
Biform Theories in Chiron⋆

William M. Farmer

McMaster University
Hamilton, Ontario, Canada
wmfarmer@mcmaster.ca

23 May 2009

Abstract. An axiomatic theory represents mathematical knowledge
declaratively as a set of axioms. An algorithmic theory represents math-
ematical knowledge procedurally as a set of algorithms. A biform the-
ory is simultaneously an axiomatic theory and an algorithmic theory. It
represents mathematical knowledge both declaratively and procedurally.
Since the algorithms of algorithmic theories manipulate the syntax of ex-
pressions, biform theories—as well as algorithmic theories—are difficult
to formalize in a traditional logic without the means to reason about
syntax. Chiron is a derivative of von-Neumann-Bernays-Gödel (nbg) set
theory that is intended to be a practical, general-purpose logic for mech-
anizing mathematics. It includes elements of type theory, a scheme for
handling undefinedness, and a facility for reasoning about the syntax
of expressions. It is an exceptionally well-suited logic for formalizing bi-
form theories. This paper defines the notion of a biform theory, gives an
overview of Chiron, and illustrates how biform theories can be formalized
in Chiron.

1 Introduction

The mission of mechanized mathematics is to develop software systems that
support the process people use to create, explore, and apply mathematics. There
are historically two major approaches to mechanized mathematics, computer
theorem proving and computer algebra. Computer theorem proving emphasizes
the conjecture proving aspect of the mathematics process and usually represents
mathematical knowledge as “axiomatic theories”. On the other hand, computer
algebra focuses on the computational aspect of the mathematics process and
usually represents mathematical knowledge as “algorithmic theories”.

An axiomatic theory is a set of formulas in a language L called axioms that
serve as the background assumptions of the theory. The axioms encode a set of
mathematical truths, namely, the formulas of L that are the logical consequences
of the axioms. There is thus a clear demarcation between what is assumed (the
axioms) and what is derived (the logical consequences of the axioms). The deduc-
tion and computation rules for reasoning within the theory are usually expressed

⋆ c© Springer-Verlag. Published in M. Kauers, M. Kerber, R. R. Miner, and W. Wind-
steiger, eds., Towards Mechanized Mathematical Assistants, LNCS, 4573:66–79, 2007.

2 W. M. Farmer

in the metalanguage of L, not in L itself. This is because deduction and com-
putation rules cannot directly manipulate values such as numbers, functions,
and sets; they can only manipulate the expressions that denote these values.
Traditional logics do not usually provide a facility for formalizing the syntax of
expressions. As a result, neither the specifications of deduction and computation
rules nor the algorithms that implement them can be directly expressed in an
axiomatic theory.

An algorithmic theory is a set of algorithms that manipulate expressions in
a language L. The background assumptions of the theory and the specifications
of the algorithms are usually not part of an algorithmic theory; they are instead
part of the informal metatheory of the theory. An algorithmic theory can be
used to manipulate expressions, but it cannot be used to understand what the
results of the manipulations mean. Also, unlike an axiomatic theory, there is no
clear demarcation between the algorithms that are primitive in the theory and
those that are derived from the primitive algorithms.

A biform theory T is a set Ω of formulas and rules in a language L. A rule in
L consists of an algorithm called a transformer that transforms a tuple of input
expressions of L into an output expression of L and a meaning formula that
specifies how the values of the input expressions are related to the value of the
output expression. For each tuple I of input expressions, the meaning formula
M reduces to a formula MI that specifies the relationship between the values of
the members of I and the value of the resulting output expression. MI is said
to be an instance of the rule.

The notion of a biform theory merges the notions of an axiomatic theory
and an algorithmic theory. In fact, a biform theory is simultaneously both an
axiomatic theory and an algorithmic theory. The axiomatic theory of T , written
Taxm, is the set of formulas in Ω together with the set of the instances of all
the rules in Ω, while the algorithmic theory of T , written Talg, is the set of the
transformers of all the rules in Ω.

The formulas and rules in Ω are called the axioms of T . They are implicit
background assumptions of T , and the axioms of Taxm are the explicit back-
ground assumptions of T . A rule is a logical consequence of T if its instances
are logical consequences of Taxm. Thus in a biform theory there is a clear de-
marcation between primitive formulas and rules whose correctness is assumed
and derived formulas and rules whose correctness is a logical consequence of the
primitive formulas and rules.

In summary, a biform theory includes both formulas and rules as primitive
assumptions. A rule consists of an algorithm that manipulates expressions and
a formula that specifies what the manipulations of the expressions mean se-
mantically. A biform theory is simultaneously both an axiomatic theory and an
algorithmic theory. The meaning of an algorithm of the algorithmic theory is un-
derstood in the context of the axiomatic theory. And there is a clear definition
of what a derived formula or rule is in a biform theory.

The notion of a biform theory was first introduced as part of ffmm, a Formal
Framework for Managing Mathematics [11] developed as part of the MathScheme

Chiron 3

project [15] at McMaster University. One of the principal goals of ffmm is to
integrate and generalize computer theorem proving and computer algebra. Bi-
form theories play a central role in ffmm by providing a formal context in which
deduction and computation can be merged. In general, biform theories are useful
for formalizing mathematics in which deduction and computation are intimately
related. For applications of biform theories outside of ffmm, see [4–6].

A mechanized mathematics system that utilizes biform theories to represent
mathematics needs a logic in which biform theories can be expressed. At the very
least, it must be possible to express in the logic the meaning formulas of rules.
Otherwise, there is no formal basis for understanding what a transformer of a
rule means. This is problematic because a meaning formula expresses statements
both about the syntax of expressions and what the expressions mean. Traditional
logics are usually not equipped with the means to express statements about
syntax and to reason about syntax.

The transformer of a rule does not need to be expressed in the logic. As long
as its corresponding meaning formula is expressed in the logic, it can treated
as a black-box algorithm that is assumed to behave according to its meaning
formula. In other words, the transformer’s rule would be considered as an axiom
of the biform theory. Hence an algorithm in the form of a program in a high-level
programming language can be made into a perfectly legitimate rule if a meaning
formula for it can be expressed in the logic.

Chiron [8, 9] is a derivative of von-Neumann-Bernays-Gödel (nbg) set theory
that is intended to be a practical, general-purpose logic for mechanizing mathe-
matics. It includes elements of type theory, a scheme for handling undefinedness,
and a facility for reasoning about the syntax of expressions. Chiron has a high
level of both theoretical and practical expressivity [8]. It is an exceptionally well-
suited logic for formalizing biform theories. In particular, the meaning formulas
of rules can be directly expressed in Chiron.

This paper defines the notion of a biform theory, gives an overview of Chiron,
and illustrates how biform theories can be formalized in Chiron. Section 2 defines
the notions of a transformer, a rule, and a biform theory. Section 3 gives a quick
introduction to Chiron and shows how rules are expressed in Chiron. Section 4
sketches the development in Chiron of a nontrivial example of a biform theory.
The paper ends with a conclusion in Section 5 that discusses related and future
work.

2 Biform Theories

We present here a formulation of a biform theory that is simpler than the for-
mulation given in [11].

2.1 General Logics

A general language is a pair L = (E ,F) where E is a set of syntactic entities
called the expressions of L and F ⊆ E is a set of expressions called the formulas

4 W. M. Farmer

of L. For example, if F is a first-order language, then LF = (T ∪F ,F) is a general
language where T and F are the sets of terms and formulas of F , respectively.
In the rest of this paper, let L = (E ,F) be a general language.

A general logic is a set of general languages with a notion of logical conse-
quence. In the rest of this paper, let K be a general logic. L is a language of K

if it is one of the general languages of K. If L is a language of K and Σ ∪ {A}
is a set of formulas of L, then Σ |=K A means A is a logical consequence of Σ

in K. For example, let FOL be a general logic representation of first-order logic
such that L is a language of FOL iff L = LF for some first order language F

and Σ |=FOL A means A is a logical consequence of Σ in first-order logic.
An axiomatic theory in K is a pair T = (L, Γ) where L = (E ,F) is a language

of K and Γ ⊆ F . L is the language of T , and Γ is the set of axioms of T . A
formula A of L is a logical consequence of T if Γ |=K A.

2.2 Transformers

For n ≥ 0, an n-ary transformer in L is a pair Π = (π, π̂) where π is a symbol
and π̂ is an algorithm that implements a (possibly partial) function fπ̂ : En → E .
The symbol π serves as a name for the algorithm π̂. There is no restriction on
how the algorithm is presented. For example, it could be a lambda-expression of
L or a program written in a high-level programming language like C or Java.

Let dom(Π) denote the domain of π̂, i.e., the subset of En on which fπ̂ is
defined. Suppose E1, . . . , En are expressions in E . If (E1, . . . , En) ∈ dom(Π),
the expression π(E1, . . . , En) denotes the output of π̂ when given E1, . . . , En as
input, i.e., it denotes fπ̂(E1, . . . , En) ∈ E (and is thus defined). If (E1, . . . , En) 6∈
dom(Π), π(E1, . . . , En) does not denote anything (and is thus undefined). The
expression π(E1, . . . , En) is not required to be in E ; it will usually be an expres-
sion of the metalanguage of L but not of L itself.

Example 1. Suppose LF = {EF ,FF } is the general language corresponding to a
first-order language F . Let Π = (π, π̂) be a unary transformer in LF such that:

1. π(E) is defined iff E ∈ FF .
2. If π(A) is defined, it denotes a formula B ∈ FF that is in prenex normal

form and is logically equivalent to A.

That is, the algorithm π̂ transforms any formula of LF into a logically equivalent
formula in prenex normal form. The expression π(E) cannot be an expression
in EF (without some mechanism, such as Gödel numbering, for formalizing the
syntax of LF in LF itself). 2

Example 2. Suppose LF = {EF ,FF } is again the general language correspond-
ing to a first-order language F . Let Π = (π, π̂) be a ternary transformer in LF

such that:

1. π(E1, E2, E3) is defined iff E1 is a term of F , E2 is a variable of F , and E3

is a formula of F .

Chiron 5

2. If π(t, x, A) is defined, it denotes the result of simultaneously substituting t

for each free occurrence of x in A.

That is, given t, x, A, the algorithm π̂ transforms the formula A into the formula
A[x 7→ t]. Again the expression π(E1, E2, E3) cannot be an expression in EF . 2

Example 3. Let STT be a general logic representation of simple type theory [7].
Suppose T = (L, Γ) is an axiomatic theory of a complete ordered field in STT

and that we have defined in T a type real of real numbers and the basic concepts
of calculus such as limits, continuity, derivatives, etc. Let Π = (π, π̂) be a unary
transformer in L such that:

1. π(E) is defined iff E is an expression of L of type real → real.
2. If π(E) is defined, it is an expression of L of type real → real that denotes

the derivative of the function denoted by E.

That is, π̂ is an algorithm that differentiates expressions that denote functions
on the real numbers. 2

An algorithmic theory is a pair T = (L, ∆) where L is a general language
and ∆ is a set of transformers in L. L is called the language of T , and ∆ is the
set of algorithms of T . For more on transformers, see [10, 11].

2.3 Rules

A rule in L is a pair R = (Π, M) where:

1. Π = (π, π̂) is an n-ary transformer in L.
2. M is a formula that uses π to relate the values of the inputs to π̂ to the

value of the output of π̂.

The transformer of R, written trans(R), is Π , and the meaning formula of R,
written mean(R), is M . The meaning formula M , which specifies the semantic
relationship between the tuple of inputs and the output of the algorithm π̂,
will usually be an expression of the metalanguage of L but not of L itself. For
each n-tuple I = (E1, . . . , En) of inputs to π̂, we assume that M reduces to
a formula MI of L which is called the instance of M with respect to I. An
instance of M specifies the relationship between the values of a given tuple of
input expressions and the value of the resulting output expression. Let inst(R)
be the set of instances of M . M can often be conveniently expressed as a formula
schema.

Example 4. Let R = (Π, M) where:

1. Π = (π, π̂) is the transformer in LF given in Example 1.
2. M is the formula schema

A ≡ π(A)

where A is a formula of LF .

6 W. M. Farmer

If A is the formula p(c) ⊃ ∀x . q(x) (where c is a constant) and the result of
applying π̂ to (A) is ∀x . p(c) ⊃ q(x), then

(p(c) ⊃ ∀x . q(x)) ≡ (∀x . p(c) ⊃ q(x))

is the instance of M with respect to (A). 2

Example 5. Let R = (Π, M) where:

1. Π = (π, π̂) is the transformer in LF given in Example 2.

2. M is the formula schema

(x = t ∧ A) ⊃ π(t, x, A)

where t is a term, x is a variable, and A is a formula of LF and t is free for
x in A.

If t is a term, x is a variable, and A is f(x, y) = g(x), then

(x = t ∧ f(x, y) = g(x)) ⊃ f(t, y) = g(t)

is the instance of M with respect to (t, x, A). 2

Example 6. Let R = (Π, M) where:

1. Π = (π, π̂) is the transformer in the language L of the theory T given in
Example 3.

2. M is the formula schema

derivative(E) = π(E)

where E is of type real → real. derivative is an expression of L of type

(real → real) → (real → real)

that maps a function to its derivative. M thus asserts that the derivative of
the function denoted by E is the function denoted by π(E).

If E is λx : real . x2, then

derivative(λx : real . x2) = (λx : real . 2 · x)

is the instance of M with respect to (E). 2

For the sake of convenience, we will view a formula A of L as a (transformer-
less) rule in L and assume that trans(A) is undefined, mean(A) = A, and
inst(A) = {A}.

Chiron 7

2.4 Biform Theories

A biform theory in K is a pair T = (L, Ω) where L is a language of K and Ω

is a set of rules in L. (Ω may include formulas of L viewed as transformer-less
rules.) L is the language of T , and Ω is the set of axioms of T .

T can be viewed as simultaneously both an axiomatic theory and an algo-
rithmic theory. The axiomatic theory of T is the axiomatic theory Taxm = (L, Γ)
in K where

Γ =
⋃

R∈Ω

inst(R),

while the algorithmic theory of T is the algorithmic theory Talg = (L, ∆) where

∆ = {trans(R) | R ∈ Ω and trans(R) is defined} .

The axioms of T—which are formulas and rules—are the background as-
sumptions of T in an implicit form. The axioms of Taxm—which are formulas
alone—are the background assumptions of T in an explicit form. A rule R in
L is a logical consequence of T if, for all formulas A ∈ inst(R), A is a logical
consequence of Taxm. Thus, the axioms of T are trivially logical consequences of
T . Notice also that, since we are assuming that the formulas of L are rules in L,
every logical consequence of Taxm is also a logical consequence of T .

3 Chiron

A formal, complete presentation of the syntax and semantics of Chiron is given
in [9], and a shorter, more informal presentation is given in [8].

3.1 Values

The semantics of Chiron is based on the notion of a standard model which is an
elaboration of a model of nbg set theory. The basic values or elements in a model
of nbg are classes (which include sets and proper classes).1 A standard model
M includes other values besides classes, but classes are the most important.
M is derived from a structure, consisting of a nonempty domain Dc of classes
and a membership relation ∈ on Dc, that satisfies the axioms of nbg set theory
as given, for example, in [13] or [16]. The values of M include sets, classes,
superclasses, truth values, the undefined value, and operations.

A class of M is a member of Dc. A set of M is a member x of Dc such
that x ∈ y for some member y of Dc. That is, a set is a class that is itself a
member of a class. A class is thus a collection of sets. A class is proper if it is
not a set. A superclass of M is a collection of classes in Dc. We consider a class,
as a collection of sets, to be a superclass itself. Let Dv be the domain of sets of

1 Recall that values of a model of Zermelo-Fraenkel (zf) set theory includes only sets,
not proper classes.

8 W. M. Farmer

op type formula op-app var

type-app dep-fun-type fun-app fun-abs if

exists def-des indef-des quote eval

true false set class expr

expr-op expr-type expr-term expr-formula in

type-equal term-equal formula-equal not or

Table 1. The Key Words of Chiron.

M and Ds be the domain of superclasses of M . The following inclusions hold:
Dv ⊂ Dc ⊂ Ds. Dv is the universal class (the class of all sets), and Dc is the
universal superclass (the superclass of all classes).

t, f, and ⊥ are distinct values of M not in Ds. t and f represent the truth
values true and false, respectively. ⊥ is the undefined value which serves as the
value of undefined terms. For n ≥ 0, an n-ary operation of M is a total mapping
from D1 × · · · × Dn to Dn+1 where Di is Ds, Dc ∪{⊥}, or {t, f} for each i with
1 ≤ i ≤ n + 1. Let Do be the domain of operations of M . Ds ∪ {t, f,⊥} and Do

are assumed to be disjoint.

3.2 Expressions

Let S be a fixed infinite set of symbols that includes the 30 key words in Table 1.
The key words are used to classify expressions, identify different categories of
expressions, and name the built-in operators (see below).

An expression of Chiron is defined inductively by:

1. Each symbol s ∈ S is an expression.
2. If e1, . . . , en are expressions where n ≥ 0, then (e1, . . . , en) is an expression.

Hence, an expression is an S-expression (with commas in place of spaces) that
exhibits the structure of a tree whose leaves are symbols in S. Let E be the set
of expressions of Chiron.

There are four special sorts of expressions: operators, types, terms, and formu-
las. An expression is proper if it is one of these special sorts of expressions, and an
expression is improper if it is not proper. Proper expressions denote values of M ,
while improper expressions are nondenoting (i.e., they do not denote anything).
Operators are used to construct expressions. They denote operations. Types are
used to restrict the values of operators and variables and to classify terms by
their values. They denote superclasses. Terms are used to describe classes. They
denote classes or the undefined value ⊥. Formulas are used to make assertions.
They denote truth values. A kind is the key word type, a type, or the key word
formula.

A term is defined if it denotes a class and is undefined if it denotes ⊥. Every
term is assigned a type. Suppose a term a is assigned a type α. Then a is said to
be a term of type α. Suppose further α denotes a superclass Σα. If a is defined,

Chiron 9

i.e., a denotes a class x, then x is in Σα. The value of an intuitively nondenoting
term is the undefined value ⊥, but the value of a intuitively nondenoting type
or formula is Dc (the universal superclass) or f (false), respectively. That is,
the values for intuitively nondenoting types, terms, and formulas are the default
values Dc, ⊥, and f, respectively. Hence every proper expression, even one that
is intuitively nondenoting, denotes some value.

There are 13 proper expression categories. They are shown in Table 2 in both
a compact notation in the middle and the official S-expression-like notation on
the right. O, P, Q, . . . denote operators, α, β, γ, . . . denote types, a, b, c, . . . denote
terms, A, B, C, . . . denote formulas, s, t, u, . . . denote symbols, e, e′, . . . denote
expressions, and k, k′, . . . denote kinds.

Expression Category Compact Notation Official Notation

Operator (s :: k1, . . . , kn+1) (op, s, k1, . . . , kn+1)
Operator application (s :: k1, . . . , kn+1) (op-app, (op, s, k1, . . . , kn+1),

(e1, . . . , en) e1, . . . , en)
Variable (x : α) (var, x, α)
Type application α(a) (type-app, α, a)
Dependent Function Type (Λ x : α . β) (dep-fun-type, (var, x, α), β)
Function application f(a) (fun-app, f, a)
Function abstraction (λx : α . b) (fun-abs, (var, x, α), b)
Conditional term if(A, b, c) (if, A, b, c)
Existential quantification (∃x : α . B) (exists, (var, x, α), B)
Definite description (ι x : α . B) (def-des, (var, x, α), B)
Indefinite description (ǫ x : α . B) (indef-des, (var, x, α), B)
Quotation ⌈e⌉ (quote, e)
Evaluation [[a]]ty (eval, a, type)

[[a]]α (eval, a, α)
[[a]]fo (eval, a, formula)

Table 2. Compact Notation

Table 3 defines additional compact notation for the built-in operators and
the universal quantifier. The compact notation also includes some customary
abbreviation rules (see [9]).

3.3 Quotation and Evaluation

If e is any expression, proper or improper, then

(quote, e)

is a term of type E called a quotation. The value of the quotation is a set, called
the construction of e, that represents the syntactic structure of the expression
e. Thus a proper expression e has two different meanings:

10 W. M. Farmer

Compact Notation Defining Expression

T (true :: formula)()
F (false :: formula)()
V (set :: type)()
C (class :: type)()
E (expr :: type)()
Eop (expr-op :: type)()
Ety (expr-type :: type)()
Ete (expr-term :: type)()
Efo (expr-formula :: type)()
(a ∈ b) (in :: V, C, formula)(a, b)
(α =ty β) (type-equal :: type, type, formula)(α, β)
(a =α b) (term-equal :: C, C, type, formula)(a, b, α)
(a = b) (a =C b)
(A ≡ B) (formula-equal :: formula, formula, formula)(A,B)
(¬A) (not :: formula, formula)(A)
(a 6∈ b) (¬(a ∈ b))
(a 6= b) (¬(a = b))
(A ∨ B) (or :: formula, formula, formula)(A,B)
(∀x : α . A) (¬(∃ x : α . (¬A)))

Table 3. Additional Compact Notation

1. The semantic meaning of e is the value denoted by e itself.

2. The syntactic meaning of e is the construction denoted by (quote, e).

If a is a term and k is a kind, then

(eval, a, k)

is an expression called an evaluation that is a type if k = type, a term of type
k if k is a type, and a formula if k = formula. Roughly speaking, if a denotes
a construction that represents an expression e, then the evaluation denotes the
value of e. If a denotes a construction that represents an expression in which the
symbol eval occurs, then the evaluation is undefined. This provision is needed to
block the liar paradox and similar semantically ungrounded expressions (see [9]).

3.4 Biform Theories in Chiron

Let L be a language of Chiron. An n-ary transformer in L is an n-ary transformer
Π = (π, π̂) where π is an n-ary operator (s :: E, . . . , E) in L (with E occurring
n + 1 times). A rule in L is a rule R = (Π, M) where Π = (π, π̂) is an n-ary
transformer in L and M is formula of Chiron having the form

∀ e1 . E1, . . . , en : En . M ′

Chiron 11

where Ei is E, Eop, Ety, Ete, or Efo for all i with 1 ≤ i ≤ n. If a1, . . . , an are
quotations (of type E), then the instance of M with respect to (a1, . . . , an) is
the result of replacing each occurrence of π(a1, . . . , an) in

M [e1 7→ a1, . . . , en 7→ a1]

with fπ̂(a1, . . . , an) if this is defined and with ⊥C (which denotes the undefined
value) if this is undefined. A biform theory in Chiron is a pair T = (L, Ω) where
L is a language of Chiron and Ω is a set of rules in L.

Example 7. Let R be the rule given in Example 4 expressed as a rule in a lan-
guage of Chiron. Then M would be the formula

∀ e : Efo . [[e]]fo ≡ [[π(e)]]fo,

and the instance of M with respect to (⌈p(0) ⊃ ∀x . q(x)⌉) would be

[[⌈p(0) ⊃ ∀x . q(x)⌉]]fo ≡ [[⌈∀x . p(0) ⊃ q(x)⌉]]fo,

which reduces to

(p(0) ⊃ ∀x . q(x)) ≡ (∀x . p(0) ⊃ q(x))

as desired. 2

Example 8. Let R be the rule given in Example 5 expressed as a rule in a lan-
guage of Chiron. Then M would be the formula

∀ e1 : Ete, e2 : Ete, e3 : Efo .

(is-var(e2) ∧ free-for(e1, e2, e3) ∧ [[e2]]te = [[e1]]te ∧ [[e3]]fo) ⊃ [[π(e1, e2, e3)]]fo

which says that, for all expressions E1, E2, E3, if E1 is a term t, E2 is a variable
x, and E3 is a formula A such that t is free for x in A, then x = t ∧ A implies
the result of applying the algorithm π̂ to (t, x, A). Notice that the syntactic side
condition of the formula schema in Example 5 (that says t is free for x in A) has
been directly incorporated into M . 2

Example 9. Let R be the rule given in Example 6 expressed as a rule in a lan-
guage of Chiron. Assume that real → real is the type

(Λ x : real . real)

and deriv is the operator

(derivative :: real → real, real → real).

Also let (a ↓ α) mean that the term a is defined with a value in the denotation
of the type α. Then M would be the formula

∀ e : Ete . ([[e]]te ↓ real → real) ⊃ deriv([[e]]te) = [[π(e)]]te

which says that, for all expressions E, if E is a term t that denotes a function
f that maps real numbers to real numbers, then the result of applying the
algorithm π̂ to (t) is a term that denotes the derivative of f . 2

See [9] for further details, discussion, examples, and references concerning
Chiron.

12 W. M. Farmer

4 An Example

In this section we will sketch the development of a nontrivial biform theory. We
will start with a theory T = (L, Ω) of (higher-order) Peano arithmetic where:

– L contains operators nat, 0, S that represent the type of natural numbers,
zero, and the successor function, respectively.

– Ω contains three formulas that express that 0 does not succeed another nat-
ural number, that the successor function is injective, and the full induction
principle over all sets of natural numbers.

The next step is to extend T to T ′ = (L′, Ω′) by introducing defined op-
erators 1, +, ∗ for one, the addition function, and the multiplication function,
respectively. 1 is defined as the successor of 0. + and ∗ are defined recursively.

The last step is to extend T ′ to T ′′ = (L′′, Ω′′) by introducing the machin-
ery to add and multiply binary numerals. Define a (binary) numeral to be an
expression (a1, . . . , an) where n ≥ 1 and ai is 0 or 1 for each i with 1 ≤ i ≤ n.
As defined, a numeral is an improper expression, and thus it denotes nothing.
However, if n is a numeral, then ⌈n⌉ is a proper expression that denotes the con-
struction of n. We can introduce defined operators num, num-val that represent
the type of numerals and a function that maps the type of numerals onto the
type of natural numbers.

We can then define a rule R = (Π, M) for numeral addition where Π =
(add, add-alg) is a binary transformer and M is the formula

∀m, n : num .

num-val(m) + num-val(n) = num-val((add :: num, num, num)(m, n)).

This formula says that the sum of the values of two numerals equals the value
of the output of the algorithm add-alg when given the two numerals as input.
The formula also says implicitly that

(add :: num, num, num)(m, n)

is defined iff m and n both denote numerals. The algorithm add-alg could be
implemented, for example, as a lambda-expression of L′′ or as a program in
some convenient programming language. We can introduce a rule for numeral
multiplication in a similar way.

5 Conclusion

The notion of a biform theory enables axiomatic mathematics and algorithmic
mathematics to be expressed together in one theory. A biform theory consists of
a set of axioms that includes both formulas and rules. A rule is an expression-
manipulating algorithm called a transformer coupled with a meaning formula
that defines its semantics. A biform theory can be viewed both as an axiomatic
theory and as an algorithmic theory. The algorithmic theory provides the deduc-
tion and computation rules for reasoning within the theory, while the axiomatic

Chiron 13

theory provides the context in which to understand the reasoning that is done via
these rules. The axioms of a biform theory are the implicit background assump-
tions of the theory that define what formulas and rules are logical consequences
of the theory.

Since transformers are algorithms that manipulate expressions, the meaning
formulas of biform theory rules can only be directly formalized in a logic with
support for reasoning about the syntax of expressions. Traditional logics do not
offer this kind of support. Chiron is a general-purpose logic with high theoret-
ical and practical expressivity and a facility for reasoning about the syntax of
expressions. As a result, it is exceptionally well-suited for formalizing biform the-
ories. Meaning formulas—that would usually be expressed as formula schemas
in tradition logics—can be directly expressed in Chiron.

Biform theories can also be formalized in other logics that provide a means to
reason about syntax. Many approaches for formalizing the syntax of expressions
have been proposed starting with K. Gödel’s famous arithmetization of syntax
via Gödel numbering [12]. Two good surveys of this research area are [14] and
the extended version of [17].

A great deal of research has been directed to the problem of how to integrate
computer theorem proving and computer algebra. Much of this research has
been done in connection with the Calculemus Project [3] or has been presented
at the Calculemus symposia that began in 1996. Two research initiatives that are
closely related to biform theories and the MathScheme project are the Theorema
project [2] at the RISC Research Institute for Symbolic Computation [18] and
the work by H. Barendregt and F. Wiedijk on the foundations of computerized
mathematics [1].

The development and application of Chiron is a long-range research project
composed of the following four tasks:

1. The design of Chiron.

2. The design of a proof system for Chiron.

3. The development of an implementation of Chiron and its proof system.

4. The development of a series of applications to demonstrate Chiron’s reach
and level of effectiveness.

The first task is largely completed [8, 9]. The last three tasks have hardly been
started. This paper begins the fourth task.

Acknowledgments

The author is grateful to Marc Bender and Jacques Carette for many valuable
discussions on the design and use of Chiron. Over the course of these discussions,
Dr. Carette convinced the author that Chiron needs to include a powerful facility
for reasoning about the syntax of expressions. The author would also like to
thank the referees for their suggestions on how to improve the paper.

14 W. M. Farmer

References

1. H. Barendregt and F. Wiedijk. The challenge of computer mathematics. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 363:2351–2375, 2005.

2. B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa,
F. Piroi, N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger. Theorema: To-
wards computer-aided mathematical theory exploration. Journal of Applied Logic,
4:470–504, 2006.

3. Calculemus Project: Systems for Integrated Computation and Deduction. Web site
at http://www.calculemus.net/.

4. J. Carette. Understanding expression simplification. In J. Gutierrez, editor, Pro-
ceedings of the 2004 International Symposium on Symbolic and Algebraic Compu-
tation (ISSAC 2004), pages 72–79. ACM Press, 2004.

5. J. Carette, W. M. Farmer, and V. Sorge. A rational reconstruction of a system for
experimental mathematics. In M. Kauers, M. Kerber, R. R. Miner, and W. Wind-
steiger, editors, Towards Mechanized Mathematical Assistants, Lecture Notes in
Computer Science, pages 13–26. Springer-Verlag, 2007.

6. J. Carette, W. M. Farmer, and J. Wajs. Trustable communication between math-
ematics systems. In T. Hardin and R. Rioboo, editors, Calculemus 2003, pages
58–68, Rome, Italy, 2003. Aracne.

7. W. M. Farmer. The seven virtues of simple type theory. SQRL Report No. 18,
McMaster University, 2003. Revised 2006.

8. W. M. Farmer. Chiron: A multi-paradigm logic. In R. Matuszewski and A. Za-
lewska, editors, From Insight to Proof: Festschrift in Honour of Andrzej Trybulec,
volume 10(23) of Studies in Logic, Grammar and Rhetoric, pages 1–19. University
of Bia lystok, 2007.

9. W. M. Farmer. Chiron: A set theory with types, undefinedness, quotation, and
evaluation. SQRL Report No. 38, McMaster University, 2007. Revised 2008.

10. W. M. Farmer and M. von Mohrenschildt. Transformers for symbolic computation
and formal deduction. In S. Colton, U. Martin, and V. Sorge, editors, CADE-17
Workshop on the Role of Automated Deduction in Mathematics, pages 36–45, 2000.

11. W. M. Farmer and M. von Mohrenschildt. An overview of a Formal Framework
for Managing Mathematics. Annals of Mathematics and Artificial Intelligence,
38:165–191, 2003.

12. K. Gödel. Über formal unentscheidbare Sätze der Principia Mthematica und ver-
wandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

13. K. Gödel. The Consistency of the Axiom of Choice and the Generalized Continuum
Hypothesis with the Axioms of Set Theory, volume 3 of Annals of Mathematical
Studies. Princeton University Press, 1940.

14. J. Harrison. Metatheory and reflection in theorem proving: A survey and critique.
Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK, 1995.
Available at http://www.cl.cam.ac.uk/ jrh13/papers/reflect.ps.gz.

15. MathScheme: An Integrated Framework for Computer Algebra and Computer The-
orem Proving. Web site at http://imps.mcmaster.ca/mathscheme/.

16. E. Mendelson. Introduction to Mathematical Logic. Chapman & Hall/CRC, fourth
edition, 1997.

17. Aleksey Nogin, Alexei Kopylov, Xin Yu, and Jason Hickey. A computa-
tional approach to reflective meta-reasoning about languages with bindings. In
A. Momigliano and R. Pollack, editors, MERLIN’05: Proceedings of the Third

Chiron 15

ACM SIGPLAN Workshop on Mechanized Reasoning about Languages with Vari-
able Binding, pages 2–12. ACM Press, 2005. An extended version is available as a
California Institute of Technology technical report, CaltechCSTR:2005.003.

18. RISC Research Institute for Symbolic Computation. Web site at http://

www.risc.uni-linz.ac.at//.

