Chiron: A Multi-Paradigm Logic*

William M. Farmer

McMaster University
Hamilton, Ontario, Canada
wmfarmer@mcmaster.ca

26 December 2012

Abstract. Chiron is a derivative of von-Neumann-Bernays-Godel (NBG)
set theory that is intended to be a practical, general-purpose logic for
mechanizing mathematics. It supports several reasoning paradigms by
integrating NBG set theory with elements of type theory, a scheme for
handling undefinedness, and a facility for reasoning about the syntax of
expressions. This paper gives a quick, informal presentation of the syntax
and semantics of Chiron and then discusses some of the benefits Chiron
provides as a multi-paradigm logic.

1 Introduction

One of the great challenges of the information age is to mechanize mathematics.
Mechanizing mathematics does not mean replacing mathematicians with ma-
chines. It means building software systems to help mathematics practitioners—
engineers, scientists, mathematicians, etc.—to do mathematics. The principal
objective of mechanized mathematics is to develop widely accessible mechanized
mathematics systems (MMSs) that support various parts of the mathematics
process. Contemporary MMSs include computer theorem proving systems such
as Coq [4], Isabelle [25], and Pvs [24] and computer algebra systems such as
Axiom [20], Maple [2], and Mathematica [28].

A key component of an MMS is its underlying logic. By a logic, we mean a
language (or a family of languages) that has a formal syntax and a precise seman-
tics with a notion of logical consequence.! (A logic may also have a proof system,
but it is not a required constituent.) By this definition, a theory in a logic—such
as Zermelo-Fraenkel (zF) set theory or von-Neumann-Bernays-Godel (NBG) set
theory in first-order logic—is itself a logic. Of course, a predicate logic—such as
first-order logic or simple type theory (classical higher-order logic) [13]—is also
a logic.

* An earlier version of this paper is published in: R. Matuszewski and A. Zalewska,
eds., From Insight to Proof: Festschrift in Honour of Andrzej Trybulec, Studies in
Logic, Grammar and Rhetoric, 10(23):1-19, 2007.

! The underlying logics of contemporary computer algebra systems have a formal
syntax but usually lack a precise semantics.

2 W. M. Farmer

A practical, general-purpose MMS needs a well-designed logic that is both
theoretically expressive and practically expressive. The theoretical expressivity
of a logic is the measure of what ideas can be expressed in the logic without
regard to how the ideas are expressed. The practical expressivity of a logic is
the measure of how readily ideas can be expressed in the logic. Traditional “off-
the-shelf” logics, like those we mentioned in the previous paragraph, lack the
practical expressivity that it is needed for an MMS. This is because they are
designed to be used in theory, not in practice.

For example, ZF set theory has very high theoretical expressivity. Indeed most
mathematicians believe that essentially all of mathematics can be formalized in
ZF—at least in theory. However, zF does not contain an operator for forming a
term that denotes the application of a set f representing a function to a set a that
represents an argument to f. Moreover, even if such an application operator were
added to ZF, there is no special mechanism for handling “undefined” applications.
As a result, statements involving functions and undefinedness are much more
verbose and indirect when expressed in ZF than they need to be, and reasoning
about functions and undefinedness is usually performed in the metalogic of zZF
instead of in zF itself. (For examples of this kind and other kinds of reasoning
that, for the sake of convenience, is usually done in the metalogic of zZF, see
K. Kunen’s Set Theory [21].)

Chiron is a derivative of NBG set theory that is intended to be a practical,
general-purpose logic for mechanizing mathematics. It is designed to have both
high theoretical and high practical expressivity. As a derivative of NBG, it has the
same theoretical expressivity as the zF and NBG set theories. However, Chiron has
a much higher level of practical expressivity than traditional logics. It achieves
this in large part by integrating several reasoning paradigms.

A reasoning paradigm is a style of reasoning analogous to a programming
paradigm [27), a style of computer programming. A reasoning paradigm includes
such things as background assumptions about semantics, favored modes of ex-
pression, and sanctioned reasoning rules. Just as programming languages are de-
signed to support certain programming paradigms, logics are designed to support
certain reasoning paradigms. Here is a short list of some reasoning paradigms
that are especially relevant to mechanized mathematics:

1. Classical. The classical paradigm assumes that formulas have only two possi-
ble truth values: true and false. Ideas are expressed using the usual machinery
of predicate logic: terms that denote values, predicates applied to terms, the
standard propositional connectives, and the existential and universal quan-
tifiers. Reasoning is performed using the standard laws of predicate logic
such as modus ponens and universal instantiation including nonconstructive
principles such as the law of excluded middle. The classical paradigm is dom-
inant in mathematical practice. Most traditional logics—including first-order
logic, simple type theory, ZF, and NBG—support it.

2. Constructive. On the surface, the constructive paradigm is very similar to
the classical paradigm. However, the underlying semantics is quite different
and only constructive principles of reasoning are permitted. The construc-

Chiron 3

tive paradigm is not widely followed in mathematical practice. However,
the underlying logics of several computer theorem proving systems support
the constructive paradigm. For example, the logic of Coq, the Calculus of
Inductive Constructions [5, 6], supports this paradigm.

. Assured Definedness. The assured definedness paradigm is based on the as-
sumption that every term is defined and thus denotes some value. As a result,
definedness checking is unnecessary and all functions are considered to be
total. Nearly all logics used for mechanized mathematics support the assured
definedness paradigm including first-order logic, simple type theory, ZF, and
NBG. However, this paradigm is not commonly employed in mathematical
practice.

. Permitted Undefinedness. The converse of assured definedness, the permit-
ted undefinedness paradigm allows terms to be undefined and thus to be
nondenoting. This paradigm is very widely used in mathematical practice.
Although traditional logics do not support this reasoning paradigm, we have
shown that, if a traditional logic is modified slightly, it can support this
paradigm [8-10, 12, 14].

. Set theory. The set theory paradigm reduces all mathematical reasoning to
reasoning about sets. It is deeply entrenched in mathematical practice. zF
and NBG are two of the most popular set-theoretic logics that support this
paradigm. They are both based on the same intuitive model of the iterated
hierarchy of sets. The key difference between them is that zr does not admit
proper classes, while NBG does. (Proper classes are collections of sets that
are too large to be sets themselves. They include useful entities like the class
of all sets and the cardinality function.)

. Type theory. The type theory paradigm uses a hierarchy of types to classify
expressions and their values. Most type theories provide strong support for
reasoning with functions. Type theories—both classical and constructive—
are popular logics for mechanized mathematics systems. In particular, several
leading computer theorem proving systems [1, 15,19, 22, 24, 25] are based on
Church’s type theory [3], a version of simple type theory which employs
lambda-notation. Type theories are seldom used in mathematical practice
outside of the computing field.

. Formalized Syntaz. The formalized syntax paradigm integrates reasoning
about the syntax of expressions with reasoning about what the expressions
mean. It is usually used in the metalogic of a logic rather than in the logic
itself. For example, sets of axioms and rules of inference are often expressed
using syntactic templates called formula schemas. They are formula-like ex-
pressions containing syntactic variables that represent collections of formulas
with similar syntactic structure, but they usually are not official formulas
of the logic. An example is the well-known axiom schema for the induction
principle for the natural numbers:

(Alx —» A (Vz . AD Alx— S(x)])) DV . A

4 W. M. Farmer

where the syntactic variable A ranges over formulas. The formalized syntax
paradigm can be used directly in a logic with natural number arithmetic
using Godel’s arithmetization of syntaz via Gédel numbering [17].

Mathematical practice is very rich and varied. There are usually many ways
to attack a mathematical problem and many ways to express a solution. We
maintain that a logic for mechanized mathematics can benefit from being able to
support several reasoning paradigms. Chiron supports in an integrated manner
the following five reasoning paradigms:

Classical.

Permitted undefinedness.
Set theory.

Type theory.

Formalized syntax.

Gt o=

The design of Chiron is novel, but the lion’s share of the ideas behind the design
come from traditional predicate logic, set theory, and type theory.

This paper gives a quick, informal presentation of the syntax and semantics
of Chiron and then discusses some of the benefits Chiron provides as a multi-
paradigm logic. The syntax and semantics of Chiron are presented together in
section 2. A compact notation for Chiron is given in section 3. Section 4 discusses
Chiron’s support for its five reasoning paradigms. The paper ends with some
concluding remarks in section 5.

2 Syntax and Semantics

We will present the syntax and semantics of Chiron together. The presentation of
the semantics will be informal. The reader can find separate formal presentations
of the syntax and semantics in [11].

2.1 Values

The official semantics of Chiron is based on standard models. (Two alternate
semantics based on other kinds of models are given in [11].) A standard model
is an elaboration of a model of NBG set theory. The basic values or elements in a
model of NBG are classes (which include sets and proper classes). The values of
a standard model include other values besides classes, but classes are the most
important. We will not give a precise definition of a standard model; the reader
can find a proper definition of this notion in [11]. We will instead present the
semantics of Chiron with respect to an arbitrary standard model M. As we move
along, we will reveal the ingredients of M as needed.

M includes values of several kinds: sets, classes, superclasses, truth values,
the undefined value, and operations. M is derived from a structure, consisting
of a nonempty domain D, of classes and a membership relation € on D, that
satisfies the axioms of NBG set theory as given, for example, in [18] or [23].

Chiron 5

op type term formula
op-app |var type-app|dep-fun-type
fun-app|fun-abs |if exists
def-des |indef-des|quote |eval

Table 1. The Key Words of Chiron.

A class of M is a member of D,. A set of M is a member x of D, such
that x € y for some member y of D.. That is, a set is a class that is itself a
member of a class. A class is thus a collection of sets. A class is proper if it is
not a set. A superclass of M is a collection of classes in D.. We consider a class,
as a collection of sets, to be a superclass itself. Let D, be the domain of sets of
M and Dg be the domain of superclasses of M. The following inclusions hold:
D, C D, C Ds. Dy is the universal class (the class of all sets), and D, is the
universal superclass (the superclass of all classes).

T, F, and L are distinct values of M not in Dg. T and F represent the truth
values true and false, respectively. L is the undefined value which serves as the
value of undefined terms. For n > 0, an n-ary operation of M is a total mapping
from Dy X -+ X Dy, to Dy 41 where D; is Dy, D U{ L}, or {T,F} for each i with
1<i<n+1.Let D, be the domain of operations of M. DgU{T,F, L} and D,
are assumed to be disjoint.

2.2 Expressions

Let S be a fixed countably infinite set of symbols that includes the 16 key words
in Table 1. The key words are used to classify expressions and identify different
categories of expressions. Let O be a countable set of symbols such that O and
S are disjoint. The members of O are called operator names.

An expression of Chiron is defined inductively by:

1. Each symbol s € SU O is an expression.
2. If ey,...,e, are expressions where n > 0, then (eq,...,e,) is an expression.

Hence, an expression is an S-expression (with commas in place of spaces) that
exhibits the structure of a tree whose leaves are symbols in in S U O. Let &£ be
the set of expressions of Chiron.

There are four special sorts of expressions: operators, types, terms, and formu-
las. An expression is proper if it is one of these special sorts of expressions, and an
expression is improper if it is not proper. Proper expressions denote values of M,
while improper expressions are nondenoting (i.e., they do not denote anything).
Operators are used to construct expressions. They denote operations. Types are
used to restrict the values of operators and variables and to classify terms by
their values. They denote superclasses. Terms are used to describe classes. They
denote classes or the undefined value 1. Formulas are used to make assertions.
They denote truth values.

6 W. M. Farmer

A term is defined if it denotes a class and is undefined if it denotes L. Every
term is assigned a type. Suppose a term a is assigned a type «. Then a is said to
be a term of type a. Suppose further o denotes a superclass Y. If a is defined,
i.e., a denotes a class x, then x is in X,. The value of an intuitively nondenoting
term is the undefined value |, but the value of a intuitively nondenoting type
or formula is D, (the universal superclass) or F (false), respectively. That is,
the values for intuitively nondenoting types, terms, and formulas are the default
values D, L, and F, respectively. Hence every proper expression, even one that
is intuitively nondenoting, denotes some value.

We will use O, P,Q,... to denote operators, «,f3,7,... to denote types,
a,b,c,...to denote terms, and A, B,C,... to denote formulas.

2.3 Operators

A kind is the key word type, a type, or the key word formula. Kinds are expres-
sions used to define the signatures of operators. If o € O and ki, ..., k,11 are
kinds where n > 0, then

(0p7 o, kla ceey kn—',—l)

is an n-ary operator. o is the name and kq,...,k,41 is the signature of the
operator. The operator is a type operator, term operator, or formula operator if
kn41 = type, knt1 is a type, or k,41 = formula, respectively.

Roughly speaking, a language of Chiron is a set L of operators containing
the 18 “built-in” operators in Table 2. Each standard model is for a particular
language of Chiron. Let L be the language for which M is a model.

An n-ary operator O = (op, 0, k1, ..., kn, knt1) denotes an n-ary operation o
in D, from Dy X -+ X Dy, into D, 1 where D; = Dy if k; = type, D; = D, U{ L}
if k; is a type, and D; = {T,F} if k; = formula for each 7 with 1 < i < n+ 1 such
that, if O is a built-in operator, then o is a particular operation of M specified
by the definition of a standard model.

Like a function or predicate symbol in first-order logic, an operator in Chiron
is not useful unless it is applied. Suppose O = (op,0,k1,...,kn, knt1) is an
operator and eq,...,e, are expressions such that k; = type and e; is a type, k;
is a type and e; is a term, or k; = formula and e; is a formula for all i with
1 <i<n. Then

(Op'app7 07 €155 en)

is an expression called an operator application that is a type if k,4+1 = type,
a term of type k,41 if kny1 is a type, and a formula if %k, 11 = formula. The
operation application denotes the result of applying the n-ary operation denoted
by O to the n values denoted by e1,...,e,.

Many sorts of syntactic entities can be formalized in Chiron as operators.
Examples include logical connectives; individual constants, function symbols,
and predicate symbols from first-order logic; base types and type constructors
including dependent type constructors; and definedness operators.

Chiron 7

Operator
1. (op, set, type)
2. (op, class, type)
3. (op, op-names, V)
4. (op, lang, type)
5. (op, expr-sym, type)
6. (op, expr-op-name, L, type)
7. (op, expr, L, type)
8. (op, expr-op, L, type)
9. (op, expr-type, L, type)
10. (op, expr-term, L, type)
11. (op, expr-term-type, L, E¢y, type)
12. (op, expr-formula, L, type)
13. (op,in, V, C, formula)
14. (op, type-equal, type, type, formula)
15. (op, term-equal, C, C, type, formula)
16. (op, formula-equal, formula, formula, formula)
17. (op, not, formula, formula)
18. (op, or, formula, formula, formula)
where:

V = (op-app, (op, set, type))

C = (op-app, (op, class, type))

¢ = (op-app, (op, opnames, V))

L = (op-app, (op, lang, type))

Eiy = (op-app, (op, expr-type, L, type), £)

Table 2. The Built-In Operators of Chiron.

Ezample 1. O = (op,class, type) is a built-in 0-ary type operator. The opera-
tor application C = (op-app,O) is the type of classes. It denotes the univer-
sal superclass D.. Similarly, the operator application V = (op-app, O’), where
O’ = (op, set, type), is the type of sets. It denotes the universal class D,. O

Ezample 2. Suppose V and C are the types defined in the previous example. The
operator

O = (op,in, V, C, formula)

is a built-in binary formula operator. If @ and b are terms denoting the classes
x and y, then the operator application

(op-app, O, a, b)

is a formula that asserts x € y. By our remark above, the value of this formula
is F if x is not a set. O

Ezxample 3. Suppose N is the type of natural numbers. Let

O = (op, matrix, N, N, type, type)

8 W. M. Farmer

be a ternary type operator such that, if a,b are terms of type N that denote the
natural numbers m,n and « is a type, then the operator application

Y= (Op_app7 07 a, b7 C\{)

denotes the type of m x m matrices of elements of type a. Since the type -~y
depends on the values of a and b, 7 is a dependent type and O is a dependent
type constructor. O

2.4 Variables
If x € S and « is a type, then
(var,z, @)

is a term of type « called a wariable. Variables are used mainly in conjunction
with the five variable binders in Chiron: dependent function type, function ab-
straction, existential quantification, definite description, and indefinite descrip-
tion. They bind variables in the traditional, naive way. It might be possible to
use other more sophisticated variable binding mechanisms such as de Bruijn
notation [7] or nominal data types [16, 26].

An assignment into M is a mapping that assigns a class in D, to each symbol
in S. The value of a variable (var, z, &) with respect to an assignment ¢ is ¢(z) if
©(z) is in the superclass denoted by « and is | otherwise. The latter case would
happen, for example, when « denotes the empty set, i.e., the empty collection
of classes.

2.5 Logical Connectives

Chiron includes the usual logical connectives. The propositional connectives for
negation and disjunction are represented by the built-in formula operators named
not and or. If (var,z,a) is a variable and B is a formula, then

(exists, (var, z, «), B)

is a formula called an existential quantification. It is for expressing existential
assertions. There are three sorts of equality—one for each of types, terms, and
formulas—represented by the built-in operators named type-equal, term-equal,
and formula-equal. (The universal quantifier will be introduced in the next section
by a notational definition, and other propositional connectives can be introduced
by operator definitions (see [11]).)

Ezample 4. Let O be the built-in ternary operator named term-equal:

(op, term-equal, C, C, type, formula).

Chiron 9

where C is the type of classes defined in Example 1. (We will soon see why the
operator for term equality is ternary instead of binary.) Also let a,b be terms
and « be a type that denotes the superclass X,,. (op-app, O, a, b, &) asserts that
a and b denote the same class in X,. (op-app, O, a,b,C) asserts that a and b
denote the same class. (op-app, O, a, a,) asserts that a is defined in «, that is,
that a denotes a class in X,. And (op-app, O, a,a,C) asserts that a is defined,
that is, that a denotes some class. O

If A is a formula and b, ¢ are terms, then
(if, A, b, ¢)

is an if-then-else term called a conditional term. Its value is the value of b if A is
true and is the value of ¢ if A is false. If b and ¢ are of the same type «, then the
conditional term is also of type «; otherwise its type is the type C of classes. An
if-then-else term could also be constructed by an operator application, but the
term’s type would have to be the last member of the signature of the operator.
Thus, the typing of conditional terms is more convenient than the typing of
operation applications representing if-then-else terms.

Since variables denote classes, they can be called class variables. There are
no operation, superclass, or truth value variables in Chiron. Thus direct quan-
tification over operations, superclasses, and truth values is not possible. Direct
quantification over the undefined value L is also not possible. As in standard
NBG set theory, only classes are first-class values in Chiron.

2.6 Functions
A function of M is a class f of M such that:

1. Each p € f is an ordered pair (z,y) where x,y are in D,.
2. For all {(x1,y1), (x2,y2) € f, if z1 = 2, then y; = yo.

A function represents a mapping from sets to sets. A function may be partial,
i.e., there may not be an ordered pair (z,y) in a function for each x in D,. Every
function that is a set is partial, and every function that is total is a proper class.
Since functions are classes, they are first-class values, unlike operations.

Let D¢ be the domain of functions of M. For f,x in D., f(z) denotes the
unique y in Dy such that f is in D¢ and (x,y) € f. (f(x) is undefined if there
is no such unique y in Dy.) For X in Dy and z in D, X[x] denotes the unique
class in D, composed of all y in D, such that, for some f in both X and Dy,
f(z) = y. (X[z] is undefined if there is no such unique class in D,.)

If @ is a type and a is a term, then

(type-app, @, a)

is a type called a type application. If oo denotes the superclass X and a denotes
the class z, then the type application denotes X[z]. If a is undefined, the type
application denotes D..

10 W. M. Farmer

If (var,z,) is a variable and 3 is a type, then

(dep-fun-type, (var, z,), B)

is a type called a dependent function type. It denotes the superclass of functions
g € D¢ such that, for all sets z, if g(z) is defined, then z is in the superclass
denoted by « and g(z) is in the superclass denoted by 8 when the value of
(var,z,) is z. Dependent function types are commonly known as dependent
product types.

If f is a term of type a and a is term, then

(fun-app, f, a)

is a term of type (type-app, , a) called a function application. If the value of f is
a function g, the value of a is a set z, and g(z) is defined, then the value of the
function application is g(z). Otherwise the function application is undefined.

If (var,z,) is a variable and b is a term of type 3, then

(fun-abs, (var, z, a), b)

is a term of type (dep-fun-type, (var, z, @), 8) called a function abstraction. If the
collection g of pairs (z, 2’), where z is a set in the value of o and 2’ is a set equal
to the value of b when the value of (var,z,a) is z, is a function in Dg, then g
is the value of the function abstraction. Otherwise the function abstraction is
undefined.

The dependent function type

Y= (dep'fun'typea (var, €, a)v ﬁ)

is a generalization of the more common function type o — (. If f is a term
of type @« — B and a is a term of type «, then the application f(a) is of type
BS—which does not depend on the value of a. In Chiron, however, if f is a term
of type v and a is a term of type «, then the term

(fun—app, f7 G;),
the application of f to a, is of the type
(type-app, 7, a),

the type formed by applying the type v to a—which generally depends on the
value of a.

Ezxample 5. This example continues Example 3. Suppose R is the type of real
numbers and v is the variable (var, z, N). Then

v = (dep-fun-type, v, (op-app, O, v, v, R))

is a dependent function type that denotes the superclass of functions that map
a natural number n to an n X n matrix of real numbers. Suppose zero-matrix is

Chiron 11

a term of type v that denotes the function that maps a natural number n to the
n X n zero matrix. If a term a of type N denotes the natural number 17, then

(fun-app, zero-matrix, a)

is a term of type (type-app,~,a) that denotes the 17 x 17 zero matrix. Notice
that (type-app,v,a) and (op-app,O,a,a,R) are different types that denote the
same superclass, namely, the type of 17 x 17 matrices of real numbers. O

2.7 Definite and Indefinite Description

If (var,z,) is a variable and B is a formula, then
(def-des, (var, z, @), B)

is a term called a definite description and
(indef-des, (var, z,), B)

is a term called an indefinite description. The definite description denotes the
value of (var, z,) that satisfies B; it denotes L if there is no value or more than
one value of (var, z, «) that satisfies B. The indefinite description denotes some
value of (var, z,) that satisfies B; it denotes L if there is no value of (var, z, a)
that satisfies B.

Definite descriptions are quite common in mathematics but often occur in a
disguised form. For example,“the limit of sin% as x approaches 07 is a definite
description. Indefinite description is also employed in mathematics but less so
than definite description. Definite and indefinite description works very smoothly
in a logic, like Chiron, in which terms are allowed to be undefined [10].

In traditional logic, definite descriptions are usually formed using an iota
operator (1), while indefinite descriptions are usually formed using an epsilon
operator (¢).

2.8 Quotation and Evaluation
M contains a total, injective mapping H : £ — D, such that:

1. If e € S, then H(e) is a set that is neither the empty set) nor an ordered
pair.

2. Ife= () €&, then H(e) = 0.

3. Ife=(e1,...,en) € E where n > 1, then

H(e) = (H(e1),H((ea,...,en))).

H(e) is a set, called the construction of e, that represents the syntactic structure
of the expression e. Notice that a construction has the same structure as a list
data structure in the Lisp programming language with the empty set playing
the role of nil.

12 W. M. Farmer

A construction is a symbol construction, operator name construction, opera-
tor construction, type construction, term construction, or formula construction
if it represents a symbol, operator name, operator, type, term, or formula, re-
spectively. The class of constructions is represented by the application of the
built-in unary type operator named expr to the set of operator names. That is,

(Op_app7 (opa expr, L7 type)a g)a

where L and /¢ are defined as in Table 2, is the type E of expression construc-
tions. Similarly, the class of symbol constructions, operator name constructions,
operator constructions, type constructions, term constructions, or formulas con-
structions is represented by the application of the built-in unary type operator
named expr-sym, expr-op-name, expr-op, expr-type, expr-term, or expr-formula, re-
spectively.

If e is any expression, proper or improper, then

(quote, e)

is a term of type E called a quotation. The value of the quotation is H(e), the
construction of e. Thus a proper expression e has two different meanings:

1. The semantic meaning of e is the value denoted by e itself.
2. The syntactic meaning of e is the construction denoted by (quote, e).

FEzample 6. Suppose zero and one are terms that denote the natural num-
bers 0 and 1, respectively. Define a (binary) numeral to be an expression
(num,ay,...,a,) where n > 1 and a; is zero or one for each ¢ with 1 < i < n.
As defined, a numeral is an improper expression, and thus it denotes nothing.
However, if n is a numeral, then (quote,n) is a proper expression that denotes
the construction of n. Since constructions are sets that can be manipulated just
like any other sets, numerals can be manipulated (e.g., added or multiplied) in
Chiron by manipulating their quotations. (Of course, in order to know what
these manipulations mean arithmetically, we would need to define a term that
denotes an appropriate function from numerals to natural numbers.) This ex-
ample shows that quotation enables the manipulation of syntactic objects to be
performed in Chiron using all of the machinery that Chiron provides. O

If a is a term and k is a kind, then
(eval,a, k)

is an expression called an evaluation that is a type if k = type, a term of type
k if k is a type, and a formula if k& = formula. Roughly speaking, if a denotes
a construction that represents an expression e, then the evaluation denotes the
value of e.

An expression e is eval-free if all occurrences of the symbol eval in e are within
a quotation. Suppose k = type. If a denotes a construction that represents an
eval-free type «, then the evaluation (eval, a, k) denotes the value of a; otherwise
it denotes D.. Suppose k is a type. If a denotes a construction that represents an

Chiron

13

Compact Notation Official Notation
(O:Zkl,...,kn_;,_l) (Op,O,k’l,...,kn+1)
(0::k1,...,knt1)(e1,...,en) (op-app, (0p,0,k1,. .., knt1),€1,...,6n)
(z:) (var,z, @)

a(a) (type-app, @, a)

(Az:a.p) (dep-fun-type, (var, z, &),)

f(a) (fun_app7 f: a)

Az :a.b) (fun-abs, (var, z, @), b)

if(A,b,c) (if, A, b, c)

3z:a.B) (exists, (var, z, @), B)

(te:a.B) (def-des, (var, z,), B)
(ex:a.B) (indef-des, (var, z, o), B)

Te™ (quote, €)

la]x (eval, a, k)

IIa]]ty (evalvaa type)

lalte (eval, a, (op-app, (op, class, type)))
[a]to (eval, a, formula)

Table 3. Compact Notation

eval-free term b in which the value of b is in the value of k, then the evaluation
(eval,a, k) denotes the value of b; otherwise it denotes L. And suppose k =
formula. If a denotes a construction that represents an eval-free formula A, then
the evaluation (eval,a,k) denotes the value of A; otherwise it denotes F. In
each of the three cases the condition concerning the presence of the symbol
eval is needed to block the liar paradox and similar semantically ungrounded
expressions (see [11]).

See Example 7 in section 4.5 for an illustration of how the law of beta re-
duction can be formalized in Chiron using evaluation. Quotation and evaluation
in Chiron are inspired by the quote and eval operators in the Lisp programming
language.

3 Compact Notation

In this section we introduce a compact notation for proper expressions—which
we will use in the rest of the paper whenever it is convenient. The first group
of definitions in Table 3 defines the compact notation for each of the 13 proper
expression categories we defined above.

The next group of definitions in Table 4 defines additional compact notation
for the built-in operators and the universal quantifier.

We will often employ the following abbreviation rules when using the compact
notation:

1. A matching pair of parentheses in an expression may be dropped if there is
no resulting ambiguity.

14

W. M. Farmer

Compact Notation Defining Expression

v (set :: type)()

C (class :: type)()

L (op-names :: term)()

L (lang :: type)()

Esy (expr-sym :: type)()

Eon (expr-op-name :: L, type)(£)

E (expr :: L, type)(£)

Eop (expr-op :: L, type)(£)

Eey (expr-type :: L, type)(¢)

E¢e (expr-term :: L, type)(£)

Eb. (expr-term-type :: L, E¢y, type) (¢, b)

Efo (expr-formula :: L, type)(¥)

(a €b) (in :: V, C, formula)(a, b)

(a =4y B) (type-equal :: type, type, formula)(a, 3)
(a =a b) (term-equal :: C, C, type, formula)(a, b, @)
(a =) (a =cb)

(A= DB) (formula-equal :: formula, formula, formula)(A, B)
(—A) (not :: formula, formula)(A)

(a g b) (~(a € b))

(a #b) (~(a = b))

(AV B) (or :: formula, formula, formula)(A, B)
Vz:a.A) =Bz :a.(n4))

Table 4. Additional Compact Notation

A variable (x : o) occurring in the body e of (xz : « . €), where x is A, A\, 3,
V, ¢, or € may be written as z if there is no resulting ambiguity.
(k21 :aq1...(%xp : ay . €)---), where x is A, A, 3, or V, may be written as

(¥&1 @1, ..., Ty Qy . €).

Similarly, (xz1 : a...(xx, : « . e)---), where x is A, A, 3, or V¥, may be
written as

(&1, .o Tyt . €).

If we assign a fixed type, say «, to a symbol = to be used as a variable name,
then an expression of the form (xz : « . €), where x is A, A, 3, V, ¢, or €, may
be written as (xx . e).

If k1,...,kny1 is the preferred signature assigned to an operator name o,
then an operator application of the form

(0 ki, kny1)(er, ... en)

may be written as o(ey,...,e,) and an operator application of the form
(0 :: k)() may be written as o.

lalty, [alte, [a]s, and [a]t may be shortened to [a] if a is of type Ey, Ege,
Ey, and Eg,, respectively.

Chiron 15

Using the compact notation, expressions can be written in Chiron so that
they look very much like expressions written in mathematics textbooks and
papers.

4 Reasoning Paradigms

We will now briefly describe how Chiron supports the five reasoning paradigms
listed at the end of the Introduction.

4.1 Classical

Chiron fully supports the classical paradigm. As we mentioned in section 2.5,
Chiron has the usual logical connectives: propositional connectives for negation
and disjunction, an existential quantifier, and equality operators for each of
types, terms, and formulas. Chiron also includes an if-then-else term construc-
tor. The universal quantifier is introduced by a notational definition, and other
propositional connectives can be introduced by operator definitions (see [11]).

4.2 Set Theory

Chiron also fully supports the set theory paradigm. As a derivative of NBG set
theory, Chiron can be used to reason about both sets and proper classes. The
usual set-theoretic operators such as union, intersection, complement, etc. and
constants such as for the empty set and the universal class can be introduced
by operator definitions (see [11]). Unlike traditional set theories formalized in
first-order logic, Chiron is equipped with a rich language for forming typed terms
that denote sets and classes. This language includes mechanisms for expressing
function application and abstraction and definite and indefinite description.

4.3 Permitted Undefinedness

Undefined expressions are handled in Chiron according to the traditional ap-
proach to undefinedness [10]. Terms are allowed to be undefined. This means
that a term that has no natural denotation—such as an application of a function
to an argument outside of its domain—denotes the undefined value L instead of
a class. An undefined type—such as the application of a type to an undefined
term—denotes the universal superclass D.. And an undefined formula—such as
an out-of-range formula evaluation—denotes F.

As mentioned in Example 4, the assertion that a term a is defined in a type
« is explicitly expressed by the formula (a =, a). This same assertion can be
implicitly expressed in various ways. For example, if a is a term of type «, the
formula (a = b) implies that a is defined in «. The use of implicit definedness as-
sertions enables statements involving partial functions and definite and indefinite
descriptions to be expressed very concisely [10].

16 W. M. Farmer

4.4 Type Theory

Chiron can be used as a type theory. Every term has a unique type determined
by its syntax. The Chiron type system contains three sorts of types:

1. A type operator application constructs a type from a list of proper expressions
which may be types, terms, or formulas. Many kinds of types can be formed
in this way as shown by the following examples. An application of a type
operator with the signature type introduces a base type such as V, C, or E.
An application of a type operator with a signature type, ..., type of length
n + 1 where n > 1 introduces a type constructed from a list of n other
types. An application of a type operator with a signature that contains a
type introduces a dependent type.

2. A dependent function type constructs a dependent function type from a vari-
able and a type.

3. A type application constructs a type from a type (which is usually a depen-
dent function type) and a term (to which the type is applied).

Each type in Chiron denotes a superclass that is a subcollection of D., the
universal superclass that contains all classes. Thus, viewed semantically, types
are allowed to freely “overlap”. We say that a type « is a subtype of another type
[if the value of « is a subcollection of the value of S. It is possible for a type
to be empty, that is, to denote the empty set. For example, if « is a type that
denotes a superclass Y that does not contain any functions and a is a defined
term, then the type a(a) is empty.

Although each term has a unique type assigned to it, a term can be defined
in many types. Suppose a is a term of type «a. If a is defined, it is defined in «,
the type C of classes, and every other type that denotes a superclass containing
the value of a. If a is undefined, it is not defined in any type.

4.5 Formalized Syntax

Quotation is used in Chiron to refer to a set called a construction that represents
the syntactic structure of an expression. Analogously to a Gddel number that
encodes an expression as a number, a quotation in Chiron is a Gddel set that
encodes an expression as a set. Constructions can be probed and formed using
the set-theoretic machinery of Chiron. Evaluation is used in Chiron to refer to the
value of the expression that a construction represents. To avoid the liar paradox
and similar semantically ungrounded expressions, an evaluation is defined only
if it is applied to a term that denotes a construction representing an eval-free
expression.

Quotation and evaluation together enable many common syntactic devices
that are usually expressed metalogically—such as syntactic side conditions,
schemas, and syntactic transformations used in deduction and computation
rules—to be expressed directly in Chiron. We will give two illustrations: (1)
how schemas can be formalized in Chiron and (2) how metalogical reasoning
can be “reflected” in Chiron.

Chiron 17

Schemas A schema is an expression that contains special variables called
schema variables that range over expressions. An instance of a schema is ob-
tained by simultaneously replacing each schema variable with an appropriate
expression. A schema is thus a representation of the set of its instances. Schemas
are used in traditional logic to describe deduction rules and sets of axioms. How-
ever, schemas usually cannot be directly formalized in a logic but are instead
expressed in the logic’s metalogic.

Schemas can be directly formalized in Chiron. Schema variables are formal-
ized by variables of type E, the type of expression constructions, or by variables
of the subtypes of E: Egy, Eon, Eop, Ety, Ete, and Eg,. Syntactic side conditions
are formalized as conditions about constructions. Syntactic transformations are
formalized as applications of functions that map constructions to constructions.
Evaluation is used to state the value of the result of the transformation. And
instances of a formalized schema are obtained by instantiating the schema vari-
ables with quoted expressions.

Ezample 7. There are two laws of beta reduction in Chiron, one for the appli-
cation of a dependent function type and one for the application of a function
abstraction. Without quotation and evaluation, the latter beta reduction law
would be informally expressed as the formula schema

Az :a.b)(a) =b[(z:a)— d

where a is free for (z : «) in b. The expressions x, «, b, a are schema variables,
“a is free for (x :) in b” is a syntactic side condition, and b[(x : @) > a] is the
syntactic transformation that substitutes a for each free occurrence of = in b.

Using constructions, quotation, and evaluation, both laws of beta reduction
can be formalized in Chiron as single formulas in which the syntactic side condi-
tions are expressed in Chiron. For example, the law of beta reduction for function
abstractions can be expressed as:

Ve: E .

(is-eval-free(e) A

is-fun-redex(e) A

free-for(redex-arg(e), 1st-comp(redex-var(e)), redex-body(e)))
D

if([redex-arg(e)]te 4 ([2nd-comp(redex-var(e))]ty NV) A

[sub(redex-arg(e), 1st-comp(redex-var(e)), redex-body(e))]te 4 V,

[e]te = [sub(redex-arg(e), 1st-comp(redex-var(e)), redex-body(a))]se,

[[6]] te T)

Here is-eval-free, is-fun-redex, free-for, etc. are defined operators without their
signatures (see [11] for their definitions).

The syntactic side condition (corresponding to “a is free for (z : «) in b”)
is incorporated into the hypothesis of the formula’s implication, while the syn-
tactic transformation (corresponding to b[(z : &) — a]) is incorporated into the

18 W. M. Farmer

conclusion. This formalization of beta reduction is only applicable to eval-free
expressions. The formalization is more complicated than the informal schema
because the redex is undefined if (1) its argument is not a set defined in the type
of the redex variable and (2) the result of the substitution is not a set.

This beta reduction law is applied to an application a of a function abstrac-
tion by instantiating the variable (e : Ei.) with the quotation Ta™. See [11] for
details. Many other axiom schemas and rules of inference rules can be formalized
in Chiron using schemas of this style. O

Metalogical Reflection Reasoning that is normally done in the metalogic of
a logic—such as defining and applying a proof system—can be “reflected” in
Chiron using its facility to reason about syntax. For example, a theory T can be
defined as a set of formula constructions. A schema for a set of logical axioms for
Chiron can be defined as a Chiron-style schema. A rule of inference for Chiron
can be defined as a Chiron-style schema that involves a provability relation
between theories and formula constructions. Then a formula 7' a would assert
that the formula represented by the construction a is provable from the formulas
represented by the constructions in T using the Chiron-style schemas that define
the logical axioms and rules of inference for Chiron.

5 Conclusion

Chiron is a logic designed to be a logical foundation for mechanized mathe-
matics. Derived from NBG set theory, it is based on familiar principles from
predicate logic, set theory, and type theory. It supports in an integrated manner
five reasoning paradigms that are commonly employed either in mathematical
practice or in contemporary MMSs. As a result, Chiron has a high level of prac-
tical expressivity—it offers the user easy access to a rich mixture of popular
reasoning styles.

The design of Chiron is the first step of a long-range research program. The
second step is to design a proof system for Chiron. The third step is to develop an
implementation of Chiron and its proof system. The final, and most important
step, will be to develop a series of applications to demonstrate Chiron’s reach
and level of effectiveness.

Acknowledgments

The author is grateful to Marc Bender and Jacques Carette for many valuable
discussions on the design and use of Chiron. Over the course of these discussions,
Dr. Carette convinced the author that Chiron needs to include a powerful facility
for reasoning about the syntax of expressions. The author is also grateful to
Volker Sorge for reading a preliminary draft of the paper.

Chiron 19

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

P. B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfennig, and H. Xi. TPS: A
theorem proving system for classical type theory. Journal of Automated Reasoning,
16:321-353, 1996.

B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and S. M.
Watt. Maple V Language Reference Manual. Springer-Verlag, 1991.

A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

Coq Development Team. The Coq Proof Assistant Reference Manual, Version 8.0,
2006. Available at http://coq.inria.fr/doc/.

T. Coquand and G. Huet. The calculus of constructions. Information and Com-
putation, 76:95-120, 1988.

T. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin Lof
and G. Mints, editors, COLOG-88: Proceedings of the International Conference on
computer Logic, volume 417 of Lecture Notes in Computer Science, pages 50—66.
Springer-Verlag, 1990.

N. G. de Bruijn. Lambda-calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae, 34:381-392, 1972.

W. M. Farmer. A partial functions version of Church’s simple theory of types.
Journal of Symbolic Logic, 55:1269-91, 1990.

W. M. Farmer. STMM: A Set Theory for Mechanized Mathematics. Journal of
Automated Reasoning, 26:269-289, 2001.

W. M. Farmer. Formalizing undefinedness arising in calculus. In D. Basin and
M. Rusinowitch, editors, Automated Reasoning—IJCAR 2004, volume 3097 of Lec-
ture Notes in Computer Science, pages 475—489. Springer-Verlag, 2004.

W. M. Farmer. Chiron: A set theory with types, undefinedness, quotation, and
evaluation. SQRL Report No. 38, McMaster University, 2007. Revised 2012.

W. M. Farmer. Andrews’ type system with undefinedness. In C. Benzmiiller,
C. Brown, J. Siekmann, and R. Statman, editors, Reasoning in Simple Type Theory:
Festschrift in Honor of Peter B. Andrews on his 70th Birthday, Studies in Logic,
pages 223-242. College Publications, 2008.

W. M. Farmer. The seven virtues of simple type theory. Journal of Applied Logic,
6:267-286, 2008. D0I:10.1016/j.jal.2007.11.001.

W. M. Farmer and J. D. Guttman. A set theory with support for partial functions.
Studia Logica, 66:59—78, 2000.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An Interactive Mathe-
matical Proof System. Journal of Automated Reasoning, 11:213-248, 1993.

M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax involving
binders. Formal Aspects of Computing, 13:341-363, 2002.

K. Goédel. Uber formal unentscheidbare Sétze der Principia Mathematica und
verwandter Systeme I. Monatshefte fiir Mathematik und Physik, 38:173-198, 1931.
K. Godel. The Consistency of the Axiom of Choice and the Generalized Continuum
Hypothesis with the Axioms of Set Theory, volume 3 of Annals of Mathematical
Studies. Princeton University Press, 1940.

M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

R. D. Jenks and R. S. Sutor. Aziom : The Scientific Computation System. Springer-
Verlag, 1992.

20

21.

22.

23.

24.

25.

26.

27.

28.

W. M. Farmer

K. Kunen. Set Theory: An Introduction to Independence Proofs. North-Holland,
1980.

Lemma 1 Ltd. ProofPower: Description, 2004. Available at
http://www.lemma-one.com/ProofPower/doc/doc.html.

E. Mendelson. Introduction to Mathematical Logic. Chapman & Hall/CRC, fourth
edition, 1997.

S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas. PVS: Combining
specification, proof checking, and model checking. In R. Alur and T. A. Henzinger,
editors, Computer Aided Verification: 8th International Conference, CAV 96, vol-
ume 1102 of Lecture Notes in Computer Science, pages 411-414. Springer-Verlag,
1996.

L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes
in Computer Science. Springer-Verlag, 1994.

A. M. Pitts. Nominal Logic, a first order theory of names and binding. Information
and Computation, 186:165-193, 2003.

P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Pro-
gramming. MIT Press, 2004.

S. Wolfram. Mathematica: A System for Doing Mathematics by Computer.
Addison-Wesley, 1991.

