DRAFT — Do not distribute

On Meta Programming and Code Generation in F#*

Pouya Larjani

Department of Computing and Software, McMaster University

larjanp@mcmaster.ca

Abstract

Meta programming is used to write programs that manipulate other
programs. In this paper, we are interested in the use of meta pro-
gramming for code generation generally and in syntactically cor-
rect, type safe methods for manipulating code fragments specifi-
cally. We require a strictly typed programming language with self-
hosting meta programming support. Some techniques for type safe
code generation are developed in the MetaOCaml programming
language and have been published before. We develop the required
machinery and techniques in the F# programming language in a
similar manner using the support for typed code quotations in the
F# programming language and the LINQ (Language Integrated
Query) features of the .NET platform. This machinery allows us
to compose code fragments that are syntactically correct with type
and scope safety guarantees. We also develop a domain-specific
language for the construction of code generators using F# work-
flows.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Code Generation

Keywords F#, Meta-Programming, Code Generation, Domain
Specific Languages

1. Introduction

Throughout the history of computer programming many different
definitions have been given for meta programming — such as ma-
nipulating strings representing code or handling representations of
abstract syntax trees, template meta programming, and multi stage
code compilation [12, 13, 20] — but they all share the same com-
mon goal: To manipulate or reason about other programs'. With
advancements in the concepts of programming languages we see
more tools and machinery available for writing better meta pro-
grams. In this paper we are concerned about language integrated
meta programming, where the components of a meta program are
available constructs inside the language itself and there is no more
need of a meta language for writing such programs. In this case

* This work was supported by NSERC.

! The “other” program may even be the code to the meta program itself, in
case of self-modifying programs.

[Copyright notice will appear here once ’preprint’ option is removed.]

“meta program” is perhaps a misnomer and a suggested better name
is multi stage programming [4, 19] where the focus is on multiple
stages of compilation for obtaining code. In this paper we will as-
sume the two terminologies are interchangeable.

Language integrated meta programming has three main compo-
nents as used in List (see [1] for full description):

1. Quote: (quasi-quote) To obtain a representation of the code
inside the quotation as a value in the program.

2. Eval: To run the piece of code that a value represents.

3. Splice: To compose different fragments of code together.

The splicing concept is the more interesting of these operations
and deserves more explanation. The real power of meta program-
ming lies within the splice operation for composing code fragments
together. One can modify code and produce new combinations of
code fragments using the splice operation and perform computa-
tions on code such as variable renaming, partial code compilation
[14], or even optimizations by replacing specialized routines de-
pending on the context [3, 4].

Of course having such power over code generation may lead
to some undesirable results where the produced code is meaning-
less, but with the development of more organized meta program-
ming components integrated into languages such as MetaML [20],
MetaOCaml [12], Haskell [13] and F# [15] we have access to
more attractive features such as static guarantees and type safety
of splicing to ensure that the produced code fragments make sense
(from the compiler’s perspective). With more careful constructs and
proper operations we may also convince a person that the produced
code is correct as well.

1.1 Outline

The focus on this paper is on techniques for provably correct code
generation in F# [16]. We will discuss the implementation of some
important features of multi stage programming from [19] in F# as
well as other developed techniques (such as those in [4]) for the
generation of code.

In Section 1.2 we will have a brief overview of the syntax of
meta programming elements in F# and its key similarities and dif-
ferences with other languages that have integrated meta program-
ming features. The next section discusses in detail the features of
meta programming included and missing in F# quotations and ex-
plains the improvements and combinator implementations to over-
come the shortcomings of the base implementation. This section
contributes two quotation transformers for uniquely renaming vari-
ables and code reduction as well as a pretty-printer for F# quota-
tions. Section 3 demonstrates the construction of an extensible and
flexible code generator using many of the features included in F#
([10] for full features) such as computation expressions (i.e. mon-
ads), customized pattern recognizers ([17] Chapter 9), and LINQ
expression trees [2]. This section contributes a framework for code
generation and a workflow for generating code with continuations

2010/4/2

as well as a useful example of how we can benefit from the addi-
tional functionality. Section 4 contains the major contributions of
multi stage programming to code efficiency and the future work
that can be done to further improve the functionality.

1.2 Meta Programming Elements in F#

Don Syme introduced the meta programming components of F#
programming language and its uses in generation of dynamic
queries and data parallel programs in his paper “Leveraging .NET
Meta-programming Components from F#” [15]. This paper will
build on the concepts introduced by Syme. The basic syntax of F#
is very similar to other languages in the ML family and we will as-
sume the reader has some familiarity with it. For a more detailed
view of F# language please refer to [16]. The main point of com-
parison for meta programming in this paper will be MetaOCaml,
see [6] for comparison with other meta programming languages
such as Template Haskell and C++.

A typed code quotation in F# is constructed by surrounding a
syntactically valid and type correct code fragment in <@ and @>
symbols (similar to the .< ... >. construction in MetaOCaml). F#
quotations have have the syntax and grammar rules of F# language
(see [10]); additionally, they are augmented with typing informa-
tion of the quoted code and therefore valid compositions of code
quotations are guaranteed to be type-correct [15]. In that respect,
F# quotes are similar to MetaML [20] and MetaOCaml [12] — but
unlike Lisp quotations which are untyped and are simply lifted data
lists without requiring them to be executable?. The quotes are of
type Expr<’a> (alternatively denoted by ’a Expr which is more
familiar for OCaml readers) where ’a is the type of the inner ex-
pression.

The splice syntax in F# is done through the % operator inside
of a quotation similar to .~ in MetaOCaml. The “holes” in a
quotation are typed, and the code that is being spliced at a location
must match that type. This ensures that the generated quotation
after splicing is still well typed as well as syntactically valid. For
example, the function

> let Seq a b = <@ begin %a; %b end @>;;
val Seq : Expr<unit> -> Expr<’a> -> Expr<’a>

is s sequencing operator and produces code that sequences two
other code fragments after each other. Notice the first code frag-
ment must have type unit due to the semantics of ; and the final
type of the sequence expression is the type of the second code frag-
ment.

Unlike the splicing in MetaOCaml, the splice operation in F#
does not avoid variable capture and no variable renaming is per-
formed during splicing. This can lead to unsafe code generation
when multiple code combinators use the same variable name in
their generated code, or even the case of applying the same code
combinator multiple times. In the following sections we will de-
velop the quotation transformers that perform renaming of vari-
ables to create unique names during splicing and solve the variable
capture problem.

There is no immediate equivalent of the “run” operator (such
as .! in MetaOCaml) in F#. We can execute a quotation using
the LINQ expression compiler by calling the Expr<’a>.Eval()
method. Unlike the quotation evaluation of MetaOCaml which is
a pure compile-time operation, F# quotations can be compiled and
run on demand at any stage. This allows for greater flexibility and
partial evaluation during run-time. Section 2.4 discusses how we
can use the LINQ compiler to our advantage in multi stage code
generation.

2 F# has untyped code quotation with <@@ and @@> style of quoting, but they
do not have the same semantics as Lisp quotes.

F# quotations are algebraic data types defined as an expression
tree augmented with attributes and typing information. This is quite
similar to the definition of quotations in Template Haskell and can
be explicitly created using generator functions and analyzed using
pattern matching — unlike MetaOCaml’s approach of representing
code quotations [20].

The internal tree representation of a quote in F# is defined
through the algebraic type:

type Tree =
| CombTerm of ExprConstInfo * Expr list
| VarTerm of Var

| LambdaTerm of Var * Expr
| HoleTerm of Type * int

The type Var is defined as the name of a variable (as a string)
bundled with the type of the variable and ExprConstInfo type
carries various information about different expressions. While the
Expr type utilizes the Tree type internally, this structure is not
exposed to the users of the Expr type outside of the module and
instead F# uses quotation generator methods and active pattern
recognizers [18] to safely compose or decompose quotations.

Since the internal representation of an expression tree is low-
level (almost similar to Lisp’s method of using s-expressions to
represent a quote [1]), it is possible for users to generate an ex-
pression tree which does not represent any valid code. As we will
see in the next section one of the main requirements of generating
correct code is for the quotation syntax to be grammatically cor-
rect — which could easily be violated if the code generators have
access to the internal expression tree.

To satisfy this requirement, the Expr type only allows con-
struction of expressions through a series of specialized construction
methods that only produce proper® expression trees. For example,
the method:

Expr.Sequential : Expr * Expr -> Expr

produces proper expressions representing a sequential operator
similar to the example above.

The Quotations.Patterns module defines a collection of ac-
tive pattern recognizers for deconstruction of the Expr data type.
These pattern recognizers allow high-level pattern matching us-
ing the proper expression format over the internal tree represen-
tation of the quotation. The name of the generator method for each
high-level quotation construct is often the same as the name of
the pattern recognizer for it, and we will be using both of them
throughout this paper. The type and definition of a method (such
as Sequential method above) differs according to the context of
its appearance whether it is a constructor or a deconstructor (pattern
match). For more information refer to [15] for expression types and
[18] for active pattern recognizers.

These quotation constructor methods and pattern recognizers in
the F# library provide us a rich environment for generating and
analyzing syntactically correct code quotations.

2. Features of Multi-Stage Programming

A multi stage program (meta program) has many advantages to
the direct implementation of the same program such as having the
flexibility of choosing from different specializations of a routine
depending on the current task at hand and without using abstrac-
tion layers. Another advantage of multi stage programs is the abil-
ity to partially compile code during the different stages of com-
pilation and/or execution according to the currently available data

3 Improper expressions are trees that conform to the Tree data structure,
but do not denote any valid syntax.

2010/4/2

[4]. While being advantageous in many respects, multi stage pro-
grams also have the caveat of being more complex to program and
have the possibility of composing wrong code mixtures from cor-
rect smaller code fragments, as in Section 2.1 for example. In this
section we discuss how we can take better advantage of the avail-
able features and how to simplify the code generation process while
avoiding the mistakes that produce incorrect code.

In general, we can break down the requirements of correct code
generation into following steps:

1. Syntax correctness: Every code quotation must conform to the
syntax rules of the language and be guaranteed to parse cor-
rectly.

2. Type correctness: Code quotations must confer to the lan-
guage’s typing rules and be guaranteed to compile correctly.

3. Scoping correctness: Variables do not escape their scopes at run
time and do not cause any naming clashes in the code.

4. Semantic correctness of combinations: Each code combinator
has a guarantee (formally as a proof or informally as documen-
tation) to perform the correct action and generate code quota-
tion that conforms to these requirements.

We can gain concise and correct syntax by the fact that code
quotations are parsed by the compiler in multiples stages and each
quotations must adhere to the language syntax rules and parsed
into an abstract syntax tree. The type correctness is also a built-
in feature of languages with strongly typed quotations. The next 2
items are the main sources of discussion in the following sections.

2.1 Variable Captures and Renaming in Splicing

A variable capture occurs when name of a variable in scope is
reused in a sub-expression for a different purpose. Such name
clashes are common issues when using code combinators to con-
struct meta programs and are not always avoidable by the program-
mer.

A common example for variable capture is when a code combi-
nator is applied twice. Consider the following function:

let Fun (f: Expr<’a> -> Expr<’b>) : Expr<’a->’b> =
let v = Var.Global("t", typeof<’a>)
Expr.Lambda(v, £ (v |> Expr.Var |> Expr.Cast))
|> Expr.Cast

Which wraps a (code transformer) function inside a code quotation,
ie.

(Fun >> Eval) f = (Lift >> f >> Eval)

This combinator introduces a new variable named t as argument
of the lambda function. A nested application of this combinator
now generates a naming clash®:

let add = Fun (fun x ->
Fun (fun y -> <@ (%x) + (%y) @>))
val add : Expr<(int -> int -> int)> =
<@ fun t -> fun t -> (£)+(t) ©>

As we can see this is clearly not the intention of the program and
the naming clash between the two calls to the combinator is seman-
tically altering the generated code. Such issues always arise when
the combinator is generating code that introduces a new variable
without having sufficient information about the context of the ex-
ternal expressions and the currently used names — commonly used
with let bindings and lambda abstractions as well as the imperative

4Due to an unfortunate naming clash for the splicing operator, we put the
splice within brackets (such as (%x)) to avoid parsing the operation as the
binary modulus operator which has precedence over splice.

for loops. Although in the sample combinator defined above the
naming clash can be avoided with a minor adjustment, this issue is
rectified when we further define more combinators causing possi-
ble naming clashes and introduce the continuation-passing style in
Section 3 and we require a more robust and versatile solution.

MetaOCaml and MetaML automatically handle variable renam-
ing when splicing code by creating unique names such that the
name clashes and variable captures do not occur [19], but F# does
not automatically rename variables and leaves it to the programmer
to ensure uniqueness of variable names. Therefore we need to de-
velop the machinery in code combinators to produce unique names
when it is necessary.

The approach in this paper is to construct a function called
MakeUnique that renames the variables (including function argu-
ments, let bindings, and for loop counters) in an expression before
splicing takes place. In the example above, making all variables
unique would produce the code
fun t_1 -> fun t_2 -> (t_1)+(t_2).

This function can be defined by structural recursion on the data
type defining code expressions and a local dictionary of unique
names’:

let unique: Var -> Var =

// Ensures given variable is unique

let subs: Var -> Var -> Expr -> Expr = ...
/I Applies a variable renaming to an expression

let MakeUnique = function
| Var v -> Expr.Var (unique v)

| Lambda (n, e) -> let n’ = unique n
Expr.Lambda(n’, subs n n’ e)
| Let (n, v, e) -> let n’ = unique n

Expr.Let(n’, v, subs n n’ e)
| e > e

Using the MakeUnique function in the code combinators solves
the issue with variable captures. This is an essential factor in cor-
rectness of the generated code to obtain scoping safety in addition
to the type safety and syntax correctness provided by meta pro-
gramming features of F#. We can further on simplify the process
of adjusting variable names by defining an expression transformer:

let rec TraverseExpr f e =
/I Traverses the expression and maps the given function to each
term

let Rename (x: Expr<’a>) : Expr<’a> =
TraverseExpr MakeUnique x |> Expr.Cast

which is called at every stage of code generation inside combinators
for unique renaming of variables.

For efficiency purposes, the MakeUnique transformer contains
a local dictionary of the uniquely generated variable names such
that an expression is never renamed twice in the process of code
generation.

2.2 Code Reduction at Compilation

Partial evaluation in one of the more attractive benefits of multi
stage programming for code optimization. If at a certain stage of
code generation all the data for evaluation of a sub-expression is
readily available, the code generator can reduce the entire sub-
expression to the result of its evaluation (i.e. partially evaluate the
program) to improve the post-compilation execution time at the
cost of performing the evaluation at the current stage.

3 The full code for this paper can be accessed at
http://www.cas.mcmaster.ca/"larjanp/fscodegen

2010/4/2

The reduction can only occur during splicing of expressions.
When a code combinator is generating a new code fragment by
splicing other expressions it can evaluate the sub-expression fully
if all the data is present prior to splice operation — for example
reduce a function call which has all of its arguments evaluated to
the result of the call. We will see in Section 3 how this operation can
be improved further by flow of information in the code generation
monad.

Another weakness of the splice operation in F# in comparison
with MetaOCaml is exposed when attempting the code reductions
as explained above. F# splice (%) operation does not automatically
perform the desired reduction and needs the data to be prepared
prior to splicing to apply the proper reduction. For example the
apply operation for code is defined in MetaOCaml:

let app f x = .< .7f ."x >.;;
val app : (’a, ’b -> ’c) code ->
(’a, ’b code) -> (’a, ’c) code
app .< fun x -> x + x >. .<1>.;;
- : (’a, int) code =
<((fun x_1 -> (x_1 + x_1)) 1)>.

but the same definition in F# does not produce equivalent code:

> let app f x = <@ (%f) (hx) @>;;
val app : Expr<(’a -> ’b)> -> Expr<’a> -> Expr<’b>
> app <@ fun x -> x + x @ <@ 1 ©>;;
val it : Expr<int> =
<@ SpliceExpression (fun x -> x + x) 1 @

In the above example, the desired reduction did not take place
during the code generation time and the computation is delayed
to the runtime call to SpliceExpression function to perform the
beta reduction — even if SpliceExpression is identity at run
time, it should be performed during compilation time since all the
information to reduce the expression is present at compilation. In
fact, the current quotation evaluation using LINQ (Section 2.4) is
not able to correctly execute this code and results in a run-time
error for a first class usage of splicing. Until this issue is fixed in
F#, we can use an alternative method of creating another quotation
transformer which automatically translates SpliceExpression
expressions into appropriate function applications which can be
beta reduced at evaluation stage. Similar to the Rename transformer
developed in Section 2.1 we may define a Reduce transformer
for this purpose, but we can also take an alternative approach
to avoiding this issue while applying the other transformations:
Our goal is to construct the resultant expression such that the
superfluous function application is removed — and meanwhile
perform the variable renaming mentioned in previous section as
well. Or solution is to prepare the representation of the code using
proper code combinators instead of quasi quotations.

> let Apply (f: Expr<’a->’b>) (x: Expr<’a>)
: Expr<’b> =
Expr.Application(Rename f, Rename x)
|> Expr.Cast;;
> Apply <@ fun x -> x + x @ <@ 1 ©@>;;
val it : Expr<int> = <@ (fun x_1 -> x_1+x_1) 1 @>

An explicit call to Expr.Application constructs the type of
expression desired. We will use this style of code construction
extensively in the following sections in replacement of the built-
in splice operation.

The general code reduction expression transformer can be de-
fined recursively similar to the Rename transformer. This function
will search for an application of the SpliceExpression function
and reduce that into an application call that can be beta reduced
during compilation:

let MakeSplice = function
| Application (Call(None, m, [Value(p,_)]), v)
when (m.Name = "SpliceExpression") &&
(p :?7 Expr) ->
Expr.Application(p :7> Expr, v)
| e > e

let Reduce (x: Expr<’a>) : Expr<’a> =
TraverseExpr MakeSplice x |> Expr.Cast

This can further be improved by replacing the string compar-
ison for method name with a proper comparison of MethodInfo
objects.

2.3 Code Generation Combinators

The F# quotations provided us with required machinery to ensure
the syntactic and type correctness of generated code fragments, and
in the last few sections we have developed the required techniques
for avoiding unwanted variable captures and allowing compile-time
function applications. The next step is to provide appropriate code
combinators as the basic building blocks of the code generator (as
opposed to directly constructing quotations in the process) such that
every combinator produces code from its arguments that adheres to
the four requirements defined earlier.

In the discussion code provided in above, some type restrictions
and casting is required to ensure the type correctness of the combi-
nators. It is important to note that the base data type for represen-
tation of code and its generators (the type Expr above) are untyped
code, and thus the combinators that will be using them directly need
additional type constraints for the casting from untyped quotation
Expr to typed quotation Expr<’a> to be valid.

The two most basic combinators are Lift and Eval, where the
former lifts a value from its base type to quoted type (similar to
quote) and the latter evaluates a quotation from its quoted type
into the base type. Ideally, in an end-user application there should
not be any quotations present and the only code constructions are
through lifting basic values with Lift and combining them using
other combinators, with a final evaluation from the code domain
to the value domain using Eval. The evaluation operation will be
discussed further in Section 2.4.

In order to achieve this goal, we will need an appropriate com-
binator equivalent to each of the language constructs, such as let
statements (without variable naming clashes), function applications
(as seen above), lambda abstraction with care for variable cap-
tures, sequencing of code fragments (; operation), control structure
and program flow combinators (if statements, for and while loops,
etc...), and some ease-of-use convenience combinators (i.e. lifted
references or lists).

let Let n (a: Expr<’v>) (f: Expr<’v> -> Expr<’e>)
: Expr<ie> =
let v = Variable<’v> n
Expr.Let(v, a, £ (v |> Expr.Var |> Expr.Cast))
|> Expr.Cast

let Sequence (a: Expr<’b>) (b: Expr<’a>)
: Expr<ia> =
Expr.Sequential (Rename a, Rename b) |> Expr.Cast

let While c b =

let c’, b’ = Rename c, Rename b
<@ while (%c’) do (%b’) done @>

We will be using these combinators extensively during code
generation and provide monadic versions of each in Section 3.

2010/4/2

2.4 Printing, Compilation and Evaluation

Readers familiar with F# and its quotations system have noticed at
this point that the quotation results of samples above do not resem-
ble any of the output from the F# interactive environment. F# by de-
fault prints the algebraic data type representing the code fragment
(as in the AST of the code) without any pretty-printing applied. To
obtain results that are easy to read and resemble the syntax of F#
more closely we need to develop our own quotation pretty-printer
to attach to the interactive session. Note that this is purely a cos-
metic enhancement during development and presentation, and the
existence of this printer has no effect on the execution or the result
of any code generator.

let rec PrintQuote = function
| Var v -> v.Name
| Value(a, _) -> a.ToString()

| Lambda(v, e) -> "fun " + v.Name + " -> " +
PrintQuote e
| Let(n, v, e) -> "let " + n.Name + " = " +

PrintQuote v + " in " +
PrintQuote e

The compilation and evaluation process for F# quotations dif-
fers greatly from the “run” method (.!) provided with MetaO-
Caml. Evaluation of a quote in F# is done through external func-
tions that produce and compile LINQ computation expressions [2]
as opposed to a built-in run operation of MetaOCaml [19]. The
Expr<’a>.Eval method is defined in the
Microsoft.FSharp.Ling.QuotationEvaluation [9] library
and is executed at the end of each stage in computation and gener-
ation of code. Thus the combinator Eval is defined as:
let EvalLINQ (x: Expr<’a>) ’a = x.Eval()

The LINQ dynamic compiler generates native and optimized
code through the .NET JIT (Just-In-Time) compiler from the ex-
pressions trees produced from F# quotations [15]. The performance
of this evaluation and benefits and drawbacks are discussed in Sec-
tion 4.1.

3. Construction of a Code Generator

We have addressed the main topics and concerns with meta pro-
gramming in F# to generate code. With the ability to generate code
fragments that are syntactically valid and strongly typed with guar-
antees on syntax correctness, type correctness and variable scope
correctness, we can now compose code fragments using our combi-
nators to generate derivative programs. One of the benefits of sub-
stituting different specializations of sub-programs is to overcome
the execution overhead caused by abstraction, but the main power
of using code generators lies within the concept of compile time
beta reduction for partial evaluation as demonstrated in [3] and [4]
for generating specialized solvers for Gaussian Elimination.

Ideally, we would like to have a domain-specific language
(DSL) that captures all the required code generation routines in
a convenient environment for the developer. In most modern func-
tional programming languages (Haskell, OCaml, and F# for in-
stance) we can eliminate the need for an external DSL by using the
special features in language such as development of custom opera-
tors for code combinators and special monads for composing code
fragments. In [4], Carette and Kiselyov have used a syntactic ex-
tension to OCaml (pa-monad [5]) to write monadic syntax similar
to Haskell. In F# we can use the concept of a workflow to develop
the required monads (For example, see [17] Chapter 9).

3.1 Continuation-Passing Style

Before we explain the usage of workflows in the code generator,
there is one more issue to address: How do we assign names or use
code fragments that have not been generated yet? What happens
when a combinator that’s generating an inner portion of a routine
requires the program to have extra parameters, or add definitions
prior to execution of this code?

For example when generating a let-statement, we would like to
have a combinator <@ let v = %value in %expr @>, but the
expr generator must know what the variable bound to value is
called before generating the code. Readers may have noticed at this
point that the definition of the Let combinator in previous section
required a function of type Expr<’v> -> Expr<’e> instead of
the expression (where ’v is the type of the introduced variable)
to perform the variable substitution in expr prior to using it in
the generator. We would like to expand on this concept of passing
required information to future generators automatically instead of
asking for such substituting functions.

The solution proposed in [14] and [4] is to use a continuation
function in our generators using continuation-passing style (CPS).
In this case each combinator outputs a continuation that will gen-
erate the code when run, and accept other code generator continu-
ations as code parameters. This method is used extensively in [4]
to program code combinators and we will follow the same design
for our combinators in F#. For full details on benefits and usage of
CPS refer to [14].

Before we introduce the idea of workflows, we will first explore
the continuation-passing monad as described above. The state-
continuation monad used in [4, 14] can simply be defined as the
F# type:

type StateCPSMonad<’s, ’v, ’w> =
’s => (s > v => ’w) > ’w

Where ’s is the state, ’v is the value type, and ’w is the type of
the final answer. In the code generator the type of value and answer
are in fact expressions over types ’v and ’w. We will not be using
the monadic state in any of the combinators and examples in this
paper and will only define them here to show the equivalent version
of the monad defined in [4] in F#, but the type of the state that used
in more advanced examples is a sequence of state variables with
type ’s. Thus, a better definition of the state-continuation monad
used for code generation is:

type CodeGen<’a, ’v, ’w> =
StateCPSMonad<seq<’a>, Expr<’v>, Expr<’w>>

Followed by the two monadic operations of return and bind:

let ret: Expr<’v> -> CodeGen<’s,’v,’w> =
fun a s k -> k s a
let bind: CodeGen<’s,’a,’w> ->
(Expr<’a> -> CodeGen<’s,’b,’w>) ->
CodeGen<’s,’b,’w> =
funm f sk -=>m s (fun s’ k> -> f k’ s’ k)

The result of a code generator is a continuation that can produce
the code given the initial conditions — which are often the empty
state and the reset continuation:

let Reset s k = k
let Generate m = m [] Reset

This gives us a primitive notion of a code generator monad
that the referenced texts have proposed. In order to use the added
functionality correctly, we will need to define the monadic versions
of the combinators from Section 2.3 first.

2010/4/2

3.2 Monadic Code Combinators

Let-statements are one of the most important and problematic
expressions in code generation. As shown in [14] the main question
is when and where to introduce the variable bindings. They must
maintain the dependency between the defined variables, but also
need to be generated before the code fragment that utilizes them.
This was the motivating move to use CPS notation so that code
generators can see their continuations beforehand. Let statements
may also cause variable capture and shadowing issues discussed
in Section 2 that needs to be resolved when generating the final
statement. Knowing the importance and issues associated with Let
statements, it comes as no wonder that we would define them first.
Looking back at the definition of the Let combinator:

let Let name (a: Expr<’v>)
(f: Expr<’v> -> Expr<’e>) : Expr<’e> =
let v = UniqueVars.GetNew name typeof<’v>
Expr.Let(v, a, £ (v |> Expr.Var |> Expr.Cast))
|> Expr.Cast

let LetM name a = fun s k -> Let name a (k s)

We now realize why the combinator required a function to gen-
erate the body of the statement, as it can be lifted easily into
the monadic version LetM (of type string -> Expr<’a> ->
CodeGen<’s,’a, ’w>).

We can demonstrate this new code generator with a simple
example using explicit calls to ret and bind

> Generate <|
bind (LetM "x" <@ 4 @>) (fun a ->
bind (LetM "x" <@ 7 @) (fun b ->
ret (Apply (Apply <@ (+) @ a) b)));;
val it : Expr<int> =
<@ let x_1 = 4 in let x_2 = 7 in (x_1)+(x_2) @

> Eval it;;
val it int = 11

We called both the variables “x” deliberately to ensure the
variable renaming is taking place correctly® and applied a simple
addition to the two values to generate the body of the let statements.
There are many points to improve here for readability: Switch to
a Haskell-style monadic syntax that wraps the bind operations in
a friendly syntax (such as pa-monad [5] and F# workflows [17]),
incorporate LetM into a new variant of binding operator (given that
we are not bound to names used in syntax extension), introduce a
new combinator Apply2 to make the application of binary function
easier, or even introduce the operator-combinator @+ to infix the
operation.

let Apply2 f x y = Apply (Apply f x) ¥y
There are many other useful combinators to define, such as
sequencing expressions:
let Sequence (a: Expr<’b>) (b: Expr<’a>)
: Expr<’a> =
Expr.Sequential (Rename a, Rename b) |> Expr.Cast

let SequenceM a b = fun s k ->
k s (Sequence (a s Reset) (b s Reset))

Or as a different alternative, a combinator needed to append a
statement prior to the generated code from the continuation:

let PrependM a b = fun s k ->

6in retrospect, these two bindings could come from completely different

sources that are not aware of each others naming conventions. In fact, we
will completely remove the option of choosing specific names for variables
in Section 3.3.

Sequence (a s Reset) (k s b)
And the primary looping combinator for while loops:

let While c b =

let c’, b’ = Rename c, Rename b

<@ while (%c’) do (%b’) done @>
let WhileM ¢ b = fun s k ->

k s (While (c s Reset) (b s Reset))

We will see more of these combinators as we progress in devel-
opment of the full code generator.

3.3 F# Computation Expressions (Workflows)

As described earlier, workflows are equivalent features to monads
in F# with some additional DSL elements as introduced in [17] and
[10]. We will be using the workflows in F#' to refine the monadic
code generator defined earlier. Next we will produce alternate im-
plementations to the code generation combinators that operate on
the codegen monad, and lastly a short example of a code generator
is presented.

There are many constructs allowed in a computation expression
in F# such as let, yield, while, try, etc... but before implementing
any of these features, we should first explain how a workflow is
internally represented. Let us consider the following sample of a
workflow (similar to the example given above):

sample {
let! x1 =4
let! x2 =7

return (x1 + x2)

}

The let and return statement above are de-sugared according to
the rules of computation expressions into:

sample.Delay(fun () ->
sample.Bind(4, fun x1 ->
sample.Bind(7, fun x2 ->
sample.Return(xl + x2))))

The expansion process from the (sugared) workflow notation
into the (de-sugared) internal system notation automatically con-
verts consecutive expressions into the continuation-passing style
before execution. This greatly improves the readability and devel-
opment of the code combinators from the notation in Section 3.1.

To further explain the other elements supported in the code
generation language, we have defined the following interface for
the workflow:

type Workflow =
abstract Delay:
(unit -> Expr<’a>) -> Expr<’a>
abstract Bind:
Expr<’a> * (Expr<’a> -> Expr<’b>)
-> Expr<’b>
abstract Return:
’a -> Expr<’a>
abstract ReturnFrom:
Expr<’a> -> Expr<’a>
abstract YieldFrom:
Expr<’a> -> Expr<’a>
abstract Combine:
Expr<unit> * Expr<’a> -> Expr<’a>
abstract While:
(unit -> Expr<bool>) * Expr<unit>

7The terms “workflow” and “computation expression” are used inter-
changeably in the F# literature.

2010/4/2

-> Expr<unit>
abstract Zero:
unit -> Expr<unit>

The entire computation expression is wrapped in a call to the
Delay method of the workflow, and the 1et! (and do!) expressions
are translated to the Bind method call — however, we left the
normal let expression untransformed in order to allow the code
generator to utilize local variable bindings that are not produced in
resultant code. A yield! statement is transformed to a call to the
YieldFrom method which we will primarily use as means to insert
code fragments inside the code generator (similar to the PrependM
combinator defined earlier) whereas sequenced calls to various
statements are combined using the Combine method (equivalent
to SequenceM earlier).

The implementation of the code generator workflow is quite
similar to the monadic combinators defined earlier:

let codegen = {
new Workflow with
member cg.Delay v = v()
member cg.Bind (v,f) = Let "t" v £
member cg.Return v = <@ v @>
member cg.ReturnFrom v = v
member cg.YieldFrom v =
member cg.Combine (a,b)
member cg.While (c,e) =
member cg.Zero () = <@ (

v
= Sequence a b
While (c()) e
) @

We can now used the codegen workflow as the DSL for defin-
ing the code generators. The example illustrated in Section 3.2 now
becomes much more readable and easier to maintain:

> codegen {
let! a = <@ x+1 ©@>
let! b =<e f y @
return! <@ (%a)*(%a) + (hb)*(%b) @ };;
val it : Expr<int> =
<@ let t_1 = x+1 in let t_2 = f y in
(oD (E_D+(t_2)*(t_2) @

We have lost the ability of explicitly naming the introduced
bound variables with the transformation to workflow syntax (in
fact, every variable is now called t_num), but gained a significant
amount of readability and maintainability in the trade-off. It is also
important for readers to note that we have deliberately omitted the
state variable of the state-continuation monad from [4] as it does
not apply to the topics in this paper.

Additionally, if we wish to gain more control and flexibility over
the continuations in the code generator, we can define a workflow
for explicitly binding objects of the type StateContMonad from
Section 3.2 similar to the definition in [14] and [4]:

type CGMonadBuilder ()
member m.Return a = ret a
member m.Bind (m, f) = bind m f
let mcodegen = CGMonadBuilder ()

In which case the example from Section 3.2 becomes:

> Generate <| mcodegen {
let! a = LetM "x" <@ 4 ©>
let! b = LetM "x" <@ 7 ©@>
return Apply2 <@ (+) @ a b };;
val it : Expr<int> =
<@ let x_3 = 4 in let x_4 = 7 in (x_3)+(x_4) @>

3.4 Example: The Power Unleashed

Readers may have noticed the theme of all the examples so far

has been arithmetic. This was chosen because 1) the operations

are familiar for everyone and simple to follow, and 2) it takes a

relatively short amount of code to generate the result to demonstrate

a construction or a flaw. We will work towards more complex

samples of code generation using custom algebras in this section.
Consider the following definition of a ring:

type Ring<’t> =
abstract zero: ’t
abstract one: option<’t>
abstract add: ’t -> ’t -> ’t
abstract neg: 't -> ’t
abstract sub: option<’t -> ’t -> ’t>
abstract mul: ’t -> ’t -> ’t
abstract inv: option<’t -> ’t>
abstract div: option<’t -> ’t -> ’t>

If member one is not None then the ring has multiplicative identity,
and if inv is defined then the ring also has multiplicative inverses,
making it a domain. Notice that sub and div are left optional since
it is possible for the program to define them externally in terms of
other operations, i.e. :

let mksub (r: Ring<_>)
match r.sub with
| None —>
Some (fun a b -> r.add a (r.neg b))
| _ -> r.sub
let mkdiv (r: Ring<_>)
match r.div, r.inv with
| None, Some inv ->
Some (fun a b -> r.mul a (inv b))
| _, _ -> r.div

The ring of integers that we have been using in most of examples
so far does not have an inverse or division operation defined. We
can implement them as follows:

let Ints = {
new Ring<_> with
member i.zero = 0

member i.one = Some 1

member i.add a b =a + b

member i.neg a = -a

member i.sub = Some (fun a b -> a - b)
member i.mul a b =a *x b

member i.inv = None

member i.div = None

Since we are working with code generation, we cannot directly
work on the ring of integers, but instead used the ring of lifted
integers (lifted into the expressions domain), such as:

let LiftedInts = {
new Ring<_> with
member i.zero = <@ 0 @>

member i.one = Some <@ 1 @>

member i.add a b = <@ (%a) + (%b) >
member i.neg a = <@ -(%a) ©>

member i.sub = None

member i.mul a b = <@ (%a) * (%b) @>
member i.inv = None

member i.div = None

2010/4/2

Having the required machinery and data definitions, we can
shed a new light on the all-familiar power example and introduce a
new variant of it: A code generator that outputs the power generator
given a ring

let rec Power (r: Ring<_>) n b =
match n with
| 1 ->b
| n when n)%2 = 1 -> codegen {
let! > = r.mul b b
yield! r.mul (Power r (n/2) b’) b }
| n -> codegen {
let! b’ = r.mul b b
yield! Power r (n/2) b’ }

For example:

> Fun <| Power LiftedInts 11;;
val it : Expr<(int -> int)> = <@ fun t_1 ->
let t_2 = (t_1)*(t_1) in
let t_3 = (t_2)*(t_2) in
let t_4 = (t_3)*(t_3) in
(t_4)*(t_2)*(t_1) @

The Power function above if a function that given a Ring<’a>
ring, produces a power function of type int -> ’a -> ’a. Atthis
point we have not prepared for raising a value to the power 0 since
the ring may not have the one elements. If we modify the result of
exponentiation function to be of type option<’a> we can allow
the power O of a ring if the ring’s multiplicative identity is defined.
Furthermore we can allow negative exponents when the ring defines
a unary division operator:

let Power’ r n b =
match n with
| n when n>0 -> Power r n b |> Some
| 0 -> r.one
| n —>
match r.inv with
| None -> None
| Some inv -> Power r (-n) b |> inv |> Some

Running it first on the lifted ring of integers which has no division,
followed by ring of reals (floats of F#) which can perform division:

> Power’ LiftedInts -11 <@ 2 @>;;
val it : Expr<int> option = None

> Power’ LiftedReals -11 <@ 2. @>;;
val it : Expr<float> option = Some <@
(1.)/
(let t_39 = (2.)*%(2.) in
(let t_40 = (£_39)*(£_39) in
(let t_41 = (t_40)*(t_40) in
t_41)*(t_39))*(2.)) @>

4. Related Work and Improvements

In this paper we have analyzed the issues in meta programming el-
ements of the F# programming language that arise when building a
code generator. We have developed the appropriate techniques and
machinery to overcome these issues and generate code quotations
that match our requirements for producing provably correct code
compositions — that is to have correctness of all syntax, seman-
tics, typing and scoping. We achieve syntax and type correctness by
using typed code quotations of F# while using the machinery de-
veloped in Section 2 to reach the scoping correctness requirement.
Semantic correctness of combining code fragments is achieved by
using the appropriate code combinators that can be proved correct

externally — notice that this only shows correctness of the auto-
matically combinations of other code fragments and not the entire
program as a whole.

We then introduced the concept of workflows in F# and used
them for construction of a domain-specific language for code gen-
eration using both the explicit and implicit continuation-passing
style. These workflows allow a more convenient and maintain-
able method for composing code generators and implicitly use the
other combinators and code transformers developed earlier for ad-
ditional ease of use. We developed two code generator workflows:
mcodegen for explicit CPS notation and codegen for implicit con-
tinuations and showed examples of how they can be used and the
additional flexibility and ease of use that they offer.

The techniques and generators discussed in this paper can be
improved further in many ways:

e The codegen workflow as defined here does not carry a state in
its computations (unlike mcodegen). This is a relatively simple
to augment the workflow, for example see [11].

e The Rename and Reduce code transformers need to be called
explicitly inside the combinators when required. Integrating
some of their functionality with the F# core may improve read-
ability and development of the combinators and aid avoiding
mistakes.

e The quotation printer outlined here is not conforming to F#’s
standard of using a Layout type for printing objects. Although
the output is more readable than F#’s built-in printer for quotes,
it can still benefit greatly from the improved layout features in
F# interactive.

e Many of the discussions contained performing different actions
depending on whether there is static data present (ready to
evaluate at the current stage, or already evaluated) or if the data
is dynamic (code or data that will be available or evaluated at a
later stage) while some of the generators shown earlier required
an option type for the data to specify whether there is any data
present at all. A different approach for handling all cases above
is to define a new data type:

type data<’a> =
| DynamicData of Expr<’a>
| StaticData of ’a
| NoData

All the combinators and monadic workflow operations would
operate on this data type instead and produce appropriate static
or dynamic information depending on how the arguments are
resolved. In cases of mixed data (i.e. sequencing static code
and dynamic code) they can be transformed between static and
dynamic information using Lift or Eval operators. This is
similar to the options workflow defined in [11] or the Maybe
monad of Haskell.

4.1 On Efficiency of Dynamically Generated Code

A main concern of switching from the standard coding and abstrac-
tion techniques to meta programs is the efficiency of the (run-time)
code generation process and the difference between the specialized
version generated from a code generator as opposed to hand-written
specialization of the program. The contributions of multi stage pro-
gramming to increasing or decreasing the efficiency of code can be
categorized into the following three categories:

1. Run-time code generation and evaluation: The sources of over-
head computations performed during the stages of compila-
tion/execution are the contributions from either the code gen-
eration combinators and the associated quotation transformers,

2010/4/2

or the compilation performed during evaluation phase (a call
to Eval). Quotation evaluation is a computationally expensive
task relative to the other code combinators and it is the program-
mer’s task to decide if the overhead of a one-time evaluation
justifies the gained efficiency. As shown in [15] for a different
implementation of the power function, the overhead of quota-
tion evaluation becomes negligible as the size of execution in-
creases.

2. Eliminating abstraction layers: A very visible performance
gained by using multi stage programming is the elimination
of abstraction layers and function call overheads inside the gen-
erated code. In the power example in Section 3.4 all of the
calls to Ring<’t> interface’s virtual members were eliminated
in the shift from Ints to LiftedInts, such that a multipli-
cation of two elements of the ring of integers is written as
(x * x) as opposed to (r.mul x x). Notice that the opti-
mizing compiler cannot inline this function call automatically
since Ring<’t>.mul is an abstract (virtual) method and is not
resolved until a specific instance of the ring is given at run time.
The efficiency gain from eliminating abstraction overhead may
become very visible in complex calculations such as Gaussian
Elimination as shown in [3, 4]. Using this feature also enables
us to define more completely designed hierarchy that were pre-
viously infeasible to achieve due to the abstraction overhead.
For example, a proper and complete algebraic definition of a
ring in the examples above should have started with a basic
description of a set and follow the algebraic hierarchy to the
object magma and then monoid and so forth until it is possi-
ble to describe a much richer structure of a ring through this
hierarchy. Using interfaces and abstract methods this object hi-
erarchy would be extremely slow to execute and not feasible
computationally, whereas using the meta programming tech-
niques described here the final generated code is very optimized
and readable without any overheads. Eliminating the abstrac-
tion overheads allows an automatic instantiation of the code
to become much more similar to the hand-written specialized
version of the program.

3. Partial evaluation and compile time beta reductions: A less vis-
ible but extremely powerful effect of engineering multi stage
programs is the control gained over compile-time partial evalu-
ation of code fragments [8]. Although the F# optimizing com-
piler is capable of performing a lot of partial evaluation opti-
mizations, we seek to gain more control over this during the
stages of compilation according to the present static and dy-
namic data. If a code generator or combinator has specific data
or options present at the generation time, it may be able to com-
pletely avoid producing a code fragment for future evaluation
and instead present a precomputed result for the operation. In
the Power’ example in Section 3.4 when the generator is given
a negative exponent on a ring with no division (or a 0 exponent
with a ring that has no identity) the generator replaced the entire
body of the calculation with the None value, completely reduc-
ing the need to perform any computation — or assertions on
existence of one or div. This optimization in programs can po-
tentially reduce the run-time computational complexity of the
program as opposed to the linear speed increase gained by re-
moval of abstraction calls.

Acknowledgments

I would like to thank my thesis adviser William Farmer for his ad-
vice and comments on my research and specially on this paper, and
Jacques Carette for pointing me in the right direction on this re-
search and reviewing my experiments with code generation. This

research is being pursued under the MathScheme project at Mc-
Master University.

References

[1] A. B. Bawden. Quasiquotation in lisp. In O. Danvy, Ed., University of
Aarhus, Dept. of Computer Science, pages 88-99, 1999.

[2] D. Box and A. Hejlsberg. LINQ: .NET language integrated query,
2007. http://msdn.microsoft.com/en-us/netframework/aa904594.aspx.

[3] J. Carette. Gaussian elimination: a case study in efficient genericity
with metaocaml. Science of Computer Programming, 62(1):3-24,
2006. ISSN 0167-6423.

[4] J. Carette and O. Kiselyov. Multi-stage programming with functors
and monads: Eliminating abstraction overhead from generic code.
Science of Computer Programming, In Press, Corrected Proof:—, 2008.
ISSN 0167-6423.

[5] J. Carette, L. E. van Dijk, and O. Kiselyov. Syntax extension for mon-
ads in ocaml, 2008. http://www.cas.mcmaster.ca/"carette/pa_monad/.

[6] K. Czarnecki, J. O’Donnel, J. Striegnitz, and W. Taha. Dsl im-

plementation in metaocaml, template haskell, and c++. 2004.

http://www.cs.rice.edu/"taha/publications/journal/dspg04b.pdf.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of

compiling with continuations. In PLDI ’93: Proceedings of the ACM

SIGPLAN 1993 conference on Programming language design and

implementation, pages 237-247, New York, NY, USA, 1993. ACM.

ISBN 0-89791-598-4.

R. Marlet, S. Thibault, and C. Consel. Efficient implementations

of software architectures via partial evaluation. Automated Software

Engg., 6(4):411-440, 1999. ISSN 0928-8910.

[9] Microsoft Research. The F# power pack, 2010.
http://fsharppowerpack.codeplex.com/.

[7

—

[8

—

[10] MSDN. Microsoft F# developer center and language reference, 2010.
http://msdn.microsoft.com/en-us/library/dd233154(VS.100).aspx.

[11] E. Pentangelo. M<’a> Lib (F#/C# Monads Library), 2009.
http://sharpmalib.codeplex.com/.

[12] Rice University Programming Languages Team — PLT. Metaocaml:
A compiled, type-safe, multi-stage programming language, 2006.
http://www.metaocaml.org/.

[13] T. Sheard and S. P. Jones. Template meta-programming for haskell.
SIGPLAN Not., 37(12):60-75, 2002. ISSN 0362-1340.

[14] K. Swadi, W. Taha, O. Kiselyov, and E. Pasalic. A monadic approach
for avoiding code duplication when staging memoized functions. In
PEPM ’06: Proceedings of the 2006 ACM SIGPLAN symposium on
Fartial evaluation and semantics-based program manipulation, pages
160-169, New York, NY, USA, 2006. ACM. ISBN 1-59593-196-1.

[15] D. Syme. Leveraging .NET meta-programming components from F#:
integrated queries and interoperable heterogeneous execution. In ML
’06: Proceedings of the 2006 workshop on ML, pages 43-54, New
York, NY, USA, 2006. ACM. ISBN 1-59593-483-9.

[16] D. Syme and J. Margetson. F# programming language, 2010.
http://research.microsoft.com/fsharp/.

[17] D. Syme, A. Granicz, and A. Cisternino. Expert F#. Apress, 2007.

[18] D. Syme, G. Neverov, and J. Margetson. Extensible pattern matching
via a lightweight language extension. In ICFP ’07: Proceedings
of the 12th ACM SIGPLAN international conference on Functional
programming, pages 29—40, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-815-2.

[19] W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD
thesis, Oregon Graduate Institute of Science and Technology, 1999.

[20] W. Taha and T. Sheard. Metaml and multi-stage programming with
explicit annotations. Theor. Comput. Sci., 248(1-2):211-242, 2000.
ISSN 0304-3975.

[21] E. Westbrook, M. Ricken, J. Inoue, Y. Yao, T. Abdelatif, and W. Taha.
Mint: Java multi-stage programming using weak separability. ACM,
2010.

2010/4/2

