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Abstract

This paper presents an extended version of Church’s simple type the-
ory called Basic Extended Simple Type Theory (bestt). By adding
type variables and support for reasoning with tuples, lists, and sets to
simple type theory, it is intended to be a practical logic for formalized
mathematics.

1 Introduction

B. Russell introduced a logic in 1908 [16] now called the ramified theory of

types to serve as a foundation for mathematics. It included a hierarchy of
types to avoid the set-theoretic and semantic paradoxes that troubled math-
ematicians and philosophers in the early 1900s and was employed as the logic
of Whitehead and Russell’s monumental Principia Mathematica [18]. Being
an overly complex system, L. Chwistek [5] and F. Ramsey [15] suggested in
the 1920s a simplified formulation of the ramified theory of types called the
simple theory of types or, more briefly, simple type theory.

A. Church presented in 1940 [4] a version of simple type theory that
included lambda-notation. Church’s simple type theory, which we will de-
note as cstt, can be viewed as a “function theory”: functions are the basic
objects and reasoning with functions can be done with the help of full quan-
tification over functions, types, and lambda-notation. Many other math-
ematical objects—such as tuples, sequences, and sets—can be represented
in cstt as certain kinds of functions. The primitive basis of cstt can be
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made exceptionally small. The full machinery of predicate calculus can be
developed in cstt from just function application, function abstraction, and
equality (first shown by L. Henkin in [11] and improved by P. Andrews
in [1]).

cstt has been widely influential in formalized mathematics. Many peo-
ple have argued (e.g., see Andrews’ remarks in [2]) that cstt, with its strong
support for reasoning with functions, is a more practical reasoning system
than traditional Zermelo-Fraenkel set theory. cstt is the basis of the log-
ics used in several computer theorem proving systems including hol [10],
imps [8, 9], Isabelle [14], ProofPower [12], pvs [13], and tps [3].

This paper presents an extended version of cstt called Basic Extended

Simple Type Theory (bestt). It adds the following facilities to cstt:

(1) Type variables for forming polymorphic types and expressions as in
the hol logic [10].

(2) New type constructors and expression constants for reasoning with
tuples, lists (finite sequences), and sets.

bestt is intended to be a practical logic for formalized mathematics that
can be used either informally by hand or within a mechanized mathematics
system that implements it. bestt is essentially the same as the background
theory of the ml programming language [17]. Therefore, it is an ideal logic
in which to write and reason about specifications of ml programs.

The paper gives a full presentation of the syntax of bestt, but only
a few remarks are made about the semantics of bestt. The presence of
type variables in bestt makes a full presentation of the semantics both
lengthy and complicated. Moreover, there are two very natural semantics
for bestt, a traditional semantics in which all functions are total and all
terms are defined and a partial semantics in which functions may be partial
and terms may be undefined (but formulas are always either true or false).
We leave it as an exercise for the bestt enthusiast to write down either the
traditional or partial semantics for bestt using previous work (see section 5
for references) as a guide.
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2 Type Languages

Let A be a fixed infinite set of symbols called type variables. Assume A does
not contain the symbol ∗. A type language of bestt is a set B of symbols
called type constants such that:

(1) B contains one built-in type constant ∗, the type of truth values, as
well as possibly other type constants.

(2) A and B are disjoint.

Let B be a type language. A type of B is a string of symbols defined by
the rules below. typeB[α] asserts that α is a type of B.

T1
α ∈ A ∪ B

typeB[α]
(Atomic type)

T2
typeB[α], typeB[β]

typeB[(α → β)]
(Function type)

T3
typeB[α], typeB[β]

typeB[(α × β)]
(Product type)

T4
typeB[α]

typeB[list[α]]
(List type)

T5
typeB[α]

typeB[set[α]]
(Set type)

Let TB denote the set of types of B. For α, β ∈ TB, α is an instance of
β if α can be obtained from β by simultaneously substituting types of B for
the type variables in β. Let the kernel type language of bestt be the type
language B0 = {∗}.
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c τ(c) (Note: α, β ∈ A.)

= ((α × α) → ∗)

Π ((α → ∗) → ∗)

ι ((α → ∗) → α)

mpair (α → (β → (α × β)))

fst ((α × β) → α)

snd ((α × β) → β)

nil list[α]

mlist ((α × list[α]) → list[α])

hd (list[α] → α)

tl (list[α] → list[α])

mset ((α → ∗) → set[α])

∈ ((α × set[α]) → ∗)

Table 1: The Built-In Constant Symbols of a Language

3 Languages

Let V be a fixed infinite set of symbols called variable symbols. Assume V
does not contain the symbols in the left column of Table 1. A language of
bestt is a tuple L = (B, C, τ) such that:

(1) B is a type language of bestt.

(2) C is a set of symbols called the constant symbols of L. C contains the
built-in constant symbols given in the left column of Table 1 as well
as possibly other constant symbols.1

(3) V and C are disjoint.

(4) τ : C → TB is a total function. The definition of τ on the built-in
constant symbols is given in the right column of Table 1.

Let L = (B, C, τ) be a language of bestt. In bestt terms and formulas
are merged together and called “expressions”. An expression of type α of L

is a string of symbols defined by the rules below. exprL[E,α] asserts that
E is an expression of type α of L.

1mpair, mlist, and mset are short for make-pair, make-list, and make-set, respectively.
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E1
x ∈ V, typeB[α]

exprL[(x : α), α]
(Variable)

E2
c ∈ C, α is an instance of τ(c)

exprL[(c : α), α]
(Constant)

E3
exprL[A,α], exprL[F, (α → β)]

exprL[F (A), β]
(Function application)

E4
x ∈ V, typeB[α], exprL[B,β]

exprL[(λx : α . B), (α → β)]
(Function abstraction)

Let EL denote the set of expressions of L. By induction on the structure
of expressions, for each expression E ∈ EL, there is a unique type α such
that exprL[E,α]. A formula of L is an expression of L of type ∗. “Free
variable”, “closed”, and similar notions are defined in the obvious way. A
sentence is a closed formula. Let the kernel language of bestt be the
language L0 = (B0, C0, τ0) of bestt such that B0 is the kernel type language
of bestt and C0 contains only the built-in constant symbols in Table 1.

In the rest of the paper, let L = (B, C, τ) be a language of bestt. Let
α, β, etc. denote types of B, and let Aα, Bα, etc. denote expressions of type
α of L.

4 Definitions and Abbreviations

The following definitions introduce additional notation and vocabulary:

Pair:
(Aα, Bβ) denotes (mpair : γ)(Aα)(Bβ)

where γ = (α → (β → (α × β))).

Tuple:
(A1

α1
, . . . , An

αn

) denotes (A1
α1

, (A2
α2

, . . . , An
αn

))
where n ≥ 3.

Extended product type:
(α1 × · · · × αn) denotes (α1 × (α2 × · · · × αn))

where n ≥ 3.
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Multivariate function application:
Fβ(A1

α1
, . . . , An

αn

) denotes Fβ((A1
α1

, . . . , An
αn

))
where n ≥ 2 and
β = ((α1 × · · · × αn) → γ).

First tuple projection:
#1(A1

α1
, . . . , An

αn

) denotes (fst : β)(A1
α1

, . . . , An
αn

)
where n ≥ 2 and
β = ((α1 × · · · × αn) → α1).

Higher tuple projection:
#m(A1

α1
, . . . , An

αn

) denotes #(m − 1)(snd : β)(A1
α1

, . . . , An
αn

)
where 2 ≤ m ≤ n, n ≥ 2, and
β = ((α1 × · · · × αn) → (α2 × · · · × αn)).

Equality:
(Aα = Bα) denotes (= : β)(Aα, Bα)

where β = ((α × α) → ∗).

Logical equality:
(A∗ ⇔ B∗) denotes (A∗ = B∗).

True:
T denotes ((λx : ∗ . (x : ∗)) = (λx : ∗ . (x : ∗))).

False:
F denotes ((λx : ∗ . T) = (λx : ∗ . (x : ∗))).

Negation:
¬A∗ denotes (A∗ = F).

Inequality:
(Aα 6= Bα) denotes ¬(Aα = Bα).

Conjunction:
(A∗ ∧ B∗) denotes ((A∗, B∗) = (T,T)).

Disjunction:
(A∗ ∨ B∗) denotes ¬(¬A∗ ∧ ¬B∗).

Implication:
(A∗ ⇒ B∗) denotes (¬A∗ ∨ B∗).
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Universal quantification:
(∀x : α . A∗) denotes (Π : β)((λx : α . A∗))

where β = ((α → ∗) → ∗).

Existential quantification:
(∃x : α . A∗) denotes ¬(∀x : α . ¬A∗).

Multivariate binding:
(2x1 : α1, . . . , xn : αn . Aα)

denotes (2x1 : α1 . (2x2 : α2, . . . , xn : αn . Aα))
where 2 ∈ {λ,∀,∃} and n ≥ 2.

Definedness:
(Aα ↓) denotes (∃x : α . ((x : α) = Aα))

where (x : α) does not occur in Aα.

Undefinedness:
(Aα ↑) denotes ¬(Aα ↓).

Equivalence:
(Aα ' Bα) denotes (((Aα ↓) ∨ (Bα ↓)) ⇒ (Aα = Bα)).

Definite description:
(I x : α . A∗) denotes (ι : β)((λx : α . A∗))

where β = ((α → ∗) → α).

Conditional expression:
if(A∗, Bα, Cα) denotes (I x : α . ((A∗ ⇒ ((x : α) = Bα)) ∧

(¬A∗ ⇒ ((x : α) = Cα)))).
where (x : α) does not occur in
A∗, Bα, or Cα.

Canonical undefined expression:
⊥α denotes (I x : α . ((x : α) 6= (x : α))).

Empty list:
〈〉α denotes (nil : list[α]).

Single member list:
〈Aα〉 denotes (mlist : β)(Aα, 〈〉α)

where β = ((α × list[α]) → list[α]).
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Multimember list:
〈A1

α, . . . , An
α〉 denotes (mlist : β)(A1

α, 〈A2
α . . . , An

α〉)
where n ≥ 2 and
β = ((α × list[α]) → list[α]).

First list projection:
Lα[0] denotes if(Lα 6= 〈〉α, (hd : γ)(Lα),⊥β)

where α = list[β] and γ = α → β.

Higher list projection:
Lα[m] denotes if(Lα 6= 〈〉α, (tl : γ)(Lα)[m − 1],⊥β)

where 0 < m, α = list[β], and γ = α → α.

Set abstraction:
(S x : α . A∗) denotes (mset : β)((λx : α . A∗))

where β = ((α → ∗) → set[α]).

Traditional set abstraction:
{(x : α) | A∗} denotes (S x : α . A∗).

Set membership:
(Aα ∈ Bβ) denotes (∈ : γ)(Aα, Bβ)

where β = set[α] and
γ = ((α × set[α]) → ∗).

The following abbreviation rules can be used to write expressions in a
more compact form:

A1 A variable (x : α) occurring in the body B of (2x : α . B) where
2 ∈ {λ,∀,∃, I,S} may be written as x if there is no resulting ambiguity.

A2 A variable (x : α) occurring freely in an expression E may be
written as x if α can be determined from the rest of the expression.

A3 A constant (c : α) occurring in an expression E may be written as
c if α = τ(c) and contains no type variables or if α can be determined
from the rest of the expression.

A4 A matching pair of parentheses in an expression may be dropped
if there is no resulting ambiguity.

A5 An application

(c : ((α × β) → γ))(Aα, Bβ)
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will sometimes be written in infix notation as

(Aα (c : ((α × β) → γ)) Bβ)

or

(Aα c Bβ).

With the help of the definitions and abbreviation rules given in this
section, expressions can usually be written in a natural and easy-to-read
form. The definitions and abbreviation rules are used in the rest of the
paper.

5 Semantics

As we mentioned in the introduction, there are two natural semantics for
bestt. The traditional semantics can be directly adapted from the seman-
tics for the hol logic given in [10]. According to the traditional semantics,
every expression is defined, i.e., for every expression Aα of L, (Aα ↓) is true
in every model for L. A value of a definite description (Ix : α . A∗) is the
unique value x of type α satisfying A∗ if it exists and is an unspecified
member of type α otherwise.

The partial semantics for bestt is based on the partial semantics for
cstt given in [6, 7]. This semantics can be straightforwardly extended to
handle type variables (following the semantics in [10]) and the machinery
in bestt for tuples, lists, and sets. The definedness of expressions is deter-
mined by the following principles:

P1 (Partial functions) Expressions may denote partial functions.

P2 (Formulas) Formulas (i.e., expressions of type ∗) are always
defined and denote either true or false.

P3 (Universally defined expressions) Variables, constants, func-
tion abstractions, and set abstractions are always defined.

P4 (Predicates) Predicates (i.e., functions of type α → ∗) are always
total.

P5 (Function applications) A function application of type α 6= ∗ is
defined iff the function and argument expressions are defined, denoting
f and a, respectively, and f is defined at a.

9



P6 (Predicate applications) A predicate application (i.e., a func-
tion application of type ∗) is false if either the predicate expression or
the argument expression is undefined.

P7 (Definite descriptions) The value of a definite description
(I x : α . A∗) where α 6= ∗ is the unique value x of type α satisfy-
ing A∗ if it exists and (Ix : α . A∗) is undefined otherwise.

P8 (Built-in constants) Constants of the form (mpair : α), (fst : α),
(snd : α), and (mlist : α) denote total functions, while (hd : α) and
(tl : α) denote functions that are defined at all values except the empty
list.

6 Theories

A theory of bestt is a pair T = (L,Γ) where L is a language of bestt and
Γ is a set of sentences of L called the axioms of T . A theory serves as a
formal mathematical model or as a specification of a family of mathematical
models.

A formula A of L is valid in T , written T |= A, if A is a logical conse-
quence of Γ.

Example 6.1 (Orders) Let B be a type language of bestt such that B =
{E} ∪ B0, and let L = (B, C, τ) be a language of bestt such that C =
{≤} ∪ C0 and τ(≤) = ((E × E) → ∗). Then let T1 = (L, {A1, A2}), T2 =
(L, {A1, A2, A3}), and T3 = (L, {A1, A2, A3, A4}) where:

(1) A1 is ∀x : E . x ≤ x (Reflexivity).

(2) A2 is ∀x, y, z : E . (x ≤ y ∧ y ≤ z) ⇒ x ≤ z (Transitivity).

(3) A3 is ∀x, y : E . (x ≤ y ∧ y ≤ x) ⇒ x = y (Antisymmetry).

(4) A4 is ∀x, y : E . x ≤ y ∨ y ≤ x (Comparability).

T1, T2, and T3 are theories of a preorder, partial order, and total order,
respectively. 2

Example 6.2 (Peano arithmetic) Let B be a type language of bestt

such B = {N} ∪ B0, and let L = (B, C, τ) be a language of bestt such that
C = {0, S}∪C0, τ(0) = N, and τ(S) = (N → N). Let T = (L, {A1, A2, A3})
where:
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(1) A1 is ∀x : N . 0 6= S(x) (0 has no predecessor).

(2) A2 is ∀x, y : N . S(x) = S(y) ⇒ x = y (S is injective).

(3) A3 is

∀P : (N → ∗) . (P (0) ∧ ∀x : N . P (x) ⇒ P (S(x))) ⇒ ∀x : N . P (x)

(Induction principle).

T is (second-order) Peano arithmetic, a theory that formalizes natural num-
ber arithmetic. Addition and multiplication on the natural numbers can be
defined in this theory by primitive recursion. 2

References

[1] P. B. Andrews. A reduction of the axioms for the theory of propositional
types. Fundamenta Mathematicae, 52:345–350, 1963.

[2] P. B. Andrews. An Introduction to Mathematical Logic and Type The-

ory: To Truth through Proof, Second Edition. Kluwer, 2002.

[3] P. B. Andrews, M. Bishop, and C. E. Brown. System description:
TPS: A theorem proving system for type theory. In D. McAllester,
editor, Automated Deduction—CADE-17, volume 1831 of Lecture Notes

in Computer Science, pages 164–169. Springer-Verlag, 2000.

[4] A. Church. A formulation of the simple theory of types. Journal of

Symbolic Logic, 5:56–68, 1940.

[5] L. Chwistek. Antynomje logikiformalnej. Przeglad Filozoficzny, 24:164–
171, 1921.

[6] W. M. Farmer. A partial functions version of Church’s simple theory
of types. Journal of Symbolic Logic, 55:1269–91, 1990.

[7] W. M. Farmer. Formalizing undefinedness arising in calculus. In
D. Basin and M. Rusinowitch, editors, Automated Reasoning—IJCAR

2004, Lecture Notes in Computer Science. Springer-Verlag, 2004. Forth-
coming.

[8] W. M. Farmer, J. D. Guttman, and F. J. Thayer. imps: An Interactive
Mathematical Proof System. Journal of Automated Reasoning, 11:213–
248, 1993.

11



[9] W. M. Farmer, J. D. Guttman, and F. J. Thayer Fábrega. imps: An
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