen<’cf,’w>

abstract Canonicalize: Value<’cf> -> Value<’cnt> * Value<’poly> ->

CodeGen<’poly,’w>

We will see some implementations of these modules in §5.3.3 with examples of

their usage.

5.3.2 Implementation of the Generation Algorithm

The code generator requires an implementation of the polynomial algebra and every

one of the modules described in the last section to generate the instance of Buch-

berger’s algorithm specialized for the described problem. The generator is able to

produce many different instances of the algorithm by mixing and matching different

implementations of each module. For example, the generation of the solver for Linear



142 5. The Generative Approach to Algebraic Computations

Programming specialization shares all the modules in common with the full generic

instance of Buchberger’s algorithm with a different specialization of Input and Output

modules. Similarly, multiple implementations of each algorithm can be generated by

changing the choice of the polynomial algebra to reflect different fields of coefficients.

The code generator for the control modules requires two more parameters which we

have not defined yet: The choice of which flavour of Gröbner bases is being generated,

and generation of tracing and debugging information.

Definition 5.36 (Basis Kind) The type BasisKind is an input to the main con-

troller of the code generator and describes which version of the algorithm is to be

implemented. A value of StandardBasis only computes a Gröbner basis for the given

input, whereas a value of MinimalBasis computed a minimal Gröbner basis by invok-

ing the ReductionStrategy module, and a value of ReducedBasis computes the reduced

Gröbner basis by invoking both the ReductionStrategy and CanonicalForm modules.

type BasisKind =

| StandardBasis

| MinimalBasis

| ReducedBasis

Definition 5.37 (Trace Generation) We are introducing an additional module for

debugging and tracing which generates print statements in the output program to re-

port on the progress of the solver during the execution as well as printing information

about selected critical pairs of polynomials and their resultants. In §5.3.3 we will see

how this aspect module helps with both writing examples and as a teaching tool for

Gröbner bases computation.

type Trace =

abstract Level: int

abstract Write: int -> Value<’a> ->

CodeGen<unit,’w>

abstract WriteLine: int -> Value<’a> ->

CodeGen<unit,’w>

The one advantage of generating trace and debug statements at generation time

instead of execution is that if the user opts not to have any debugging in the code,

the generated algorithm is completely free of any conditional or printing statements

that would have otherwise been deactivated.



5. The Generative Approach to Algebraic Computations 143

Interface 5.38 (Gröbner Bases Solver Generator) The GBSolver function is the

main code generator of this thesis that inputs all the modules and data defined in this

thesis so far and generates a specialized solver program for finding the Gröbner bases

defined by the input parameters. The output from this program is an expression

which embodies the solver program. We will rely on the predicates Gröbner, Minimal

and Reduced which check if a given basis is a Gröbner basis, minimal, and reduced

respectively, as defined in §2.2.5.

p|GBSolver|f |=
p = (DB,BK,PA, IP,PC,SS,ES,SP,NR,RS,CF,OP) ∧
DB ||= Trace ∧
BK ∈ BasisKind ∧
PA ||= PolynomialAlgebra C, M, T, Poly ∧
IP ||= Input Poly, Inp ∧
PC ||= Container Poly, Idx, Cnt ∧
SS ||= SelectionStrategy Idx, Cnt, Sel ∧
ES ||= ExpansionStrategy Idx, Cnt, Sel, Exp ∧
SP ||= SPoly Poly, Idx, Cnt, Sp ∧
NR ||= NormalRemainder Poly, Cnt, Nr ∧
RS ||= ReductionStrategy Idx, Cnt,Rs ∧
CF ||= CanonicalForm Poly, Cnt, Cf ∧
OP ||= Output Poly, Out _
f̄ ∈ pInp → Outq ∧
∀σ∈Σ i|JfKσ|o |=

i ⊂ C[~x] _
ō ⊂ C[~x] ∧
〈i〉 = 〈ō〉 ∧
Gröbner(ō) ∧
BK ∈ {MinimalBasis,ReducedBasis} ⇒ Minimal(ō) ∧
BK = ReducedBasis ⇒ Reduced(ō)

Implementation 5.39 (Gröbner Bases Solver Generator)
let GBSolver(DB:Trace,

BK:BasisKind,

PA:PolynomialAlgebra<_,_,_,_>,

IP:Input<_,_>,

PC:Container<_,_,_>,

WS:WorkingSet<_,_,_>,

ES:ExpansionStrategy<_,_,_,_>,

SP:SPoly<_,_,_,_>,

NR:NormalRemainder<_,_,_>,



144 5. The Generative Approach to Algebraic Computations

RS:ReductionStrategy<_,_,_>,

CF:CanonicalForm<_,_,_>,

OP:Output<_,_>) =

// Generative implementation of Buchberger’s algorithm

let gen f = codegen {

do! StateRecord("Basis Kind").Extend BK

// Initialize main modules

let! _ = DB.WriteLine 1 <| V"Begin initialization"

let! ip = IP.Process f

let! pc = PC.Init ip

let! ws = WS.Init pc

let! es = ES.Init (pc,ws)

let! sp = SP.Init pc

let! nr = NR.Init pc

let! _ = DB.WriteLine 1 <| V"Initialization complete"

// Loop through all pairs of polynomials

while WS.HasMore ws pc do

// Pick a pair of polynomials

use! p = WS.Pick ws pc

let! _ = DB.Write 2 <| V"Picked pair: "

let! _ = DB.WriteLine 2 p

// Calculate the S-Polynomial

use! σ = SP.σ sp (pc, Fst p, Snd p)

let! _ = DB.Write 3 <| V" - Residual = "

let! _ = DB.WriteLine 3 σ

// Calculate the normal remainder of the s-poly

use! nr_σ = NR.NR nr (pc,)

let! _ = DB.Write 3 <| V" - Normalized = "

let! _ = DB.WriteLine 3 nr_σ

// If the new polynomial did not reduce to 0

yield! IfU (Not (PA.isZero nr_σ)) <| codegen {

// Add new polynomial

use! j = PC.Add pc nr_σ

let! _ = DB.Write 2 <| V" * Adding new polynomial #"

let! _ = DB.WriteLine 2 j



5. The Generative Approach to Algebraic Computations 145

// Expand the set of polynomial pair according to the newly added element

yield! ES.Expand es (pc,ws,j)

}

let! _ = DB.WriteLine 1 <| V"Begin post-processing"

let! res =

if BK = StandardBasis then PC.All pc

else codegen {

// Initialize modules for computing reduced/minimal Groebner bases

let! rs = RS.Init pc

let! cf = CF.Init pc

let! idx = PC.Indexes pc

let! _ = DB.WriteLine 1 <| V"Reductions initiated"

// Reduce unnecessary polynomials (compute reduced GB)

let! idx’ = Iterate Seq.Filter idx <| fun i -> codegen {

use! b = RS.Reduce rs (pc,i)

let! _ = DB.Write 2 <| V"Polynomial #"

let! _ = DB.Write 2 i

let! _ = DB.WriteLine 2 <| Control.If b (V" is redundant") (V" 

does not reduce")

yield Not b

}

yield! Iterate Seq.Map idx’ <| fun i -> codegen {

let! c_i = PC.Get pc i

yield!

if BK = MinimalBasis then Return c_i

else codegen {

// Canonicalize polynomials (compute minimal GB)

let! p = CF.Canonicalize cf (pc,c_i)

let! _ = DB.Write 3 <| V" - Canonicalized = "

let! _ = DB.WriteLine 3 p

yield p

}

}

}

// The basis output

let! _ = DB.WriteLine 1 <| V"Returning result"

return! OP.Process res

}



146 5. The Generative Approach to Algebraic Computations

gen |> Fun |> Generate

The type of this function is:

val GBSolver :

Trace * BasisKind * PolynomialAlgebra<’a,’b,’c,’d> * Input<’d,’e> *

Container<’d,’f,’g> * WorkingSet<’h,’g,’i> * ExpansionStrategy<’f,’g,’i,’j> *

SPoly<’d,’h,’g,’k> * NormalRemainder<’d,’g,’l> *

ReductionStrategy<’f,’g,’m> * CanonicalForm<’d,’g,’n> * Output<’d,’o> ->

Value<(’e -> ’o)>

which inputs the twelve choices for specializing the generator and outputs a specialized

implementation of Buchberger’s algorithm as a function of type ’e -> ’o.

5.3.3 Sample Implementations

We start the first example usage of this code generator to construct a program that

corresponds to Algorithm 2.56. Before doing so, we provide some implementations

of the modules that are of general use, but also directly apply to this instance of the

problem.

Implementation 5.40 (No Tracing) The simplest implementation of the Trace

module produces no debug information.

module Debug =

let NoTrace<’a> =

{ new Trace with

member t.Level = 0

member t.Write _ _ = Return Unit

member t.WriteLine _ _ = Return Unit

}

Implementation 5.41 (Direct I/O) The direct version of the Input and Output

modules do not perform any data processing on the input and output, thereby making

the types of the in/out data a sequence of polynomials to be directly processed by the

main algorithm. Notice that these special modules “disappear” after the generation

stage since they do not produce any code at all.

module Input =

let InBasis<’c> =

{ new Input<’c,_> with

member i.Process r = Return r

}



5. The Generative Approach to Algebraic Computations 147

module Output =

let OutBasis<’c> =

{ new Output<’c,_> with

member o.Process c = Return c

}

Implementation 5.42 (Identity Post Process) The identity implementations of

the ReductionStrategy and CanonicalForm modules perform no operations on the data.

When the basis kind parameter is set to StandardBasis, the generator does not use

these modules, but null is not an acceptable implementation for any module inter-

faces. Thus, we need to introduce an identity implementation of these two modules

that perform no operation.

module ReductionStrategy =

let NoReduction<’i,’c> =

{ new ReductionStrategy<’i,’c,_> with

member s.Init _ = Return Unit

member s.Reduce _ (_,_) = Return False

}

module CanonicalForm =

let NoOperation<’t,’c when ’t: equality> =

{ new CanonicalForm<’t,’c,_> with

member f.Init _ = Return Unit

member f.Canonicalize _ (_,p) = Return p

}

Implementation 5.43 (List Container) The ListContainer implementation of the

Container module implements the polynomial container as a .NET List with integer

indices.

module Container =

let ListContainer<’p> =

{ new Container<’p,_,_> with

member lc.Init s = Let <| Return (List.New s)

member lc.Add l p = codegen {

yield List.Add l p

return Idx.sub (List.Count l) Idx.one

}

member lc.Get l i = Return <| List.Item l i

member lc.All l = Return <| Seq.CastTo l



148 5. The Generative Approach to Algebraic Computations

member lc.Indexes l = codegen {

let b = Idx.zero

let e = Idx.sub (List.Count l) Idx.one

return Seq.Make b e

}

}

Implementation 5.44 (Direct Critical Pair Selection) The simple implemen-

tation of the working set chooses critical pairs of polynomials in computation of

Gröbner bases by exhaustively analysing every possible pair and compute the resid-

uals. DirectPick implements this selection strategy by using a list of pairs of indices

from the container. Other specializations of this module will be used later, such as

the implementation of choosing the critical pair with the smallest lcm.

module WorkingSet =

let DirectPick<’i,’c> =

{ new WorkingSet<’i,’c,_> with

member s.Init _ = Let <| Return (List.Empty())

member s.Add l (_,i,j) = codegen {

return List.Add l (Pair i j)

}

member s.Del l (_,i,j) = codegen {

return Control.Ignore(List.Remove l (Pair i j))

}

member s.HasMore l _ = codegen {

return (List.Count l) ^> Idx.zero

}

member s.Pick l _ = codegen {

use h = List.Item l Idx.zero

yield List.RemoveAt l Idx.zero

return h

}

member s.All l _ = Return <| Seq.CastTo l

}

Implementation 5.45 (Direct Critical Pair Expansion) Similar to the direct

selection strategy, the DirectExpand module implementation expands the working set

of critical pairs by all the possible combinations of the new polynomials and the

existing basis elements.

module ExpansionStrategy =



5. The Generative Approach to Algebraic Computations 149

let DirectExpand(C:Container<_,_,_>,S:WorkingSet<_,_,_>) =

{ new ExpansionStrategy<_,_,_,_> with

member e.Init(c,s) = Prepend <| codegen {

let! l = C.Indexes c

for i in Seq.AllPairs l do

yield! S.Add s (c, Fst i, Snd i)

}

member e.Expand _ (c,s,j) = codegen {

let! l = C.Indexes c

for i in l do

yield! IfU (i ^<> j) (S.Add s (c,i,j))

}

}

Implementation 5.46 (Generic S-Polynomials) The direct method of comput-

ing S-polynomials is to implement Sσ,ρ1,ρ2 from Definition 2.51 using the methods

provided by the polynomial algebra.

module SPoly =

let GenericSPoly(A:PolynomialAlgebra<_,_,_,_>,C:Container<_,_,_>) =

{ new SPoly<_,_,_,_> with

member p.Init _ = Return Unit

member p.σ _ (c,i,j) = codegen {

let! c_i = C.Get c i

let! c_j = C.Get c j

let lm_i = A.LM c_i

let lm_j = A.LM c_j

let lc_i = A.LC c_i

let lc_j = A.LC c_j

let t1 = A.mul (A.fromTerm (A.CR.τ lc_i lc_j)

(A.TM.MM.τ lm_i lm_j)) (A.RT c_i)

let t2 = A.mul (A.fromTerm (A.CR.τ lc_j lc_i)

(A.TM.MM.τ lm_j lm_i)) (A.RT c_j)

return A.sub t1 t2

}

}

Implementation 5.47 (Polynomial Remainders) Similar to the generic S poly-

nomial generator, the PolyDivNR implementation of NormalRemainder computes the nor-

mal remainders by using the division algorithm provided by the polynomial algebra



150 5. The Generative Approach to Algebraic Computations

as explained in Definition 2.53. We may also specialize this module by implementing

the normal remainders as a polynomial rewrite system as defined in §2.2.4.

module NormalRemainder =

let Remainder (A:PolynomialAlgebra<_,_,_,_>) =

let remainder rec_rem c p = Generate <| codegen {

use p’ = Seq.Fold (BinaryOp.Flatten A.rem) p c

return Control.If (p’ ^<> p) (Function.Apply2 rec_rem c p’) p’

}

DefineOnceRec "remainder" (fun rem -> BinaryOp.Flatten <| remainder rem)

let PolyDivNR(A:PolynomialAlgebra<_,_,_,_>,C:Container<_,_,_>) =

{ new NormalRemainder<_,_,_> with

member d.Init _ = Remainder A

member d.NR n (c,p) = codegen {

let! a = C.All c

return Function.Apply2 n a p

}

}

Example 5.48 (Generated Buchberger’s Algorithm) We can now generate Al-

gorithm 2.56 using all the module implementations defined so far. This example gen-

erates an instance of Buchberger’s algorithm that computes a standard basis (not

minimal). The polynomials are over the field QQ as defined by Example 5.13 which

is the implementation of the field of rationals Q using BigRational arithmetic. The

polynomials are implemented as a list of generic terms over dense monomials, and

the terms are ordered according to Lex term ordering. We will use a .NET list as

the container of the basis elements and use no special optimization techniques in the

computation of the Gröbner bases without generating any trace information:

let t = Debug.NoTrace

let bk = StandardBasis

let K = Field.QQ

let mg = MonomialMonoid.Dense

let tm = TermModule.Generic(K,mg)

let ord = TermOrder.Dense.Lex mg

let pa = PolynomialAlgebra.Generic(tm,ord)

let ip = Input.InBasis

let pc = Container.ListContainer

let ws = WorkingSet.DirectPick

let es = ExpansionStrategy.DirectExpand(pc,ws)



5. The Generative Approach to Algebraic Computations 151

let sp = SPoly.GenericSPoly(pa,pc)

let nr = NormalRemainder.PolyDivNR(pa,pc)

let rs = ReductionStrategy.NoReduction

let cf = CanonicalForm.NoOperation

let op = Output.OutBasis

let gb = GBSolver(t,bk,pa,ip,pc,ws,es,sp,nr,rs,cf,op)

After execution, the following code is generated:

1 fun a_1 ->

2 let v_1 = new List<(BigRational * seq<int>) list> (a_1)

3 let v_2 = new List<int * int> ()

4 for i_1 in List.allPairs {0 .. v_1.Count - 1} do

5 v_2.Add (fst i_1, snd i_1)

6 let rec remainder i j =

7 let t_1 = Seq.fold (fun i j -> snd (longdiv i j)) j i

8 if t_1 <> j then remainder i t_1 else t_1

9 while v_2.Count > 0 do

10 let t_1 = v_2.[0]

11 let t_2 = v_2.RemoveAt 0; t_1

12 let t_3 = sub

13 (mul v_1.[fst t_2].Tail

14 [(fst v_1.[snd t_2].Head),

15 τ (snd v_1.[fst t_2].Head) (snd v_1.[snd t_2].Head)])

16 (mul v_1.[snd t_2].Tail

17 [(fst v_1.[fst t_2].Head),

18 τ (snd v_1.[ snd t_2].Head) (snd v_1.[fst t_2].Head)])

19 let t_4 = remainder v_1 t_3

20 if not t_4.IsEmpty then

21 let t_5 = v_1.Add t_4; v_1.Count - 1

22 for i_1 in 0 .. v_1.Count - 1 do

23 if i_1 <> t_5 then v_2.Add (i_1, t_5)

24 v_1

This is a printout of the code generated directly by the code generator. The

printout has been edited for presentation purposes, but the content has not changed.

We made the following changes to the output of the program presented above:

• The beginning of the lines have been indented by spaces to improve readability.

• Some statements have been broken down in multiple lines to fit the width of

the page. Lines 12− 18 are an example of a line for which we had to insert line

breaks.



152 5. The Generative Approach to Algebraic Computations

• Extraneous parentheses have been removed to improve readability. For example,

in line 19 the original statement generated is:

let t_4 = (((remainder)(v_1))(t_3))

• Lists are compiled and generated using the :: list constructor. We replaced

these instances with the equivalent inline syntax of [...] for presentation.

With the exception of the syntactic sugar listed above, the presented code is exactly

as provided by the code generator.

GBSolver
Result

Buchberger’s
Algorithm

Description

Line 1 Line 1 Parameter a_1 is the input F to the program.
Line 2 Line 2 Variable v_1 is the Gröbner basis G, initialized

to the input F (a_1).
Lines 3-5 Line 3 Variable v_2 is the working set B, initialized to

all the pairs of elements from G (v_1).
Lines 6-8 — Introducing function remainder that computes

normal remainders NRG.
Line 9 Line 4 Loops until the working set B (v_2) is empty.
Lines 10,11 Lines 5,6 Picks out the variable t_2 as the critical pair

〈i, j〉 from the working set B (v_2).
Lines 12-18 Line 7 Computes the S-polynomial σ = SGi,Gj of the

critical pair 〈i, j〉 stored in t_2 as the variable
t_3.

Line 19 Line 8 Computes the normal remainder (remainder)
s = NRGσ of t_3 as the variable t_4.

Line 20 Line 9 Checks if the residual s (t_4) is non-zero.
Line 21 Line 10 Adds the new polynomial s (t_4) to the com-

puted basis G (v_1).
Lines 22,23 Line 11 Adds all the new critical pairs that use s (t_4)

to the working set B (v_2).
Line 24 Line 12 Returns the computed Gröbner basis G (v_1).

Figure 5.8: Comparison of Algorithm 2.56 and the result of GBSolver code generator

Figure 5.8 shows a line-by-line comparison of this generated code and the state-

ment of Buchberger’s Algorithm in §2.3.

2



5. The Generative Approach to Algebraic Computations 153

To implement the improved Buchberger’s algorithm outlined in Algorithm 2.61,

we need to introduce different selection and expansion strategies which implement

Buchberger’s two criteria.

Implementation 5.49 (Buchberger’s Criteria) A specialization of the expan-

sion strategy which implements Buchberger’s two criteria as shown in Lemmas 2.59

and 2.60 is provided as the implementation ExpandBuchbergerTriples. This implemen-

tation is specialized to: (1) only expand by critical pairs whose leading monomials

are relatively prime (i.e. do not satisfy Buchberger’s first criterion), and (2) do not

expand the working set by any Buchberger triples that satisfy Buchberger’s second

criterion.

module ExpansionStrategy =

...

let InTriple (A:PolynomialAlgebra<_,_,_,_>) =

let in_triple dic ids k i = codegen {

use t_i = Dictionary.Item dic i

let! test = Iterate Seq.Forall ids <| fun j -> codegen {

use t_j = Dictionary.Item dic j

use lcm = A.TM.MM.lcm t_i t_j

return (j ^= i)

^|| ((j ^< i) ^&& (lcm ^<> t_i))

^|| ((j ^> i) ^&& (lcm ^<> t_j))

}

return (i ^<> k) ^&& test

}

DefineOnce "in_triple" <| Generate(Fun4 in_triple)

let ExpandBuchbergerTriples(

A:PolynomialAlgebra<_,_,_,_>,

C:Container<_,’idx,_>,

S:SelectionStrategy<_,_,_>) =

{ new ExpansionStrategy<_,_,_,_> with

member e.Init(c,s) = codegen {

let! in_triple = InTriple A

return! PrependV in_triple <| codegen {

let! l = C.Indexes c

for i in Seq.AllPairs l do

yield! S.Add s (c, Fst i, Snd i)

}

}



154 5. The Generative Approach to Algebraic Computations

member e.Expand es (c,s,k) = codegen {

use! ids = C.Indexes c

use dic = Dictionary.New()

let! c_k = C.Get c k

use p = A.LM c_k

for i in ids do

let! c_i = C.Get c i

yield Dictionary.Add dic i (A.TM.MM. p (A.LM c_i))

use a = Seq.Filter (Function.Apply3 es dic ids k) ids

let! pairs = S.All s c

let filter p = codegen {

let! t1 = Iterate Seq.Exists a <| fun i ->

Return(i ^<> (Fst p))

let! t2 = Iterate Seq.Exists a <| fun i ->

Return(i ^<> (Snd p))

return t1 ^&& t2

}

use! d = Iterate Seq.Filter (Seq.ToList pairs) filter

for i in d do

yield! S.Del s (c, Fst i, Snd i)

for i in a do

yield! S.Add s (c,i,k)

}

}

Implementation 5.50 (Least LCM Selection) This specialization of the work-

ing set improves on the optimization of the algorithm by giving selection priority

to critical pairs whose leading monomials have the smallest least common multiple.

These critical pairs are more likely to lead to new basis elements as shown by Gebauer

and Möller [39].

module WorkingSet =

...

let MakeComparer f1 f2 =

{ new IComparer<_> with

member c.Compare(x,y) = match f1 x y with 0 -> f2 x y | n -> n }

let LeastLCMPick(A:PolynomialAlgebra<_,_,_,_>,C:Container<_,_,_>) =

{ new WorkingSet<_,_,_> with

member s.Init _ = Let <| codegen {

let f1 x y = A.cmp (Fst x) (Fst y)

let f2 x y = Compare (Snd x) (Snd y)



5. The Generative Approach to Algebraic Computations 155

let cmp = BinaryOp.Lift MakeComparer <@MakeComparer@>

return SortedSet.New <|

cmp (BinaryOp.Flatten f1) (BinaryOp.Flatten f2)

}

member s.Add l (c,i,j) = codegen {

let! c_i = C.Get c i

let! c_j = C.Get c j

let lcm = A.TM.MM.lcm (A.LM c_i) (A.LM c_j)

let t = Pair lcm (Pair i j)

return Control.Ignore <| SortedSet.Add l t

}

member s.Del l (c,i,j) = codegen {

let! c_i = C.Get c i

let! c_j = C.Get c j

let lcm = A.TM.MM.lcm (A.LM c_i) (A.LM c_j)

let t = Pair lcm (Pair i j)

return Control.Ignore <| SortedSet.Remove l t

}

member s.HasMore l _ = codegen

return (SortedSet.Count l) ^> Idx.zero

}

member s.Pick l _ = codegen {

use h = SortedSet.Min l

yield Control.Ignore <| SortedSet.Remove l h

return Snd h

}

member s.All l _ = Return <| Seq.Map (UnaryOp.Flatten Snd) l

}

Additionally, to perform the post-processing operations for the generation of min-

imal and reduced Gröbner bases, we have the following two implementations of the

reduction strategy and canonical forms.

Implementation 5.51 (Minimal Gröbner Basis) This specialization of the re-

duction strategy module computes the minimal Gröbner basis by divisibility of the

leading terms (as provided by the polynomial algebra) between the computed basis

elements to reduce the superfluous polynomials.

module ReductionStrategy =

...

let EliminateDivisors(A:PolynomialAlgebra<_,_,_,_>,C:Container<_,_,_>) =



156 5. The Generative Approach to Algebraic Computations

{ new ReductionStrategy<_,_,_> with

member s.Init c = Let <| codegen {

let! idx = C.Indexes c

return List.New idx

}

member s.Reduce rs (c,i) = codegen {

let! c_i = C.Get c i

use lm_i = A.LM c_i

let! loop = Iterate Seq.Exists rs (fun j ->

If (j ^= i)

(Return False) <|

codegen {

let! c_j = C.Get c j

use lm_j = A.LM c_j

let lcm = A.TM.MM.lcm lm_i lm_j

return lcm ^= lm_i

})

yield Control.If loop (List.Remove rs i) False

}

}

Implementation 5.52 (Reduced Gröbner Basis) As the last stage of the post

processing operations, to compute the reduced Gröbner basis the ReducedBasis spe-

cialization of the canonical form module first creates a monic polynomial from every

computed basis element by scaling the entire polynomial by the inverse of the lead-

ing coefficient as provided by the polynomial algebra. To compute this inverse, we

require the coefficients of the polynomials to form a field structure. It is possible that

another specialization of this module performs fraction-free scaling of the elements

using a quotient ring instead of a field.

Secondly, this module generates a canonicalization function in the output code

that performs the reduction algorithm on every term in the basis elements using

polynomial division. It is possible for another specialization of this module to provide

the same canonicalization using a polynomial rewrite system instead.

module CanonicalForm =

...

let Canonicalize (A:PolynomialAlgebra<_,_,_,_>) =

let canonicalize rec_can remainder c p = Generate <| codegen {

return! If (A.isZero p) (Return p) <| codegen {

use rt = A.RT p



5. The Generative Approach to Algebraic Computations 157

let nrt = Function.Apply2 remainder c rt

use rt’ = Function.Apply2 rec_can c nrt

return A.add (A.sub p rt) rt’

}

}

codegen {

let! remainder = NormalRemainder.Remainder A

yield! DefineOnceRec "canonicalize" (fun rec_can ->

BinaryOp.Flatten <| canonicalize rec_can remainder)

}

let ReducedBasis(A:PolynomialAlgebra<_,_,_,_>,C:Container<_,_,_>) =

{ new CanonicalForm<_,_,_> with

member f.Init _ = Canonicalize A

member f.Canonicalize r (c,p) = codegen {

let! a = C.All c

use cf = Function.Apply2 r a p

return A.scalar (Field.Inverse A.TM.CR (A.LC cf)) cf

}

}

Example 5.53 (Trace Generation) This example demonstrates the usefulness of

the trace generation as both a debugging tool and an illustration and teaching method.

We show in this example how the samples in §2.3.5 were actually entirely generated

using this program!

We will set up the parameters to the generator with the same values as Ex-

ample 5.48, with the difference of generating the reduced Gröbner basis by set-

ting the basis kind to ReducedBasis and providing the modules ReductionStrategy.

EliminateDivisors and CanonicalForm.ReducedBasis for post processing operations. Ad-

ditionally, we define and use the following Trace module:

module Debug =

...

let ConsoleTrace cap =

{ new Trace with

member t.Level = cap

member t.Write lvl s =

if lvl > cap then Return Unit

else print <@ System.Console.Write @> s |> Return |> Prepend

member t.WriteLine lvl s =



158 5. The Generative Approach to Algebraic Computations

if lvl > cap then Return Unit

else print <@ System.Console.WriteLine @> s |> Return |> Prepend

Let the function gb be the result of this code generator with trace level 5, and

let function makepoly be a function of type (BigRational * #seq<int>)list -> term<

BigRational,seq<int>> list that produces the sample polynomials:

let f1 = makepoly[1N,[2;0;0]; 1N,[0;1;0]; 1N,[0;0;1]; -1N,[0;0;0]]

let f2 = makepoly[1N,[1;0;0]; 1N,[0;2;0]; 1N,[0;0;1]; -1N,[0;0;0]]

let f3 = makepoly[1N,[1;0;0]; 1N,[0;1;0]; 1N,[0;0;1]; -1N,[0;0;0]]

These values correspond to the polynomials

f1 = x2 + y + z − 1, f2 = x+ y2 + z − 1, f3 = x+ y + z − 1

from §2.3.5. The result of executing gb [f1;f2;f3] produces the following transcript:

> gb [f1;f2;f3];;

Begin initialization

Initialization complete

Picked pair: (0, 1)

- Residual = [(-1N,[1;2;0]); (-1N,[1;0;1]); (1N,[1;0;0]);

(1N,[0;1;0]); (1N,[0;0;1]); (-1N,[0;0;0])]

- Normalized = [(1N,[0;4;0]); (2N,[0;2;1]); (-2N,[0;2;0]);

(1N,[0;1;0]); (1N,[0;0;2]); (-1N,[0;0;1])]

* Adding new polynomial #3

Picked pair: (0, 2)

- Residual = . . .

- Normalized = [(1N,[0;3;0]); (1N,[0;2;1]); (-1N,[0;2;0]);

(1N,[0;1;1]); (1N,[0;0;2]); (-1N,[0;0;1])]

* Adding new polynomial #4

Picked pair: (1, 2)

- Residual = . . .

- Normalized = [(1N,[0;2;0]); (-1N,[0;1;0])]

* Adding new polynomial #5

Picked pair: (0, 3)

- Residual = . . .

- Normalized = []

Picked pair: (1, 3)

- Residual = . . .

- Normalized = []

Picked pair: (2, 3)

- Residual = . . .

- Normalized = [(-2N,[0;1;1]); (-1N,[0;0;2]); (1N,[0;0;1])]



5. The Generative Approach to Algebraic Computations 159

* Adding new polynomial #6

Picked pair: (0, 4)

- Residual = . . .

- Normalized = [(-1/2N,[0;0;3]); (1/2N,[0;0;1])]

* Adding new polynomial #7

Picked pair: (1, 4)

- Residual = . . .

- Normalized = []

...

Begin post-processing

Reductions initiated

Returning result

Polynomial #0 is redundant

Polynomial #1 is redundant

Polynomial #2 does not reduce

- Canonicalized = [(1N,[1;0;0]); (1N,[0;1;0]); (1N,[0;0;1]); (-1N,[0;0;0])]

Polynomial #3 is redundant

Polynomial #4 is redundant

Polynomial #5 does not reduce

- Canonicalized = [(1N,[0;2;0]); (-1N,[0;1;0])]

Polynomial #6 does not reduce

- Canonicalized = [(1N,[0;1;1]); (1/2N,[0;0;2]); (-1/2N,[0;0;1])]

Polynomial #7 does not reduce

- Canonicalized = [(1N,[0;0;3]); (-1N,[0;0;1])]

This produces the three examples in §2.3.5 step by step. The monic polynomials in

that section were produced by a different specialization of the canonical form module,

CanonicalForm.NormalizePoly, which only puts the basis elements in monic form and

does not perform any back-propagation.

2

Finally, it would be worthwhile to demonstrate how many variations of Buch-

berger’s algorithm we are able to generate using only the module specializations pro-

vided in this chapter. There are many more possible specializations of these modules

possible and we are only demonstrating the variations that produce a full version of

Buchberger’s algorithm using generic multi-variate polynomials. The special forms of

polynomials and generation of sub-algorithms will be the subject of the next chapter.

Figure 5.9 shows all the combinations of the modules that we used to generate

221,184 different instances of Buchberger’s algorithm.



160 5. The Generative Approach to Algebraic Computations

Module Count Description
Field 6 One implementation of integers modulo a prime

and two implementations of rationals, plus three
implementations of complex numbers.

MonomialMonoid 2 Dense and Sparse representations
TermModule 1 Generic terms
TermOrder 4 Lex, RevLex, DegLex, and DegRevLex orderings
PolynomialAlgebra 1 Generic polynomials
Input 4 Identity input, constant input basis, reading from

files (or keyboard), converting a matrix to set of
linear polynomials

Output 3 Identity output, writing to files (or screen), con-
verting linear polynomials to a coefficient matrix

Container 3 Linear storage with indices as polynomials, List

storage, out-of-memory storage (file or database)
with row ids as index

SelectionStrategy 2 DirectPick and LeastLCMPick

ExpansionStrategy 4 Direct expanding, or using Buchberger criteria 1,
2, or both

Spoly 1 GenericSPoly

NormalRemainder 2 Using polynomial division with remainder, or us-
ing a polynomial rewrite system

ReductionStrategy 2 No reduction (standard basis), or eliminating the
redundant polynomials

CanonicalForm 4 No operation (minimal or standard basis), produc-
ing only monic polynomials, or full reduction of
basis using either polynomial division or a rewrite
system

Figure 5.9: Specializations Provided For Each Module



Chapter 6

Specializations of Gröbner Bases

Computation Algorithms

There are many specialized algorithms that can be generated by the code generator

from §5 as depicted by Figure 5.9, but we mentioned earlier that any sub-algorithm

of Buchberger’s algorithm may also be specialized and generated using this code

generator. In this chapter we analyse two of the most common specializations of the

algorithm: Gaussian Elimination and Euclidean Algorithm.

6.1 Gaussian Elimination

We originally introduced the Gaussian Elimination specialization of Buchberger’s

algorithm as finding a Gröbner basis for a set of linear polynomials. We first need to

explore what properties this choice of linear polynomials entails, and then specialize

the related modules in our code generator to reflect these definitions. Finally, we

compare the generated algorithm to the actual statement of Gaussian Elimination.

6.1.1 Properties of Linear Polynomials

We first analyse the properties of choosing a linear system of polynomials represented

as the polynomial algebra behind the computation of Gröbner bases. In this section

we will define a representation method for linear polynomials analogous to matrices

used in Gaussian Elimination and draw parallels between polynomials computations

and row operations performed in matrix computations. We also briefly demonstrate

161



162 6. Specializations of Gröbner Bases Computation Algorithms

how Buchberger’s algorithm performs in cubic time complexity when given this choice

of polynomials.

Assume we have a system of m linear polynomials in n variables

pj =
n−1∑
i=0

aj,ixi + aj,n , for j = 0, . . . ,m− 1

with the σ = lex term ordering, i.e. i < j ⇔ xi > xj, i.e., x0 > x1 > · · · > xn−1.

Definition 6.1 For each j, 0 ≤ j < n, the polynomial pj is represented as the row

vector ~aj = [aj,0; · · · ; aj,n]. Let ~x be the column vector

~x =


x0

...

xn−1

1

 ,
then

pj = ~aj · ~x =
n−1∑
i=0

aj,ixi + aj,n.

This immediately leads to the m × n + 1 matrix A = (ai,j) and the system of

equations is represented by A× ~x. In this case, performing a computation with two

polynomials pi and pj can be re-interpreted as performing a row operation on the

rows ~ai and ~aj, respectively. The solution of the system of equations is isomorphic to

computing the Gaussian Elimination of the matrix A. The algebraic variety formed

from the ideal I = 〈p0, . . . , pm−1〉 is the set of points in Rn where pi(~x) = 0 for all i,

which is the set of solutions to the system of equations mentioned earlier. Therefore

we can use Buchberger’s algorithm together with elimination theorems to achieve the

same result as solving the system of equations.

The following results directly compare polynomial computations to row opera-

tions:

Definition 6.2 Let Pt be the subset of {p0, . . . , pm−1} whose leading monomial is xt.

We will use this definition for groups of polynomials throughout the computation of a

Gröbner basis for the linear system given above. Note that given a polynomial group

Pt, all the polynomials in this group share the same leading monomial xt. i.e., the

first non-zero entry in the vector representation of every polynomial is on column t.



6. Specializations of Gröbner Bases Computation Algorithms 163

Lemma 6.3 At any stage in computation of the Gröbner basis, given the pair 〈f, g〉
of polynomials to consider;

f ∈ Pt ∧ g ∈ Ps ∧ p 6= s⇒ NRσ,GSf,g = 0

Proof LMσf = xt since f ∈ Pt; similarly, LMσg = xs since g ∈ Ps. Therefore,

lcm(LMσf,LMσg) = xtxs since xt 6= xs.

By Lemma 2.59, Sf,g
G
� 0. Since the algorithm only considers polynomials that are

already placed in G, then we know that {f, g} ⊆ G. Therefore, NRGSf,g = 0.

2

Lemma 6.4 Given a pair of polynomials f, g ∈ Pt, assume Sf,g ∈ Ps, then either

s > t or Sf,g = 0. Meaning the S-polynomial of two polynomials in the same group

is a member of a strictly lower ordered group.

Proof Let f =
∑n−1

i=t bixi+bn and g =
∑n−1

i=t cixi+cn for constant coefficient vectors
~b,~c.

We will rewrite the two formulas to make the leading terms stand out:

f = btxt +
n−1∑
i=t+1

bixi + bn, g = ctxt +
n−1∑
i=t+1

cixi + cn

LMσf = xt, LMσg = xt, then lcm(LMσf,LMσg) = xt

Sf,g =
lcm(LMσf,LMσg)

LTσf
f − lcm(LMσf,LMσg)

LTσg
g

=
xt
btxt

(btxt+
n−1∑
i=t+1

bixi+bn)− xt
ctxt

(ctxt+
n−1∑
i=t+1

cixi+cn) =
n−1∑
i=t+1

(
bi
bt
− ci
ct

)xi+
bn
bt
− cn
ct

The leading monomial of the resulting S-polynomial is at most xt+1. In the case of
bi
bt
− ci

ct
= 0 then we have the S-polynomial as a member of an even lower ordered

group Pt+2. If the chain of nil coefficients holds for all the variables xt+1 . . . xn, then

Sf,g = 0.

2

Lemma 6.3 shows that given two polynomials pj, pk that do not share the same

leading monomial

pj

pk
=

[0; · · · ; a; · · · ]
[0; · · · ; 0; b; · · · ]



164 6. Specializations of Gröbner Bases Computation Algorithms

the result of row operation does not change any rows.

Similarly, Lemma 6.4 shows that given two polynomials pj, pk which have the same

leading monomial xt,

pj

pk
=

[0; · · · ; a; · · · ]
[0; · · · ; b; · · · ]

then the row operation of Gaussian elimination produces a new row which has a zero

entry on column t:

pj

p′k
=

[0; · · · ; a; · · · ]
[0; · · · ; 0; · · · ]

These results also confirm that the minimal Gröbner basis of P has the row-

echelon form. Note that the reduction Algorithm 2.58 is exactly the back-propagation

operation performed during a full Gaussian Elimination.

Now let us study what happens in the stage in Buchberger’s algorithm where we

are adding new pairs of polynomials to the set B. By Lemma 6.3 we know that

we are only considering polynomials that belong to the same group Pt, otherwise

Buchberger’s Criterion 1 is false and no computation is performed.

We also know that due to Lemma 6.4 the S-polynomial of two elements taken

from the same group Pt belongs to a lower ranked group Ps, s > t, and that the pairs

formed from this new polynomial and any members of G that does not belong to Ps

would fail the first Buchberger Criterion and need not be considered.

The following lemma helps us determine a bound on the number of iterations in

Buchberger’s algorithm:

Lemma 6.5 Let f, g be linear polynomials, then either f
g
� Sf,g if f and g share

the same leading monomial, or f
g
� f otherwise.

Proof Let bt ·xt be the leading term of f and cs ·xs be the leading term of g. If t 6= s

then the leading terms of f is not divisible by g and thus NRgf = f . The second

statement of the lemma trivially holds. Assume that s = t, then Sf,g = f − bt
cs
g. By

definition of normal remainder, we also have that f = bt
cs
g + NRgf , then NRgf =

f − bt
cs
g = Sf,g. ∴ f

g
� Sf,g.

2

Corollary 6.6 There are at most n new polynomials computed during the execution

of Buchberger’s algorithm



6. Specializations of Gröbner Bases Computation Algorithms 165

Proof By Lemma 6.5, we know that given a polynomial f and a basis G, NRGf

can never share a leading monomial with any other polynomials in G. Since there is

at most n possible leading monomials in the algebra of linear polynomials, there are

at most n new polynomials computed by the main loop.

2

To demonstrate the use of these results, let us consider the following example of

linear equations:

Example 6.7 Consider the following augmented matrix for Gaussian Elimination

and its equivalent system of linear polynomials:

A0 =


2 −1 −1 −1 −1

1 −1 −1 0 0

0 3 −2 1 −4

1 3 0 −2 −3

 ,


p1 : 2x− y − z − w − 1

p2 : x− y − z
p3 : 3y − 2z + w − 4

p4 : x+ 3y − 2w − 3

With term ordering x > y > z > w and the field of coefficients Q. Let G =

{p1, p2, p3, p4} at the beginning of the algorithm. Since Lemma 6.5 shows that the

S-polynomial computation essentially performs the same computation as normal re-

mainder, we will refrain from performing any NR reductions to demonstrate the row

operations.

At first step, we compute the residuals (S-polynomials) of the first group P1 =

{p1; p3; p4}:

A1 =


2 −1 −1 −1 −1

0 1 1 −1 −1

0 3 −2 1 −4

0 −7 −1 3 5

 ,


p5 : y + z − w − 1

p6 : −7y − z + 3w + 5

Similarly, performing the S-polynomial computations on the next group P2 =

{p5; p3; p6} lead to:

A2 =


2 −1 −1 −1 −1

0 1 1 −1 −1

0 0 −5 4 −1

0 0 −6 4 2

 ,

 p7 : −5z + 4w − 1

p8 : −6z + 4w + 2



166 6. Specializations of Gröbner Bases Computation Algorithms

And the operation on P3 = {p7; p8} computes:

A3 =


2 −1 −1 −1 −1

0 1 1 −1 −1

0 0 −5 4 −1

0 0 0 −4 16

 ,

 p9 : −4w + 16

At this point there are no more compatible critical pairs to consider according

to Lemma 6.3, therefore there are no more pairs in the working set and the matrix

is in row-echelon form. We may continue to minimalize the computed basis, which

produces monic polynomials:

A′3 =


1 −1/2 −1/2 −1/2 −1/2

0 1 1 −1 −1

0 0 1 −4/5 1/5

0 0 0 1 −4

 ,


p′1 : x− 1/2y − 1/2z − 1/2w − 1/2

p′5 : y + z − w − 1

p′7 : z − 4/5w + 1/5

p′9 : w − 4

And finally, computing the reduced Gröbner basis completes the final back prop-

agation step of the Gaussian Elimination algorithm:

A′′3 =


1 0 0 0 −5

0 1 0 0 −2

0 0 1 0 −3

0 0 0 1 −4

 ,


p′′1 : x− 5

p′′5 : y − 2

p′′7 : z − 3

p′′9 : w − 4

2

By removing the computation of normal remainders in the previous example, we

have simplified the algorithm but also, lost the desirable result of Corollary 6.6. It

is now possible to compute a new reduction of all m many polynomials for each

polynomial group P1, · · · , Pn. This gives us a new bound of at most m · n many

iterations of the main loop. Considering that the S-polynomial computation is an

O(n) operation, we directly arrive at the following result:

Theorem 6.8 Buchberger’s algorithm on a set of m linear polynomials of n variables

has the time complexity O(m · n2).

We will later use all the properties learned in this section in §6.1.3 to specialize

Buchberger’s algorithm and generate a program that performs Gaussian Elimination.



6. Specializations of Gröbner Bases Computation Algorithms 167

6.1.2 Linear Polynomial Algebra

A linear polynomial is a multivariate polynomials of maximum degree one, i.e., every

monomial may contain at most one variable whose exponent is non-zero, and that

exponent may only be 1. We will define a polynomial algebra as per Interface 5.23

for linear polynomials to be used in the Gaussian Elimination specialization of our

software — more specifically, this algebra can be used for any other specializations

related to linear algebra.

Earlier in §5.1 we mentioned the importance of partial operators in algebraic

objects. This becomes especially useful in case of linear polynomials since many

operations on linear polynomials do not necessarily lead to another linear polynomial.

For example, the product of two linear polynomials f1 = x+ 1 and f2 = y + 1 is not

a linear polynomial1 and thus multiplication is partial for these values, but product

of f1 = x+ 1 and f3 = 2 is f1 · f3 = 2x+ 2.

We will leave most of the operations in the algebra of linear polynomials undefined

for simplicity and only define the few operations that are required for this special-

ization. We will implement the linear polynomials of n variables as a list of n + 1

coefficients as defined by Definition 6.1. The ring of polynomials may be defined as:

let mkConst n z v = List.Append (List.Replicate (V n) z) (List.Singleton v)

let PolyRing n (c:#Ring<_>) =

QuotientRing.Gen(

mkConst n c.zero c.zero,

mkConst n c.zero c.one,

List.Map (UnaryOp.Flatten c.neg),

List.Map2 (BinaryOp.Flatten c.add),

(fun x y -> failwith "Undefined multiplication operation"),

List.Map2 (BinaryOp.Flatten c.sub) |> Some,

None, None, None, None, None, None, None)

Notice that all of the functions for division, remainder, gcd, etc. are unimple-

mented.

We will implement monomials as integer indexes such that for i = 0 · · ·n− 1, the

monomial i represents xi and the monomial n represents the zero monomial.

let Monomials n =

MonomialMonoid.Gen(

1Using traditional definition of polynomial multiplication, this product is f1 · f2 = xy+x+ y+ 1,
which is not a linear polynomial.



168 6. Specializations of Gröbner Bases Computation Algorithms

V n,

Min,

(fun l -> If (l ^= (V n)) Idx.zero Idx.one),

(fun l -> Seq.Map (UnaryOp.Flatten(fun i -> If (l ^= i) Idx.one Idx.zero))

(Seq.Make Idx.zero (V(n-1)))),

(fun l -> If (l ^= (V n)) (Seq.Empty())

(Seq.Singleton(Pair l Idx.one))),

(fun l -> Seq.FindIndex (UnaryOp.Flatten(Bool.lt Idx.zero))

(Seq.Append l (Seq.Singleton Idx.one))),

(fun l -> If (Seq.IsEmpty l) (V n) (Fst <| Seq.Head l)),

(fun x y -> If (x ^= y) (Option.Some (V n)) (V None)),

(fun x y -> If (x ^= y) x (V n)),

(fun x y -> If (x ^= y) x (Idx.neg Idx.one)),

(fun x y -> If (x ^= y) (V n) (Idx.neg Idx.one)))

Finally, the algebra of linear polynomials uses the partial polynomial ring defined

earlier and provides functions (such as leading monomial or term) that link this

representation of the polynomials to the monomial representation defined above.

let LinearPolynomial n c =

let tm = TermModule.Generic(c, Monomials n)

let pr = PolyRing n c

let notzero = UnaryOp.Flatten (Bool.neq c.zero)

PolynomialAlgebra.Gen(

c, tm, pr,

mkConst n c.zero,

Some(fun s -> List.Map (UnaryOp.Flatten (c.mul s))),

Compare,

(fun p -> Seq.Mapi (BinaryOp.Flatten(fun i n -> tm.make n i)) p),

None,

List.Forall (UnaryOp.Flatten(Bool.eq c.zero)),

(fun p -> Generate <| codegen {

use i = List.FindIndex notzero p

return tm.make (List.Nth p i) i

}),

Some(List.FindIndex notzero),

Some(List.Find notzero),

(fun p -> List.SetNth p (List.FindIndex notzero p) c.zero),

Seq.Fold (BinaryOp.Flatten(fun p t -> List.SetNth p (tm.m t) (tm.c t)))

pr.zero,

fun c m -> List.SetNth pr.zero m c)



6. Specializations of Gröbner Bases Computation Algorithms 169

6.1.3 Module Specializations for Gaussian Elimination

Using the algebra of linear polynomials defined in §6.1.2 and properties learned in

§6.1.1, we can specialize the modules use in our software to generate a new variation

of Buchberger’s algorithm. This specialization will not only have the O(n3) perfor-

mance of Theorem 6.8, but also closely resemble a hand-made implementation of the

Gaussian Elimination such as that defined by Carette and Kiselyov [16].

First, we define a function that implements Lemma 6.3 and decides which pairs of

linear polynomials are “compatible”. i.e., their residual (S-polynomial) is determined

to be non-zero:

let Compatible (A:PolynomialAlgebra<_,_,_,_>,C:Container<_,_,_>)

(c,i,j) = codegen {

let! c_i = C.Get c i

let! c_j = C.Get c j

let! lm_i = A.LM c_i

let! lm_j = A.LM c_j

return (i ^<> j) ^&& (lm_i ^= lm_j)

}

The residual of polynomial p against polynomial q on element i is the polynomial

p − d · q where d = pi/qi whenever qi is not zero. When p and q are compatible

polynomials (according to Lemma 6.3 and the function Compatible above) and i is the

index of the leading term of p and q, then the residual of p against q on element i is

the S-polynomial of p and q as shown by Lemma 6.5.

The following code generator defines the function residual which performs this

operation:

let GetResidual(A:PolynomialAlgebra<_,_,_,_>) =

let res p q i =

let lc1 = List.Nth p i

let lc2 = List.Nth q i

let t1 = A.scalar (A.CR.τ lc1 lc2) p

let t2 = A.scalar (A.CR.τ lc2 lc1) q

A.sub t1 t2

DefineOnce "residual" (TernaryOp.Flatten res)

The first specialization of Buchberger’s algorithm that we consider here is the im-

plementation of Buchberger’s Criteria 2.59 and 2.60 which only expands the working

set by compatible pairs of polynomials within the same group Pi (as per Definition 6.2)

and implements Lemmas 6.3 and 6.4:



170 6. Specializations of Gröbner Bases Computation Algorithms

let AddPairs(A:PolynomialAlgebra<_,_,_,_>,C:Container<_,_,_>,S:WorkingSet<_,_,_>) =

{ new ExpansionStrategy<_,_,_,_> with

member e.Init(c,s) = Prepend <| codegen {

let! ids = C.Indexes c

for p in Seq.AllPairs ids do

let i,j = Fst p, Snd p

let! comp = Compatible (A,C) (c,i,j)

yield! IfU comp <| S.Add s (c,i,j)

}

member e.Expand _ (c,s,k) = codegen {

let! ids = C.Indexes c

for i in ids do

let! comp = Compatible (A,C) (c,i,k)

yield! IfU comp <| S.Add s (c,i,k)

}

}

Next, we implement Lemma 6.5 which defines a specialization of the S-polynomial

computation using the residual function defined earlier:

let Residual(A:PolynomialAlgebra<_,_,_,_>,C:Container<_,_,_>) =

{ new SPoly<_,_,_,_> with

member p.Init _ = GetResidual A

member p.σ res (c,i,j) = codegen {

let! c_i = C.Get c i

let! c_j = C.Get c j

let! lm_i = LM A c_i

return Function.Apply3 res c_i c_j lm_i

}

}

One major difference between Buchberger’s Algorithm and Gaussian Elimination

is that polynomial computations during the execution of Buchberger’s Algorithm are

added as new polynomials, whereas row operations in Gaussian Elimination are per-

formed inline and do not introduce any new rows. In order to remove the superfluous

polynomials left by Buchberger’s algorithm, we need a specialization of the reduction

strategy to reduce all such polynomials. Corollary 6.6 showed that we only have

at most one polynomial from each group P0, . . . , Pn−1, therefore we may reduce any

polynomial which is compatible with any other element of the basis:

let PruneRows(A:PolynomialAlgebra<_,_,_,_>,C:Container<_,_,_>) =

{ new ReductionStrategy<_,_,_> with



6. Specializations of Gröbner Bases Computation Algorithms 171

member s.Init _ = Let <| Return (List.Empty())

member s.Reduce rs (c,i) = codegen {

let! red = Fun <| fun j -> codegen {

let! comp = Compatible (A,C) (c,i,j)

let seen = List.Contains rs j

return (Not seen) ^&& comp

}

let! ids = C.Indexes c

yield! If (Seq.Exists red ids)

(codegen {yield List.Add rs i; return True})

(Return False)

}

}

At this point, we know that the minimal Gröbner basis computed by these modules

corresponds to the row-echelon reduced matrix that Gaussian Elimination produces.

There are two more tasks that the canonicalization process needs to perform in order

to produce a full implementation of Gaussian Elimination: back-propagation, and

the reduction to “monic” polynomials. In this case, we define a monic polynomial

to have the leading coefficient 1 (i.e., the first element of each row in matrix form

is 1) whenever possible. When given a Field for coefficients, we may simply divide

the polynomial by the leading coefficient to obtain a monic polynomial. In case

of a quotient ring for coefficients, we only have access to a division-with-remainder

operation, therefore we divide the polynomial by the gcd of all the coefficients (which

is guaranteed to be divisible by all elements) to obtain the polynomial in its most

reduced form:

let BackPropagate(A:PolynomialAlgebra<’a,_,_,_>,C:Container<_,_,_>) =

{ new CanonicalForm<_,_,_> with

member p.Init _ = GetResidual A

member f.Canonicalize r (c,p) = codegen {

let! qs = C.All c

// Back-propagate

let! rem = Fun2 <| fun p q -> codegen {

let! lm_p = LM A p

let! lm_q = LM A q

yield Control.If (lm_q ^> lm_p) (Function.Apply3 r p q lm_q) p

}

// Make the polynomials monic



172 6. Specializations of Gröbner Bases Computation Algorithms

use cf = Seq.Fold rem p qs

let! div = Fun <| fun c ->

if A.CR :? Field<’a>

then codegen {

use q = A.LC cf

return (A.CR :?> Field<’a>).div c q

}

else codegen {

use q = List.Fold (BinaryOp.Flatten A.CR.gcd) (A.LC cf) cf

return Option.UnOption(A.CR.div c q)

}

return List.Map div cf

}

}

6.1.4 Generation of Gaussian Elimination Specialization

We may now generate a full specialization of Buchberger’s Algorithm using the algebra

of linear polynomials and the modules defined above by setting up the following

specialization on field of rationals Q (using BigRational arithmetic):

let t = Debug.NoTrace

let bk = ReducedBasis

let K = Field.QQ

let pa = LinearPolynomial 4 K

let ip = Input.InBasis

let pc = Container.ListContainer

let ws = WorkingSet.DirectPick

let es = AddPairs(pa,pc,ws)

let sp = Residual(pa,pc)

let nr = NormalRemainder.NoRemainder

let rs = PruneRows(pa,pc)

let cf = BackPropagate(pa,pc)

let op = Output.OutBasis

let qge = GBSolver(t,bk,pa,ip,pc,ws,es,sp,nr,rs,cf,op)

let ge = GetV qge

The Gaussian Elimination algorithm that is generated by this specialization pro-

vides evidence of Objective 1.1(9) by showing that we are indeed able to specialize

Buchberger’s Algorithm to resemble a sub-algorithm textually and computationally:

val ge: seq<BigRational list> -> seq<BigRational list> = fun a_1 ->



6. Specializations of Gröbner Bases Computation Algorithms 173

let v_1 = new List<BigRational list> (a_1)

let v_2 = new List<int * int> ()

let lm i = List.findIndex (fun i -> 0N <> i) i

for i_1 in List.allPairs [0 .. v_1.Count - 1] do

if (fst i_1) <> (snd i_1) && (lm v_1.[fst i_1]) = (lm v_1.[snd i_1]) then

v_2.Add (fst i_1, snd i_1)

let residual i j k =

List.map2 (fun i j -> i - j)

(List.map (fun i -> j.[k] * i) i)

(List.map (fun j -> i.[k] * j) j)

while v_2.Count > 0 do

let t_1 = v_2.[0]

v_2.RemoveAt 0

let t_2 = residual v_1.[fst t_1] v_1.[snd t_1] (lm v_1.[fst t_1])

if not (List.forall (fun i -> 0N = i) t_2) then

let t_3 = v_1.Add t_2; v_1.Count - 1

for i_1 in 0 .. v_1.Count - 1 do

if i_1 <> t_3 && (lm v_1.[i_1]) = (lm v_1.[t_3]) then

v_2.Add (i_1, t_3)

let v_3 = new List<int> ()

Seq.map (fun i_2 ->

let t_1 =

Seq.fold (fun a_3 a_4 ->

if (lm a_4) > (lm a_3)

then residual a_3 a_4 (lm a_4)

else a_3)

v_1.[i_2]

v_1

let t_2 = List.find (fun i -> 0N <> i) t_1

List.map (fun i -> i / t_2) t_1)

(Seq.filter (fun i_1 ->

let t_1 =

if Seq.exists (fun a_2 ->

not (v_3.Contains a_2) &&

i_1 <> a_2 &&

(lm v_1.[i_1]) = (lm v_1.[a_2]))

{0 .. v_1.Count - 1}

then v_3.Add (i_1); true

else false

not t_1)

{0 .. v_1.Count - 1})



174 6. Specializations of Gröbner Bases Computation Algorithms

Example 6.9 We will revisit Example 6.7 using the algorithm generated above —

with the minor modification of generating traces — to show that ge A0 produces A′′3:

let A0 =

[[2N;-1N;-1N;-1N;-1N];

[1N;-1N;-1N; 0N; 0N];

[0N; 3N;-2N; 1N;-4N];

[1N; 3N; 0N;-2N;-3N]];;

> ge A0;;

Begin initialization

Initialization complete

Picked pair: (0, 1)

- Residual = [0N; 1N; 1N; -1N; -1N]

- Normalized = [0N; 1N; 1N; -1N; -1N]

* Adding new polynomial #4

...

Begin post-processing

Reductions initiated

Returning result

Polynomial #0 is redundant

Polynomial #1 is redundant

Polynomial #2 is redundant

Polynomial #3 does not reduce

- Canonicalized = [1N; 0N; 0N; 0N; -5N]

...

val it : seq<BigRational list> =

seq

[[1N; 0N; 0N; 0N; -5N];

[0N; 1N; 0N; 0N; -2N];

[0N; 0N; 1N; 0N; -3N];

[0N; 0N; 0N; 1N; -4N]]

2

6.1.5 Fraction-Free Gaussian Elimination

Earlier in the definition of the residual function, we scaled the two polynomials by

the crossfactors of pi and qi before subtracting; i.e., we computed τpi,qi · p− τqi, pi · q
instead of p−pi/qi ·q when resolving polynomial p against polynomial q on element i.

These two polynomials are multiples of each other and may be used interchangeably



6. Specializations of Gröbner Bases Computation Algorithms 175

in the row reductions. When the coefficients of the polynomials form a field, both of

these residuals are reduced to the exact same polynomial when they are scaled to the

monic form during the canonicalization process.

On the other hand, when the coefficients only form a quotient ring, we witness

a crucial difference between the two residuals above: The former is a residual of the

two polynomials with the ith element made zero, but the latter may not exist due to

existence of the remainders. Computing the residuals using the former formula allows

us to perform Gaussian Elimination on quotient rings that only define the Euclidean

algorithm for division with remainder and do not form a field.

This is the first step towards performing fraction-free Gaussian Elimination on

rings. Notice that we have not defined any specializations of the working set in this

chapter. The Pick function of the working set directly corresponds to the choice of

pivoting strategy in Gaussian Elimination. We will only use the simple selection of

pivots using DirectPick specialization of the working set, but the reader must know

that a full implementation of fraction-free GE requires implementation of pivoting

strategies as well.

We also specialized the computation of monic polynomials in the canonicalization

module such that we have alternate method of simplifying polynomials when a full

field division is not present.

Example 6.10 (Gaussian Elimination on Quotient Rings) Let us revisit Ex-

ample 6.9 using the (limited) ring of machine integers. The only difference in gener-

ation of this example is the setup:

let K = QuotientRing.ZI

when generating the polynomial algebra. The resulting program has the signature:

val ge : (seq<int list> -> seq<int list>)

when fully generated. The following transcript demonstrates the Gaussian Elimina-

tion using int types:

> ge

[[2;-1;-1;-1;-1];

[1;-1;-1; 0; 0];

[0; 3;-2; 1;-4];

[1; 3; 0;-2;-3]];;

val it : seq<int list> =

seq



176 6. Specializations of Gröbner Bases Computation Algorithms

[[-1; 0; 0; 0; 5];

[0; 1; 0; 0; -2];

[0; 0; 1; 0; -3];

[0; 0; 0; 1; -4]]

2

6.2 Euclidean Algorithm

We will follow the same methodology as §6.1 to specialize an instance of Buchberger’s

Algorithm and generate the Euclidean algorithm. We know that in the case of uni-

variate polynomials (i.e. polynomials of only one variable) then the Gröbner basis of

a set of polynomials is the singleton set of their greatest common divisor [13]. In

this section we will demonstrate this process by generating a program that imple-

ments precisely the Euclidean Algorithm for computing the polynomial gcd of a pair

of polynomials.

6.2.1 Univariate Polynomial Algebra

A univariate polynomial ρ ∈ R[~x] is a special type of polynomial that utilizes only

one variable. i.e., |~x| = 1. We will refer to this one variable simply by x.

Definition 6.11 (Representation of Univariate Polynomials) LetR be a quo-

tient ring. Given a univariate polynomial ρ ∈ R[x], we represent ρ by the list

p = [p0; . . . ; pk] where k = deg(ρ), ρ = p0 +
∑k

i=1 pi · xi and pk 6= 0R.

Using term ordering σ = lex we have xi >σ xj ⇔ i > j and thus for list

representations p1 and p2, p1 >σ p2 ⇔ len(p1) > len(p2) (≡ deg(ρ1) > deg(ρ2), since

len(p) = deg(ρ) + 1 for all p).

The last element of the polynomial representation signifies the leading coefficient

of the polynomial, i.e., LCσρ = pk and thus LTσρ = pk · xk.

Definition 6.12 (Division with Remainder) Given two univariate polynomials

p, g ∈ R[x], define the polynomials q, r ∈ R[x] (called the quotient and remainder,

respectively) to be the result of Euclidean division of p by g such that p = qg+ r and

either deg(r) < deg(g) or that LCσr 6 | LCσg.



6. Specializations of Gröbner Bases Computation Algorithms 177

Notice that this is a slightly modified version of the Euclidean long division algo-

rithm to adjust for allowing of quotient rings instead of requiring a field for coefficients.

Similar to the monomial monoid defined in §6.1.2, we define the monomials for

the algebra of univariate polynomials to be integer indexes such that for any i ∈ N,

i represents the monomial xi. This implicitly means that the index 0 is the constant

monomial:

let Monomials =

MonomialMonoid.Gen(

Idx.zero,

Idx.add,

id,

Seq.Singleton,

(fun p -> Seq.Singleton (Pair Idx.zero p)),

Seq.Head,

(fun p -> Snd (Seq.Head p)),

(fun x y -> let d = Idx.sub x y

Control.If (d ^>= Idx.zero) (Option.Some d) (V None)),

Min,

Max,

(fun x y -> Idx.sub (Max x y) x))

In order to perform computations on this representation of univariate polynomials,

we need a special version of the map2 function that performs the mapping operation on

lists with different lengths. The list representation of polynomials is “padded” with

enough zeros at the end to perform the operation, and then finally trimmed such that

the length of the list is equivalent to the degree of the polynomial it represents:

let SpecialMap2 f z l1 l2 =

let rec i_map2 = function

| [],[] -> []

| [],h::t -> f z h :: i_map2([],t)

| h::t,[] -> f h z :: i_map2(t,[])

| h1::t1,h2::t2 -> f h1 h2 :: i_map2(t1,t2)

let rec trim = function

| [] -> []

| h::t when h=z -> trim t

| l -> l

i_map2(l1,l2) |> List.rev |> trim |> List.rev

let map2 f z l1 l2 =

match f,z,l1,l2 with



178 6. Specializations of Gröbner Bases Computation Algorithms

| V f,V z,V l1,V l2 -> SpecialMap2 f z l1 l2 |> V

| _ -> E <@ SpecialMap2 (%GetE f) (%GetE z) (%GetE l1) (%GetE l2) @>

And finally, we define the algebra of univariate polynomials as follows:

let PolyRing (cr:QuotientRing<’a>) =

let zero = V []

let one = List.Singleton cr.one

let neg = List.Map (UnaryOp.Flatten cr.neg)

let add = map2 (BinaryOp.Flatten cr.add) cr.zero

let sub = map2 (BinaryOp.Flatten cr.sub) cr.zero

let pad i = List.Append (List.Replicate i cr.zero)

let scale s = List.Map (UnaryOp.Flatten(cr.mul s))

let mul x y =

let parts = List.Mapi (BinaryOp.Flatten(fun i s -> pad i (scale s y))) x

List.Fold (BinaryOp.Flatten add) zero parts

let div p1 p2 =

let l1,l2 = List.Length p1, List.Length p2

let c1 = List.Nth p1 (Idx.sub l1 Idx.one)

let c2 = List.Nth p2 (Idx.sub l2 Idx.one)

let mkDiv d = Option.Some(pad (Idx.sub l1 l2) (List.Singleton d))

if cr :? Field<’a> then

let d = (cr :?> Field<’a>).div c1 c2

Control.If (l1 ^> l2) (mkDiv d) (V None)

else

let d = cr.div c1 c2

Control.If ((l1 ^> l2) ^&& (Option.IsSome d))

(mkDiv(Option.UnOption d)) (V None)

let rem p1 p2 =

let l1,l2 = List.Length p1, List.Length p2

let c1 = List.Nth p1 (Idx.sub l1 Idx.one)

let c2 = List.Nth p2 (Idx.sub l2 Idx.one)

let s =

if cr :? Field<’a> then

let d = (cr :?> Field<’a>).div c1 c2

fun x y -> cr.sub x (cr.mul y d)

else

fun x y -> cr.sub (cr.mul x c2) (cr.mul y c1)

map2 (BinaryOp.Flatten s) cr.zero p1 (pad (Idx.sub l1 l2) p2)

QuotientRing.Gen(zero, one, neg, add, mul, Some sub,

None, None, Some div, Some rem, None, None, None)



6. Specializations of Gröbner Bases Computation Algorithms 179

let UnivariatePolynomial cr =

let tm = TermModule.Generic(cr, Monomials)

let pr = PolyRing cr

let mk c m = List.Append (List.Replicate m cr.zero) (List.Singleton c)

PolynomialAlgebra.Gen(

cr, tm, pr,

List.Singleton,

Some(fun s -> List.Map (UnaryOp.Flatten (cr.mul s))),

Compare,

(fun p -> Seq.Mapi (BinaryOp.Flatten(fun i n -> tm.make n i)) p),

Some List.Length,

List.IsEmpty,

(fun p -> let last = Idx.sub (List.Length p) Idx.one

tm.make (List.Nth p last) last),

Some(fun p -> Idx.sub (List.Length p) Idx.one),

Some(fun p -> List.Nth p (Idx.sub (List.Length p) Idx.one)),

List.Reverse >> List.Tail >> List.Reverse,

(fun ts ->

let ps = Seq.Map (UnaryOp.Flatten(fun t -> mk (tm.c t) (tm.m t))) ts

Seq.Fold (BinaryOp.Flatten pr.add) pr.zero ps),

mk)

6.2.2 Euclidean Algorithm Specialization

The specializations of the modules for Euclidean Algorithm rely on the following

(informal) specifications:

(1) All the polynomials are univariate.

(2) There are only two input values.

(3) At any point during the Euclidean Algorithm, we only need to store two ele-

ments.

(4) For polynomials p1, p2 ∈ R[x] such that p1 ≥σ p2, we have Sp1,p2 = rem(p1, p2).

(5) No reduction or canonicalization step is needed.

In order to produce a program that closely resembles the statement of the Eu-

clidean Algorithm, and to demonstrate the usage and flexibility of the input and

output modules, we will implement a special instance of the Container module that



180 6. Specializations of Gröbner Bases Computation Algorithms

only stores two polynomials as separate variables and does not expand. The references

to the two variables will be passed along through the generation as state records called

p1 and p2. This is essentially performing call-by-name on the two storage variables:

let PairContainer(A:PolynomialAlgebra<_,_,_,_>) =

let s1,s2 = StateRecord("p1"),StateRecord("p2")

{ new Container<_,_,_> with

member lc.Init s = Prepend <| codegen {

let! p1 = s1.Lookup()

let! p2 = s2.Lookup()

return! IfU (A.deg (Deref p2) ^> A.deg (Deref p1)) (codegen {

use t = Deref p1

yield Assign p1 (Deref p2)

yield Assign p2 t

})

}

member lc.Add _ p = codegen {

let! p1 = s1.Lookup()

let! p2 = s2.Lookup()

return! If (A.deg p ^> A.deg (Deref p2))

(codegen {

yield Assign p1 p

})

(codegen {

yield Assign p1 (Deref p2)

yield Assign p2 p

})

return Unit

}

member lc.Get _ _ = Return A.zero

member lc.All _ = Return <| Seq.Empty()

member lc.Indexes _ = Return <| Seq.Empty()

}

We also specialize the Input module to accept a tuple (pair) of polynomials as

the input to the algorithm and define the two variables for storing as p1 and p2.

Similarly, the specialization of the Output module only returns the single value of the

last non-zero remainder computed by the Euclidean Algorithm:

let PairInput<’p> =

let s1,s2 = StateRecord("p1"),StateRecord("p2")

{ new Input<’p,’p*’p> with

member i.Process p = codegen {



6. Specializations of Gröbner Bases Computation Algorithms 181

use p1 = Ref (Fst p)

use p2 = Ref (Snd p)

do! s1.Extend p1

do! s2.Extend p2

return Seq.Empty()

}

}

let LastOutput<’p> =

let s1,s2 = StateRecord("p1"),StateRecord("p2")

{ new Output<’p,’p> with

member o.Process _ = codegen {

let! p2 = s2.Lookup()

return Deref p2

}

}

Using this strategy of storing two polynomials, we have a simplified instance of

WorkingSet which always chooses the two aforementioned items as the critical pair.

We will define the working set itself as a Boolean flag which signals when a final

remainder (the zero polynomial) is obtained and terminates the loop. The updating

of this flag is performed by the expansion strategy:

let PairPick =

let s1,s2 = StateRecord("p1"),StateRecord("p2")

{ new WorkingSet<_,_,_> with

member s.Init _ = Let <| codegen {

return Ref True

}

member s.Add w (_,_,_) = codegen {

return Assign w True

}

member s.Del _ (_,_,_) = Return Unit

member s.HasMore w _ = codegen {

return Deref w

}

member s.Pick w _ = codegen {

yield Assign w False

let! p1 = s1.Lookup()

let! p2 = s2.Lookup()

return Pair Unit Unit

}



182 6. Specializations of Gröbner Bases Computation Algorithms

member s.All _ _ = Return <| Seq.Empty()

}

let FlagExpansion (S:WorkingSet<_,_,_>) =

{ new ExpansionStrategy<_,_,_,_> with

member e.Init(_,_) = Return Unit

member e.Expand _ (c,s,i) = S.Add s (c,i,i)

}

Finally, the specialization of the S-Polynomial module simply computes the re-

mainder of the two polynomials in the state and returns the value:

let Remainder(A:PolynomialAlgebra<_,_,_,_>) =

let s1,s2 = StateRecord("p1"),StateRecord("p2")

{ new SPoly<_,_,_,_> with

member p.Init _ = Return Unit

member p.σ _ (_,_,_) = codegen {

let! p1 = s1.Lookup()

let! p2 = s2.Lookup()

return A.rem (Deref p1) (Deref p2)

}

}

6.2.3 Generation of Euclidean Algorithm

Using the polynomial algebra of univariate polynomials and the module specializa-

tions of Euclidean Algorithm, we generate our instance of Buchberger’s algorithm by

the following setup using the field of rationals Q (BigRational arithmetic) for coeffi-

cients:

let t = Debug.NoTrace

let bk = StandardBasis

let K = Field.QQ

let pa = UnivariatePolynomial K

let ip = PairInput

let pc = PairContainer pa

let ws = PairPick

let es = FlagExpansion ws

let sp = Remainder pa

let nr = NormalRemainder.NoRemainder

let rs = ReductionStrategy.NoReduction

let cf = CanonicalForm.NoOperation



6. Specializations of Gröbner Bases Computation Algorithms 183

let op = LastOutput

let qea = GBSolver(t,bk,pa,ip,pc,ws,es,sp,nr,rs,cf,op)

let ea = GetV qea

And we obtain the following generated code as the Euclidean specialization of Buch-

berger’s algorithm. Notice that the signature of the generated function has changed

due to the specialization of the input and output modules:

val ea: BigRational list * BigRational list -> BigRational list = fun a_1 ->

let t_1 = ref (fst a_1)

let t_2 = ref (snd a_1)

if List.length(!t_2) > List.length(!t_1) then

let t_3 = !t_1

t_1 := !t_2

t_2 := t_3

let v_1 = ref true

while !v_1 do

v_1 := false

let t_3 =

SpecialMap2 (fun i j ->

i - (j * ((!t_1).[List.length(!t_1) - 1] /

(!t_2).[List.length(!t_2) - 1])))

0N

!t_1

(List.replicate (List.length(!t_1) - List.length(!t_2)) 0N) @ (!t_2)

if not t_3.IsEmpty then

if List.length t_3 > List.length(!t_2)

then t_1 := t_3

else

t_1 := !t_2

t_2 := t_3

v_1 := true

!t_2

2



Chapter 7

Conclusion

7.1 Achieved Goals

Back in the introduction chapter we defined the goal of this thesis: to generate

specialized instances of Buchberger’s algorithm that produce the solutions to a great

variety of computational commutative algebra problems by converting the problem

into a question of finding (minimal, reduced) Gröbner bases and carefully tailoring

every aspect of the algorithm to match the properties of the question at hand. At this

point, with the final results achieved in §5, we have demonstrated that we can generate

thousands of different variations and flavours of Buchberger’s algorithm designed for

each individual task.

In §1.1 we also defined seven immediate objectives that we achieved in this thesis.

We described the mathematical background required for Gröbner bases in §2. In §3
we designed the framework for code generation in F#. We formalized software speci-

fication and specialization in §4. §5 designed the architecture for generating Gröbner

bases solvers, defined the computational algebra library in F#, and developed the code

generator for Buchberger’s algorithm. Finally, we generated some sample specializa-

tions of sub-algorithms of Buchberger’s algorithm to demonstrate the usefulness of

this code generator.

This concludes the objectives and the components of this research that we had

aimed to accomplish before starting this research.

We had also defined four long-term objectives to be partially answered by this

thesis. We believe that with the samples and tutorials in §5.3.3 we have demonstrated

the usefulness of software specialization and code generation techniques by, not only

184



7. Conclusion 185

generating different use cases for the algorithm, but also by showing the applications

of this generator in teaching and understanding of Gröbner bases. We also showed

that the generated instances of Buchberger’s algorithm can, in fact, directly resemble

the algorithms for special-domain problems.

Additionally, we configured the framework and provided some simple proofs to

show correctness of the generated algorithms, but we did not generate any of the

proofs in this thesis, and there is still much more work to be done to achieve this

goal. We also attempted to generate the specific instances of this algorithm that

resembles Gaussian Elimination in §6, but did not fully produce all the specialized

instances.

7.2 Summary of Results

We will revisit all the material covered in this thesis and summarize the objectives

that we achieved:

(1) §2.1 recaps all the basic material in abstract algebra and polynomial algebras. It

also defines important terminology about monomials and polynomial ordering.

(2) §2.2 defines the computational aspect of polynomial evaluation and introduces

three classes of problems that naturally arise from performing polynomial com-

putations: solving systems of equations (§2.2.2) and their relation to algebraic

geometry, ideal membership problems (§2.2.3) with a focus on the polynomial

division algorithm, and polynomial rewrite systems (S2.2.4) with an emphasis

on confluence.

(3) §2.2.5 discusses Gröbner bases as a viable solution to the problems outlined

earlier and introduces related concepts such as minimal and reduced Gröbner

basis. It also states some of the important properties of Gröbner bases, such as

the uniqueness of reduced bases. Finally, §2.2.6 defines the important theorems

regarding elimination and extension of ideals for solving systems of equations.

(4) §2.3 describes a version of Buchberger’s algorithm for finding Gröbner bases

using S-polynomials and normal forms, and then gives the algorithms for com-

puting minimal and reduced bases in §2.3.3.



186 7. Conclusion

(5) §2.3.4 shows some important optimizations for Buchberger’s algorithm and dis-

cusses the execution time and space complexity of the algorithm, and then states

an improved version of Buchberger’s algorithm based on these observations.

(6) §2.3.5 provides a step-by-step tutorial on how to compute a reduced Gröbner

basis for a sample set.

(7) §2.4 defines how to derive other related computational algorithms from Buch-

berger’s algorithm and provides references for these transformations.

(8) §3.1 introduces the meta programming elements of the F# language.

(9) §3.1.2 defines a formal framework for reasoning about the syntax of F# and

formally defines quasiquotation and splicing. This framework also leads to a re-

search paper [31] that Dr. William Farmer and I are working on for publication.

(10) §3.1.3 extends the F# compiler and libraries to compile nested quasiquotations

and mixed-stage variables within quoted code. We also provide the proof of

the correctness theorems for this extension and a brief overview of the inner

workings of the library.

(11) §3.1.3 also provides a new pretty printer for F# quotations that we use purely

for presentation purposes in this thesis.

(12) §3.2 programs the combinators for generating code in F# using continuation-

passing style as described in §3.2.1.

(13) §3.2.2 creates a flexible and extensible state for this code generator that can

track heterogeneous-typed data in one container and is passed by every codegen

combinator.

(14) §3.2.4 defines a domain-specific language to generate code using the “computa-

tion expressions” featured in the F# programming language.

(15) §4.1.1 describes a formal framework for writing specifications for software prod-

ucts based on higher-order logic that can specify both values as invariants, and

program specifications as pre/post-conditions (covariants and contravariants).

(16) §4.1.2 provides the formal definitions for the terms refinement, actualization and

specialization in this framework, as well as the definitions for the companion



7. Conclusion 187

terms abstraction, conceptualization and generalization as opposite actions to

the former concepts.

(17) §4.2 defines two approaches to writing modules — feature-oriented modules and

aspect-oriented modules — and their advantages and disadvantages in different

scenarios. We also describe how we may use both types of modules in the same

software architecture to take advantage of the benefits they provide.

(18) §4.2.2 creates a language for writing specifications for modules as collections of

both invariants and methods. We also establish the required terminology for

implementing modules and parametrizing module interfaces.

(19) §4.2.4 summarizes how to decompose a software architecture into a modular

design using the concepts established by this paper and by earlier software en-

gineering literature. This section also provides a demonstration of the modular

breakdown by decomposing the architecture of a KWIC indexing system.

(20) §5.1.3 designs the module structure for an abstract algebra library in F# and

specifies the interfaces for these modules to be used in computational algebra

programs.

(21) §5.1.4 describes the methods of implementing each statement in the specifi-

cations of the algebra modules as computer programs in such a way that the

implementation satisfies the algebraic interface as closely as possible.

(22) §5.1.4 also programs the generators for these algebra modules and implements

the most common uses of some of the algebraic objects.

(23) §5.1.5 specifies the module interfaces for polynomial algebra objects — mono-

mials, terms, term orderings, and polynomials — using the algebra libraries

established earlier.

(24) §5.1.5 also programs the generators for polynomial algebra library and imple-

ments some of the most common approaches to monomials, terms, orderings

and polynomials.

(25) §5.2 decomposes Buchberger’s algorithm and the related minimal and reduced

Gröbner bases algorithms into a modular design in order to create a program

family of Buchberger-like algorithms.



188 7. Conclusion

(26) §5.3.1 specifies the module interfaces for the modules that were designed during

the decomposition of Buchberger’s algorithm.

(27) §5.3.2 programs the final code generator that generates specialized instances

of Buchberger’s algorithm by using the modules from the earlier breakdown of

Buchberger’s algorithm and the modules from the polynomial algebra library.

(28) §5.3.3 implements some basic and common versions of the modules used in

Buchberger decomposition that provide a basis for any standard instance of

this algorithm.

(29) Example 5.48 generates many sample instances of Buchberger’s algorithm and

compares the generated version of this algorithm as produced by the code gen-

erator with the pseudocode of Buchberger’s algorithm which was stated earlier.

(30) Further in §5.3.3 we implement all the listed improvements to Buchberger’s

algorithm as specializations of the modules in this library and finally generate all

the improved versions automatically. We draw a conclusion by demonstrating

how many variations and flavours of Buchberger’s algorithm we were able to

generate using just the sample modules implemented in this chapter.

(31) Example 5.53 demonstrates how the tutorials of Gröbner bases computations

may be generated by this program.

(32) §6 shows how more specializations of the Buchberger’s algorithm modules can

lead to vastly different algorithms that no longer resemble Gröbner bases di-

rectly, but are special sub-algorithms of Buchberger’s algorithm as defined ear-

lier in §2.4.

(33) §6.1 generates a program to perform Gaussian Elimination directly from the

code generator for Buchberger’s algorithm to demonstrate the extent of the

generated algorithms.

(34) §6.2 generates a program to perform the Euclidean Algorithm on a pair of

univariate polynomials by specializing Buchberger’s algorithm.



7. Conclusion 189

7.3 Further Work

As the result of the last few long-term objectives that we had defined earlier, we would

like to conclude this thesis by sketching a road map of some future work that can be

done to improve the results and achieve the remaining goals. We will outline three

immediate results that would extend this research: Providing micro specializations

(alongside with the macro specializations defined in this thesis) to further improve

the algorithm. Implementing some of the known extensions to the Buchberger’s

algorithm that provide greater range of results for the generated algorithm; in this

case, we have chosen the construction of a transformation matrix to improve the

algorithm. And finally, to formally produce the proof of correctness for any of these

generated algorithms.

7.3.1 Micro Specializations

As Carette and Kiselyov [16] demonstrated in the case of Gaussian Elimination, there

are many choices for micro specializations of the Buchberger sub-algorithms that can

be performed to further improve the optimization and level of details in the result

of the algorithm. The implementations of the aspect modules in the Buchberger

decomposition could benefit from more generation parameters that further specialize

them. For example, the modules defined in §6.1 could further be parametrized to

directly reflect all the design criteria that were outlined in [16].

7.3.2 Transformation Matrix

The “Extended Buchberger Algorithm” as defined by Kreuzer [49] produces a trans-

formation matrix that defines how to change the basis of any polynomials from

the original basis to the the computed Gröbner basis: Given a set of polynomials

F = {f1, . . . , fn} ⊂ R[~x], compute a σ-Gröbner basis G = {g1, . . . , gm} ⊂ R[~x] such

that m ≥ n and 〈F 〉 = 〈G〉, together with an n×m-matrix A = (aij), aij ∈ R[~x] for

1 ≤ i ≤ n, 1 ≤ j ≤ m, such that gj = a1jf1 + · · ·+ anjfn for 1 ≤ j ≤ m.

Implementing the extended version of Buchberger’s algorithm with a optional

modules for carrying, computing, and returning this transformation matrix further

improves the range of the generated algorithms.



190 7. Conclusion

7.3.3 Providing Correctness Proofs

Finally, the most ambitious future direction for this thesis is to properly provide

the proof of correctness of the generated algorithms as generated machine proofs

alongside with the program itself. We believe that theorem proving environments

that integrate with .net environment (such as Z3 [25]) are the optimal choice for the

proof generator.



Bibliography

[1] “Polymorphic data types, objects, modules and functors: is it too much?,” in
RR 014, LIP6, UNIVERSITÉ PARIS 6, 2000.

[2] “DSL implementation in MetaOCaml, Template Haskell, and C++,” in LNCS
Volume 3016, pp. 51–72, Springer-Verlag, 2004.
http://www.cs.rice.edu/˜taha/publications/journal/dspg04b.pdf.

[3] J. Abbott, A. Bigatti, M. Caboara, and L. Robbiano, “CoCoA: Computations in
Commutative Algebra,” SIGSAM Communications in Computer Algebra, 2007.
also presented as Software Demo of the ISSAC07 Conference.

[4] P. B. Andrews, An introduction to mathematical logic and type theory: to truth
through proof. Applied Logic Series, Springer, second ed., 2002.

[5] S. Apel, T. Leich, and G. Saake, “Aspectual mixin layers: Aspects and features
in concert,” in In Proc. of Intl. Conf. on Software Engineering, pp. 122–131,
ACM Press, 2006.

[6] R. J. Back and J. Wright, Refinement Calculus: A Systematic Introduction.
Springer, April 1998.

[7] D. Batory, “The design and implementation of hierarchical software systems
with reusable components,” ACM Transactions on Software Engineering and
Methodology, vol. 1, pp. 355–398, 1992.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise refinement,”
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, vol. 30, no. 6,
p. 2004, 2004.

[9] A. B. Bawden, “Quasiquotation in Lisp,” in O. Danvy, Ed., University of Aarhus,
Dept. of Computer Science, pp. 88–99, 1999.

[10] D. Box and A. Hejlsberg, “LINQ: .NET Language Integrated Query,” 2010.
http://msdn.microsoft.com/en-us/library/bb397926.aspx.

191



192 BIBLIOGRAPHY

[11] B. Buchberger, “Gröbner bases: An algorithmic method in polynomial ideal
theory,” Recent Trends in Multidimensional Systems Theory, 1985.

[12] B. Buchberger, An Algorithm for Finding the Basis for the Residue Class Ring
of a Zero-Dimensional Polynomial Ideal. PhD thesis, University of Innsbruck
Institute of Mathematics, 1965.

[13] B. Buchberger and F. Winkler, Gröbner Bases and Applications. No. 251 in
London Mathematical Society Lecture Nore Series, Cambridge University Press,
1998.

[14] J. Carette, “Gaussian Elimination: A case study in efficient genericity with
MetaOCaml,” Science of Computer Programming, vol. 62, no. 1, pp. 3–24, 2006.

[15] J. Carette, M. Elsheikh, and S. Smith, “A generative geometric kernel,” in Pro-
ceedings of the 20th ACM SIGPLAN workshop on Partial evaluation and program
manipulation, PEPM ’11, (New York, NY, USA), pp. 53–62, ACM, 2011.

[16] J. Carette and O. Kiselyov, “Multi-stage programming with functors and mon-
ads: Eliminating abstraction overhead from generic code,” Science of Computer
Programming, vol. 76, no. 5, pp. 349–375, May 2011.

[17] J. Carette, O. Kiselyov, and C. C. Shan, “Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages,” J. Funct. Program.,
vol. 19, no. 5, pp. 509–543, Sept. 2009.

[18] Y. Chang and B. W. Wah, “Polynomial Programming Using Groebner Bases,”
Computer Software and Applications Conference, 1994.

[19] A. Colyer, A. Rashid, and G. Blair, “On the separation of concerns in program
families,” tech. rep., 2004.

[20] C. Consel, “From a Program Family to a Domain-Specific Language,” in Domain-
Specific Program Generation, pp. 19–29, Springer Berlin Heidelberg, 2004.

[21] C. Consel and R. Marlet, “Architecturing software using a methodology for lan-
guage development,” in Proceedings of the 10 th International Symposium on
Programming Language Implementation and Logic Programming, number 1490
in Lecture Notes in Computer Science, pp. 170–194, 1998.

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. MIT Press, second ed., 2001.

[23] D. A. Cox, “Gröbner bases tutorial.” Department of Mathematics and Computer
Science, Amherst College. ISSAC 2007 Tutorial.



BIBLIOGRAPHY 193

[24] D. A. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative Algebra,
3/e (Undergraduate Texts in Mathematics). Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2007.

[25] L. De Moura and N. Bjørner, “Z3: an efficient smt solver,” in Proceedings of
the Theory and practice of software, 14th international conference on Tools and
algorithms for the construction and analysis of systems, TACAS’08/ETAPS’08,
(Berlin, Heidelberg), pp. 337–340, Springer-Verlag, 2008.

[26] J. C. Dehnert and A. A. Stepanov, “Fundamentals of Generic Programming,” in
Generic Programming, pp. 1–11, 1998.

[27] E. W. Dijkstra, “On the role of scientific thought.” revised as [28], Aug. 1974.

[28] E. W. Dijkstra, “On the role of scientific thought,” in Selected Writings on
Computing: A Personal Perspective, pp. 60–66, Springer-Verlag, 1982.

[29] D. Dummit and R. Foote, Abstract algebra. Prentice Hall, 1999.

[30] W. M. Farmer, “Modules for a large library of formalized mathematics,” in AMS
Special Session on Formal Mathematics for Mathematicians: Developing Large
Repositories of Advanced Mathematics, 2011.

[31] W. M. Farmer and P. Larjani, “Frameworks for reasoning about syntax that uti-
lize quotation and evaluation,” tech. rep., McMaster University, 2011. preprint,
33 pp.

[32] W. M. Farmer, “Theory interpretation in simple type theory,” in Higher-order
algebra, logic, and term rewriting, volume 816 OF lecture notes in computer
science, pp. 96–123, Springer-Verlag, 1993.

[33] W. M. Farmer, “The seven virtues of simple type theory,” Journal of Applied
Logic, vol. 6, no. 3, pp. 267–286, Sept. 2008.

[34] W. M. Farmer, J. D. Guttman, and F. J. Thayer, “Little theories,” in Auto-
mated Deduction | CADE-11, volume 607 of Lecture Notes in Computer Science,
pp. 567–581, Springer-Verlag, 1992.

[35] J.-C. Faugère, “A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5),” Journal of Pure and Applied Algebra, vol. 139, no. (1–3),
pp. 61–88, June 1999.

[36] J.-C. Faugère and S. Lachartre, “Parallel Gaussian Elimination for Gröbner bases
computations in finite fields,” in ACM proceedings of The International Work-
shop on Parallel and Symbolic Computation (PASCO, pp. 1–10, ACM, 2010.



194 BIBLIOGRAPHY

[37] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen, “The essence of compiling
with continuations,” in PLDI ’93: Proceedings of the ACM SIGPLAN 1993 con-
ference on Programming language design and implementation, (New York, NY,
USA), pp. 237–247, ACM, 1993.

[38] D. Garlan, “Architectures for software systems.” Carnegie Mellon University.

[39] R. Gebauer and H. M. Möller, “On an installation of buchberger’s algorithm,”
J. Symb. Comput., vol. 6, no. 2-3, pp. 275–286, Dec. 1988.

[40] J. Harrop, F# for Scientists. New York, NY, USA: Wiley-Interscience, 2008.

[41] C. J. Hillar and T. Windfeldt, “Algebraic characterization of uniquely vertex
colorable graphs,” J. Comb. Theory Ser. B, vol. 98, no. 2, pp. 400–414, 2008.

[42] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communica-
tions of the ACM, vol. 12, no. 10, pp. 576–580, Oct. 1969.

[43] S. Hosten and R. Thomas, “Gröbner bases and integer programming.”

[44] INRIA, “Objective caml.” http://caml.inria.fr/ocaml/.

[45] G. Kiczales and M. Mezini, “Aspect-oriented programming and modular reason-
ing,” in Proceedings of the 27th international conference on Software engineering,
ICSE ’05, (New York, NY, USA), pp. 49–58, ACM, 2005.

[46] J. W. Klop, Term Rewriting Systems. Cambridge Tracts in Theoretical Computer
Science, Cambridge University Press, 2003.

[47] D. Knuth and P. Bendix, “Simple word problems in universal algebras,” Com-
putational Problems in Abstract Algebra, pp. 263–297, 1970.

[48] M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1. Springer,
2000.

[49] M. Kreuzer and L. Robbiano, Computational commutative Algebra 2. Springer,
2005.

[50] B. Kutzler and S. Stifter, “Automated geometry theorem proving using buch-
berger’s algorithm,” in SYMSAC ’86: Proceedings of the fifth ACM symposium
on Symbolic and algebraic computation, (New York, NY, USA), pp. 209–214,
ACM, 1986.

[51] J. A. D. Loera, J. Lee, S. Margulies, and S. Onn, “Expressing combinatorial opti-
mization problems by systems of polynomial equations and the nullstellensatz,”
RC24276, 2007. IBM Research Division.



BIBLIOGRAPHY 195

[52] R. Marlet, S. Thibault, and C. Consel, “Efficient implementations of software
architectures via partial evaluation,” Automated Software Engg., vol. 6, no. 4,
pp. 411–440, 1999.

[53] MathScheme, “The MathScheme project.”
http://www.cas.mcmaster.ca/research/mathscheme/.

[54] E. W. Mayr, “Some complexity results for polynomial ideals,” 1997.

[55] E. W. Mayr and A. R. Meyer, “The complexity of the word problems for com-
mutative semigroups and polynomial ideals,” Advances in Mathematics, vol. 46,
no. 3, pp. 305 – 329, 1982.

[56] M. McGettrick, “Buchberger algorithm–gröbner basis–sparse multivariate poly-
nomials.”
http://grobner.nuigalway.ie/grobner/basis.html.

[57] Microsoft Research, “The F# Power Pack,” 2010.
http://fsharppowerpack.codeplex.com/.

[58] A. Middeldorp and M. Starcevic, “A rewrite approach to polynomial ideal the-
ory,” tech. rep., 1991.

[59] MLton team, “Property list.” http://mlton.org/PropertyList.

[60] E. Moggi, “Notions of computation and monads,” Information and Computation,
vol. 93, pp. 55–92, 1989.

[61] S. Moritsugu and C. Arai, “Geometry theorem proving by Gröbner bases: Using
ideal decompositions,” ACM Commun. Comput. Algebra, vol. 42, no. 3, pp. 158–
159, 2008.

[62] MSDN, “Generics in the .NET frameworks,” 2012.

[63] MSDN, “Microsoft F# developer center and language reference,” 2012.
http://msdn.microsoft.com/en-us/library/dd233181.aspx.

[64] D. R. Musser and A. A. Stepanov, “Algorithm-Oriented Generic Libraries,” Soft-
ware Practice and Experience, vol. 24, pp. 623–642, 1994.

[65] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,”
Communications of the ACM, vol. 15, pp. 1053–1058, 1972.

[66] D. L. Parnas, “On the design and development of program families,” IEEE Trans.
Softw. Eng., vol. 2, no. 1, pp. 1–9, 1976.



196 BIBLIOGRAPHY

[67] D. L. Parnas, “Designing software for ease of extension and contraction,” in
Proceedings of the 3rd international conference on Software engineering, ICSE
’78, (Piscataway, NJ, USA), pp. 264–277, IEEE Press, 1978.

[68] D. L. Parnas, “Information distribution aspects of design methodology,” in IFIP
Congress (1), pp. 339–344, 1971.

[69] G. O. Passmore and L. D. Moura, “Superfluous S-polynomials in Strategy-
Independent Gröbner Bases,” in Symbolic and Numerical Algorithms for Sci-
entific Computing, pp. 45–53, 2009.

[70] T. Petricek and J. Skeet, Real World Functional Programming: With Examples
in F# and C#. Greenwich, CT, USA: Manning Publications Co., 1st ed., 2009.

[71] J. C. Reynolds, “The discoveries of continuations,” Lisp Symb. Comput., vol. 6,
no. 3-4, pp. 233–248, Nov. 1993.

[72] Rice University Programming Languages Team – PLT, “Metaocaml: A compiled,
type-safe, multi-stage programming language.” http://www.metaocaml.org/.

[73] T. Rompf, I. Maier, and M. Odersky, “Implementing first-class polymorphic
delimited continuations by a type-directed selective CPS-transform,” SIGPLAN
Not., vol. 44, no. 9, pp. 317–328, Aug. 2009.

[74] S. Rugaber, “Software development process.” Georgia Tech College of Comput-
ing.

[75] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Reference
Manual, The (2nd Edition). Pearson Higher Education, 2004.

[76] P. Schauenburg, “A Gröbner-based treatment of elimination theory for affine
varieties,” J. Symb. Comput., vol. 42, no. 9, pp. 859–870, 2007.

[77] T. Sheard and S. P. Jones, “Template meta-programming for Haskell,” SIGPLAN
Not., vol. 37, no. 12, pp. 60–75, 2002.

[78] C. M. U. Software Engineering Institute (SEI), “A framework for software prod-
uct line practice,” 2009.
http://www.sei.cmu.edu/productlines/index.html.

[79] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, “AspectC++: An Aspect-
Oriented Extension to C++,” in In Proceedings of the 40th International Confer-
ence on Technology of Object-Oriented Languages and Systems (TOOLS Pacific
2002, pp. 53–60, 2002.

[80] O. Spinczyk, D. Lohmann, and M. Urban, “Advances in AOP with AspectC++,”
2003.



BIBLIOGRAPHY 197

[81] B. Sturmfels, Gröbner Bases and Convex Polytopes. University Lecture Series,
American Mathematical Society, 1996.

[82] Y. Sun and D. Wang, “A Generalized Criterion for Signature-based Algorithms
to Compute Gröbner Bases,” CoRR, vol. abs/1106.4918, 2011.

[83] G. J. Sussman and G. L. Steele, “Scheme: A interpreter for extended lambda
calculus,” Higher-Order and Symbolic Computation, vol. 11, pp. 405–439, 1998.
10.1023/A:1010035624696.

[84] K. Swadi, W. Taha, O. Kiselyov, and E. Pasalic, “A monadic approach for
avoiding code duplication when staging memoized functions,” in PEPM ’06:
Proceedings of the 2006 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, (New York, NY, USA), pp. 160–169,
ACM, 2006.

[85] D. Syme and J. Margetson, “The F# Programming Language,” 2011.
http://fsharp.net/.

[86] D. Syme, “Leveraging .NET meta-programming components from F#: integrated
queries and interoperable heterogeneous execution,” in ML ’06: Proceedings of
the 2006 workshop on ML, (New York, NY, USA), pp. 43–54, ACM, 2006.

[87] D. Syme, G. Neverov, and J. Margetson, “Extensible pattern matching via a
lightweight language extension,” in ICFP ’07: Proceedings of the 12th ACM
SIGPLAN international conference on Functional programming, (New York, NY,
USA), pp. 29–40, ACM, 2007.

[88] D. Syme, T. Petricek, and D. Lomov, “The F# asynchronous programming
model,” in Proceedings of the 13th international conference on Practical aspects
of declarative languages, PADL’11, (Berlin, Heidelberg), pp. 175–189, Springer-
Verlag, 2011.

[89] W. Taha, Multi-Stage Programming: Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and Technology, 1999.

[90] W. Taha and T. Sheard, “MetaML and multi-stage programming with explicit
annotations,” Theor. Comput. Sci., vol. 248, no. 1-2, pp. 211–242, 2000.

[91] Q. Tran and M. Y. Vardi, “Gröbner bases computation in Boolean rings for sym-
bolic model checking,” in MOAS’07: Proceedings of the 18th conference on Pro-
ceedings of the 18th IASTED International Conference, (Anaheim, CA, USA),
pp. 440–445, ACTA Press, 2007.

[92] W. Trinks, “On Buchberger’s method of solving systems of algebraic equations,”
ACM Commun. Comput. Algebra, vol. 45, no. 3/4, pp. 150–161, Jan. 2012.



198 BIBLIOGRAPHY

[93] W. Van Orman Quine, Mathematical Logic. Harvard University Press, 1981.

[94] M. VanHilst and D. Notkin, “Decoupling change from design,” SIGSOFT Softw.
Eng. Notes, vol. 21, no. 6, pp. 58–69, 1996.

[95] D. Wang, Gröbner Bases Applied to Geometric Theorem Proving and Discover-
ing. Cambridge University Press, 1998.

[96] V. Weispfenning and T. Becker, Gröbner Bases: A Computational Approach
to Commutative Algebra, vol. 141 of Series: Graduate Texts in Mathematics.
Springer-Verlag New York, Inc., 1998.

[97] Wikipedia, the free encyclopedia, “Gröbner basis.”
http://en.wikipedia.org/wiki/Gr%C3%B6bner basis.

[98] J. Xu, Mei A Module System for Mechanized Mathematics Systems. PhD thesis,
McMaster University, 2008.


