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Abstract

Chiron is a derivative of von-Neumann-Bernays-Gödel (nbg) set theory
that is intended to be a practical, general-purpose logic for mechanizing
mathematics. Unlike traditional set theories such as Zermelo-Fraenkel
(zf) and nbg, Chiron is equipped with a type system, lambda nota-
tion, and definite and indefinite description. The type system includes
a universal type, dependent types, dependent function types, subtypes,
and possibly empty types. Unlike traditional logics such as first-order
logic and simple type theory, Chiron admits undefined terms that re-
sult, for example, from a function applied to an argument outside its
domain or from an improper definite or indefinite description. The
most noteworthy part of Chiron is its facility for reasoning about the
syntax of expressions. Quotation is used to refer to a set called a con-
struction that represents the syntactic structure of an expression, and
evaluation is used to refer to the value of the expression that a con-
struction represents. Using quotation and evaluation, syntactic side
conditions, schemas, syntactic transformations used in deduction and
computation rules, and other such things can be directly expressed in
Chiron. This paper presents the syntax and semantics of Chiron, some
definitions and simple examples illustrating its use, a proof system for
Chiron, and a notion of an interpretation of one theory of Chiron in
another.
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1 Introduction

The usefulness of a logic is often measured by its expressivity: the more
that can be expressed in the logic, the more useful the logic is. By a logic,
we mean a language (or a family of languages) that has a formal syntax
and a precise semantics with a notion of logical consequence. (A logic may
also have, but is not required to have, a proof system.) By this definition,
a theory in a logic—such as Zermelo-Fraenkel (zf) set theory in first-order
order—is itself a logic. But what do we mean by expressivity? There are
actually two notions of expressivity. The theoretical expressivity of a logic
is the measure of what ideas can be expressed in the logic without regard
to how the ideas are expressed. The practical expressivity of a logic is the
measure of how readily ideas can be expressed in the logic.

To illustrate the difference between these two notions, let us compare two
logics, standard first-order logic (fol) and first-order logic without function
symbols (fol−). Since functions can be represented using either predicate
symbols or function symbols, fol and fol− clearly have exactly the same
theoretical expressivity. For example, if three functions are represented as
unary function symbols f, g, h in fol, these functions can be represented as
binary predicate symbols pf , pg, ph in fol−. The statement that the third
function is the composition of the first two functions is expressed in fol by
the formula

∀x . h(x) = f(g(x)),

while it is expressed in fol− by the more verbose formula

∀x, z . ph(x, z) ≡ ∃ y . pg(x, y) ∧ pf (y, z).

The verbosity that comes from using predicate symbols to represent func-
tions progressively increases as the complexity of statements about functions
increases. Hence, fol− has a significantly lower level of practical expressiv-
ity than fol does.

Traditional general-purpose logics—such as predicate logics like first-
order logic and simple type theory and set theories like zf and von-Neumann-
Bernays-Gödel (nbg) set theory—are primarily intended to be theoretical
tools. They are designed to be used in theory, not in practice. They are
thus very expressive theoretically, but not very expressive practically. For
example, in the languages of zf and nbg, there is no vocabulary for forming
a term f(a) that denotes the application of a set f representing a function to
a set a representing an argument to f . Moreover, even if such an application
operator were added to zf or nbg, there is no special mechanism for handling
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“undefined” applications. As a result, statements involving functions and
undefinedness are much more verbose and indirect than they need to be,
and reasoning about functions and undefinedness is usually performed in
the metalogic instead of in the logic itself.

Chiron is a set theory that has a much higher level of practical expres-
sivity than traditional set theories. It is intended to be a general-purpose
logic that, unlike traditional logics, is designed to be used in practice. It
integrates nbg set theory, elements of type theory, a scheme for handling
undefinedness, and a facility for reasoning about the syntax of expressions.
This paper presents the syntax and semantics of Chiron, some definitions
and simple examples illustrating its use, a proof system for Chiron, and a
notion of an interpretation of one theory of Chiron in another. A quicker,
more informal presentation of the syntax and semantics of Chiron is found
in [8].

The following is the outline of the paper. Section 2 gives an informal
overview of Chiron. Section 3 presents Chiron’s official syntax and an un-
official compact notation for Chiron. The semantics of Chiron is given in
section 4. We also show in section 4 that there is a faithful semantic inter-
pretation of nbg in Chiron. A large group of useful operators are defined
in sections 5 and 6 including the operators needed for the substitution of a
term for the occurrences of a free variable. Some of the practical expressiv-
ity of Chiron is illustrated by examples in section 7. Section 8 presents a
proof system for Chiron and proves that it is sound and also complete in a
restricted sense. Section 9 defines the notion of a semantic interpretation of
one theory of Chiron in another. The paper concludes in section 10 with a
brief summary and a list of future tasks. There are two appendices. The
first presents two alternate semantics for Chiron based on value gaps, and
the second gives an expanded definition of a proper expression.

2 Overview

This section gives an informal overview of Chiron. A formal definition of
the syntax and semantics of Chiron is presented in subsequent sections.

2.1 NBG Set Theory

nbg set theory is closely related to the more well-known zf set theory.
The underlying logic of both nbg and zf is first-order logic, and nbg and
zf both share the same intuitive model of the iterated hierarchy of sets.
However, in contrast to zf, variables in nbg range over both sets and proper
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classes. Thus, the universe of sets V and total functions from V to V like the
cardinality function can be represented as terms in nbg even though they
are proper classes. There is a faithful interpretation of zf in nbg [19, 22, 23].
This means that reasoning in zf can be reduced to reasoning in nbg in a
meaning-preserving way and that nbg is consistent iff zf is consistent. A
good introduction to nbg is found in [13] or [17].

Chiron is a derivative of nbg. It is an enhanced version of stmm [5],
a version of nbg with types and undefinedness. Chiron has a much richer
syntax and more complex semantics than nbg, but the models for Chiron
contain exactly the same values (i.e., classes) as the models for nbg. More-
over, there is a faithful semantic interpretation of nbg in Chiron—which
means that there is a meaning-preserving embedding of nbg in Chiron such
that Chiron is a conservative extension of the image of nbg under the em-
bedding. That is, Chiron adds new vocabulary and assumptions to nbg
without compromising the underlying semantics of nbg, and hence, Chiron
is satisfiable iff nbg is satisfiable.

2.2 Values

A value is a set, class, superclass, truth value, undefined value, or operation.
A class is an element of a model of nbg set theory. Each class is a collection
of classes. A set is a class that is a member of a class. A class is thus a
collection of sets. A class is proper if it not a set. Intuitively, sets are “small”
classes and proper classes are “big” classes. A superclass is a collection of
classes that need not be a class itself. Summarizing, the domain Dv of sets
is a proper subdomain of the domain Dc of classes, and Dc is a proper
subdomain of the domain Ds of superclasses. Dv is the universal class (the
class of all sets), and Dc is the universal superclass (the superclass of all
classes).

There are two truth values, t representing true and f representing false.
The truth values are not members of Ds. There is also an undefined value ⊥
which serves as the value of various sorts of undefined terms such as unde-
fined function applications and improper definite or indefinite descriptions.
⊥ is not a member of Ds ∪ {t, f}.

An operation is a mapping over superclasses, the truth values, and the
undefined value. More precisely, for n ≥ 0, an n-ary operation is a total
mapping

σ : D1 × · · · ×Dn → Dn+1

where Di is Ds, Dc∪{⊥}, or {t, f} for all i with 1 ≤ i ≤ n+1. An operation
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is not a member of Ds∪{t, f,⊥}. A function is a class of ordered pairs that
represents a (possibly partial) mapping

f : Dv ⇀ Dv.

Operations are not classes, but many operations can be represented by func-
tions (which are classes).

2.3 Expressions

An expression is a tree whose leaves are symbols. There are four special
sorts of expressions: operators, types, terms, and formulas. An expression
is proper is it is one of these special sorts of expressions, and an expression
is improper if it is not proper. Proper expressions denote values, while
improper expressions are nondenoting (i.e., they do not denote anything).

Operators denote operations. Many sorts of syntactic entities can be
formalized in Chiron as operators. Examples include logical connectives;
individual constants, function symbols, and predicate symbols from first-
order logic; type constants and type constructors including dependent type
constructors; and definedness operators. Like a function or predicate symbol
in first-order logic, an operator in Chiron is not useful unless it is applied.

Types are used to restrict the values of operators and variables and to
classify terms by their values. They denote superclasses. Terms are used
to describe classes. They denote classes or the undefined value ⊥. A term
is defined if it denotes a class and is undefined if it denotes ⊥. Every term
is assigned a type. Suppose a term a is assigned a type α and α denotes
a superclass Σα. If a is defined, i.e., a denotes a class x, then x is in Σα.
Formulas are used to make assertions. They denote truth values.

The proper expressions are categorized according to their first (leftmost)
symbols:

1. Operator and operator applications (op, op-app).

2. Variables (var).

3. Type applications and dependent function types (type-app,
dep-fun-type).

4. Function applications and abstractions (fun-app, fun-abs).

5. Conditional terms (if).

6. Existential quantifications (exists).
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7. Definite and indefinite descriptions (def-des, indef-des).

8. Quotations and evaluations (quote, eval).

2.4 Dependent Function Types

A dependent function type is a type of the form

γ = (dep-fun-type, (var, x, α), β)

where α and β are types. (Dependent function types are commonly known
as dependent product types.) The type γ denotes a superclass of possibly
partial functions. A function abstraction of the form

(fun-abs, (var, x, α), b),

where b is a term of type β, is of type γ.
The dependent function type γ is a generalization of the more common

function type α→ β. If f is a term of type α→ β and a is a term of type α,
then the application f(a) is of type β—which does not depend on the value
of a. In Chiron, however, if f is a term of type γ and a is a term of type α,
then the term

(fun-app, f, a),

the application of f to a, is of the type

(type-app, γ, a),

the type formed by applying the type γ to a—which generally depends on
the value of a.

2.5 Undefinedness

An expression is undefined if it has no prescribed meaning or if it denotes a
value that does not exist. There are several sources of undefined expressions
in Chiron:

• Nondenoting operator, type, and function applications.

• Nonexistent function abstractions.

• Improper definite and indefinite descriptions.

• Out of range variables and evaluations.
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Undefined expressions are handled in Chiron according to the traditional
approach to undefinedness [6]. The value of an undefined term is the un-
defined value ⊥, but the value of an undefined type or formula is Dc (the
universal superclass) or f, respectively. That is, the values for undefined
types, terms, and formulas are Dc, ⊥, and f, respectively. Commonly used
in mathematical practice, the traditional approach to undefinedness enables
statements involving partial functions and definite and indefinite descrip-
tions to be expressed very concisely [6].

2.6 Quotation and Evaluation

A construction is a set that represents the syntactic structure of an expres-
sion. A term of the form (quote, e), where e is an expression, denotes the
construction that represents e. Thus a proper expression e has two different
meanings:

1. The semantic meaning of e is the value denoted by e itself.

2. The syntactic meaning of e is the construction denoted by (quote, e).

There are two ways to refer to a semantic meaning v. The first is to
directly form a proper expression e not beginning with eval that denotes v.
The second is to form a term a that denotes the construction that represents
a proper expression e that denotes v and then form the type (eval, a, type),
term (eval, a, α), or formula (eval, a, formula) (depending on whether e is a
type, a term assigned the type α, or a formula) which denotes v.

Likewise there are two ways to refer to a syntactic meaning c. The first
is to directly form a term a not beginning with quote that denotes c. The
second is to form an expression e such that the construction c represents
the syntactic structure of e and then form the expression (quote, e) which
denotes c.

For an expression e, the term (quote, e) denotes the syntactic meaning
of e and is thus always defined (even when e is an undefined term or an
improper (nondenoting) expression). However, a term (eval, a, α), where α
is a type, may be undefined.
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op type term formula

op-app var type-app dep-fun-type

fun-app fun-abs if exists

def-des indef-des quote eval

Table 1: The Key Words of Chiron.

3 Syntax

This section presents the syntax of Chiron which is inspired by the S-
expression syntax of the Lisp family of programming languages.

3.1 Expressions

Let S be a fixed countably infinite set of symbols and K be the set of the
16 symbols given in Table 1. Assume K ⊆ S. The members of S are the
symbols of Chiron and the members of K are the key words of Chiron. The
key words are used to classify expressions and identify different categories
of expressions.

Let a signature form be a sequence s1, . . . , sn+1 of symbols where n ≥ 0
and each si is the symbol type, term, or formula. A language of Chiron is a
pair L = (O, θ) where:

1. O is a countable set of symbols such that (1) O and S are disjoint and
(2) O0 ⊆ O where O0 is the set of the 18 symbols given in Table 2.
The members of O are called operator names and the members of O0

are the built-in operator names of Chiron.

2. θ maps each o ∈ O to a signature form such that, for each o ∈ O0,
θ(o) is the signature form assigned to o in Table 2.

Throughout this paper let L = (O, θ) be a language of Chiron.
Let Li = (Oi, θi) be a language of Chiron for i = 1, 2. L1 is a sublanguage

of L2 (and L2 is an extension of L1), written L1 ≤ L2, if O1 ⊆ O2 and θ1 is
a subfunction of θ2.

The two formation rules below inductively define the notion of an ex-
pression of L. exprL[e] asserts that e is an expression of L.

Expr-1 (Atomic expression)

s ∈ S ∪ O
exprL[s]
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Operator Name Signature Form
1. set type
2. class type
3. op-names term
4. lang type
5. expr-sym type
6. expr-op-name term, type
7. expr term, type
8. expr-op term, type
9. expr-type term, type

10. expr-term term, type
11. expr-term-type term, term, type
12. expr-formula term, type
13. in term, term, formula
14. type-equal type, type, formula
15. term-equal term, term, type, formula
16. formula-equal formula, formula, formula
17. not formula, formula
18. or formula, formula, formula

Table 2: The Built-In Operator Names of Chiron.

Expr-2 (Compound expression)

exprL[e1], . . . , exprL[en]

exprL[(e1, . . . , en)]

where n ≥ 0.

Hence, an expression is an S-expression (with commas in place of spaces)
that exhibits the structure of a tree whose leaves are symbols in S ∪O. Let
EL denote the set of expressions of L.

A proper expression of L is an expression of L defined by the set of 13
formation rules below. A proper expression denotes a class, a truth value,
the undefined value, or an operation. Each proper expression of L is assigned
an expression. p-exprL[e : e′] asserts that e ∈ EL is a proper expression
of L to which the expression e′ ∈ EL is assigned. An improper expression
of L is an expression of L that is not a proper expression of L. Improper
expressions are nondenoting.
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There are four sorts of proper expressions. An operator of L is a proper
expression of L to which the expression op is assigned. A type of L is a
proper expression of L to which the expression type is assigned. A term
of L is a proper expression of L to which a type of L is assigned. And a
formula of L is a proper expression of L to which the expression formula is
assigned. When a is a term of L, α is a type of L, and p-exprL[a : α] holds,
a is said to be a term of type α. As we mentioned earlier, operators denote
operations, types denote superclasses, terms denote classes or the undefined
value ⊥, and formulas denote the truth values t and f.

operatorL[O] means p-exprL[O : op], typeL[α] means p-exprL[α :
type], termL[a] means p-exprL[a : α] for some type α of L, and
formulaL[A] means p-exprL[A : formula]. termL[a : α] means
p-exprL[a : α] and typeL[α], i.e., a is a term of type α. An expression
k is a kind of L, written kindL[k], if k = type, typeL[k], or k = formula.
Thus kinds are the expressions assigned to types, terms, and formulas. A
proper expression e of L is said to be an expression of kind k if k = type
and e is a type, typeL[k] and e is a term of type k, or k = formula and e is
a formula.

The following formation rules define the 13 proper expression categories
of Chiron:

P-Expr-1 (Operator)

o ∈ O,kindL[k1], . . . ,kindL[kn+1]

operatorL[(op, o, k1, . . . , kn+1)]

where n ≥ 0; θ(o) = s1, . . . , sn+1; and ki = si = type, typeL[ki] and
si = term, or ki = si = formula for all i with 1 ≤ i ≤ n+ 1.

P-Expr-2 (Operator application)

operatorL[(op, o, k1, . . . , kn+1)], exprL[e1], . . . , exprL[en]

p-exprL[(op-app, (op, o, k1, . . . , kn+1), e1, . . . , en) : kn+1]

where n ≥ 0 and (ki = type and typeL[ei]), (typeL[ki] and
termL[ei]), or (ki = formula and formulaL[ei]) for all i with 1 ≤
i ≤ n.

P-Expr-3 (Variable)

x ∈ S, typeL[α]

termL[(var, x, α) : α]
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P-Expr-4 (Type application)

typeL[α], termL[a]

typeL[(type-app, α, a)]

P-Expr-5 (Dependent function type)

termL[(var, x, α)], typeL[β]

typeL[(dep-fun-type, (var, x, α), β)]

P-Expr-6 (Function application)

termL[f : α], termL[a]

termL[(fun-app, f, a) : (type-app, α, a)]

P-Expr-7 (Function abstraction)

termL[(var, x, α)], termL[b : β]

termL[(fun-abs, (var, x, α), b) : (dep-fun-type, (var, x, α), β)]

P-Expr-8 (Conditional term)

formulaL[A], termL[b : β], termL[c : γ]

termL[(if, A, b, c) : δ]

where δ =

{
β if β = γ
(op-app, (op, class, type)) otherwise

P-Expr-9 (Existential quantification)

termL[(var, x, α)], formulaL[B]

formulaL[(exists, (var, x, α), B)]

P-Expr-10 (Definite description)

termL[(var, x, α)], formulaL[B]

termL[(def-des, (var, x, α), B) : α]

P-Expr-11 (Indefinite description)

termL[(var, x, α)], formulaL[B]

termL[(indef-des, (var, x, α), B) : α]
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P-Expr-12 (Quotation)

exprL[e]

termL[(quote, e) : E]

where E = (op-app, (op, expr, L, type), `) and L and ` are defined as in
Table 3.

P-Expr-13 (Evaluation)

termL[a],kindL[k]

p-exprL[(eval, a, k) : k]

Note: An expanded definition of a proper expression with 25 proper expres-
sion categories is given in appendix B.

Proposition 3.1.1 The formation rules assign a unique expression of L to
each proper expression of L.

Unless stated otherwise, an operator name, operator, etc. is an opera-
tor name, operator, etc. of L. We will use s, t, u, v, w, x, y, z, . . . to denote
symbols; o, o′, . . . to denote operator names; O,O′, . . . to denote operators;
α, β, γ, . . . to denote types; a, b, c, . . . to denote terms; A,B,C, . . . to denote
formulas; and k, k′, . . . to denote kinds.

The length of an expression e ∈ EL, written |e|, is defined recursively by
the following statements:

1. If s ∈ S ∪ O, |s| = 1.

2. If e1, . . . , en ∈ EL, |(e1, . . . , en)| = 1 + |e1|+ · · · |en|.

Notice that |( )| = 1 and, in general, |e| equals the number of symbols and
parenthesis pairs occurring in e. The complexity of an expression e ∈ EL,
written c(e), is the pair (m,n) ∈ N×N of natural numbers such that:

1. m is the number of occurrences of the symbol eval in e that are not
within a quotation.

2. n is the length of e.

For c(e1) = (m1, n1) and c(e2) = (m2, n2), c(e1) < c(e2) means either m1 <
m2 or (m1 = m2 and n1 < n2).

Let O = (op, o, k1, . . . , kn+1) be an operator. The operator name o
is called the name of O, and the list k1, . . . , kn+1 of kinds is called the
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signature of O. O is said to be an n-ary operator because it is applied
to n arguments in an operator application. O is a type operator, term
operator, or formula operator if kn+1 = type, typeL[kn+1], or kn+1 =
formula, respectively. A type constant is a 0-ary type operator application
of the form (op-app, (op, o, type)). A term constant (or simply constant) of
type α is a 0-ary term operator application of the form (op-app, (op, o, α)).
A formula constant is a 0-ary formula operator application of the form
(op-app, (op, o, formula)). Two operators are similar if their names are the
same.

Let o ∈ O and F = θ(o). If F contains the symbol term, there will be
many operators with the name o that have different signatures, i.e., there will
be many operators with the name o that are similar to each other. However,
each operator name will usually be assigned a preferred signature. If F does
not contain the symbol term, o is assigned F as its preferred signature. Each
built-in operator name is assigned a preferred signature. An operator formed
from a built-in operator name and its preferred signature is called a built-in
operator of Chiron. The operators in Table 3 are the built-in operators of
Chiron.

Remark 3.1.2 A language L = (O, θ) can be presented as a set L′ of
operators such that, for each symbol o, there is at most one operator in L′

whose name is o. O is the set of operator names o such that o ∈ O iff o is
the name of some operator in L′, and θ is the function from O to signature
forms such that, for all (o :: k1, . . . , kn+1) ∈ L′, θ(o) is the signature form
corresponding to k1, . . . , kn+1. In addition, for each (o :: k1, . . . , kn+1) ∈ L′,
k1, . . . , kn+1 is the preferred signature of o.

Let a = (var, x, α) be a variable. x is called the name of a, and α is
called the type of a. Two variables are similar if their names are the same.

An expression e is eval-free if all occurrences of the symbol eval in e
are within a quotation. Notice that, if e is eval-free, then the complex-
ity of e is c(e) = (0, |e|). We will use αef , βef , γef , . . .; aef , bef , cef , . . .; and
Aef , Bef , Cef , . . . to denote eval-free types, terms, and formulas, respectively.

A subexpression of an expression is defined inductively as follows:

1. If e is a proper expression, then e is a subexpression of itself.

2. If e = (s, e1, . . . , en) is a proper expression such that s is not quote, then
ei is a subexpression of e for each proper expression ei with 1 ≤ i ≤ n.

3. If e is a subexpression of e′ and e′ is a subexpression of e′′, then e is a
subexpression of e′′.
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Operator
1. (op, set, type)
2. (op, class, type)
3. (op, op-names,V)
4. (op, lang, type)
5. (op, expr-sym, type)
6. (op, expr-op-name, L, type)
7. (op, expr, L, type)
8. (op, expr-op, L, type)
9. (op, expr-type, L, type)

10. (op, expr-term, L, type)
11. (op, expr-term-type, L,Ety, type)
12. (op, expr-formula, L, type)
13. (op, in,V,C, formula)
14. (op, type-equal, type, type, formula)
15. (op, term-equal,C,C, type, formula)
16. (op, formula-equal, formula, formula, formula)
17. (op, not, formula, formula)
18. (op, or, formula, formula, formula)
where:

V = (op-app, (op, set, type))
C = (op-app, (op, class, type))
` = (op-app, (op, opnames,V))
L = (op-app, (op, lang, type))
Ety = (op-app, (op, expr-type, L, type), `)

Table 3: The Built-In Operators of Chiron.

e is a proper subexpression of e′ if e is a subexpression of e′ and e 6= e′. No-
tice that (1) a subexpression is always a proper expression, (2) an improper
expression has no subexpressions, (3) a quotation has no proper subexpres-
sions, and (4) if e1 is a proper subexpression of e2, then |e1| < |e2| and
c(e1) < c(e2), i.e., the length and the complexity of a proper subexpres-
sion of an expression is strictly less than length and the complexity of the
expression itself.
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Compact Notation Official Notation
(o :: k1, . . . , kn+1) (op, o, k1, . . . , kn+1)
(o :: k1, . . . , kn+1)(e1, . . . , en) (op-app, (op, o, k1, . . . , kn+1), e1, . . . , en)
(x : α) (var, x, α)
α(a) (type-app, α, a)
(Λx : α . β) (dep-fun-type, (var, x, α), β)
f(a) (fun-app, f, a)
(λx : α . b) (fun-abs, (var, x, α), b)
if(A, b, c) (if, A, b, c)
(∃x : α . B) (exists, (var, x, α), B)
(ι x : α . B) (def-des, (var, x, α), B)
(ε x : α . B) (indef-des, (var, x, α), B)
peq (quote, e)
JaKk (eval, a, k)
JaKty (eval, a, type)
JaKte (eval, a, (op-app, (op, class, type)))
JaKfo (eval, a, formula)

Table 4: Compact Notation

3.2 Compact Notation

We introduce in this subsection a compact notation for proper expressions—
which we will use in the rest of the paper whenever it is convenient. The
first group of notational definitions in Table 4 defines the compact notation
for each of the 13 proper expression categories.

The next group of notational definitions in Table 5 defines additional
compact notation for the built-in operators and the universal quantifier.

We will often employ the following abbreviation rules when using the
compact notation:

1. A matching pair of parentheses in an expression may be dropped if
there is no resulting ambiguity.

2. A variable (x : α) occurring in the body e of (? x : α . e), where ? is Λ,
λ, ∃, ∀, ι, or ε may be written as x if there is no resulting ambiguity.

3. (? x1 : α1 . . . (? xn : αn . e) · · ·), where ? is Λ, λ, ∃, or ∀, may be written
as

(? x1 : α1, . . . , xn : αn . e).
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Compact Notation Defining Expression
V (set :: type)( )
C (class :: type)( )
` (op-names :: term)( )
L (lang :: type)( )
Esy (expr-sym :: type)( )
Eon,a (expr-op-name :: L, type)(a)
Eon (expr-op-name :: L, type)(`)
Ea (expr :: L, type)(a)
E (expr :: L, type)(`)
Eop,a (expr-op :: L, type)(a)
Eop (expr-op :: L, type)(`)
Ety,a (expr-type :: L, type)(a)
Ety (expr-type :: L, type)(`)
Ete,a (expr-term :: L, type)(a)
Ete (expr-term :: L, type)(`)

Ebte,a (expr-term-type :: L,Ety, type)(a, b)

Ebte (expr-term-type :: L,Ety, type)(`, b)
Efo,a (expr-formula :: L, type)(a)
Efo (expr-formula :: L, type)(`)
(a ∈ b) (in :: V,C, formula)(a, b)
(α =ty β) (type-equal :: type, type, formula)(α, β)
(a =α b) (term-equal :: C,C, type, formula)(a, b, α)
(a = b) (a =C b)
(A ≡ B) (formula-equal :: formula, formula, formula)(A,B)
(¬A) (not :: formula, formula)(A)
(a 6∈ b) (¬(a ∈ b))
(a 6= b) (¬(a = b))
(A ∨B) (or :: formula, formula, formula)(A,B)
(∀x : α . A) (¬(∃x : α . (¬A)))

Table 5: Additional Compact Notation
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Similarly, (? x1 : α . . . (? xn : α . e) · · ·), where ? is Λ, λ, ∃, or ∀, may
be written as

(? x1, . . . , xn : α . e).

4. If we assign a fixed type, say α, to a symbol x to be used as a variable
name, then an expression of the form (? x : α . e), where ? is Λ, λ, ∃,
∀, ι, or ε, may be written as (? x . e).

5. If k1, . . . , kn+1 is the preferred signature assigned to an operator name
o, then an operator application of the form

(o :: k1, . . . , kn+1)(e1, . . . , en)

may be written as o(e1, . . . , en) and an operator application of the
form (o :: k)( ) may be written as o.

6. JaKty, JaKte, JaKα, and JaKfo may be shortened to JaK if a is of type Ety,
Ete, Epαq

te , and Efo, respectively.

Using the compact notation, expressions can be written in Chiron so
that they look very much like expressions written in mathematics textbooks
and papers.

3.3 Quasiquotation

Quasiquotation is a parameterized form of quotation in which the parame-
ters serve as holes in a quotation that are filled with the values of expressions.
It is a very powerful syntactic device for specifying expressions and defin-
ing macros. Quasiquotation was introduced by W. Quine in 1940 in the
first version of his book Mathematical Logic [21]. It has been extensively
employed in the Lisp family of programming languages [1].1

We will introduce quasiquotation into Chiron as a notational definition.
Unlike quotation, quasiquotation will not be part of the official Chiron syn-
tax. The meaning of a quasiquotation will be an expression that denotes a
construction.

The three formation rules below inductively define the notion of a marked
expression of L. m-exprL[m] asserts that m is a marked expression of L.

1In Lisp, the standard symbol for quasiquotation is the backquote (‘) symbol, and thus
in Lisp, quasiquotation is usually called backquote.
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M-Expr-1

s ∈ S ∪ O
m-exprL[s]

M-Expr-2

termL[a]

m-exprL[bac]

M-Expr-3

m-exprL[m1], . . . ,m-exprL[mn]

m-exprL[(m1, . . . ,mn)]

where n ≥ 0.

A marked expression of the form bac is called an evaluated component.

Proposition 3.3.1 Every expression is a marked expression of L.

A quasiquotation of L is a syntactic entity of the form

(quasiquote,m)

where m is a marked expression of L.2,3 A compact notation for quasiquo-
tation can be easily defined as indicated by the following example: Let
pf(bac)q be the compact notation for the quasiquotation

(quasiquote, (fun-app, f, bac)).

Here we are using pmq when m is an expression to mean the quotation of
m and when m is a marked expression containing evaluated components to
mean the quasiquotation of m.

We next define the semantics of quasiquotation. It assumes a knowledge
of the semantics of Chiron given in section 4 and the defined-in and ord-pair
operators defined in section 5. Let F be the function, mapping marked
expressions of L to terms of L, recursively defined by:

1. If m is a symbol s ∈ S ∪ O, then F (m) = (quote, s).

2The evaluated components in a quasiquotation are sometimes called antiquotations.
3Quasiquotations correspond to backquotes in Lisp as follows. The symbol quasiquote

corresponds to the backquote symbol (‘) and an evaluated component bac in a quasiquo-
tation corresponds to , a. Thus the quasiquotation (quasiquote, (a, b, bcc)) corresponds to
the backquote ‘(a b ,c).
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2. If m is an evaluated component bac, then F (m) = a.

3. If m is a marked expression (m1, . . . ,mn) where n ≥ 0, then

F (m) = [F (m1), . . . , F (mn)].

Note that, as defined in subsection 5.2, [a1, . . . , an] denotes an n-tuple of
sets. For a quasiquotation q = (quasiquote,m), define G(q) = F (m).

Proposition 3.3.2

1. If e is an expression, then G((quasiquote, e)) is a term of L such that

|= G((quasiquote, e)) = (quote, e).

2. If q is a quasiquotation containing an evaluated component b(quote, e)c
and q′ is the quasiquotation that results from replacing b(quote, e)c in
q with e, then

|= G(q) = G(q′).

3. If {ba1c, . . . , banc} is the set of evaluated components occurring in a
quasiquotation q, then

|= (a1 ↓ E ∧ · · · ∧ an ↓ E) ⊃ G(q) ↓ E.

Note that, as defined in subsection 5.1, a ↓ α asserts that the value of the
term a is in the value of type α.

From now on, we will consider a quasiquotation q to be an alternate nota-
tion for the term G(q). Many expressions involving syntax can be expressed
very succinctly using quasiquotation. See sections 6 and 7 for examples,
especially the liar paradox example in subsection 7.7.

4 Semantics

This section presents the official semantics of Chiron which is based on
standard models. Two alternate semantics based on other kinds of models
are given in appendix A.
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4.1 The Liar Paradox

Using quotation and evaluation, it is possible to express the liar paradox in
Chiron. That is, it is possible to construct a term LIAR whose value equals
the value of

p¬JLIARKfoq.

(See subsection 7.7 for details.) LIAR denotes a construction representing a
formula that says in effect “I am a formula that is false”.

If the naive semantics is employed for quotation and evaluation, a con-
tradiction is immediately obtained:

JLIARKfo = Jp¬JLIARKfoqKfo
= ¬JLIARKfo

JLIARKfo is thus ungrounded in the sense that its value depends on itself.
This simple argument is essentially the proof of A. Tarski’s 1933 theorem on
the undefinability of truth [25, 26, 27, Theorem I]. The theorem says that
JxKfo cannot serve as a truth predicate over all formulas.

Any reasonable semantics for Chiron needs a way to block the liar para-
dox and similar ungrounded expressions. We will briefly describe three ap-
proaches.

The first approach is to remove evaluation (eval) from Chiron but keep
quotation (quote). This would eliminate ungrounded expressions. However,
it would also severely limit Chiron’s facility for reasoning about the syntax
of expressions. It would be possible using quotation to construct terms
that denote constructions, but without evaluation it would not be possible
to employ these terms as the expressions represented by the constructions.
Some of the power of evaluation could be replaced by introducing functions
that map types of constructions to types of values. An example would be a
function that maps numerals to natural numbers.

A second approach is to define a semantics with “value gaps” so that
expressions like JLIARKfo are not assigned any value at all. In his famous
paper Outline of a Theory of Truth [15], S. Kripke presents a framework for
defining semantics with truth-value gaps using various evaluation schemes.
Kripke’s approach can be easily generalized to allow value gaps for types and
terms as well as for formulas. In appendix A we define two value-gap se-
mantics for Chiron using Kripke’s framework with valuation schemes based
on the weak Kleene logic [14] and B. van Fraassen’s notion of a superval-
uation [28]. Kripke-style value-gap semantics are very interesting, if not
enlightening, but they are exceeding difficult to work with in practice. The

23



main problem is that there is no mechanism to assert that an expression has
no value (see appendix A for details).

The third approach is to consider any evaluation of a term that denotes
a construction representing a non-eval-free expression to be undefined. For
example, the value of JLIARKfo would be f, the undefined value for formulas.
The origin of this idea is found in Tarski’s famous paper on the concept
of truth [25, 26, 27, Theorem III]. It is important to understand that an
evaluation of a term a containing the symbol eval can be defined as long as a
denotes a construction representing an expression that does not contain eval
outside of a quotation. Thus the value of an evaluation like JJpp17qqKteKte
would be the value of 17 because the expression 17 presumably does not
contain eval at all. The official semantics for Chiron defined in this section
employs this third approach to blocking the liar paradox.

4.2 Prestructures

A prestructure of Chiron is a pair (D,∈), where D is a nonempty domain
and ∈ is a membership relation on D, that satisfies the axioms of nbg set
theory as given, for example, in [13] or [17].

Let P = (DP
c ,∈P ) be a prestructure of Chiron. A class of P is a member

of DP
c . A set of P is a member x of DP

c such that x ∈P y for some member
y of DP

c . That is, a set is a class that is itself a member of a class. A class
is proper if it is not a set. A superclass of P is a collection of classes in DP

c .
We consider a class, as a collection of sets, to be a superclass. Let DP

v be
the domain of sets of P and DP

s be the domain of superclasses of P . The
following inclusions hold: DP

v ⊂ DP
c ⊂ DP

s .
A function of P is a member f of DP

c such that:

1. Each p ∈P f is an ordered pair 〈x, y〉 where x, y are in DP
v .

2. For all 〈x1, y1〉, 〈x2, y2〉 ∈P f , if x1 = x2, then y1 = y2.

Notice that a function of P may be partial, i.e., there may not be an ordered
pair 〈x, y〉 in a function for each x in DP

v .
Let DP

f ⊂ DP
c be the domain of functions of P . For f, x in DP

c , f(x)
denotes the unique y in DP

v such that f is in DP
f and 〈x, y〉 ∈P f . (f(x) is

undefined if there is no such unique y in DP
v .) For Σ in DP

s and x in DP
c ,

Σ[x] denotes the unique class in DP
c composed of all y in DP

v such that, for
some f in both Σ and DP

f , f(x) = y. (Σ[x] is undefined if there is no such
unique class in DP

c .)
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Let tP , fP , and ⊥P be distinct values not in DP
s . tP and fP represent

the truth values true and false, respectively. ⊥P is the undefined value that
represents values that are undefined.

For n ≥ 0, an n-ary operation of P is a total mapping fromD1 × · · · ×Dn

to Dn+1 where Di is DP
s , DP

c ∪ {⊥P }, or {tP , fP } for each i with
1 ≤ i ≤ n+ 1. Let DP

o be the domain of operations of P . We assume that
DP

s ∪ {tP , fP ,⊥P } and DP
o are disjoint.

Choose DP
e,1 to be any countably infinite subset of DP

v whose members

are neither the empty set ∅ nor ordered pairs. Then let DP
e,2 be the subset

of DP
v defined inductively as follows:

1. The empty set ∅ is a member of DP
e,2.

2. If x ∈ DP
e,1 ∪DP

e,2 and y ∈ DP
e,2, then the ordered pair 〈x, y〉 of x and

y is a member of DP
e,2.

Finally, let DP
e = DP

e,1 ∪DP
e,2. The members of DP

e are called constructions.

They are sets with the form of trees whose leaves are members of DP
e,1. Their

purpose is to represent the syntactic structure of expressions. The symbols
in expressions are represented by members of DP

e,1. A construction is a
symbol construction, an operator name construction, operator construction,
type construction, term construction, or formula construction if it represents
a symbol, operator name, operator, type, term, or formula, respectively.

Choose GP to be any bijective mapping from S ∪ O onto DP
e,1. Let HP

be the bijective mapping of EL onto DP
e defined recursively by:

1. If e ∈ S ∪ O, then HP (e) = GP (e).

2. If e = ( ) ∈ EL, then HP (e) = ∅.

3. If e = (e1, . . . , en) ∈ EL where n ≥ 1, then

HP (e) = 〈HP (e1), H
P ((e2, . . . , en))〉.

HP (e) is called the construction of the expression e.

4.3 Structures

A structure for L is a tuple

S = (Dv, Dc, Ds, Df , Do, De,∈,t, f,⊥, ξ,H, I)

where:
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1. P = (Dc,∈) is a prestructure of Chiron. Dv = DP
v , Ds = DP

s , Df =
DP

f , Do = DP
o , t = tP , f = fP , and ⊥ = ⊥P .

2. De = DP
e where DP

e,1 is some chosen countably infinite subset of DP
v

whose members are neither the empty set ∅ nor ordered pairs.

3. ξ is a choice function on Ds. Hence, for all nonempty superclasses Σ
in Ds, ξ(Σ) is a class in Σ.

4. H = HP where GP is some chosen bijective mapping from S ∪O onto
DP

e,1.

5. For each operator name o ∈ O with θ(o) = s1, . . . , sn+1, I(o) is an
n-ary operation in Do from D1×· · ·×Dn into Dn+1 where Di = Ds if
si = type, Di = Dc ∪ {⊥} if si = term, and Di = {t, f} if si = formula
for each i with 1 ≤ i ≤ n+ 1 such that:

a. I(set)( ) = Dv, the universal class that contains all sets.

b. I(class)( ) = Dc, the universal superclass that contains all classes.

c. I(op-names)( ) = Don, the subset of De whose members represent
the operator names in O.

d. I(lang)( ) is the set of all subsets of Don.

e. I(expr-sym)( ) = Dsy, the subset of De whose members represent
the symbols in S.

f. If x is a member of Dc ∪ {⊥},

I(expr-op-name)(x)

is x if x ⊆ Don, Dc if x = ⊥, and not Dc otherwise.

g. If x is a member of Dc ∪ {⊥},

I(expr)(x)

is the subset of De whose members are constructed from only
members of Dsy∪x if x ⊆ Don, Dc if x = ⊥, and not Dc otherwise.

h. Let Dop be the subset of De whose members represent operators
of L. If x is a member of Dc ∪ {⊥},

I(expr-op)(x)

is the subset of Dop whose members are constructed from only
members of Dsy∪x if x ⊆ Don, Dc if x = ⊥, and not Dc otherwise.

26



i. Let Dty be the subset of De whose members represent types of
L. If x is a member of Dc ∪ {⊥},

I(expr-type)(x)

is the subset of Dty whose members are constructed from only
members of Dsy∪x if x ⊆ Don, Dc if x = ⊥, and not Dc otherwise.

j. Let Dte be the subset of De whose members represent terms of
L. If x is a member of Dc ∪ {⊥},

I(expr-term)(x)

is the subset of Dte whose members are constructed from only
members of Dsy∪x if x ⊆ Don, Dc if x = ⊥, and not Dc otherwise.

k. If x, y is a member of Dc ∪ {⊥}, then

I(expr-term-type)(x, y)

is the subset of Dte whose members represent terms of the type
represented by y and are constructed from only members of Dsy∪
x if x ⊆ Don and y ∈ Dty, Dc if x = ⊥ or y = ⊥, and not Dc

otherwise.

l. Let Dfo be the subset of De whose members represent formulas
of L. If x is a member of Dc ∪ {⊥},

I(expr-formula)(x)

is the subset of Dfo whose members represent formulas and are
constructed from only members of Dsy ∪ x if x ⊆ Don, Dc if
x = ⊥, and not Dc otherwise.

m. If x and y are members of Dc ∪ {⊥}, then

I(in)(x, y)

is t if x is a member of y (and hence x is a member of Dv) and
is f otherwise.

n. If Σ,Σ′ are members of Ds, then

I(type-equal)(Σ,Σ′)

is t if Σ and Σ′ are identical and is f otherwise.

o. If x, y are members of Dc ∪ {⊥} and Σ is a member of Ds, then

I(term-equal)(x, y,Σ)

is t if x, y are identical members of Σ and is f otherwise.
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p. If t, t′ are members of {t, f}, then

I(formula-equal)(t, t′)

is t if t and t′ are identical and is f otherwise.

q. If t is a member of {t, f}, then

I(not)(t)

is t if t is f and is f otherwise.

r. If t, t′ are members of {t, f}, then

I(or)(t, t′)

is t if at least one of t and t′ is t and is f otherwise.

Fix a structure

S = (Dv, Dc, Ds, Df , Do, De,∈,t, f,⊥, ξ,H, I)

for L. An assignment into S is a mapping that assigns a class in Dc to each
symbol in S. Given an assignment ϕ into S, a symbol s ∈ S, and a class
d ∈ Dc, let ϕ[s 7→ d] be the assignment ϕ′ into S such that ϕ′(s) = d and
ϕ′(t) = ϕ(t) for all symbols t ∈ S different from s. Let assign(S) be the
collection of assignments into S.

4.4 Valuations

A valuation for S is a possibly partial mapping V from EL × assign(S) into
Do ∪ Ds ∪ {t, f,⊥} such that, for all e ∈ EL and ϕ ∈ assign(S), if Vϕ(e)
is defined, then Vϕ(e) ∈ Do if e is an operator, Vϕ(e) ∈ Ds if e is a type,
Vϕ(e) ∈ Dc ∪ {⊥} if e is a term, and Vϕ(e) ∈ {t, f} if e is a formula. (We
write Vϕ(e) instead of V (e, ϕ).)

Let the standard valuation for S be the valuation V for S defined recur-
sively by the following statements:

1. Let e be improper. Then Vϕ(e) is undefined.

2. Let O = (op, o, k1, . . . , kn, kn+1) be proper. Then I(o) is an n-ary
operation in Do from D1 × · · · × Dn into Dn+1. Vϕ(O) is the n-ary
operation in Do from D1 × · · · ×Dn into Dn+1 defined as follows. Let
(d1, . . . , dn) ∈ D1×· · ·×Dn and d = I(o)(d1, . . . , dn). If di is in Vϕ(ki)
or di = ⊥ for all i such that 1 ≤ i ≤ n and typeL[ki] and d is in
Vϕ(kn+1) or d = ⊥ when typeL[kn+1], then Vϕ(O)(d1, . . . , dn) = d.
Otherwise, Vϕ(O)(d1, . . . , dn) is Dc if kn+1 = type, ⊥ if typeL[kn+1],
and f if kn+1 = formula.
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3. Let e = (op-app, O, e1, . . . , en) be proper. Then

Vϕ(e) = Vϕ(O)(Vϕ(e1), . . . , Vϕ(en)).

4. Let a = (var, x, α) be proper. If ϕ(x) is in Vϕ(α), then Vϕ(a) = ϕ(x).
Otherwise Vϕ(a) = ⊥.

5. Let β = (type-app, α, a) be proper. If Vϕ(a) 6= ⊥ and Vϕ(α)[Vϕ(a)] is
defined, then Vϕ(β) = Vϕ(α)[Vϕ(a)]. Otherwise Vϕ(β) = Dc.

6. Let γ = (dep-fun-type, (var, x, α), β) be proper. Then Vϕ(γ) is the
superclass of all g in Df such that, for all d in Dv, if g(d) is defined,
then d is in Vϕ(α) and g(d) is in Vϕ[x 7→d](β).

7. Let b = (fun-app, f, a) be proper. If Vϕ(f) 6= ⊥, Vϕ(a) 6= ⊥,
and Vϕ(f)(Vϕ(a)) is defined, then Vϕ(b) = Vϕ(f)(Vϕ(a)). Otherwise
Vϕ(b) = ⊥.

8. Let f = (fun-abs, (var, x, α), b) be proper in L. If

g = {〈d, d′〉 | d is a set in Vϕ(α) and d′ = Vϕ[x 7→d](b) is a set}

is in Df , then Vϕ(f) = g. Otherwise Vϕ(f) = ⊥.

9. Let a = (if, A, b, c) be proper. If Vϕ(A) = t, then Vϕ(a) = Vϕ(b).
Otherwise Vϕ(a) = Vϕ(c).

10. Let A = (exists, (var, x, α), B) be proper. If there is some d in Vϕ(α)
such that Vϕ[x7→d](B) = t, then Vϕ(A) = t. Otherwise, Vϕ(A) = f.

11. Let a = (def-des, (var, x, α), B) be proper. If there is a unique d in
Vϕ(α) such that Vϕ[x7→d](B) = t, then Vϕ(a) = d. Otherwise, Vϕ(a) =
⊥.

12. Let a = (indef-des, (var, x, α), B) be proper. If there is some d in Vϕ(α)
such that Vϕ[x 7→d](B) = t, then Vϕ(a) = ξ(Σ) where Σ is the superclass
of all d in Vϕ(α) such that Vϕ[x 7→d](B) = t. Otherwise, Vϕ(a) = ⊥.

13. Let a = (quote, e) be proper. Vϕ(a) = H(e).

14. Let e = (eval, a, k) be proper. If (1) Vϕ(a) is in Dty and k = type,
Vϕ(a) is in Dte and typeL[k], or Vϕ(a) is in Dfo and k = formula;
(2) H−1(Vϕ(a)) is eval-free; and (3) Vϕ(H−1(Vϕ(a))) is in Vϕ(k) if
typeL[k], then Vϕ(e) = Vϕ(H−1(Vϕ(a))). Otherwise Vϕ(e) is Dc if
k = type, ⊥ if typeL[k], and f if k = formula.
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Lemma 4.4.1 The standard valuation for S is well defined.

Proof We will show that, for all e ∈ EL and ϕ ∈ assign(S), Vϕ(e) is well
defined. Our proof is by induction on the complexity of e. There are 14 cases
corresponding to the 14 clauses of the definition of a standard valuation.

Case 1: e is improper. Vϕ(e) is always undefined in this case.

Cases 2–12: e is a proper expression in L that is not a quotation or
evaluation. For each case, Vϕ(e) depends on well-defined components
of S and a collection of values Vϕ′(e

′) where e′ ranges over a set of
subexpressions of e and ϕ′ is ϕ or ranges over an infinite subset of
assign(S). Each such Vϕ′(e

′) is well defined by the induction hypothesis
because e′ is a subexpression of e, and hence, c(e′) < c(e). Therefore,
Vϕ(e) is well defined.

Case 13: e = (quote, e′) is proper. Vϕ(e) = H(e′) is well defined since
H is a well-defined component of S.

Case 14: e = (eval, a, k) is proper. Vϕ(e) depends on one, two, or
three of the values of Vϕ(a), Vϕ(k), and Vϕ(H−1(Vϕ(a))). Vϕ(a) and
Vϕ(k) when typeL[k] holds are well defined by the induction hypoth-
esis because a and k are subexpressions of e, and hence, c(a) < c(e)
and c(k) < c(e). Vϕ(H−1(Vϕ(a))) when H−1(Vϕ(a)) ∈ EL is well de-
fined by the induction hypothesis because H−1(Vϕ(a)) is eval-free and
e is not, and hence, c(H−1(Vϕ(a))) < c(e). Therefore, Vϕ(e) is well
defined.

2

Theorem 4.4.2 Let V be the standard valuation for S. Then the following
statements hold for all e ∈ EL and ϕ ∈ assign(S):

1. Vϕ(e) is defined iff e is proper.

2. If e is an n-ary operator of L, then Vϕ(e) is an n-ary operation in Do.

3. If e is a type of L, then Vϕ(e) is in Ds.

4. If e is a term of L of type α, then Vϕ(e) is in Vϕ(α) ∪ {⊥}.

5. If e is a formula of L, then Vϕ(e) is in {t, f}.
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Proof By Lemma 4.4.1, the standard valuation for S is well defined. Parts
1, 2, 3, and 5 of the theorem follow immediately from the definitions of a
structure and the standard valuation for a structure.

Our proof of part 4 is by induction on the length of the term e.

Case 1: e = (op-app, O, e1, . . . , en) where O = (op, o, k1, . . . , kn, kn+1).
Then e is of type kn+1. By the definition of V , Vϕ(e) is in Vϕ(kn+1)∪
{⊥}.

Case 2: e = (var, x, α). Then e is of type α. By the definition of V ,
Vϕ(e) is in Vϕ(α) ∪ {⊥}.

Case 3: e = (fun-app, f, a) where f is of type α. Then e is of type
α(a). By the induction hypothesis, Vϕ(f) is in Vϕ(α) ∪ {⊥}. By the
definition of V , if Vϕ(e) = Vϕ(f)(Vϕ(a)) 6= ⊥, then Vϕ(f) 6= ⊥ and
Vϕ(a) 6= ⊥, and so Vϕ(e) is in Vϕ(α)[Vϕ(α)] = Vϕ(α(a)). Therefore,
Vϕ(e) is in Vϕ(α(a)) ∪ {⊥}.

Case 4: e = (fun-abs, (var, x, α), b) where b is of type β. Then e is
of type γ = (Λx : α . β). By the induction hypothesis, Vϕ′(b) is in
Vϕ′(β) ∪ {⊥} for all ϕ′ ∈ assign(S). Suppose g = Vϕ(e) 6= ⊥. For
all sets d in Vϕ(α), if g(d) is defined, g(d) = Vϕ[x 7→d](b) is a set in
Vϕ[x 7→d](β). For all sets d not in Vϕ(α), g(d) is undefined. Therefore,
by the definition of V , Vϕ(e) is in Vϕ(γ) ∪ {⊥}.

Case 5: e = (if, A, b, c) where b is of type β and c is of type γ. Then e
is of type

δ =

{
β if β = γ
C otherwise

By the induction hypothesis, Vϕ(b) is in Vϕ(β) ∪ {⊥} and Vϕ(c) is in
Vϕ(γ) ∪ {⊥}. Vϕ(β) ⊆ Vϕ(C) and Vϕ(γ) ⊆ Vϕ(C). Therefore, by the
definition of V , Vϕ(e) is in Vϕ(δ) ∪ {⊥}.

Case 6: e = (def-des, (var, x, α), B). Then e is of type α. By the
definition of V , Vϕ(e) is in Vϕ(α) ∪ {⊥}.

Case 7: e = (indef-des, (var, x, α), B). Then e is of type α. By the
definition of V , Vϕ(e) is in Vϕ(α) ∪ {⊥}.

Case 8: e = (quote, e). Then e is of type E. By the definition of H, I,
and V , Vϕ(e) is in De = Vϕ(E).
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Case 9: e = (eval, a, k). Then e is of type k. By the definition of V ,
Vϕ(e) is in Vϕ(k) ∪ {⊥}.

2

4.5 Models

A model for L is a pair M = (S, V ) where S is a structure for L and V is
a valuation for S. Let M = (S, V ) be a model for L. An expression e is
denoting [nondenoting ] in M with respect to an assignment ϕ ∈ assign(S)
if Vϕ(e) is defined [undefined]. A denoting term a is defined [undefined ] in
M with respect to ϕ if Vϕ(a) is in Dc [Vϕ(a) = ⊥]. If an expression e is
denoting in M with respect to ϕ, then its value in M with respect to ϕ is
Vϕ(e).

A model M = (S, V ) for L is a standard model for L if V is the stan-
dard valuation for S. The official semantics of Chiron is based on standard
models. A formula A is valid in M , written M |= A, if Vϕ(A) = t for all
ϕ ∈ assign(S). A is valid, written |= A, if M |= A for all standard models
M . A standard model of a set Γ of formulas is a standard model M such
that M |= A for all A ∈ Γ.

Let e be a proper expression and x be a symbol. e is semantically
closed in M if Vϕ(e) does not depend on ϕ, i.e., Vϕ(e) = Vϕ′(e) for all
ϕ,ϕ′ ∈ assign(S). e is semantically closed in M with respect to x if Vϕ(e)
does not depend on ϕ(x), i.e., Vϕ(e) = Vϕ[x 7→d](e) for all ϕ ∈ assign(S) and
d ∈ Dc.

4.6 Theories

A theory of Chiron is pair T = (L,Γ) where L is a language of Chiron and
Γ is a set of formulas of L called the axioms of T . T is said to be over L.
A standard model of T is a standard model for L that is a standard model
of Γ. A formula A is valid in T , written T |= A, if M |= A for all standard
models M of T . The empty theory over L is the theory (L, ∅).

Let e be a proper expression of L and T be a theory over L. e is se-
mantically closed in T if e is semantically closed in every model of T . e is
semantically closed (without reference to a theory) if it is semantically closed
in the empty theory over L. e is semantically closed in T with respect to x
if e is semantically closed in every model of T with respect to x.

Let Ti = (Li,Γi) be a theory of Chiron for i = 1, 2. T1 is a subtheory of
T2 (and T2 is an extension of T1), written T1 ≤ T2, if L1 ≤ L2 and Γ1 ⊆ Γ2.
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Lemma 4.6.1 Let Ti = (Li,Γi) be a theory of Chiron for i = 1, 2 such that
T1 ≤ T2. Assume L1 = L2. Then

T1 |= A implies T2 |= A

for all formulas A of L1.

Proof Assume the hypotheses of the lemma. Let A be a formula of L1

such that (a) T1 |= A. Let (b) M = (S, V ) be a standard model of T2. We
must show that M |= A. (b) implies (c) M is a standard model of T1 since
T1 ≤ T2 and L1 = L2. (a) and (c) imply M |= A. 2

The following example shows that the assumption in Lemma 4.6.1 that
L1 = L2 is necessary.

Example 4.6.2 Let Li = (Oi, θi) be a language of Chiron and Ti = (Li,Γi)
be a theory of Chiron for i = 1, 2 such that O1 = {o1, . . . , on}, L1 < L2, and
T1 ≤ T2. If A is ` = {po1q, . . . , ponq}, then T1 |= A but T2 6|= A.

4.7 Notes Concerning the Semantics of Chiron

Fix a standard model M = (S, V ) for L.

1. An improper expression never has a value, but its quotation (as well as
the quotation of any proper expression) always has a value. The latter
is a set called a construction that represents the syntactic structure of
the expression as a tree.

2. The value of an undefined type is Dc (the universal superclass). The
value of an undefined term is the undefined value ⊥. And the value of
an undefined formula is f.

3. Proper expressions—particularly variables and evaluations—within a
quotation are not semantically “active”. They can only become active
if the quotation is within an evaluation.

4. Any types in an operator’s signature will normally be semantically
closed. This is the case for all the built-in operators of Chiron as well
as all the operators defined in sections 5 and 6.

5. Suppose O = (op, o, k1, . . . , kn, kn+1) is an operator. The operation
assigned toO by a standard valuation is a “restriction” of the operation
I(o). Roughly speaking, the domain and range of I(o) is restricted
according to types in the signature k1, . . . , kn, kn+1.
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6. Dependent function types, function abstractions, existential quantifi-
cations, definition descriptions, and indefinite descriptions are variable
binding expressions. According to the semantics of Chiron, a variable
binding (? x : α . e), where ? is Λ, λ, ∃, ι, or ε, binds all the “free” vari-
ables occurring in e that are similar to (x : α). Variables are bound in
the traditional, naive way. It might be possible to use other more so-
phisticated variable binding mechanisms such as de Bruijn notation [2]
or nominal data types [11, 20].

7. The type α of a variable (var, x, α) restricts the value of a variable in
two ways. First, if (var, x, α) immediately follows Λ, λ, ∃, ι, or ε in a
variable binding expression, then the values assigned to x for the body
of the variable binding expression are restricted to the values in the
superclass denoted by α. Second, Vϕ((var, x, α)) = ϕ(x) iff ϕ(x) is in
the superclass denoted by α. (Vϕ((var, x, α)) = ⊥ if ϕ(x) is not in the
superclass denoted by α.)

8. In a variable (var, x, α), the value of α usually does not depend on the
value assigned to x. Suppose d ∈ Vϕ(α). If Vϕ(α) does not depend
on x, then Vϕ[x 7→d]((var, x, α)) = d. If Vϕ(α) does depend on x, then
Vϕ[x 7→d]((var, x, α)) might equal ⊥. Hence, in the latter case, it might
be necessary to use (var, x,C) instead of (var, x, α) in the body of a
variable binding (? x : α . e) where ? is Λ, λ, ∃, ι, or ε

9. Symbols and operator names are atomic in Chiron. That is, they
cannot be “constructed” from other expressions.

10. `, the set of constructions that represent the operator names of L,
represents L itself. The members of the type L represent sublanguages
of L. The construction types Eon,a, Ea, Eop,a, Ety,a, Ete,a, Ebte,a, Efo,a,
where a is a sublanguage in L, are parameterized versions of the re-
spective types Eon, E, Eop, Ety, Ete, Ebte, Efo. (The construction type
Esy does not depend on the set of operator names.)

11. The notions of a free variable, substitution for a variable, variable
capturing, etc. can be formalized in Chiron as defined operators (see
subsection 6.1.) As a result, syntactic side conditions can be expressed
directly within Chiron formulas. However, these notions are more
complicated in Chiron than in traditional predicate logic due to the
presence of evaluation. For example, when the value of (e : Ete) equals
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the value of p(y : C)q with x 6= y, the variable (y : C) is free in

∀x : C . x = J(e : Ete)Kte

because this formula is semantically equivalent to

∀x : C . x = (y : C).

12. Since variables denote classes, they can be called class variables. There
are no operation, superclass, or truth value variables in Chiron. Thus
direct quantification over operations, superclasses, and truth values
is not possible. Direct quantification over the undefined value ⊥ is
also not possible. However, indirect quantification over “definable”
operations, “definable” superclasses, “definable” members of Dc∪{⊥},
or truth values can be done via variables of type Eop, Ety, Ete, or Efo,
respectively. As in standard nbg set theory, only classes are first-class
values in Chiron.

13. Since sets and classes are superclasses, a type may denote a set or a
proper class. In particular, a type may denote the empty set. That
is, types in Chiron are allowed to be empty. Empty types result, for
example, from a type application α(a) where a denotes a value that is
not in the domain of any function in the superclass that α denotes.

14. α is a subtype of β in M if Vϕ(α) ⊆ Vϕ(β) for all ϕ ∈ assign(S). For
example, E is a subtype of V in every standard model. C is the universal
type by virtue of denoting Dc, the universal superclass. Every type is
a subtype of C in every standard model.

15. An application of a term denoting a function to an undefined term is
itself undefined. That is, function application is strict with respect to
undefinedness. In contrast, the application of term operators is not
necessarily strict with respect to undefinedness.

16. Suppose f(a) is a function application where f is a term of type (Λx :
α . β). Then a could be any term of any type whatsoever. However,
if the value of a is not a set in the value of α, then f(a) is undefined.
Similarly, suppose

(o :: k1, . . . , ki−1, α, ki+1, . . . , kn+1)(e1, . . . , ei−1, a, ei+1, . . . , en)
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is an operator application. Then a could be any term of any type
whatsoever. However, if the value of a is a class not in the value of α,
then the value of this operator application is Dc if kn+1 = type, ⊥ if
typeL[kn+1], and f if kn+1 = formula.

17. Since functions are classes that represent mappings from sets to sets,
proper classes in the denotations of the types α and β have no effect
on the meaning of the dependent function type (Λx : α . β). As a
consequence,

Vϕ((Λx : V . V)) = Vϕ((Λx : C . C)) = Df ,

the domain of functions in M , for all ϕ ∈ assign(S). For the same
reason, if Vϕ(a) 6= ⊥, then Vϕ(α(a)) is a class (i.e., not a proper
superclass) for all ϕ ∈ assign(S).

18. Suppose a built-in operator

(op, lub, type, type, type)

is added to Chiron that denotes an operation that, given superclasses
Σ1 and Σ2, returns a superclass that is the least upper bound of Σ1

and Σ2. Then formation rule P-Expr-8 could be modified so that a
conditional term (if, A, b, c) is assigned the type

(op-app, (op, lub, type, type, type), β, γ)

where β and γ are the types of b and c, respectively. See appendix B
for details.

19. A Gödel number [12] is a number that encodes an expression. Anal-
ogously, a Gödel set is a set that encodes an expression. Employing
this terminology, the construction that represents an expression e ∈ EL
is the Gödel set of e which is denoted by (quote, e). Hence, “Gödel
numbering” is built into Chiron.

20. Quotations cannot be expressed as applications of a built-in operator
since expressions are not values (i.e., not classes, superclasses, truth
values, or operations).

21. The formation rule P-Expr-12 could be sharpened so that the type of
(quote, e) is Ety when e is a type, Epαq

te when e is a term of type α, etc.
See appendix B for details.
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22. When an evaluation b = (eval, a, k) is “semantically well-formed”, the
value of b is, roughly speaking, the value of the value of a.

23. An “ungrounded expression” is considered to be an undefined expres-
sion. For example, the value of an ungrounded formula like JLIARKfo
is f.

24. If we restrict evaluations to those of the form (eval, a, k) where k is
type, C, or formula, evaluations could be expressed as applications of
the following three built-in operators with appropriate definitions:

a. (eval-type :: Ety, type).

b. (eval-term :: Ete,C).

c. (eval-formula :: Efo, formula).

25. The operator (eval-formula :: Efo, formula) can be defined by the fol-
lowing formula schema:

(eval-formula :: Efo, formula)(a) ≡ JaKfo.

This operator is a truth predicate. It satisfies four of the eight criteria
((a), (c), (f), (h)) for a truth predicate given by H. Leitgeb in [16], and
it meets all eight criteria for eval-free formulas.

26. Operators of the form (o :: k) are applied to an empty tuple of argu-
ments. The value of (o :: k) is a 0-ary operation σ such that σ( ) = v
for some value v. We will sometimes abuse terminology and say that
the value of (o :: k) is v instead of o.

27. A value x ∈ De is a construction that represents an expression of L.
We will sometimes abuse terminology and say x ∈ De is an expression
of L. Similarly, we will sometimes say that a value x ∈ De that
represents a symbol, operator name, operator, type, term, or formula
of L is a symbol, operator name, operator, type, term, or formula of L,
respectively.

28. Let Eop, Ety, Ete, and E fo be sets of expressions of L defined inductively
by the following statements:

a. Eop is the set of built-in operators named set, class, term-equal,
in, not, and or.
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b. Ety is the set {V,C} of types.

c. If x is in S and α is in Ety, then (x : α) is in Ete.
d. If x is in S, α is in Ety, a and b are in Ete, and A and B are in
E fo, then a = b, a ∈ b, ¬A, A ∨B, and ∃x : α . A are in E fo.

Let cnbg be the restriction of Chiron to the operators, types, terms,
and formulas in Eop, Ety, Ete, and E fo, respectively. cnbg is a version of
nbg embedded in any language of Chiron (see Corollary 4.8.3 below).

4.8 Relationship to NBG

We show in this section that there is a faithful semantic interpretation of nbg
set theory in Chiron. Loosely speaking, this means Chiron is a conservative
extension of nbg. That is, Chiron adds new reasoning machinery to nbg
without compromising the underlying semantics of nbg.

Let L = (O, θ) be any language of Chiron. nbg is usually formulated as
a theory in first-order logic over a language Lnbg containing an infinite set V
of variables, a unary predicate symbol V , binary predicates symbols = and
∈, and some complete set of logical connectives (say ¬,∨, ∃). Assume V = S,
i.e., variables of Lnbg are the symbols of Chiron. Let Fnbg denote the set of
formulas of Lnbg. A model of nbg is a structure N = (DN , V N ,=N ,∈N ) for
Lnbg that satisfies the axioms of nbg. An assignment into N is a mapping
that assigns a member of DN to each variable x ∈ V. Let assign(N) be the
collection of assignments into N . The valuation for N is a total mapping
WN from Fnbg × assign(N) to the set {t, f} of truth values. A formula A
of Lnbg is valid, written |=nbg A, if WN

ϕ (A) = t for all models N of nbg and
all ϕ ∈ assign(N).4

Φ is a translation from nbg to L if Φ maps the terms (variables) of
Lnbg to the terms of L and the formulas of Lnbg to formulas of L. Φ is a
(semantic) interpretation of nbg in Chiron if Φ is a translation from nbg
to L and, for all formulas A of Lnbg, |=nbg A implies |= Φ(A). That is, Φ is
an interpretation of nbg in Chiron if Φ is a meaning-preserving translation
from nbg to L. Φ is a faithful interpretation of nbg in Chiron if Φ is an
interpretation of nbg in Chiron and, for all formulas A of Lnbg, |= Φ(A)
implies |=nbg A. That is, Φ is a faithful interpretation of nbg in Chiron if
Chiron over L is a conservative extension of the image of nbg under Φ.

Let Φ be the translation from nbg to L recursively defined by:

1. If x ∈ V, then Φ(x) = (x : C).

4As above for a valuation V , we write WN (A,ϕ) as WN
ϕ (A).
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2. If V (x) is a formula of Lnbg, then Φ(V (x)) = (Φ(x) =V Φ(x)).

3. If (x = y) is a formula of Lnbg, then Φ((x = y)) = (Φ(x) = Φ(y)).

4. If (x ∈ y) is a formula of Lnbg, then Φ((x ∈ y)) = (Φ(x) ∈ Φ(y)).

5. If (¬A) is a formula of Lnbg, then Φ((¬A)) = (¬Φ(A)).

6. If (A ∨B) is a formula of Lnbg, then Φ((A ∨B)) = (Φ(A) ∨ Φ(B)).

7. If (∃x . A) is a formula of Lnbg, then Φ((∃x . A)) = (∃x : C . Φ(A)).

Lemma 4.8.1 Let N = (DN , V N ,=N ,∈N ) be a model of nbg and M =
(S, V ) be a standard model for L, where

S = (Dv, Dc, Ds, Df , Do, De,∈,t, f,⊥, ξ,H, I),

such that (DN ,∈N ) is identical to the prestructure (Dc,∈).

1. For all d ∈ DN , V N (d) iff d is in Dv.

2. For all d, d′ ∈ DN , d =N d′ iff d = d′.

3. For all d, d′ ∈ DN , d ∈N d′ iff d ∈ d′.

4. assign(N) = assign(M).

5. For all formulas A of Lnbg and ϕ ∈ assign(N), WN
ϕ (A) = Vϕ(Φ(A)).

Proof Clauses 1–4 are obvious. Clause 5 is easily proved by induction
on the structure of the formulas of Lnbg since the logical connectives ¬,∨, ∃
of Lnbg have the same meanings as the negation operator, the disjunction
operator, and existential quantification, respectively, in Chiron. 2

Theorem 4.8.2 For all formulas A of Lnbg,

|=nbg A iff |= Φ(A).

That is, Φ is a faithful interpretation of nbg in Chiron.

Proof For every model N = (DN , V N ,=N ,∈N ) of nbg, there is a standard
model M = (S, V ) for L, where

S = (Dv, Dc, Ds, Df , Do, De,∈,t, f,⊥, ξ,H, I),
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such that (DN ,∈N ) is identical to the prestructure (Dc,∈). Likewise, for
every standard model M = (S, V ) for L, where

S = (Dv, Dc, Ds, Df , Do, De,∈,t, f,⊥, ξ,H, I),

there is a model N = (DN , V N ,=N ,∈N ) of nbg such that the prestructure
(Dc,∈) is identical to (DN ,∈N ). The theorem follows from this observation
and clause 5 of Lemma 4.8.1. 2

In the previous subsection we defined a restriction of Chiron named cnbg
that we claimed is a version of nbg embedded in any language of Chiron.
This claim is established by the following corollary.

Corollary 4.8.3 Φ is a faithful interpretation of nbg in cnbg.

5 Operator Definitions

There are two ways of assigning a meaning to an operator. The first
is to make the operator one of the built-in operators like (op, set, type)
((set :: type) in compact notation) and then define its meaning as part of
the definition of a standard model. The second is to construct one or more
formulas that together define the meaning of an operator. We will use this
latter approach to define several useful logical, set-theoretic, and syntactic
operators in this section and substitution operators in the next section.

Each operator definition consists of an operator

O = (o :: k1, . . . , kn+1)

and a set of defining axioms for O. The definition defines o to be an op-
erator name, θ(o) to be the signature form corresponding to k1, . . . , kn+1,
and k1, . . . , kn+1 to be the preferred signature of o. Each defining axiom
is usually eval-free formula. The defining axioms are presented as individ-
ual formulas or as formula schemas. The set of defining axioms presented
by a formula schema usually depends on the language that is being con-
sidered. An operator definition may optionally include compact syntax for
applications of the defined operator.

5.1 Logical Operators

1. Truth
Operator: (true :: formula)
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Defining axioms:

(true :: formula)( ) ≡ C =ty C.

Compact notation:

T means (true :: formula)( ).

2. Falsehood
Operator: (false :: formula)
Defining axioms:

(false :: formula)( ) ≡ V =ty C.

Compact notation:

F means (false :: formula)( ).

3. Conjunction
Operator: (and :: formula, formula, formula)
Defining axioms:

(and :: formula, formula, formula)(Aef , Bef) ≡ ¬(¬Aef ∨ ¬Bef).

Compact notation:

(A ∧B) means (and :: formula, formula, formula)(A,B).

Note: The defining axioms are presented as a formula schema. Recall
that metavariables like Aef and Bef denote eval-free formulas.

4. Implication
Operator: (implies :: formula, formula, formula)
Defining axioms:

(implies :: formula, formula, formula)(Aef , Bef) ≡ ¬Aef ∨Bef .

Compact notation:

(A ⊃ B) means (implies :: formula, formula, formula)(A,B).
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5. Definedness in a Type
Operator: (defined-in :: C, type, formula)
Defining axioms:

(defined-in :: C, type, formula)(aef , αef) ≡ (aef =αef aef).

Compact notation:

(a ↓ α) means (defined-in :: C, type, formula)(a, α).

(a ↑ α) means ¬(a ↓ α).

(a↓) means (a ↓ C).

(a↑) means ¬(a↓).

6. Quasi-Equality
Operator: (quasi-equal :: C,C, formula)
Defining axioms:

(quasi-equal :: C,C, formula)(aef , bef) ≡
(aef ↓ ∨ bef ↓) ⊃ aef = bef .

Note: The application of quasi-equal to two undefined terms is true.
Hence quasi-equal is not strict with respect to undefinedness. Nearly
all the operators defined in this section are strict with respect to un-
definedness.

Compact notation:

(a ' b) means (quasi-equal :: C,C, formula)(a, b).

(a 6' b) means ¬(a ' b).

7. Canonical Undefined Term
Operator: (undefined :: C)
Defining axioms:

(undefined :: C)( ) ' (ι x : C . x 6= x).

Compact notation:

⊥C means (undefined :: C)( ).
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8. Canonical Empty Type
Operator: (empty-type :: type)
Defining axioms:

∀x : C . x ↑ (empty-type :: type)( ).

Compact notation:

∇ means (empty-type :: type)( ).

9. Type Order
Operator: (type-le :: type, type, formula)
Defining axioms:

(¬free-in(pxq, pαefq) ∧ ¬free-in(pxq, pβefq)) ⊃
(type-le :: type, type, formula)(αef , βef) ≡ ∀x : αef . x ↓ βef .

Compact notation:

(α� β) means (type-le :: type, type, formula)(α, β).

Note: The formula schema of defining axioms utilizes the free-in oper-
ator defined in subsection 6.1.

10. Conditional Type
Operator: (if-type :: formula, type, type, type)
Defining axioms:

Aef ⊃
(if-type :: formula, type, type, type)(Aef , βef , γef) =ty β

ef .

¬Aef ⊃
(if-type :: formula, type, type, type)(Aef , βef , γef) =ty γ

ef .

Compact notation:

if(A, β, γ) means
(if-type :: formula, type, type, type)(A, β, γ).
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11. Conditional Formula
Operator: (if-formula :: formula, formula, formula, formula)
Defining axioms:

Aef ⊃
(if-formula :: formula, formula, formula, formula)

(Aef , Bef , Cef) =ty B
ef .

¬Aef ⊃
(if-formula :: formula, formula, formula, formula)

(Aef , Bef , Cef) =ty C
ef .

Compact notation:

if(A,B,C) means
(if-formula :: formula, formula, formula, formula)(A,B,C).

12. Simple Function Type
Operator: (sim-fun-type :: type, type, type)
Defining axioms:

(sim-fun-type :: type, type, type)(αef , βef) =ty

if(syn-closed(pβefq), (Λx : αef . βef),C).

Compact notation:

(α→ β) means (sim-fun-type :: type, type, type)(α, β).

Note: The formula schema of defining axioms utilizes the syn-closed
operator defined in subsection 6.1.

5.2 Set-Theoretic Operators

1. Empty set
Operator: (empty-set :: V)
Defining axioms:

(empty-set :: V)( ) ' (ι u : V . ∀ v : V . v 6∈ u).
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Compact notation:

∅ means (empty-set :: V)( ).

2. Universal class
Operator: (universal-class :: C)
Defining axioms:

(univeral-class :: C)( ) ' ι x : C . ∀u : V . u ∈ x.

Compact notation:

U means (universal-set :: C)( ).

3. Pair
Operator: (pair :: V,V,V)
Defining axioms:

∀u, v : V . (pair :: V,V,V)(u, v) '
ι w : V . ∀w′ : V . w′ ∈ w ≡ (w′ = u ∨ w′ = v).

(aef ↑ ∨ bef ↑) ⊃ (pair :: V,V,V)(aef , bef)↑ .

Note: The formula schema of defining axioms that comes second as-
serts that pair is strict with respect to undefinedness. The operators
named singleton, triple, etc. are defined in a similar way to pair.

Compact notation:

{ } means ∅.
{a} means (singleton :: V,V)(a).

{a, b} means (pair :: V,V,V)(a, b).

{a, b, c} means (triple :: V,V,V,V)(a, b, c).

...

4. Ordered Pair
Operator: (ord-pair :: V,V,V)
Defining axioms:

∀u, v : V . (ord-pair :: V,V,V)(u, v) '
{{u}, {u, v}}.
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(aef ↑ ∨ bef ↑) ⊃ (ord-pair :: V,V,V)(aef , bef)↑ .

Compact notation:

〈a, b〉 means (ord-pair :: V,V,V)(a, b).

〈a1, . . . , an〉 means 〈a1, 〈a2, . . . , an〉〉 for n ≥ 3.

[ ] means ∅.
[a1, . . . , an] means 〈a1, [a2, . . . , an]〉 for n ≥ 1.

5. Subclass
Operator: (subclass :: C,C, formula)
Defining axioms:

∀x, y : C . (subclass :: C,C, formula)(x, y) ≡
∀u : V . u ∈ x ⊃ u ∈ y.

(aef ↑ ∨ bef ↑) ⊃ (subclass :: C,C, formula)(aef , bef) ≡ F.

Compact notation:

a ⊆ b means (subclass :: C,C, formula)(a, b).

a ⊂ b means a ⊆ b ∧ a 6= b.

6. Union
Operator: (union :: C,C,C)
Defining axioms:

∀x, y : C . (union :: C,C,C)(x, y) '
ι z : C . ∀u : V . u ∈ z ≡ (u ∈ x ∨ u ∈ y).

(aef ↑ ∨ bef ↑) ⊃ (union :: C,C,C)(aef , bef)↑ .

Compact notation:

a ∪ b means (union :: C,C,C)(a, b).
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7. Intersection
Operator: (intersection :: C,C,C)
Defining axioms:

∀x, y : C . (intersection :: C,C,C)(x, y) '
ι z : C . ∀u : V . u ∈ z ≡ (u ∈ x ∧ u ∈ y).

(aef ↑ ∨ bef ↑) ⊃ (intersection :: C,C,C)(aef , bef)↑ .

Compact notation:

a ∩ b means (intersection :: C,C,C)(a, b).

8. Complement
Operator: (complement :: C,C)
Defining axioms:

∀x : C . (complement :: C,C)(x) '
ι y : C . ∀u : V . u ∈ y ≡ u 6∈ x.

aef ↑ ⊃ (complement :: C,C)(aef)↑ .

Compact notation:

a means (complement :: C,C)(a).

9. Head
Operator: (head :: V,V)
Defining axioms:

∀w : V . (head :: V,V)(w) '
ι u : V . ∃ v : V . w = 〈u, v〉.

aef ↑ ⊃ (head :: V, ,V)(aef)↑ .

Compact notation:

hd(a) means (head :: V,V)(a).
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10. Tail
Operator: (tail :: V,V)
Defining axioms:

∀w : V . (tail :: V,V)(w) '
ι v : V . ∃u : V . w = 〈u, v〉.

aef ↑ ⊃ (tail :: V, ,V)(aef)↑ .

Compact notation:

tl(a) means (tail :: V,V)(a).

11. Append
Operator: (append :: V,V,V)
Defining axioms:

∀x, y : V . (append :: V,V,V)(x, y) '
if(x = ∅, y, 〈hd(x), append(tl(x), y)〉).

(aef ↑ ∨ bef ↑) ⊃ (append :: V,V,V)(aef , bef)↑ .

Compact notation:

a^b means (append :: V,V,V)(a, b).

12. In List
Operator: (in-list :: V,V, formula)
Defining axioms:

∀x, y : V . (in-list :: V,V, formula)(x, y) ≡
x = hd(y) ∨ in-list(x, tl(y)).

(aef ↑ ∨ bef ↑) ⊃ (in-list :: V,V, formula)(aef , bef) ≡ F.

Compact notation:

a ∈li b means (in-list :: V,V, formula)(a, b).
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13. List Type
Operator: (list-type :: type, type)
Defining axioms:

¬free-in(pxq, pαefq) ⊃
∀x : C . x ↓ (list-type :: type, type)(αef) ≡

x = [ ] ∨ ∃ y : αef , z : list-type(αef) . x = 〈y, z〉.

14. Type Union
Operator: (type-union :: type, type, type)
Defining axioms:

(¬free-in(pxq, pαefq) ∧ ¬free-in(pxq, pβefq)) ⊃
∀x : C . x ↓ (type-union :: type, type, type)(αef , βef) ≡

x ↓ αef ∨ x ↓ βef .

Compact notation:

(α ∪ β) means (type-union :: type, type, type)(α, β).

15. Type Intersection
Operator: (type-intersection :: type, type, type)
Defining axioms:

(¬free-in(pxq, pαefq) ∧ ¬free-in(pxq, pβefq)) ⊃
∀x : C . x ↓ (type-intersection :: type, type, type)(αef , βef) ≡

x ↓ αef ∧ x ↓ βef .

Compact notation:

(α ∩ β) means (type-intersection :: type, type, type)(α, β).

16. Type Complement
Operator: (type-complement :: type, type)
Defining axioms:

¬free-in(pxq, pαefq) ⊃
∀x : C . x ↓ (type-complement :: type, type)(αef) ≡

x ↑ αef .
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Compact notation:

α means (type-complement :: type, type)(α).

17. Type Product
Operator: (type-prod :: type, type, type)
Defining axioms:

(¬free-in(pxq, pαefq) ∧ ¬free-in(pxq, pβefq)) ⊃
∀x : C . x ↓ (type-prod :: type, type, type)(αef , βef) ≡

hd(x) ↓ αef ∧ tl(x) ↓ βef .

Compact notation:

(α× β) means (type-prod :: type, type, type)(α, β).

18. Type Sum
Operator: (type-sum :: type, type, type)
Defining axioms:

(¬free-in(pxq, pαefq) ∧ ¬free-in(pxq, pβefq)) ⊃
∀x : C . x ↓ (type-sum :: type, type, type)(αef , βef) ≡

(hd(x) ↓ αef ∧ tl(x) = ∅) ∨ (hd(x) ↓ βef ∧ tl(x) = {∅}).

Compact notation:

(α+ β) means (type-sum :: type, type, type)(α, β).

19. Binary Relation
Operator: (bin-rel :: C, formula)
Defining axioms:

∀x : C . (bin-rel :: C, formula)(x) ≡
∀w : V . w ∈ x ⊃ ∃u, v : V . w = 〈u, v〉.

aef ↑ ⊃ (bin-rel :: C, formula)(aef) ≡ F.
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20. Univocal
Operator: (univocal :: C, formula)
Defining axioms:

∀x : C . (univocal :: C, formula)(x) ≡
∀u, v, v′ : V . (〈u, v〉 ∈ x ∧ 〈u, v′〉 ∈ x) ⊃ v = v′.

aef ↑ ⊃ (univocal :: C, formula)(aef) ≡ F.

21. Function
Operator: (fun :: C, formula)
Defining axioms:

∀x : C . (fun :: C, formula)(x) ≡
bin-rel(x) ∧ univocal(x).

aef ↑ ⊃ (fun :: C, formula)(aef) ≡ F.

22. Domain of a Class
Operator: (dom :: C,C)
Defining axioms:

∀x : C . (dom :: C,C)(x) '
ι y : C . ∀u : V . u ∈ y ≡ (∃ v : V . 〈u, v〉 ∈ x).

aef ↑ ⊃ (dom :: C,C)(aef)↑ .

23. Range of a Class
Operator: (ran :: C,C)
Defining axioms:

∀x : C . (ran :: C,C)(x) '
ι y : C . ∀u : V . u ∈ y ≡ (∃ v : V . 〈v, u〉 ∈ x).

aef ↑ ⊃ (ran :: C,C)(aef)↑ .
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24. Total Function on a Class
Operator: (total :: C,C, formula)
Defining axioms:

∀ f, x : C . (total :: C,C, formula)(f, x) ≡
fun(f) ∧ dom(f) = x.

(aef ↑ ∧ bef ↑) ⊃ (total :: C,C, formula)(aef , bef) ≡ F.

25. Surjective Function on a Class
Operator: (surjective :: C,C, formula)
Defining axioms:

∀ f, y : C . (surjective :: C,C, formula)(f, y) ≡
fun(f) ∧ ran(f) = y.

(aef ↑ ∧ bef ↑) ⊃ (surjective :: C,C, formula)(aef , bef) ≡ F.

26. Injective Function on a Class
Operator: (injective :: C,C, formula)
Defining axioms:

∀ f, x : C . (injective :: C,C, formula)(f, x) ≡
fun(f) ∧ ∀u, v : V . (u ∈ x ∧ v ∈ x ∧ f(u) = f(v)) ⊃ u = v.

(aef ↑ ∧ bef ↑) ⊃ (injective :: C,C, formula)(aef , bef) ≡ F.

27. Bijective Function from a Class to a Class
Operator: (bijective :: C,C,C, formula)
Defining axioms:

∀ f, x, y : C . (bijective :: C,C,C, formula)(f, x, y) ≡
fun(f) ∧ total(f, x) ∧ surjective(f, y) ∧ injective(f, x).

(aef ↑ ∧ bef ↑ ∧ cef ↑) ⊃
(bijective :: C,C,C, formula)(aef , bef , cef) ≡ F.
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28. Infinite Class
Operator: (infinite :: C, formula)
Defining axioms:

∀x : C . (infinite :: C, formula)(x) ≡
∃ f, y : C . y ⊂ x ∧ bijective(f, x, y).

aef ↑ ⊃ (infinite :: C, formula)(aef) ≡ F.

29. Countably Infinite Class
Operator: (countably-infinite :: C, formula)
Defining axioms:

∀x : C . (countably-infinite :: C, formula)(x) ≡
infinite(x) ∧ (∀ y : C . infinite(y) ⊃

(∃y′ : C . y′ ⊆ y ⊃ bijective(f, x, y′))).

aef ↑ ⊃ (countably-infinite :: C, formula)(aef) ≡ F.

30. Sum Class
Operator: (sum :: C,C)
Defining axioms:

∀x : C . (sum :: C,C)(x) '
ι y : C . ∀u : V . u ∈ y ≡ (∃ v : V . u ∈ v ∧ v ∈ x).

aef ↑ ⊃ (sum :: C,C)(aef)↑ .

31. Power Class
Operator: (power :: C,C)
Defining axioms:

∀x : C . (power :: C,C)(x) '
ι y : C . ∀u : V . u ∈ y ≡ u ⊆ x.

aef ↑ ⊃ (power :: C,C)(aef)↑ .
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32. Type is Class Checker
Operator: (type-is-class :: type, formula)
Defining axioms:

(¬free-in(pxq, pαefq) ∧ ¬free-in(pyq, pαefq)) ⊃
(type-is-class :: type, formula)(αef) ≡
∃x : C . ∀ y : C . y ↓ αef ≡ y ∈ x.

33. Type is Set Checker
Operator: (type-is-set :: type, formula)
Defining axioms:

(¬free-in(puq, pαefq) ∧ ¬free-in(pyq, pαefq)) ⊃
(type-is-set :: type, formula)(αef) ≡
∃u : V . ∀ y : C . y ↓ αef ≡ y ∈ u.

34. Type to Term
Operator: (type-to-term :: type,C)
Defining axioms:

(¬free-in(pxq, pαefq) ∧ ¬free-in(pyq, pαefq)) ⊃
(type-to-term :: type,C)(αef) '

ι x : C . ∀ y : C . y ↓ αef ≡ y ∈ x.

Compact notation:

term(α) means (type-to-term :: type,C)(α).

35. Term to Type
Operator: (term-to-type :: C, type)
Defining axioms:

∀x : C . ∀ y : C . y ↓ (term-to-type :: C, type)(x) ≡ y ∈ x.

aef ↑ ⊃ (term-to-type :: C, type)(aef) =ty C.

Compact notation:

type(a) means (term-to-term :: C, type)(a).
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36. Power Type
Operator: (power-type :: type, type)
Defining axioms:

(power-type :: type, type)(αef) =ty type(power(term(αef))).

5.3 Syntactic Operators

1. Proper Expression Checker
Operator: (is-p-expr :: E, formula)
Defining axioms:

∀ e : E . (is-p-expr :: E, formula)(e) ≡
e ↓ Eop ∨ e ↓ Ety ∨ e ↓ Ete ∨ e ↓ Efo.

aef ↑ ⊃ (is-p-expr :: E, formula)(aef) ≡ F.

Note: Checkers for the different sorts of proper expressions are defined
in a similar way: is-op, is-type, is-term, is-term-of-type, and is-formula.

2. First Component Selector for a Proper Expression
Operator: (1st-comp :: E,E)
Defining axioms:

∀ e : E . (1st-comp :: E,E)(e) '
if(is-p-expr(e), hd(tl(e)),⊥C).

aef ↑ ⊃ (1st-comp :: E,E)(aef)↑ .

Note: The second, third, fourth, . . . component selectors for proper
expressions are defined in a similar way: 2nd-comp, 3rd-comp,
4th-comp, . . . .

3. Operator Application Checker
Operator: (is-op-app :: E, formula)
Defining axioms:

∀ e : E . (is-op-app :: E, formula)(e) ≡
is-p-expr(e) ∧ hd(e) = pop-appq.
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aef ↑ ⊃ (is-op-app :: E, formula)(aef) ≡ F.

Note: Checkers for the other remaining 11 proper expression cate-
gories are defined in a similar way: is-var, is-type-app, is-dep-fun-type,
is-fun-app, is-fun-abs, is-if, is-exists, is-def-des, is-indef-des, is-quote,
is-eval.

4. Disjunction Checker
Operator: (is-or :: E, formula)
Defining axioms:

∀ e : E . (is-or :: E, formula)(e) ≡
is-op-app(e) ∧ 1st-comp(1st-comp(e)) = porq.

aef ↑ ⊃ (is-or :: E, formula)(aef) ≡ F.

Note: Checkers for other kinds of operator applications are defined in
a similar way: is-in, is-type-equal, is-union, etc.

5. First Argument Selector for an Operator Application
Operator: (1st-arg :: E,E)
Defining axioms:

∀ e : E . (1st-arg :: E,E)(e) '
if(is-op-app(e), 2nd-comp(e),⊥C).

aef ↑ ⊃ (1st-arg :: E,E)(aef)↑ .

Note: The second, third, fourth, . . . argument selectors for operator
application are defined in a similar way: 2nd-arg, 3rd-arg, 4th-arg, . . . .

6. Variable Binder Checker
Operator: (is-binder :: E, formula)
Defining axioms:

∀ e : E . (is-binder :: E, formula)(e) ≡
is-dep-fun-type(e) ∨ is-fun-abs(e) ∨ is-exists(e) ∨
is-def-des(e) ∨ is-indef-des(e).

aef ↑ ⊃ (is-binder :: E, formula)(aef) ≡ F.
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7. Variable Selector for Variable Binder
Operator: (binder-var :: E,E)
Defining axioms:

∀ e : E . (binder-var :: E,E)(e) '
if(is-binder(e), 1st-comp(e),⊥C).

aef ↑ ⊃ (binder-var :: E,E)(aef)↑ .

Note: Selectors for a binder name and a binder body are defined in a
similar way: binder-name and binder-body.

8. Function Redex Checker
Operator: (is-fun-redex :: E, formula)
Defining axioms:

∀ e : E . (is-fun-redex :: E, formula)(e) ≡
is-fun-app(e) ∧ is-fun-abs(1st-comp(e)).

aef ↑ ⊃ (is-fun-redex :: E, formula)(aef) ≡ F.

Note: A dependent function type redex checker named
is-dep-fun-type-redex is defined in a similar way.

9. Redex Checker
Operator: (is-redex :: E, formula)
Defining axioms:

∀ e : E . (is-redex :: E, formula)(e) ≡
is-dep-fun-type-redex(e) ∨ is-fun-redex(e).

aef ↑ ⊃ (is-redex :: E, formula)(aef) ≡ F.

10. Variable Selector for a Redex
Operator: (redex-var :: E,E)
Defining axioms:

∀ e : E . (redex-var :: E,E)(e) '
if(is-redex(e), binder-var(1st-comp(e)),⊥C).
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aef ↑ ⊃ (redex-var :: E,E)(aef)↑ .

Note: Body and argument selectors for a redex named redex-body and
redex-arg are defined in a similar way.

11. Variable Similarity
Operator: (var-sim :: E,E, formula)
Defining axioms:

∀ e1, e2 : E . (var-sim :: E,E, formula)(e1, e2) ≡
is-var(e1) ∧ is-var(e2) ∧ 1st-comp(e1) = 1st-comp(e2).

(aef ↑ ∧ bef ↑) ⊃ (var-sim :: E,E, formula)(aef , bef) ≡ F.

Compact notation:

e1 ∼ e2 means (var-sim :: E,E, formula)(e1, e2).

e1 6∼ e2 means ¬(e1 ∼ e2).

12. Eval-Free Checker
Operator: (is-eval-free :: E, formula)
Defining axioms:

∀ e : E . (is-eval-free :: E, formula)(e) ≡
is-quote(e) ∨
(e ↓ Esy ∧ e 6= pevalq) ∨
e = [ ] ∨
(is-eval-free(hd(e)) ∧ is-eval-free(tl(e))).

aef ↑ ⊃ (is-eval-free :: E, formula)(aef) ≡ F.

13. Coercion to a Type Construction
Operator: (coerce-to-type :: E,Ety)
Defining axioms:

∀ e1 : E . (coerce-to-type :: E,Ety)(e1) ≡
ι e2 : Ety . e1 =ty e2.

aef ↑ ⊃ (coerce-to-type :: E,Ety)(aef)↑ .

Note: The operators coerce-to-term and coerce-to-formula are defined
in a similar way.
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14. Nominal Type of a Term
Operator: (nominal-type :: Ete,Ety)
Defining axioms:

∀ e1 : Ete . (nominal-type :: Ete,Ety)(e1) ≡
ι e2 : Ety . e1 ↓ Ee2te .

aef ↑ ⊃ (nominal-type :: Ete,Ety)(aef)↑ .

15. Operator Name Strictness Checker
Operator: (is-strict-op-name :: Eon, formula)
Defining axioms:

∀ o : Eon . (is-strict-op-name :: Eon, formula)(o) ≡
∀ e : E .

(is-op-app(e) ∧
o = 1st-comp(1st-comp(e)) ∧
p⊥Cq ∈li tl(tl(e)))

⊃
((is-type(e) ⊃ JeKty = C) ∧
(is-term(e) ⊃ JeKte ↑) ∧
(is-formula(e) ⊃ JeKfo = F)).

aef ↑ ⊃ (is-strict-op-name :: Eon, formula)(aef) ≡ F.

Compact notation:

strict(o) means (is-strict-op-name :: Eon, formula)(o).

Remark 5.3.1 All the defining axioms given in this section are eval-free.

5.4 Another Notational Definition

Using some of the operators defined in this section, we give a notational
definition for evaluation relativized to a language:
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Relativized Evaluation

(eval, a, k, b) means

if(a↓ (Ety,b ∪ Ete,b ∪ Efo,b), JaKk, J⊥CKk).

Compact notation:

JaKk,b means (eval, a, k, b).

Notice that JaKk,` and JaKk are logically equivalent.

6 Substitution

In this section we will define the operators needed for substitution of a
term for the free occurrences of a variable and prove that they have their
intended meanings. Substitution on eval-free expressions is very similar
to substitution on first-order formulas, but substitution on non-eval-free
expressions is tricky. There are two reasons for this.

We will illustrate the first reason with an example. Consider the formula
a = J(e : E)K. The variable (e : E) is certainly free in the formula. However,
if the value of the variable is p(y : C)q, then the formula is equivalent to
a = (y : C), and so the (y : C) can also be said to be free in the formula. This
example shows that some free occurrences of a variable in an expression may
not be syntactically visible. This significantly complicates substitution.

The second reason has to do with the evaluation of a substitution. A
substitution maps a quoted expression peq to a new quoted expression pe′q.
The latter will usually be the argument to an evaluation Jpe′qKk so that the
value of e′ can be expressed. If e′ is not eval-free, then the evaluation will
be undefined and, as a result, substitution will not work as desired on non-
eval-free expressions. To avoid this problem, evaluations must be “cleansed”
from the result of a substitution.

6.1 Substitution Operators

We define now the operators related to the substitution of a term for the free
occurrences of a variable. Each operator will be defined only for quotations.
As a result, the defining axioms will be an infinite set organized into a finite
number of formula schemas.
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1. Good Evaluation Arguments
Operator: (gea :: E,E, formula)
Defining axioms:

¬(gea :: E,E, formula)(pe1q, pe2q)

where e1 is a non-eval-free expression, e1 is a type and e2 is
not type, e1 is a term and e2 is not a type, or e1 is a formula
and e2 is not formula.

(gea :: E,E, formula)(pαefq, ptypeq).

(gea :: E,E, formula)(paefq, pαq).

(gea :: E,E, formula)(pAefq, pformulaq).

2. Free Variable Occurrence in an Expression
Operator: (free-in :: E,E, formula)
Defining axioms:

¬(free-in :: E,E, formula)(pe1q, pe2q)

where e1 is not a symbol or e2 is an improper expression.

(free-in :: E,E, formula)(pxq, p(o :: k1, . . . , kn+1)q) ≡
free-in(pxq, pk1q) ∨ · · · ∨ free-in(pxq, pkn+1q)

where (o :: k1, . . . , kn+1) is proper and n ≥ 0.

(free-in :: E,E, formula)(pxq, pO(e1, . . . , en)q) ≡
free-in(pxq, pOq) ∨
free-in(pxq, pe1q) ∨ · · · ∨ free-in(pxq, penq)

where O(e1, . . . , en) is proper and n ≥ 0.

(free-in :: E,E, formula)(pxq, p(x : α)q).

(free-in :: E,E, formula)(pxq, p(y : α)q) ≡
free-in(pxq, pαq)

where x 6= y.
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(free-in :: E,E, formula)(pxq, p(? x : α . e)q) ≡
free-in(pxq, pαq)

where (? x : α . e) is proper and ? is Λ, λ, ∃, ι, or ε.

(free-in :: E,E, formula)(pxq, p(? y : α . e)q) ≡
free-in(pxq, pαq) ∨ free-in(pxq, peq)

where x 6= y, (? x : α . e) is proper, and ? is Λ, λ, ∃, ι, or ε.

(free-in :: E,E, formula)(pxq, pα(a)q) ≡
free-in(pxq, pαq) ∨ free-in(pxq, paq).

(free-in :: E,E, formula)(pxq, pf(a)q) ≡
free-in(pxq, pfq) ∨ free-in(pxq, paq).

(free-in :: E,E, formula)(pxq, pif(A, b, c)q) ≡
free-in(pxq, pAq) ∨ free-in(pxq, pbq) ∨ free-in(pxq, pcq).

¬(free-in :: E,E, formula)(pxq, ppeqq)

where e is any expression.

(free-in :: E,E, formula)(pxq, pJaKkq) ≡
free-in(pxq, paq) ∨
free-in(pxq, pkq) ∨
free-in(pxq, a).

(aef ↑ ∨ bef ↑) ⊃ ¬(free-in :: E,E, formula)(aef , bef).

Note: For an evaluation (eval, a, k), a variable may be free in the term
a, in the kind k when k is a type, and in the expression that the
evaluation represents.

3. Syntactically Closed Proper Expression
Operator: (syn-closed :: E, formula)
Defining axioms:

∀ e : E . (syn-closed :: E, formula)(e) ≡
is-p-expr(e) ∧ ∀ e′ : Esy . ¬free-in(e′, e).
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4. Cleanse Eval Symbols from an Expression
Operator: (cleanse :: E,E)
Defining axioms:

(cleanse :: E,E)(peq) =

peq

where e is an improper expression.

(cleanse :: E,E)(p(o :: k1, . . . , kn+1)q) =

p(o :: bk̂1c, . . . , bk̂n+1c)q

where (o :: k1, . . . , kn+1) is proper, n ≥ 0, and
k̂i = cleanse(pkiq) for all i with 1 ≤ i ≤ n+ 1.

(cleanse :: E,E)(pO(e1, . . . , en)q) =

pbÔc(bê1c, . . . , bênc)q

where O(e1, . . . , en) is proper, n ≥ 0,
Ô = cleanse(pOq), and
êi = cleanse(peiq) for all i with 1 ≤ i ≤ n.

(cleanse :: E,E)(p(x : α)q) =

p(x : bα̂c)q

where α̂ = cleanse(pαq).

(cleanse :: E,E)(p(? x : α . e)q) =

p(? x : bα̂c . bêc)q

where (? x : α . e) is proper; ? is Λ, λ, ∃, ι, or ε;
α̂ = cleanse(pαq); and ê = cleanse(peq).

(cleanse :: E,E)(pα(b)q) =

pbα̂c(bb̂c)q

where α̂ = cleanse(pαq) and b̂ = cleanse(pbq).
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(cleanse :: E,E)(pf(b)q) =

pbf̂c(bb̂c)q

where f̂ = cleanse(pfq) and b̂ = cleanse(pbq).

(cleanse :: E,E)(pif(A, b, c)q) =

pif(bÂc, bb̂c, bĉc)q

where Â = cleanse(pAq),

b̂ = cleanse(pbq), and

ĉ = cleanse(pcq).

(cleanse :: E,E)(ppeqq) =

ppeqq

where e is any expression.

(cleanse :: E,E)(pJaKtyq) =

if(syn-closed(â), w,⊥C)

where â = cleanse(paq),

â′ = coerce-to-type(JâKte), and

w = pif(gea(a, ptypeq), bâ′c,C)q.

(cleanse :: E,E)(pJaKαq) =

if(syn-closed(â), w,⊥C)

where â = cleanse(paq),

â′ = coerce-to-term(JâKte),
α̂ = cleanse(pαq), and

w = pif(gea(a, pαq) ∧ bâ′c ↓ bα̂c, bâ′c,⊥C)q.

(cleanse :: E,E)(pJaKfoq) =

if(syn-closed(â), w,⊥C)

where â = cleanse(paq),

â′ = coerce-to-formula(JâKte), and

w = pif(gea(a, pformulaq), bâ′c,F)q.

aef ↑ ⊃ (cleanse :: E,E)(aef)↑ .
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5. Substitution for a Variable in an Expression
Operator: (sub :: E,E,E,E)
Defining axioms:

(sub :: E,E,E,E)(pe1q, pe2q, pe3q) =

pe3q

where e1 is not a term, e2 is not a symbol, or e3 is an
improper expression.

(sub :: E,E,E,E)(paq, pxq, p(o :: k1, . . . , kn+1)q) =

p(o :: bk̂1c, . . . , bk̂n+1c)q

where (o :: k1, . . . , kn+1) is proper, n ≥ 0, and k̂i =
sub(paq, pxq, pkiq) for all i with 1 ≤ i ≤ n+ 1.

(sub :: E,E,E,E)(paq, pxq, pO(e1, . . . , en)q) =

pbÔc(bê1c, . . . , bênc)q

where O(e1, . . . , en) is proper, n ≥ 0,
Ô = sub(paq, pxq, pOq), and
êi = sub(paq, pxq, peiq) for all i with 1 ≤ i ≤ n.

(sub :: E,E,E,E)(paq, pxq, p(x : α)q) =

pif(a ↓ bα̂c, bâc,⊥C)q

where α̂ = sub(paq, pxq, pαq) and â = cleanse(paq).

(sub :: E,E,E,E)(paq, pxq, p(y : α)q) =

p(y : bα̂c)q

where x 6= y and α̂ = sub(paq, pxq, pαq).

(sub :: E,E,E,E)(paq, pxq, p(? x : α . e)q) =

p(? x : bα̂c . bêc)q

where (? x : α . e) is proper; ? is Λ, λ, ∃, ι, or ε;
α̂ = sub(paq, pxq, pαq); and ê = cleanse(peq).
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(sub :: E,E,E,E)(paq, pxq, p(? y : α . e)q) =

p(? y : bα̂c . bêc)q

where x 6= y; (? y : α . e) is proper; ? is Λ, λ, ∃, ι, or ε;
α̂ = sub(paq, pxq, pαq); and ê = sub(paq, pxq, peq).

(sub :: E,E,E,E)(paq, pxq, pα(b)q) =

pbα̂c(bb̂c)q

where α̂ = sub(paq, pxq, pαq) and b̂ = sub(paq, pxq, pbq).

(sub :: E,E,E,E)(paq, pxq, pf(b)q) =

pbf̂c(bb̂c)q

where f̂ = sub(paq, pxq, pfq) and b̂ = sub(paq, pxq, pbq).

(sub :: E,E,E,E)(paq, pxq, pif(A, b, c)q) =

pif(bÂc, bb̂c, bĉc)q

where Â = sub(paq, pxq, pAq), b̂ = sub(paq, pxq, pbq), and
ĉ = sub(paq, pxq, pcq).

(sub :: E,E,E,E)(paq, pxq, ppeqq) =

ppeqq

where e is any expression.

(sub :: E,E,E,E)(paq, pxq, pJbKtyq) =

if(syn-closed(̂b), w,⊥C)

where b̂ = sub(paq, pxq, pbq),

b̂′ = coerce-to-type(sub(paq, pxq, ĴbKte)),
w = pif(gea(bb̂c, ptypeq), bb̂′c,C)q.

(sub :: E,E,E,E)(paq, pxq, pJbKαq) =

if(syn-closed(̂b), w,⊥C)

where b̂ = sub(paq, pxq, pbq),

b̂′ = coerce-to-term(sub(paq, pxq, ĴbKte)),
α̂ = sub(paq, pxq, pαq), and

w = pif(gea(bb̂c, pαq) ∧ bb̂′c ↓ bα̂c, bb̂′c,⊥C)q.

66



(sub :: E,E,E,E)(paq, pxq, pJbKfoq) =

if(syn-closed(̂b), w,⊥C)

where b̂ = sub(paq, pxq, pbq),

b̂′ = coerce-to-formula(sub(paq, pxq, ĴbKte)),
w = pif(gea(bb̂c, pformulaq), bb̂′c,F)q.

(aef ↑ ∨ bef ↑ ∨ cef ↑) ⊃ (sub :: E,E,E,E)(aef , bef , cef)↑ .

Note: For an evaluation (eval, a, k), a substitution for a variable is
performed on a to obtain a′ and on k when k is a type to obtain k′

and then on the expression represented by the new evaluation resulting
from these substitutions.

6. Free for a Variable in an Expression
Operator: (free-for :: E,E,E, formula)
Defining axioms:

(free-for :: E,E,E, formula)(pe1q, pe2q, pe3q)

where e1 is not a term, e2 is not a symbol, or e3 is an
improper expression.

(free-for :: E,E,E, formula)(paq, pxq, p(o :: k1, . . . , kn+1)q) ≡
free-for(paq, pxq, pk1q) ∧ · · · ∧ free-for(paq, pxq, pkn+1q)

where (o :: k1, . . . , kn+1) is proper and n ≥ 0.

(free-for :: E,E,E, formula)(paq, pxq, pO(e1, . . . , en)q) ≡
free-for(paq, pxq, pOq) ∧
free-for(paq, pxq, pe1q) ∧ · · · ∧ free-for(paq, pxq, penq)

where O(e1, . . . , en) is proper and n ≥ 0.

(free-for :: E,E,E, formula)(paq, pxq, p(y : α)q) ≡
free-for(paq, pxq, pαq).
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(free-for :: E,E,E, formula)(paq, pxq, p(? x : α . e)q) ≡
free-for(paq, pxq, pαq)

where (? x : α . e) is proper and ? is Λ, λ, ∃, ι, or ε.

(free-for :: E,E,E, formula)(paq, pxq, p? y : α . eq) ≡
free-for(paq, pxq, pαq) ∧
(¬free-in(pxq, peq) ∨ ¬free-in(pyq, paq)) ∧
free-for(paq, pxq, peq)

where x 6= y, (? y : α . e) is proper, and ? is Λ, λ, ∃, ι, or ε.

(free-for :: E,E,E, formula)(paq, pxq, pα(b)q) ≡
free-for(paq, pxq, pαq) ∧ free-for(paq, pxq, pbq).

(free-for :: E,E,E, formula)(paq, pxq, pf(b)q) ≡
free-for(paq, pxq, pfq) ∧ free-for(paq, pxq, pbq).

(free-for :: E,E,E, formula)(paq, pxq, pif(A, b, c)q) ≡
free-for(paq, pxq, pAq) ∧
free-for(paq, pxq, pbq) ∧
free-for(paq, pxq, pcq).

(free-for :: E,E,E, formula)(paq, pxq, ppeqq)

where e is any expression.

(free-for :: E,E,E, formula)(paq, pxq, pJbKkq) ≡
free-for(paq, pxq, pbq) ∧
free-for(paq, pxq, pkq) ∧
free-for(paq, pxq, ĴbKte).

where b̂ = sub(paq, pxq, pbq).

(aef ↑ ∨ bef ↑ ∨ cef ↑) ⊃
¬(free-for :: E,E,E, formula)(aef , bef , cef).

Remark 6.1.1 All the defining axioms given in this subsection are eval-free
except for those involving the operators free-in and free-for applied to quoted
evaluations.
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6.2 Kernel, Normal, and Eval-Free Normal Theories

The kernel language of Chiron is the language Lker = (O, θ) where:

1. o ∈ O iff o is a built-in operator name of Chiron or a name of an
operator defined in section 5 or in the previous subsection.

2. For all o ∈ O, θ(o) is the signature form assigned to o.

A language L is normal if Lker ≤ L.
Let L be a normal language. The kernel theory over L, written TLker, is

the theory (L,ΓLker) where A ∈ ΓLker iff A is a one of the defining axioms
(with respect to the L) for an operator defined in section 5 or the previous
section.

Let T = (L,Γ) be a theory. T is normal if TLker ≤ T . The eval-free
subtheory of T , written eval-free(T ), is the theory T = (L,Γ′) where Γ′ =
{A ∈ Γ | A is eval-free}. T is eval-free normal if T = eval-free(T ′) for some
normal theory T ′.

Let a be a term, x be a symbol, and e be a proper expression of L. We
say that x is free in e if free-in(pxq, peq) is valid in TLker, and a is free for
x in e if free-for(paq, pxq, peq) is valid in TLker. Similarly, we say x is not
free in e if ¬free-in(pxq, peq) is valid in TLker, and a is not free for x in e if
¬free-for(paq, pxq, peq) is valid in TLker. We also say e is syntactically closed
if syn-closed(peq) is valid in TLker.

Proposition 6.2.1 Every quotation is syntactically closed.

6.3 Evaluation and Quasiquotation Lemmas

The lemmas in this subsection are facts about evaluations that are needed
for the substitution lemmas given in the next subsection. Let =k be =ty if
k is a type, ' if k is a type, and ≡ if k is a formula.

Lemma 6.3.1 (Good Evaluation Arguments) Let T = (L,Γ) be a nor-
mal theory, α be a type, a and b be terms, and A be a formula of L.

1. T |= gea(pαq, ptypeq) ⊃ JpαqKty =ty α.

2. T |= ¬gea(b, ptypeq) ⊃ JbKty =ty C.

3. T |= gea(paq, pαq) ⊃ JpaqKα ' if(a ↓ α, a,⊥C).

4. T |= ¬gea(b, pαq) ⊃ JbKα ' ⊥C.
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5. T |= gea(pAq, pformulaq) ⊃ JpAqKfo ≡ A.

6. T |= ¬gea(b, pformulaq) ⊃ JbKfo ≡ F.

Proof Follows from the definition of the standard valuation on evaluations.
2

Lemma 6.3.2 (Evaluation of Quasiquotations) Let M be a standard
model of a normal theory T = (L,Γ) and a be a term of type E of L that
denotes a type, term, or formula of kind k = type, C, or formula, respectively,
such that M |= gea(a, pkq).

1. Let a = p(o :: e1, . . . , en+1)(bc1c, . . . , bcnc)q denote an operator appli-
cation where:

a. ei is type, formula, or bbic for all i with 1 ≤ i ≤ n+ 1.

b. ci denotes a type, term, or formula of kind ki = type, C, or
formula, respectively, for all i with 1 ≤ i ≤ n.

Then

M |= JaKk =k (o :: e1, . . . , en+1)(Jc1Kki , . . . , JcnKkn)

where

ei =

{
JbiKty if ei = bbic
ei if ei = type or formula.

2. If a = p(x : bbc)q denotes a variable, then

M |= JaKte ' (x : JbKty).

3. If a = p(? x : bb1c . bb2c)q denotes a variable binder where ? is Λ, λ,
∃, ι, or ε and b2 is semantically closed in M with respect to x, then

M |= JaKk =k (? x : Jb1Kty . Jb2Kfo).

4. If a = pbb1c(bb2c)q denotes a type application, then

M |= JaKty =ty Jb1Kty(Jb2Kte).
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5. If a = pbb1c(bb2c)q denotes a function application, then

M |= JaKte ' Jb1Kte(Jb2Kte).

6. If a = pif(bb1c, bb2c, bb3c)q denotes a conditional term, then

M |= JaKte ' if(Jb1Kfo, Jb2Kte, Jb3Kte).

7. If a = pJbbcKtyq denotes a type evaluation, then

M |= JaKty =ty JJbKteKty.

8. If a = pJbb1cKbb2cq denotes a term evaluation, then

M |= JaKte ' JJb1KteKJb2Kty .

9. If a = pJbbcKfoq denotes a formula evaluation, then

M |= JaKfo ≡ JJbKteKfo.

Proof Let M = (S, V ) be a standard model of T and ϕ ∈ assign(S).

Parts 1, 4–9 Similar to part 2.

Part 2 We must show that Vϕ(JaKte) = Vϕ((x : JbKty)).

Vϕ(JaKte)
= Vϕ(Jp(x : bbc)qKte)
= Vϕ(H−1(Vϕ(p(x : bbc)q)))

= Vϕ(H−1(Vϕ([pvarq, pxq, b])))

= Vϕ((H−1(Vϕ(pvarq)), H−1(Vϕ(pxq)), H−1(Vϕ(b))))

= Vϕ((H−1(H(var)), H−1(H(x)), H−1(Vϕ(b))))

= Vϕ((var, x, JbKty))

= Vϕ((x : JbKty))

The third line is by the definition of V on evaluations and M |= gea(a, pCq);
the fourth is by the definition of a quasiquotation; the fifth is by the defini-
tions of H and [a1, . . . , an]; the sixth is by the definition of V on quotations;
and the seventh is by the definition of V on evaluations and the fact that
M |= gea(a, pCq) implies M |= gea(b, ptypeq).
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Part 3 We must show that Vϕ(JaKk) = Vϕ((? x : Jb1Kty . Jb2Kfo)) assuming
b2 is semantically closed in M with respect to x.

Vϕ(JaKk)
= Vϕ(Jp(? x : bb1c . bb2c)qKk)
= Vϕ(H−1(Vϕ(p(? x : bb1c . bb2c)q)))

= Vϕ(H−1(Vϕ([p?q, [pvarq, pxq, b1], b2])))

= Vϕ((H−1(Vϕ(p?q)),

(H−1(Vϕ(pvarq)), H−1(Vϕ(pxq)), H−1(Vϕ(b1))),

H−1(Vϕ(b2))))

= Vϕ((H−1(H(?)),

(H−1(H(var)), H−1(H(x)), H−1(Vϕ(b1))),

H−1(Vϕ(b2))))

= Vϕ((?, (var, x, Jb1Kty), Jb2Kfo))
= Vϕ((? x : Jb1Kty . Jb2Kfo))

The third line is by the definition of V on evaluations and M |= gea(a, pkq);
the fourth is by the definition of a quasiquotation; the fifth is by the defi-
nitions of H and [a1, . . . , an]; the sixth is by the definition of V on quota-
tions; and the seventh is by the definition of V on evaluations, the fact that
M |= gea(a, pkq) implies M |= gea(b1, ptypeq) and M |= gea(b2, pformulaq),
and the fact b2 is semantically closed in M with respect to x. 2

Lemma 6.3.3 Let M = (S, V ) be a standard model of a normal theory
T = (L,Γ) and q be a quasiquotation of L whose set of evaluated components
is {ba1c, . . . , banc}. If ai is semantically closed in M for all i with 1 ≤ i ≤ n,
then q is semantically closed in M .

Proof Let ϕ,ϕ′ ∈ assign(S). We must show that Vϕ(q) = Vϕ′(q). Our
proof is by induction on the length of q. If q is a quotation, then q is
obviously semantically closed, and so we may assume q is not a quotation.
Let q = p(m1, . . . ,mk)q where k ≥ 1.

Vϕ(q)

= Vϕ(p(m1, . . . ,mk)q)

= Vϕ([pm1q, . . . , pmkq])

= [Vϕ(pm1q), . . . , Vϕ(pmkq)]

= [Vϕ′(pm1q), . . . , Vϕ′(pmkq)]
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= Vϕ′([pm1q, . . . , pmkq])

= Vϕ′(p(m1, . . . ,mk)q)

= Vϕ′(q)

The third line is by the definition of a quasiquotation; the fourth is by the
definition of [a1, . . . , an]; and the fifth is by the following argument. If pmiq is
a quotation, then pmiq is semantically closed, and so Vϕ(pmiq) = Vϕ′(pmiq).
If mi is an evaluated component bajc, then Vϕ(pmiq) = Vϕ(aj) = Vϕ′(aj) =
Vϕ′(pmiq) since aj is semantically closed in T by hypothesis. If pmiq is
not a quotation and mi is not an evaluated component, then Vϕ(pmiq) =
Vϕ′(pmiq) by the induction hypothesis. 2

6.4 Substitution Lemmas

The next several lemmas show that the operators specified in the previous
subsection have their intended meanings. Let k[e] be type if e is a type, C if
e is a term, and formula if e is a formula.

Lemma 6.4.1 (Eval-Free) Let L be a normal language and a be an eval-
free term, x be a symbol, and e be an eval-free proper expression of L. Let
T = eval-free(TLker).

1. Either T |= free-in(pxq, peq) or T |= ¬free-in(pxq, peq). (That is, ei-
ther x is free in e or x is not free in e.)

2. Either T |= free-for(paq, pxq, peq) or T |= ¬free-for(paq, pxq, peq).
That is, either a is free for x in e or a is not free for x in e.

3. T |= free-in(pxq, peq) for at most finitely many symbols x.

4. T |= cleanse(peq) = peq and thus T |= cleanse(peq)↓.

5. T |= sub(paq, pxq, peq) = pe′q for some eval-free proper expression e′

and thus T |= sub(paq, pxq, peq)↓.

6. If T |= ¬free-in(pxq, peq), then T |= sub(paq, pxq, peq) = peq.

Proof

Parts 1–2, 4–5 Follows immediately by induction on the length of e.

Part 3 Follows from the fact that x is free in e iff e contains a subexpression
of the form (x : α).
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Part 6 Let S(pe′q) mean sub(paq, pxq, pe′q). Assume

T |= ¬free-in(pxq, peq) [designated H(peq)].

We must show that

T |= S(peq) = peq [designated C(peq)].

Our proof is by induction on the length of e. There are 10 cases correspond-
ing to the 10 formula schemas used to define S(peq) when e is eval-free
proper expression.

Case 1. e = (o :: k1, . . . , kn+1). H(peq) implies H(pkiq) for all i
with 1 ≤ i ≤ n + 1 and typeL[ki]. From these hypotheses, C(pkiq)
follows for all i with 1 ≤ i ≤ n + 1 and typeL[ki] from the induction
hypothesis. C(pkiq) also holds for all i with 1 ≤ i ≤ n+1 and ki = type
or formula. From these conclusions, C(peq) follows by the definition
of sub.

Cases 2, 4, 6–9. Similar to case 1.

case 3. e = (x : α). The hypothesis H(peq) is false in this case.

case 5. e = (? x : α . e′) where ? is Λ, λ, ∃, ι, or ε. H(peq) implies
H(pαq). From this hypothesis, C(pαq) follows from the induction
hypothesis. Then C(peq) follows from C(pαq) by part 4 of this lemma
and the definition of sub.

case 10. e = pe′q. C(peq) is always true in this case by the definition
of sub.

2

Remark 6.4.2 Lemma 6.4.1, with TLker used in place of eval-free(TLker), does
not hold for all non-eval-free expressions. For instance, the example in
subsection 7.2 exhibits a non-eval free expression for which part 1 of this
lemma does not hold.

A universal closure of a formula A is a formula

∀x1, . . . , xn : C . A

where n ≥ 0 such that x is free in A iff x ∈ {x1, . . . , xn} and x is not free in
A iff x 6∈ {x1, . . . , xn}.
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Lemma 6.4.3 Every universal closure is syntactically closed.

Proof By the definitions of free-in, syntactically closed, and universal
closure. 2

Remark 6.4.4 By virtue of parts 1 and 3 of Lemma 6.4.1, universal closures
always exist for eval-free formulas, and by the example in subsection 7.2, may
not exist for non-eval-free formulas.

Lemma 6.4.5 (Free Variable) Let M = (S, V ) be a standard model of a
normal theory T = (L,Γ), x be a symbol, and e be a proper expression of L.

1. If M |= ¬free-in(pxq, peq), then Vϕ(e) = Vϕ[x 7→d](e) for all ϕ ∈
assign(S) and d ∈ Dc. (That is, if M |= ¬free-in(pxq, peq), e is se-
mantically closed in M with respect to x.)

2. Let X = {x ∈ S |M |= ¬free-in(pxq, peq)}. Then Vϕ(e) = Vϕ′(e) for
all ϕ,ϕ′ ∈ assign(S) such that ϕ(x) = ϕ′(x) whenever x 6∈ X.

Proof

Part 1 We will show that, if

M |= ¬free-in(pxq, peq) [designated H(peq)],

then

Vϕ(e) = Vϕ[x 7→d](e) for all ϕ ∈ assign(S) and d ∈ Dc [designated
C(peq)].

Our proof is by induction on the complexity of e. There are 11 cases corre-
sponding to the 11 formula schemas used to define free-in(pe1q, pe2q)) when
e1 is a symbol and e2 is a proper expression.

case 1: e = (o :: k1, . . . , kn+1). By the definition of free-in, H(peq)
implies H(pkiq) for all i with 1 ≤ i ≤ n + 1 and typeL[ki]. By the
induction hypothesis, this implies C(pkiq) for all i with 1 ≤ i ≤ n+ 1
and typeL[ki]. Therefore, C(peq) holds since Vϕ(e) is defined in terms
of Vϕ(ki) for all i with 1 ≤ i ≤ n+ 1 and typeL[ki].

case 2: e = O(e1, . . . , en). By the definition of free-in, H(peq) implies
H(pOq) and H(peiq) for all i with 1 ≤ i ≤ n. By the induction
hypothesis, this implies C(pOq) and C(peiq) for all i with 1 ≤ i ≤ n.
Therefore, C(peq) holds since Vϕ(e) is defined in terms of Vϕ(O) and
Vϕ(ei) for all i with 1 ≤ i ≤ n.
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case 3: e = (x : α). By the definition of free-in, H(peq) is false.
Therefore, the lemma is true for this case.

case 4: e = (y : α) where x 6= y. By the definition of free-in, H(peq)
implies H(pαq). By the induction hypothesis, this implies C(pαq).
Therefore, C(peq) holds since Vϕ(e) is defined in terms of ϕ(y) and
Vϕ(α).

case 5: e = (? x : α . e′) and ? is Λ, λ, ∃, ι, or ε. By the definition
of free-in, H(peq) implies H(pαq). By the induction hypothesis, this
implies C(pαq). It is obvious that

Vϕ[x 7→d′](e
′) = Vϕ[x 7→d][x7→d′](e

′)

for all ϕ ∈ assign(S) and d, d′ ∈ Dc. Therefore, C(peq) holds since
Vϕ(e) is defined in terms of Vϕ(α) and Vϕ[x 7→d′](e

′) where d′ ∈ Dc.

case 6: e = (? y : α . e′), x 6= y, and ? is Λ, λ, ∃, ι, or ε. By
the definition of free-in, H(peq) implies H(pαq) and H(pe′q). By the
induction hypothesis, this implies C(pαq) and C(pe′q). The latter
implies

Vϕ[y 7→d′](e
′) = Vϕ[y 7→d′][x 7→d](e

′) = Vϕ[x7→d][y 7→d′](e
′)

for all ϕ ∈ assign(S) and d, d′ ∈ Dc. (This is the place in the
proof where the full strength of the induction hypothesis is needed.)
Therefore, C(peq) holds since Vϕ(e) is defined in terms of Vϕ(α) and
Vϕ[y 7→d′](e

′) where d′ ∈ Dc.

case 7: e = α(a). Similar to case 4.

Case 8: e = f(a). Similar to case 4.

Case 9: e = if(A, b, c). Similar to case 4.

Case 10: e = pe′q. C(peq) follows immediately since Vϕ(e) does not
depend on ϕ.

Case 11: e = JaKk. By the definition of free-in, H(peq) implies
(1) H(paq), (2) H(pkq) when typeL[k], and (3) H(a). By the
induction hypothesis, (1) and (2) imply C(paq) and C(pkq) when
typeL[k]. Suppose Vϕ(gea(a, pkq)) = t for some ϕ ∈ assign(S).
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Then Vϕ(a) = Vϕ(pe′q) for some eval-free expression e′ and (3) im-
plies Vϕ(¬free-in(pxq, pe′q)) = t. By Lemma 6.4.1, this implies
H(pe′q), and so by the induction hypothesis, C(pe′q) holds. There-
fore, C(peq) holds since Vϕ(e) is defined in terms of Vϕ(a), Vϕ(k) when
typeL[k], and Vϕ(e′). Now suppose that Vϕ(gea(a, pkq)) = f for all
ϕ ∈ assign(S). Then, by Lemma 6.3.1, Vϕ(e) is the undefined value for
kind k for all ϕ ∈ assign(S). C(peq) follows immediately since Vϕ(e)
does not depend on ϕ.

Part 2 Similar to the proof of part 1. 2

Lemma 6.4.6 (Syntactically Closed) Let M be a standard model of
a normal theory T = (L,Γ) and e be an expression of L. If M |=
syn-closed(peq), then e is semantically closed in M .

Proof Let M = (S, V ) be a standard model of T . Assume M |=
syn-closed(peq). Then, by the definition of syn-closed, e is a proper expression
and M |= ¬free-in(pxq, peq) for all x ∈ S. Hence, by part 2 of Lemma 6.4.5,
Vϕ(e) = Vϕ′(e) for all ϕ,ϕ′ ∈ assign(S). Therefore, e is semantically closed
in M . 2

The next lemma shows that part 1 of Lemma 6.4.5 is not sufficient to
prove the previous lemma.

Lemma 6.4.7 Let M = (S, V ) be a standard model of a normal theory
T = (L,Γ) and e be a proper expression of L. Suppose Vϕ(e) = Vϕ[x7→d](e)
for all ϕ ∈ assign(S), x ∈ S, and d ∈ Dc. Then it is not necessary that e be
syntactically closed.

Proof See the example in subsection 7.3. 2

Lemma 6.4.8 (Cleanse) Let M = (S, V ) be a standard model for a nor-
mal theory T = (L,Γ) and e be an expression of L.

1. If e is an operator, type, term, or formula and Vϕ(cleanse(peq)) 6= ⊥,
then

H−1(Vϕ(cleanse(peq)))

is an operator similar to e, type, term, or formula, respectively, that
is eval-free for all ϕ ∈ assign(S).
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2. cleanse(peq) is semantically closed in M .

3. If e is an operator, type, term, or formula that contains an evaluation
Je′Kk not in a quotation and M |= free-in(pxq, pe′q) for some x ∈ S,
then

M |= cleanse(peq)↑ .

4. If e is a type, term, or formula and M |= cleanse(peq)↓, then

M |= Jcleanse(peq)Kk[e] = e.

Proof Let A(peq) mean cleanse(peq).

Part 1 Follows straightforwardly by induction on the complexity of e.

Part 2 Our proof is by induction on the complexity of e. We must show
that A(peq) is semantically closed in M . There are 12 cases corresponding to
the 12 formula schemas used to defined cleanse(peq) when e is an expression.

Case 1: e is improper. By the definition of cleanse, A(peq) = peq. The
last expression is a quotation and is thus semantically closed in M by
Proposition 6.2.1 and Lemma 6.4.6. Therefore, A(peq) is semantically
closed in M .

Cases 2–8: A(peq) is semantically closed in M by the induction hy-
pothesis, the definition of cleanse, and Lemma 6.3.3.

Case 9: e = pe′q. By the definition of cleanse,

A(peq) = A(ppe′qq) = ppe′qq

in M . The last expression is a quotation and is thus semantically
closed in M by Proposition 6.2.1 and Lemma 6.4.6. Therefore, A(peq)
is semantically closed in M .

Case 10: e = JaKty. By the definition of cleanse,

A(peq) = if(syn-closed(â), w,⊥C)

in M where â = A(paq), â′ = coerce-to-type(JâKte), and w =
pif(gea(a, ptypeq), bâ′c,C)q. If M |= A(peq)↑, then A(peq) is semanti-
cally closed in M . Therefore, it suffices to show that w is semantically
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closed in M under the assumption M |= syn-closed(â). Then â′ is se-
mantically closed in M by Lemma 6.4.6. This implies w is semantically
closed in M by Lemma 6.3.3.

Case 11: e = JaKα. Similar to case 10.

Case 12: e = JaKfo. Similar to case 10.

Part 3 Follows immediately from the definition of cleanse.

Part 4 Let e be a type, term, or formula. Assume

M |= A(peq)↓ [designated H(peq)].

We must show that

M |= JA(peq)Kk[e] = e [designated C(peq)].

Our proof is by induction on the complexity of e. There are 10 cases corre-
sponding to the 10 formula schemas used to defined cleanse(peq) when e is
a type, term, or formula.

Case 1: e = O(e1, . . . , en) and O = (o :: k1, . . . , kn+1). By the
definition of cleanse, H(peq) implies (1) H(pkiq) for all i with 1 ≤
i ≤ n + 1 and typeL[ki] and (2) H(peiq) for all i with 1 ≤ i ≤ n.
By the induction hypothesis, this implies (1) C(pkiq) for all i with
1 ≤ i ≤ n+ 1 and typeL[ki] and (2) C(peiq) for all i with 1 ≤ i ≤ n.
Let ϕ ∈ assign(S). Then

Vϕ(JA(peq)Kk[e])
= Vϕ(JA(pO(e1, . . . , en)q)Kk[e])
= Vϕ(JpbA(pOq)c(bA(pe1q)c, . . . , bA(penq)c)qKk[e])
= Vϕ(A(pOq)(JA(pe1q)Kk[e1], . . . , JA(penq)Kk[en]))
= Vϕ(O(e1, . . . , en))

= Vϕ(e)

where

A(pOq) = (o :: A(pk1q), . . . , A(pkn+1q))

and

A(pkiq) =

{
JA(pkiq)Kty if typeL[ki]
ki if ki = type or formula.
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The third line is by the definition of cleanse; the fourth is by
Lemma 6.3.2 and part 1 of this lemma; and the fifth holds since (1) O
and A(pOq) are similar by part 1 of this lemma, (2) C(pkiq) holds for
all i with 1 ≤ i ≤ n+ 1 and typeL[ki], and (3) C(peiq) holds for all i
with 1 ≤ i ≤ n. Therefore, C(peq) holds.

Cases 2, 4–6: Similar to case 1.

Case 3: e = (? x : α . e′) where ? is Λ, λ, ∃, ι, or ε. By the definition
of cleanse, H(peq) implies H(pαq) and H(pe′q). By the induction
hypothesis, this implies C(pαq) and C(pe′q). Then

Vϕ(JA(peq)Kk[e])
= Vϕ(JA(p(? x : α . e′)q)Kk[e])
= Vϕ(Jp(? x : bA(pαq)c . bA(pe′q)c)qKk[e])
= Vϕ((? x : JA(pαq)Kty . JA(pe′q)Kk[e′]))
= Vϕ((? x : α . e′))

= Vϕ(e)

The third line is by the definition of cleanse; the fourth is by
Lemma 6.3.2 and parts 1 and 2 of this lemma; and the fifth is by
C(pαq) and C(pe′q). Therefore, C(peq) holds.

Case 7: e = pe′q. Let ϕ ∈ assign(S). Then

Vϕ(JA(peq)Kk[e])
= Vϕ(JA(ppe′qq)Kte)
= Vϕ(Jppe′qqKte)
= Vϕ(pe′q)

= Vϕ(e).

The third line is by the definition of cleanse and the fourth is by
Lemma 6.3.1. Therefore, C(peq) holds.

Case 8: e = JaKty. Let ϕ ∈ assign(S). Suppose
Vϕ(gea(a, ptypeq)) = t. By the definition of cleanse, H(peq) im-
plies H(paq). By the induction hypothesis, this implies C(paq). Let
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u = coerce-to-type(JA(paq)Kte). Then

Vϕ(JA(peq)Kk[e])
= Vϕ(JA(pJaKtyq)Kty)

= Vϕ(Jif(syn-closed(A(paq)),

pif(gea(a, ptypeq), buc,C)q,

⊥C)Kty)

= Vϕ(Jpif(gea(a, ptypeq), buc,C)qKty)

= Vϕ(if(gea(a, ptypeq), JuKty,C))

= Vϕ(Jcoerce-to-type(JA(paq)Kte)Kty)

= Vϕ(Jcoerce-to-type(a)Kty)

= Vϕ(JaKty)

= Vϕ(e).

The third line is by the definition of cleanse; the fourth is by H(peq);
the fifth is by Lemma 6.3.2 and part 1 of this lemma; the sixth by
the hypothesis that Vϕ(gea(a, ptypeq)) = t and the definition of u;
the seventh is by C(paq); and the eighth is by Vϕ(gea(a, ptypeq)) = t.
Therefore, C(peq) holds.

Now suppose Vϕ(gea(a, ptypeq)) = f. By a similar derivation to the
one above, C(peq) holds.

Case 9: e = JaKα. Let ϕ ∈ assign(S). Suppose Vϕ(gea(a, pαq) = t
and Vϕ(JaKte ↓ α) = t. By the definition of cleanse, H(peq) implies
H(pαq) and H(paq). By the induction hypothesis, this implies C(pαq)
and C(paq). Let u = coerce-to-term(JA(paq)Kte). Then

Vϕ(JA(peq)Kk[e])
= Vϕ(JA(pJaKαq)Kte)
= Vϕ(Jif(syn-closed(A(paq)),

pif(gea(a, pαq) ∧ buc ↓ bA(pαq)c, buc,⊥C)q,

⊥C)Kte)
= Vϕ(Jpif(gea(a, pαq) ∧ buc ↓ bA(pαq)c, buc,⊥C)qKte)
= Vϕ(if(gea(a, pαq) ∧ JuKte ↓ JA(pαq)Kty, JuKte,⊥C))

= Vϕ(if(Jcoerce-to-term(JA(paq)Kte)Kte ↓ JA(pαq)Kty,
Jcoerce-to-term(JA(paq)Kte)Kte,
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⊥C))

= Vϕ(if(Jcoerce-to-term(a)Kte ↓ α,
Jcoerce-to-term(a)Kte,
⊥C))

= Vϕ(if(JaKte ↓ α, JaKte,⊥C))

= Vϕ(JaKα)

= Vϕ(e).

The third line is by the definition of cleanse; the fourth is by H(peq);
the fifth is by Lemma 6.3.2 and part 1 of this lemma; the sixth by
the hypothesis that Vϕ(gea(a, ptypeq)) = t and the definition of u; the
seventh is by C(paq) and C(pαq); the eighth is by Vϕ(gea(a, ptypeq)) =
t; and the ninth is by Vϕ(JaKte ↓ α) = t. Therefore, C(peq) holds.

Now suppose Vϕ(gea(a, ptypeq)) = f or Vϕ(JaKte ↓ α) = f. By a similar
derivation to the one above, C(peq) holds.

Case 10: e = JaKfo. Similar to case 8.

2

Lemma 6.4.9 (Substitution A) Let M = (S, V ) be a standard model for
a normal theory T = (L,Γ) and a be a term, x be a symbol, and e be an
expression of L.

1. If e is an operator, type, term, or formula and Vϕ(sub(paq, pxq, peq)) 6=
⊥, then

H−1(Vϕ(sub(paq, pxq, peq)))

is an operator similar to e, type, term, or formula, respectively, that
is eval-free for all ϕ ∈ assign(S).

2. sub(paq, pxq, peq) is semantically closed in M .

3. If e is an operator, type, term, or formula that contains an evaluation
Je′Kk not in a quotation and M |= free-in(pyq, sub(paq, pxq, pe′q)) for
some y ∈ S, then

M |= sub(paq, pxq, peq)↑ .
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4. If e is a type, term, or formula, M |= sub(paq, pxq, peq) ↓, and M |=
¬free-in(pxq, peq), then

M |= Jsub(paq, pxq, peq)Kk[e] = e.

Proof Let S(peq) mean

sub(paq, pxq, peq)

and E(peq) mean

H−1(Vϕ(S(peq))).

Part 1a Fix ϕ ∈ assign(S). Assume e is an operator, type, term, or formula
and Vϕ(S(peq)) 6= ⊥. We must show E(peq) is an operator similar to e, type,
term, or formula, respectively. Our proof is by induction on the complexity
of e. There are 13 cases corresponding to the 13 formula schemas used to
define sub(pe1q, pe2q, pe3q) when e1 is a term, e2 is a symbol, and e3 is a
proper expression.

Case 1: e = (o :: k1, . . . , kn+1). By the first formula schema of the
definition of sub, Vϕ(S(ptypeq)) = Vϕ(ptypeq) and Vϕ(S(pformulaq)) =
Vϕ(pformulaq), and so E(ptypeq) = type and E(pformulaq) = formula.
By the second formula schema of the definition of sub,

E(peq)

= H−1(Vϕ(S(peq)))

= H−1(Vϕ(p(o :: bS(pk1q)c, . . . , bS(pkn+1q)c)q))

= H−1(Vϕ(p(o :: E(pk1q), . . . , E(pkn+1q))q))

= (o :: E(pk1q), . . . , E(pkn+1q)).

By the induction hypothesis, for all i with 1 ≤ i ≤ n+1 and typeL[ki],
E(pkiq) is a type. Therefore, if e is an operator, then E(peq) is an
operator similar to e.

Case 2: e = O(e1, . . . , en) and O = (o :: k1, . . . , kn+1). By the third
formula schema of the definition of sub,

E(peq)

= H−1(Vϕ(S(peq)))

= H−1(Vϕ(pbS(pOq)c(bS(pe1q)c, . . . , bS(penq)c)q))

= H−1(Vϕ(pE(pOq)(E(pe1q), . . . , E(penq))q))

= E(pOq)(E(pe1q), . . . , E(penq)).
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By the induction hypothesis, (1) E(pOq) is an operator similar to O
and (2) for all i with 1 ≤ i ≤ n, if ei is a type, term, or formula,
then E(peiq) is a type, term, or formula, respectively. Therefore, if e
is a type, term, or formula, then E(peq) is a type, term, or a formula,
respectively.

Cases 3–13. Similar to case 2. cases 3 and 5 use part 1 of
Lemma 6.4.8.

Part 1b Fix ϕ ∈ assign(S). Assume e is an operator, type, term, or
formula and Vϕ(sub(paq, pxq, peq)) 6= ⊥. We must show E(peq) is eval-free.
Our proof is by induction on the complexity of e. There are 13 cases as for
part 1a.

Cases 1–2, 4, 6–9. Each eval symbol occurring in e that is not in a
quotation is removed by the definition of sub. Hence any eval symbol
occurring in E(peq) that is not in a quotation must have been intro-
duced explicitly in S(peq) or implicitly in S(peq) via a subcomponent
S(pe′q) of S(peq) where e′ is a component of e. In these cases, no
eval symbols are explicitly introduced in S(peq) by the definition of
sub, and no eval symbols are implicitly introduced in S(peq) by the
induction hypothesis. Therefore, E(peq) is eval-free.

Case 3. e = (x : α). E(peq) is either H−1(Vϕ(cleanse(paq))) or ⊥C.
Therefore, E(peq) is eval-free since H−1(Vϕ(cleanse(paq))) is eval-free
by part 1 of Lemma 6.4.8 and ⊥C is obviously eval-free.

Case 5. e = (? x : α . e′) where ? is Λ, λ, ∃, ι, or ε. E(pαq) is
eval-free by the induction hypothesis, and H−1(Vϕ(cleanse(pe′q))) is
eval-free by part 1 of Lemma 6.4.8. Therefore, E(peq) is eval-free by
the definition of sub.

Case 10. e = pe′q. E(peq) = e. Therefore, E(peq) is eval-free since e
is a quotation and hence eval-free.

Cases 11–13. e = JbKk. By the induction hypothesis, E(S(pbq)) is
eval-free, E(S(JS(pbq)Kte)) is eval-free, and E(S(pkq)) is eval-free if
typeL[k]. Therefore, E(peq) is eval-free by the definition of sub.

Part 2 Similar to the proof of part 2 of Lemma 6.4.8.

Part 3 Follows immediately from the definition of sub.
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Part 4 Let e is a type, term, or formula. Assume

M |= S(peq)↓ [designated H1(peq)]

and

M |= ¬free-in(pxq, peq) [designated H2(peq)].

We must show that

M |= JS(peq)Kk[e] = e [designated C(peq)].

Our proof is by induction on the complexity of e. There are 12 cases cor-
responding to the 12 formula schemas used to define sub(pe1q, pe2q, pe3q)
when e1 is a term, e2 is a symbol, and e3 is a type, term, or formula.

Case 1: e = O(e1, . . . , en) and O = (o :: k1, . . . , kn+1). By the defini-
tions of sub and free-in, H1(peq) and H2(peq) imply (1) H1(pkiq) and
H2(pkiq) for all i with 1 ≤ i ≤ n+ 1 and typeL[ki] and (2) H1(peiq)
and H2(peiq) for all i with 1 ≤ i ≤ n. By the induction hypothesis,
this implies (1) C(pkiq) for all i with 1 ≤ i ≤ n+ 1 and typeL[ki] and
(2) C(peiq) for all i with 1 ≤ i ≤ n. Let ϕ ∈ assign(S). Then

Vϕ(JS(peq)Kk[e])
= Vϕ(JS(pO(e1, . . . , en)q)Kk[e])
= Vϕ(JpbS(pOq)c(bS(pe1q)c, . . . , bS(penq)c)qKk[e])
= Vϕ(S(pOq)(JS(pe1q)Kk[e1], . . . , JS(penq)Kk[en]))
= Vϕ(O(e1, . . . , en))

= Vϕ(e)

where

S(pOq) = (o :: S(pk1q), . . . , S(pkn+1q))

and

S(pkiq) =

{
JS(pkiq)Kty if typeL[ki]
ki if ki = type or formula.

The third line is by the definition of sub; the fourth is by Lemma 6.3.2
and part 1 of this lemma; and the fifth holds since (1) O and S(pOq)
are similar by part 1 of this lemma, (2) C(pkiq) holds for all i with
1 ≤ i ≤ n + 1 and typeL[ki], and (3) C(peiq) holds for all i with
1 ≤ i ≤ n. Therefore, C(peq) holds.
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Case 2: e = (x : α). The hypothesis H2(peq) is false in this case.

Case 3: e = (y : α) where x 6= y. By the definitions of sub and free-in,
H1(peq) and H2(peq) imply H1(pαq) and H2(pαq). By the induction
hypothesis, this implies C(pαq). Let ϕ ∈ assign(S). Then

Vϕ(JS(peq)Kk[e])
= Vϕ(JS(p(y : α)q)Kte)
= Vϕ(Jp(y : bS(α)c)qKte)
= Vϕ((y : JS(pαq)Kty))

= Vϕ((y : α))

= Vϕ(e).

The third line is by the definition of sub; the fourth is by Lemma 6.3.2
and part 1 of this lemma; and the fifth is by C(pαq). Therefore, C(peq)
holds.

Case 4: e = (? x : α . e′) where ? is Λ, λ, ∃, ι, or ε. By the defini-
tions of sub and free-in, H1(peq) and H2(peq) imply H1(pαq), H2(pαq),
and M |= cleanse(pe′q) ↓. By the induction hypothesis, H1(pαq) and
H2(pαq) implies C(pαq). Let ϕ ∈ assign(S). Then

Vϕ(JS(peq)Kk[e])
= Vϕ(JS(p(? x : α . e′)q)Kk[e])
= Vϕ(Jp(? x : bS(pαq)c . bcleanse(pe′q)c)qKk[e])
= Vϕ((? x : JS(pαq)Kty . Jcleanse(pe′q)Kk[e′]))
= Vϕ((? x : α . e′))

= Vϕ(e)

The third line is by the definition of sub; the fourth is by Lemma 6.3.2,
parts 1 and 2 of this lemma, and parts 1 and 2 of Lemma 6.4.8; and the
fifth is by C(pαq), M |= cleanse(pe′q)↓, and part 4 of Lemma 6.4.8.

Case 5–8: Similar to case 3.

Case 9. e = pe′q. C(peq) is always true by the definition of sub.

Case 10: e = JbKty. Let ϕ ∈ assign(S). Suppose Vϕ(gea(b, ptypeq)) =
t. Then there is an eval-free expression e′ such that Vϕ(b) = Vϕ(pe′q).
By the definitions of sub and free-in, H1(peq) and H2(peq) imply
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(1) H1(pbq) and H2(pbq) and (2) H1(pe′q) and H2(pe′q). By the
induction hypothesis, this implies (1) C(pbq) and (2) C(pe′q). Let
u = coerce-to-type(S(JS(pbq)Kte)). Then

Vϕ(JS(peq)Kk[e])
= Vϕ(JS(pJbKtyq)Kty)

= Vϕ(Jif(syn-closed(S(pbq)),

pif(gea(bS(pbq)c, ptypeq), buc,C)q,

⊥C)Kty)

= Vϕ(Jpif(gea(bS(pbq)c, ptypeq), buc,C)qKty)

= Vϕ(if(gea(JS(pbq)Kte, ptypeq), JuKty,C))

= Vϕ(if(gea(b, ptypeq), JuKty,C))

= Vϕ(Jcoerce-to-type(S(JS(pbq)Kte))Kty)

= Vϕ(Jcoerce-to-type(S(b))Kty)

= Vϕ(JS(b)Kty)

= Vϕ(JS(pe′q)Kty)

= Vϕ(e′)

= Vϕ(Jpe′qKty)

= Vϕ(JbKty)

= Vϕ(e).

The third line is by the definition of sub; the fourth is by H1(peq);
the fifth is by Lemma 6.3.2 and part 1 of this lemma; the sixth is by
C(pbq); the seventh is by the hypothesis that Vϕ(gea(b, ptypeq)) = t
and the definition of u; the eight is by C(pbq); the ninth is by
Vϕ(gea(b, ptypeq)) = t and part 1 of this lemma; the tenth is by sub-
stitution of pe′q for b; the eleventh is by C(pe′q); the twelveth is by
the semantics of evaluation; and the thirteenth is by substitution of b
for pe′q. Therefore, C(peq) holds.

Now suppose Vϕ(gea(b, ptypeq)) = f. By a similar derivation to the
one above, C(peq) holds.

Case 11: e = JbKα. Let ϕ ∈ assign(S). Suppose Vϕ(gea(b, ptypeq) = t
and Vϕ(JbKte ↓ α) = t. Then there is an eval-free expression e′

such that Vϕ(b) = Vϕ(pe′q). By the definitions of sub and free-in,
H1(peq) and H2(peq) imply (1) H1(pbq) and H2(pbq), (2) H1(pαq)
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and H2(pαq), and (3) H1(pe′q) and H2(pe′q). By the induction hy-
pothesis, this implies (1) C(pbq), (2) C(pαq), and (3) C(pe′q). Let
u = coerce-to-term(S(JS(pbq)Kte)). Then

Vϕ(JS(peq)Kk[e])
= Vϕ(JS(pJbKαq)Kte)
= Vϕ(Jif(syn-closed(S(pbq)),

pif(gea(bS(pbq)c, pαq) ∧ buc ↓ bS(pαq)c, buc,⊥C)q,

⊥C)Kte)
= Vϕ(Jpif(gea(bS(pbq)c, pαq) ∧ buc ↓ bS(pαq)c, buc,⊥C)qKte)
= Vϕ(if(gea(JS(pbq)Kte, pαq) ∧ JuKte ↓ JS(pαq)Kty, JuKte,⊥C))

= Vϕ(if(gea(b, pαq) ∧ JuKte ↓ α, JuKte,⊥C))

= Vϕ(if(Jcoerce-to-term(S(JS(pbq)Kte))Kte ↓ α,
Jcoerce-to-term(S(JS(pbq)Kte))Kte,
⊥C))

= Vϕ(if(Jcoerce-to-term(S(b))Kte ↓ α,
Jcoerce-to-term(S(b))Kte,
⊥C))

= Vϕ(if(JS(b)Kte ↓ α, JS(b)Kte,⊥C))

= Vϕ(if(JS(pe′q)Kte ↓ α, JS(pe′q)Kte,⊥C))

= Vϕ(if(e′ ↓ α, e′,⊥C))

= Vϕ(if(Jpe′qKte ↓ α, Jpe′qKte,⊥C))

= Vϕ(if(JbKte ↓ α, JbKte,⊥C))

= Vϕ(JbKα)

= Vϕ(e).

The third line is by the definition of sub; the fourth is by H1(peq);
the fifth is by Lemma 6.3.2 and part 1 of this lemma; the sixth
is by C(pbq) and C(pαq); the seventh is by the hypothesis that
Vϕ(gea(b, ptypeq)) = t and the definition of u; the eight is by C(pbq);
the ninth is by Vϕ(gea(b, ptypeq)) = t and part 1 of this lemma; the
tenth is by substitution of pe′q for b; the eleventh is by C(pe′q); the
twelveth is by the semantics of evaluation; the thirteenth is by sub-
stitution of b for pe′q; and the fourteenth in by Vϕ(JbKte ↓ α) = t.
Therefore, C(peq) holds.

88



Now suppose Vϕ(gea(b, ptypeq)) = f or Vϕ(JbKte ↓ α) = f By a similar
derivation to the one above, C(peq) holds.

Case 12: e = JbKfo. Similar to case 10.

2

Lemma 6.4.10 (Substitution B) Let M = (S, V ) be a standard model
for a normal theory T = (L,Γ) and a be a term, x be a symbol, and e
be a type, term, or formula of L. If M |= sub(paq, pxq, peq) ↓ and M |=
free-for(paq, pxq, peq), then

Vϕ(Jsub(paq, pxq, peq)Kk[e]) = Vϕ[x7→Vϕ(a)](e)

for all ϕ ∈ assign(S) such that Vϕ(a) 6= ⊥.

Proof Let S(peq) mean sub(paq, pxq, peq). Assume

M |= S(peq)↓ [designated H1(peq)],

and

M |= free-for(paq, pxq, peq) [designated H2(peq)].

We must show that

Vϕ(JS(peq)Kk[e]) = Vϕ[x 7→Vϕ(a)](e) for all ϕ ∈ assign(S) such that
Vϕ(a) 6= ⊥ [designated C(peq)].

Our proof is by induction on the complexity of e. There are 12 cases cor-
responding to the 12 formula schemas used to define sub(pe1q, pe2q, pe3q))
when e1 is a term, e2 is a symbol, e3 is a type, term, or formula.

Case 1: e = O(e1, . . . , en) and O = (o :: k1, . . . , kn+1). By the
definitions of sub and free-for, H1(peq) and H2(peq) imply (1) H1(pkiq)
and H2(pkiq) for all i with 1 ≤ i ≤ n + 1 and typeL[ki] and (2)
H1(peiq) and H2(peiq) for all i with 1 ≤ i ≤ n. By the induction
hypothesis, this implies (1) C(pkiq) for all i with 1 ≤ i ≤ n + 1 and
typeL[ki] and (2) C(peiq) for all i with 1 ≤ i ≤ n. Let ϕ ∈ assign(S)
such that Vϕ(a) 6= ⊥. Then

Vϕ(JS(peq)Kk[e])
= Vϕ(JS(pO(e1, . . . , en)q)Kk[e])
= Vϕ(JpbS(pOq)c(bS(pe1q)c, . . . , bS(penq)c)qKk[e])
= Vϕ(S(pOq)(JS(pe1q)Kk[e1], . . . , JS(penq)Kk[en]))
= Vϕ[x 7→Vϕ(a)](O(e1, . . . , en))

= Vϕ[x 7→Vϕ(a)](e)
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where

S(pOq) = (o :: S(pk1q), . . . , S(pkn+1q))

and

S(pkiq) =

{
JS(pkiq)Kty if typeL[ki]
ki if ki = type or formula.

The third line is by the definition of sub; the fourth is by Lemma 6.3.2
and part 1 of Lemma 6.4.9; and the fifth holds since (1) O and S(pOq)
are similar by part 1 of Lemma 6.4.9, (2) C(pkiq) holds for all i with
1 ≤ i ≤ n + 1 and typeL[ki], and (3) C(peiq) holds for all i with
1 ≤ i ≤ n. Therefore, C(peq) holds.

Case 2: e = (x : α). By the definitions of free-for and free-for, H1(peq)
and H2(peq) imply H1(pαq), H2(pαq), and M |= cleanse(pe′q) ↓. By
the induction hypothesis, this implies C(pαq). Let ϕ ∈ assign(S) such
that Vϕ(a) 6= ⊥. Then

Vϕ(JS(peq)Kk[e])
= Vϕ(JS(p(x : α)q)Kte)
= Vϕ(Jif(a ↓ JS(α)Kty, cleanse(paq), p⊥Cq)Kte)
= Vϕ(if(a ↓ JS(α)Kty, Jcleanse(paq)Kte,⊥C))

= Vϕ(if(a ↓ JS(α)Kty, a,⊥C))

= Vϕ[x 7→Vϕ(a)](if((x : C) ↓ α, (x : C),⊥C))

= Vϕ[x 7→Vϕ(a)]((x : α))

= Vϕ[x 7→Vϕ(a)](e).

The third line is by the definition of sub; the fourth is by Lemma 6.3.2
and part 1 of Lemma 6.4.8; the fifth is by M |= cleanse(pe′q)↓ and part
4 of Lemma 6.4.8; the sixth is by C(pαq); and the seventh is by the
definition of the standard valuation on variables. Therefore, C(peq)
holds.

Case 3: e = (y : α) where x 6= y. By the definitions of sub and
free-for, H1(peq) and H2(peq) imply H1(pαq) and H2(pαq). By the
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induction hypothesis, this implies C(pαq). Let ϕ ∈ assign(S) such
that Vϕ(a) 6= ⊥. Then

Vϕ(JS(peq)Kk[e])
= Vϕ(JS(p(y : α)q)Kte)
= Vϕ(Jp(y : bS(α)c)qKte)
= Vϕ((y : JS(pαq)Kty))

= Vϕ[x 7→Vϕ(a)]((y : α))

= Vϕ[x 7→Vϕ(a)](e).

The third line is by the definition of sub; the fourth is by Lemma 6.3.2
and part 1 of Lemma 6.4.9; and the fifth is by C(pαq). Therefore,
C(peq) holds.

Case 4: e = (? x : α . e′) and ? is Λ, λ, ∃, ι, or ε. By the definitions
of sub and free-for, H1(peq) and H2(peq) imply H1(pαq), H2(pαq),
and M |= cleanse(pe′q) ↓. By the induction hypothesis, this implies
C(pαq). Let ϕ ∈ assign(S) such that Vϕ(a) 6= ⊥. Then

Vϕ(JS(peq)Kk[e])
= Vϕ(JS(p(? x : α . e′)q)Kk[e])
= Vϕ(Jp(? x : bS(pαq)c . bcleanse(pe′q)c)qKk[e])
= Vϕ((? x : JS(pαq)Kty . Jcleanse(pe′q)Kk[e′]))
= Vϕ((? x : JS(pαq)Kty . e′))
= Vϕ[x 7→Vϕ(a)]((? x : α . e′))

= Vϕ[x 7→Vϕ(a)](e).

The third line is by the definition of sub; the fourth is by Lemma 6.3.2,
part 1 of Lemma 6.4.9, and parts 1 and 2 of Lemma 6.4.8; the fifth is
by M |= cleanse(pe′q)↓ and part 4 of Lemma 6.4.8; and the sixth is by
C(pαq) and the fact that

Vϕ[x 7→d](e
′) = Vϕ[x 7→Vϕ(a)][x 7→d](e

′)

for all d ∈ Dc. Therefore, C(peq) holds.

Case 5: e = (? y : α . e′), x 6= y, and ? is Λ, λ, ∃, ι, or ε. By the
definitions of sub and free-for, H1(peq) and H2(peq) imply (1) H1(pαq)
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and H2(pαq), (2) either (∗) M |= ¬free-in(pxq, pe′q) or (∗∗) M |=
¬free-in(pyq, paq), and (3) H1(pe′q) and H2(pe′q). By the induction
hypothesis, this implies C(pαq) and C(pe′q). Let ϕ ∈ assign(S) such
that Vϕ(a) 6= ⊥. Then

Vϕ(JS(peq)Kk[e])
= Vϕ(JS(p(? y : α . e′)q)Kk[e])
= Vϕ(Jp(? y : bS(pαq)c . bS(pe′q)cqKk[e]))
= Vϕ((? y : JS(pαq)Kty . JS(pe′q)Kk[e′]))
= Vϕ[x 7→Vϕ(a)]((? y : α . e′))

= Vϕ[x 7→Vϕ(a)](e).

The third line is by the definition of sub; the fourth is by Lemma 6.3.2
and parts 1 and 2 of Lemma 6.4.9; and the fifth is by C(pαq) and
separate arguments for the two cases (∗) and (∗∗). In case (∗),

Vϕ[y 7→d](JS(pe′q)Kk[e])
= Vϕ[y 7→d](e

′)

= Vϕ[y 7→d][x 7→Vϕ(a)](e
′)

= Vϕ[x 7→Vϕ(a)][y 7→d](e
′)

for all d ∈ Dc. The second line is by (∗), H1(pe′q), and part 4 of
Lemma 6.4.9, and the third is by (∗) and part 1 of Lemma 6.4.5. In
case (∗∗),

Vϕ[y 7→d](JS(pe′q)Kk[e])
= Vϕ[y 7→d][x 7→Vϕ[y 7→d](a)](e

′)

= Vϕ[y 7→d][x 7→Vϕ(a)](e
′)

= Vϕ[x 7→Vϕ(a)][y 7→d](e
′)

for all d ∈ Dc. The second line is by C(pe′q), and the third is by (∗∗)
and part 1 of Lemma 6.4.5. Therefore, C(peq) holds.

Case 6: e = α(a). Similar to case 3.

Case 7: e = f(a). Similar to case 3.

Case 8: e = if(A, b, c). Similar to case 3.
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Case 9: e = pe′q. Let ϕ ∈ assign(S) such that Vϕ(a) 6= ⊥. Then

Vϕ(JS(peq)Kk[e])
= Vϕ(JS(ppe′qq)Kte)
= Vϕ(Jppe′qqKte)
= Vϕ(pe′q)

= Vϕ[x 7→Vϕ(a)](pe
′q)

= Vϕ[x 7→Vϕ(a)](e)

The third line is by the definition of sub; the fourth is by Lemma 6.3.1;
and the fifth is by the fact that Vϕ(e) does not depend on ϕ. Therefore,
C(peq) holds.

Case 10: e = JbKty. Let ϕ ∈ assign(S) such that Vϕ(a) 6= ⊥.
Suppose Vϕ(gea(pH−1(Vϕ[x 7→Vϕ(a)](b))q, ptypeq)) = t. By the defini-
tions of sub and free-for, H1(peq) and H2(peq) imply (1) H1(pbq) and
H2(pbq) and (2) H1(JS(pbq)Kte) and H2(JS(pbq)Kte). By the induc-
tion hypothesis, this implies (1) C(pbq) and (2) C(JS(pbq)Kte). Let
u = coerce-to-type(S(JS(pbq)Kte)). Then

Vϕ(JS(peq)Kk[e])
= Vϕ(JS(pJbKtyq)Kty)

= Vϕ(Jif(syn-closed(S(pbq)),

pif(gea(bS(pbq)c, ptypeq), buc,C)q,

⊥C)Kty)

= Vϕ(Jpif(gea(bS(pbq)c, ptypeq), buc,C)qKty)

= Vϕ(if(gea(JS(pbq)Kte, ptypeq), JuKty,C))

= Vϕ(if(gea(pH−1(Vϕ[x 7→Vϕ(a)](b))q, ptypeq), JuKty,C))

= Vϕ(Jcoerce-to-type(S(JS(pbq)Kte))Kty)

= Vϕ(Jcoerce-to-type(S(pH−1(Vϕ[x 7→Vϕ(a)](b))q))Kty)

= Vϕ(JS(pH−1(Vϕ[x 7→Vϕ(a)](b))q)Kty)

= Vϕ[x 7→Vϕ(a)](H
−1(Vϕ[x 7→Vϕ(a)](b)))

= Vϕ[x 7→Vϕ(a)](JpH
−1(Vϕ[x7→Vϕ(a)](b))qKty)

= Vϕ[x 7→Vϕ(a)](JbKty)

= Vϕ[x 7→Vϕ(a)](e).
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The third line is by the definition of sub; the fourth is by
H1(peq); the fifth is by Lemma 6.3.2 and part 1 of this
lemma; the sixth is by C(pbq); the seventh is by the hy-
pothesis that Vϕ(gea(pH−1(Vϕ[x 7→Vϕ(a)](b))q, ptypeq)) = t and
the definition of u; the eight is by C(pbq); the ninth is by
Vϕ(gea(pH−1(Vϕ[x 7→Vϕ(a)](b))q, ptypeq)) = t and part 1 of this lemma;
the tenth is by C(JS(pbq)Kte) since

Vϕ(JS(pbq)Kte) = Vϕ[x 7→Vϕ(a)](b) = Vϕ(pH−1(Vϕ[x 7→Vϕ(a)](b))q)

by C(pbq); the eleventh is by the semantics of evaluation; and the
twelveth is by

Vϕ[x 7→Vϕ(a)](JpH
−1(Vϕ[x 7→Vϕ(a)](b))qKty) = Vϕ[x 7→Vϕ(a)](b).

Therefore, C(peq) holds.

Now suppose Vϕ(gea(pH−1(Vϕ[x 7→Vϕ(a)](b))q, ptypeq)) = f. By a simi-
lar derivation to the one above, C(peq) holds.

Case 11: e = JbKα. Let ϕ ∈ assign(S) such that Vϕ(a) 6= ⊥. Suppose
Vϕ(gea(pH−1(Vϕ[x 7→Vϕ(a)](b))q, ptypeq)) = t and Vϕ(JbKte ↓ α) = t.
By the definitions of sub and free-for, H1(peq) and H2(peq) imply (1)
H1(pbq) and H2(pbq), (2) H1(pαq) and H2(pαq), and (3) H1(pe′q)
and H2(pe′q). By the induction hypothesis, this implies (1) C(pbq), (2)
C(pαq), and (3) C(JS(pbq)Kte). Let u = coerce-to-term(S(JS(pbq)Kte)).
Then

Vϕ(JS(peq)Kk[e])
= Vϕ(JS(pJbKαq)Kte)
= Vϕ(Jif(syn-closed(S(pbq)),

pif(gea(bS(pbq)c, pαq) ∧ buc ↓ bS(pαq)c, buc,⊥C)q,

⊥C)Kte)
= Vϕ(Jpif(gea(bS(pbq)c, pαq) ∧ buc ↓ bS(pαq)c, buc,⊥C)qKte)
= Vϕ(if(gea(JS(pbq)Kte, pαq) ∧ JuKte ↓ JS(pαq)Kty, JuKte,⊥C))

= Vϕ(if(gea(pH−1(Vϕ[x 7→Vϕ(a)](b))q, pαq) ∧
JuKte ↓ JS(pαq)Kty,
JuKte,
⊥C))
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= Vϕ(if(Jcoerce-to-term(S(JS(pbq)Kte))Kte ↓ JS(pαq)Kty,
Jcoerce-to-term(S(JS(pbq)Kte))Kte,
⊥C))

= Vϕ(if(Jcoerce-to-term(S(pH−1(Vϕ[x 7→Vϕ(a)](b))q))Kte ↓
JS(pαq)Kty,
Jcoerce-to-term(S(pH−1(Vϕ[x 7→Vϕ(a)](b))q))Kte,
⊥C))

= Vϕ(if(JS(pH−1(Vϕ[x 7→Vϕ(a)](b))q)Kte ↓ JS(pαq)Kty,

JS(pH−1(Vϕ[x 7→Vϕ(a)](b))q)Kte,
⊥C))

= Vϕ[x 7→Vϕ(a)](if(H−1(Vϕ[x 7→Vϕ(a)](b)) ↓ α,
H−1(Vϕ[x 7→Vϕ(a)](b)),

⊥C))

= Vϕ[x 7→Vϕ(a)](if(JpH−1(Vϕ[x 7→Vϕ(a)](b))qKte ↓ α,
JpH−1(Vϕ[x 7→Vϕ(a)](b))qKte,
⊥C))

= Vϕ[x 7→Vϕ(a)](if(JbKte ↓ α, JbKte,⊥C))

= Vϕ[x 7→Vϕ(a)](JbKα)

= Vϕ[x 7→Vϕ(a)](e).

The third line is by the definition of sub; the fourth is by
H1(peq); the fifth is by Lemma 6.3.2 and part 1 of this
lemma; the sixth is by C(pbq); the seventh is by the hy-
pothesis that Vϕ(gea(pH−1(Vϕ[x 7→Vϕ(a)](b))q, ptypeq)) = t and
the definition of u; the eight is by C(pbq); the ninth is by
Vϕ(gea(pH−1(Vϕ[x 7→Vϕ(a)](b))q, ptypeq)) = t and part 1 of this lemma;
the tenth is by C(pαq) and C(JS(pbq)Kte) since

Vϕ(JS(pbq)Kte) = Vϕ[x 7→Vϕ(a)](b) = Vϕ(pH−1(Vϕ[x 7→Vϕ(a)](b))q)

by C(pbq); the eleventh is by the semantics of evaluation; and the
twelveth is by

Vϕ[x 7→Vϕ(a)](JpH
−1(Vϕ[x7→Vϕ(a)](b))qKte) = Vϕ[x 7→Vϕ(a)](b).

Therefore, C(peq) holds.
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Now suppose Vϕ(gea(pH−1(Vϕ[x 7→Vϕ(a)](b))q, ptypeq)) = f or Vϕ(JbKte ↓
α) = f. By a similar derivation to the one above, C(peq) holds.

Case 12: e = JbKfo. Similar to case 10.

2

6.5 More Notational Definitions

Using some of the operators defined in this section and the previous section,
we give some notational definitions for additional variable binders. Let L
be a normal language.

1. Class Abstraction

(Cu : α . A) means

(ι x : power-type(α) . (∀u : α . u ∈ x ≡ A))

where x is some member of S such that

TLker |= ¬free-in(pxq, pαq)

and

TLker |= ¬free-in(pxq, pAq).

Compact notation:

{a1, . . . , an} means (Cu : V . u = a1 ∨ · · · ∨ u = an) for n ≥ 0.

2. Dependent Type Product

(⊗x : α . β) means

type((C p : V× V . ∃x : α . ∃ y : β . p = 〈x, y〉))

where p is some member of S such that

TLker |= ¬free-in(ppq, pαq)

and

TLker |= ¬free-in(ppq, pβq).
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3. Unique Existential Quantification

(∃ !x : α . A) means

(∃x : α . (A ∧ (∀ y : α . Jsub(p(y : α)q, pxq, pAq)Kfo ⊃ y = x)))

where y is some member of S such that

TLker |= ¬free-in(pyq, pAq),

TLker |= sub(p(y : α)q, pxq, pAq)↓,

and

TLker |= free-for(p(y : α)q, pxq, pAq).

7 Examples

7.1 Law of Excluded Middle

In many traditional logics, e.g., first-order logic, the law of excluded middle
(LEM) is expressed as a formula schema

A ∨ ¬A
where A can be any formula. In Chiron LEM can be expressed as a single
formula:

∀ e : Efo . JeK ∨ ¬JeK.

Using quasiquotation, LEM can alternately be expressed as the following
formula:

∀ e : Efo . is-eval-free(e) ⊃ Jpbec ∨ ¬becqKfo.

7.2 Infinite Dependency 1

The value of a proper expression may depend on the values that are assigned
to infinitely many symbols. For example, let A is the formula

∀z : Esy . Jp(b(z : Esy)c : Esy)qKEsy = pzq.

Let M = (S, V ) be a standard model of T and ϕ ∈ assign(S). Then Vϕ(A) =
t iff ϕ(x) = H(z) for all x ∈ S with x 6= z. Moreover, neither TLker |=
free-in(pxq, pAq) nor TLker |= ¬free-in(pxq, pAq) when x 6= z. Hence A is not
syntactically closed.

A more inclusive definition of free-in could be defined by adding an argu-
ment to free-in that represents the local context [18] of its second argument.
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7.3 Infinite Dependency 2

Here is another example of a proper expression that depends on the values
that are assigned to infinitely many symbols. Let A is the formula

infinite(C e : Esy . Jp(bec : C)qKte = ∅).

Let M = (S, V ) be a standard model of T and ϕ ∈ assign(S). Then Vϕ(A) =
t iff ϕ(x) is the empty set for infinitely many x ∈ S. This implies Vϕ(A) =
Vϕ[x 7→d](A) for all ϕ ∈ assign(S), x ∈ S, and d ∈ Dc. Neither TLker |=
free-in(pxq, pAq) nor TLker |= ¬free-in(pxq, pAq) when x ∈ S. Hence A is not
syntactically closed.

7.4 Conjunction

In subsection 5.1 we defined the operator and for conjunction using an infi-
nite set of syntactically closed eval-free formulas. We can alternately define
conjunction as a single formula A:

∀ p : Efo × Efo . (and :: formula, formula, formula)(Jhd(p)Kfo, Jtl(p)Kfo) ≡
¬(¬Jhd(p)Kfo ∨ ¬Jtl(p)Kfo).

A is obviously not eval-free, and neither TLker |= free-in(pxq, pAq) nor TLker |=
¬free-in(pxq, pAq) when x 6= p. Hence A is not syntactically closed.

The following is an alternative form for this formula with two universally
quantified variables instead of one:

∀ e1, e2 : Efo . (and :: formula, formula, formula)(Je1K, Je2K) ≡
¬(¬Je1K ∨ ¬Je2K).

This latter form is more natural, but it cannot be instantiated using
Lemma 6.4.10 like the former form.

7.5 Modus Ponens

Like the law of excluded middle, other laws of logic are usually expressed
as formula schemas. In Chiron these laws can be expressed as single formu-
las. For example, the following Chiron formula expresses the law of modus
ponens:

∀ p : Efo × Efo .

(Jhd(p)Kfo ∧ Jtl(p)Kfo ∧ is-impl(tl(p)) ∧ hd(p) = 1st-arg(tl(p))) ⊃
J2nd-arg(tl(p))Kfo.
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Deduction and computation rules are naturally represented as transform-
ers [10], algorithms that map expressions to expressions. Transformers can
be directly formalized in Chiron. For example, the following function ab-
straction, which maps a pair of formulas to a formula, formalizes the modus
ponens rule of inference:

λ p : Efo × Efo .

if(is-impl(tl(p)) ∧ hd(p) = 1st-arg(tl(p)), 2nd-arg(tl(p)),⊥C).

Let (modus-ponens :: (Efo × Efo) → Efo)( ) be a constant that is defined to
be this function abstraction, and let mp(a) mean

(modus-ponens :: (Efo × Efo)→ Efo)( )(a).

Then the following formula is an alternate expression of the law of modus
ponens:

∀ p : Efo × Efo . (Jhd(p)Kfo ∧ Jtl(p)Kfo ∧mp(p)↓) ⊃ Jmp(p)Kfo.

7.6 Beta Reduction

There are two laws of beta reduction in Chiron, one for the application of a
dependent function type and one for the application of a function abstrac-
tion. Without quotation and evaluation, the latter beta reduction law would
be informally expressed as the formula schema

(λx : α . b)(a) ' b[x 7→ a]

provided:

1. a ↓ (α ∩ V).

2. b[x 7→ a] ↓ V.

3. a is free for (x : α) in b.

Notice that this schema includes four schema variables (x, α, b, a), a sub-
stitution instruction, two semantic side conditions (conditions (1) and (2)),
and a syntactic side condition (condition (3)). Moreover, if either of the two
semantic side conditions is false, (λx : α . b)(a) is undefined.

Using constructions, quotation, and evaluation, both laws of beta reduc-
tion can be formalized in Chiron as rules of inference in which the substitu-
tion instructions and syntactic side conditions are expressed in Chiron. For
example, the law of beta reduction for function abstractions would be:
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From

1. is-fun-redex(a),

2. sub(redex-arg(a), 1st-comp(redex-var(a)), redex-body(a))↓,

3. free-for(redex-arg(a), 1st-comp(redex-var(a)), redex-body(a)))

infer

if(Jredex-arg(a)Kte ↓ (J2nd-comp(redex-var(a))Kty ∩ V) ∧
Jsub(redex-arg(a), 1st-comp(redex-var(a)), redex-body(a))Kte ↓ V,

JaKte ' Jsub(redex-arg(a), 1st-comp(redex-var(a)), redex-body(a))Kte,
JaKte ↑)

The beta reduction law for function abstractions is applied to an application
b of a function abstraction by letting a be the quotation pbq.

7.7 Liar Paradox

We will formalize in Chiron the liar paradox mentioned in subsection 4.1.
Assume that nat is a type and 0, 1, 2, . . . denote terms such that nat denotes
an infinite set {0, 1, 2, . . .}. Assume also that num is a type that denotes the
set {p0q, p1q, p2q, . . .}. And finally assume that enum is a term that denotes
a function which is a bijection from {p0q, p1q, p2q, . . .} to the set F of all
terms of type (Λ e : E . E)—which is the same as (E→ E)—that are definable
by a syntactically closed function abstraction of the form (λ e : E . b).

The following function abstraction denotes some f ∈ F :

λ e : E .

[pop-appq,

[popq, pnotq, pformulaq, pformulaq],

[pevalq,

[pfun-appq, [pfun-appq, penumq, e], e],

pformulaq]].

Using quasiquotation, f can be expressed much more succinctly as

λ e : E . p¬Jenum(bec)(bec)Kfoq.

For some i of type nat, enum(piq) = f . Then

enum(piq)(piq) = f(piq)

= p¬Jenum(piq)(piq)Kfoq.
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Therefore, if LIAR is the term enum(piq)(piq), then

LIAR = p¬JLIARKfoq.

8 A Proof System

We present in this section a proof system for Chiron called CL (parameter-
ized by a normal language L). We will state and prove a soundness theorem
and a completeness theorem for CL. CL is intended to be neither a prac-
tical nor implemented proof system for Chiron. Its purpose is to serve as
(1) a system test of Chiron’s definition and (2) a reference system for other,
possibly implemented, proof systems for Chiron.

8.1 Definitions

Fix a normal language L of Chiron for the rest of this section. CL is a
Hilbert-style proof system for Chiron consisting of 10 rules of inference and
an infinite set of axioms. The rules of inference are given below in subsec-
tion 8.2. The axioms are the instances of the 68 axiom schemas given below
in subsection 8.3. The set of axioms depends on the language L.

Let T = (L,Γ) be a theory of Chiron and A be a formula. A proof of
A from T in CL is a finite sequence of formulas of L such that A is the last
member of the sequence and every member of the sequence is an axiom of
CL, a member of Γ, or is inferred from previous members of the sequence
by one of the rules of inference of CL. Let T ` A mean there is a proof of
A from T in CL. T is consistent if there is some formula A of L such that
T ` A does not hold.

Let T be a set of theories over L and F be a set of formulas of L. CL is
sound with respect to T and F if, for every T ∈ T and formula A ∈ F ,

T ` A implies T |= A.

CL is complete with respect to T and F if, for every T ∈ T and formula
A ∈ F ,

T |= A implies T ` A.

After presenting the rules of inference and axioms of CL, we will prove
that CL is sound with respect to the set of all normal theories over L and the
set of all formulas of L and complete with respect to the set of all eval-free
normal theories over L and the set of all eval-free formulas of L.
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8.2 Rules of Inference

CL has the 10 rules of inference stated below. The first two rules of inference
are often employed in Hilbert-style proof systems for first-order logic. The
last eight would normally be expressed as axiom schemas in a Hilbert-style
proof systems for a traditional logic. They are expressed as rules of inference
in CL because the syntactic side conditions, which are expressed directly in
Chiron, must be hypotheses in order for the rules to a preserve validity in a
standard model of a normal theory.

Rule 1 (Modus Ponens)
From

1. A,

2. A ⊃ B

infer

B.

Rule 2 (Universal Generalization)
From

A

infer

∀x : α . A.

Rule 3 (Universal Quantifier Shifting)
From

¬free-in(pxq, pAq)

infer

(∀x : α . (A ∨B)) ⊃ (A ∨ (∀x : α . B)).

Rule 4 (Universal Instantiation)
From

1. sub(paq, pxq, pAq)↓,

2. free-for(paq, pxq, pAq)
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infer

((∀x : α . A) ∧ a ↓ α) ⊃ Jsub(paq, pxq, pAq)Kfo.

Rule 5 (Definite Description)
From

1. sub(p(ι x : α . A)q, pxq, pAq)↓,

2. free-for(p(ι x : α . A)q, pxq, pAq)

infer

(∃ !x : α . A) ⊃ Jsub(p(ι x : α . A)q, pxq, pAq)Kfo.

Rule 6 (Indefinite Description)
From

1. sub(p(ε x : α . A)q, pxq, pAq)↓,

2. free-for(p(ε x : α . A)q, pxq, pAq)

infer

(∃x : α . A) ⊃ Jsub(p(ε x : α . A)q, pxq, pAq)Kfo.

The function machinery of Chiron—type application, dependent function
types, function application, and function abstraction—is specified by the
following four rules of inference.

Rule 7 (Type Application)
From

1. ¬free-in(pyq, pαq),

2. ¬free-in(pyq, paq),

3. ¬free-in(pfq, pαq),

4. ¬free-in(pfq, paq)

infer

if(a↓, ∀ y : C . y ↓ α(a) ≡ (∃ f : α . fun(f) ∧ 〈a, y〉 ∈ f), α(a) =ty C).
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Rule 8 (Dependent Function Types)
From

1. ¬free-in(pfq, pαq),

2. ¬free-in(pfq, pβq),

3. ¬free-in(pxq, pαq),

4. ¬free-in(pxq, pβq)

infer

∀ f : C . f ↓ (Λx : α . β) ≡
(fun(f) ∧ (∀x : V . f(x)↓ ⊃ (x ↓ α ∧ f(x) ↓ β))).

Rule 9 (Function Application)
From

1. ¬free-in(pyq, pαq),

2. ¬free-in(pyq, paq),

3. ¬free-in(pyq, pfq)

infer

f(a) ' (ι y : α(a) . fun(f) ∧ 〈a, y〉 ∈ f).

where f is of type α.

Rule 10 (Function Abstraction)
From

1. ¬free-in(pfq, pαq),

2. ¬free-in(pfq, pβq),

3. ¬free-in(pfq, pbq),

4. ¬free-in(pxq, pαq),

5. ¬free-in(pxq, pbq),

6. ¬free-in(pyq, pβq),

7. ¬free-in(pyq, pbq)
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infer

(λx : α . b) '
(ι f : (Λx : α . β) .

(∀x : α, y : β . f(x) = y ≡ (x ↓ V ∧ b ↓ V ∧ y = b))).

where b is of type β.

8.3 Axiom Schemas

The axioms of CL are presented by 68 axiom schemas, organized into 13
groups. Each axiom schema is specified by a formula schema. An instance
of an axiom schema of CL is any formula of L that is obtained by replacing
the schema variables in the schema with appropriate expressions.

The first group of axiom schemas define conjunction and implication in
terms of negation and disjunction in the usual way and give a complete set
of axioms for propositional logic in terms of disjunction and implication.

Axiom Schemas 1 (Propositional Logic)

1. (A ∧B) ≡ ¬(¬A ∨ ¬B).

2. (A ⊃ B) ≡ (¬A ∨B).

3. (A ∨A) ⊃ A.

4. A ⊃ (B ∨A).

5. (A ⊃ B) ⊃ ((C ∨A) ⊃ (B ∨ C))).

The next group of axiom schemas specify that the three equalities
type-equal, quasi-equal, and formula-equal are equivalence relations as well
as congruences with respect to formulas.

Axiom Schemas 2 (Equality)

1. α =ty α.

2. α =ty β ⊆ C ≡ D

where D is the result of replacing one occurrence of α in C by an
occurrence of β, provided that the occurrence of α in C is not within
a quotation.

3. a ' a.
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4. a ' b ⊆ C ≡ D

where D is the result of replacing one occurrence of a in C by an
occurrence of b, provided that the occurrence of a in C is not within a
quotation and is not a variable (x : α) immediately preceded by Λ, λ,
∃, ι, or ε.

5. A ≡ A.

6. A ≡ B ⊆ C ≡ D

where D is the result of replacing one occurrence of A in C by an
occurrence of B, provided that the occurrence of A in C is not within
a quotation.

The following axiom schemas specify the general definedness laws for
operators. For a kind k, let

k =


k if k = type
C if typeL[k]
k if k = formula.

Axiom Schemas 3 (General Operator Properties)

1. ei1 ↓ ki1 ∧ · · · ∧ eim ↓ kim ⊃
(o :: k1, . . . , kn, type)(e1, . . . , en) =ty

(o :: k1, . . . , kn, type)(e1, . . . , en)

where n ≥ 1 and ki1 , . . . , kim is the subsequence of types in the sequence
k1, . . . , kn of kinds.

2. ei1 ↓ ki1 ∧ · · · ∧ eim ↓ kim ⊃
(o :: k1, . . . , kn, β)(e1, . . . , en) '
(o :: k1, . . . , kn, β)(e1, . . . , en)

where n ≥ 1 and ki1 , . . . , kim is the subsequence of types in the sequence
k1, . . . , kn of kinds.

3. ei1 ↓ ki1 ∧ · · · ∧ eim ↓ kim ⊃
(o :: k1, . . . , kn, formula)(e1, . . . , en) ≡
(o :: k1, . . . , kn, formula)(e1, . . . , en)

where n ≥ 1 and ki1 , . . . , kim is the subsequence of types in the sequence
k1, . . . , kn of kinds.
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4. (o :: k1, . . . , kn, β)(e1, . . . , en)↓ ⊃
(o :: k1, . . . , kn, β)(e1, . . . , en) =
(o :: k1, . . . , kn,C)(e1, . . . , en)

where n ≥ 0.

5. (a↓ ∧ a ↑ α) ⊃
(o :: k1, . . . , ki−1, α, ki+1, . . . , kn, type)
(e1, . . . , ei−1, a, ei+1, . . . , en) =ty C

where n ≥ 1.

6. (a↓ ∧ a ↑ α) ⊃
(o :: k1, . . . , ki−1, α, ki+1, . . . , kn, β)
(e1, . . . , ei−1, a, ei+1, . . . , en)↑

where n ≥ 1.

7. (a↓ ∧ a ↑ α) ⊃
(o :: k1, . . . , ki−1, α, ki+1, . . . , kn, formula)
(e1, . . . , ei−1, a, ei+1, . . . , en) ≡ F

where n ≥ 1.

8. (o :: k1, . . . , kn, β)(e1, . . . , en)↓ ⊃
(o :: k1, . . . , kn, β)(e1, . . . , en) ↓ β

where n ≥ 0.

The following axiom schemas specify specific definedness laws for the
built-in operators.

Axiom Schemas 4 (Built-In Operator Definedness)

1. `↓.

2. Eon,a 6=ty C ⊃ a↓.

3. Ea 6=ty C ⊃ a↓.

4. Eop,a 6=ty C ⊃ a↓.

5. Ety,a 6=ty C ⊃ a↓.

6. Ete,a 6=ty C ⊃ a↓.

7. Ebte,a 6=ty C ⊃ (a↓ ∧ b↓).
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8. Efo,a 6=ty C ⊃ a↓.

9. a ∈ b ⊃ (a↓ ∧ b↓).

10. a =α b ⊃ (a ↓ α ∧ b ↓ α).

The general definedness law for variables is specified by the following
axiom schema.

Axiom Schemas 5 (Variable Definedness)

1. (x : α)↓ ⊃ (x : α) ↓ α.

The following axiom schemas specify the extensionality of types and
universal quantification over the canonical empty type.

Axiom Schemas 6 (Types)

1. α =ty β ≡ (∀x : C . x ↓ α ≡ x ↓ β).

2. ∀x : ∇ . A.

The following 18 axiom schemas correspond to the 18 axiom schemas
that constitute the axiomatization of nbg set theory given by K. Gödel
in [13].

Axiom Schemas 7 (NBG Set Theory)

1. (x : C)↓ .

2. ∀x : C . x ↓ V ≡ (∃ y : C . x ∈ y).

3. ∀x, y : C . (∀u : V . u ∈ x ≡ u ∈ y) ⊃ x = y.

4. ∀u, v : V . {u, v}↓ .

5. ∃x : C . ∀u, v : V . 〈u, v〉 ∈ x ≡ u ∈ v.

6. ∀x, y : C . (x ∩ y)↓ .

7. ∀x : C . x↓ .

8. ∀x : C . dom(x)↓ .

9. ∀x : C . ∃ y : C . ∀u, v : V . 〈u, v〉 ∈ y ≡ u ∈ x.
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10. ∀x : C . ∃ y : C . ∀u, v : V . 〈u, v〉 ∈ y ≡ 〈v, u〉 ∈ x.

11. ∀x : C . ∃ y : C . ∀u, v, w : V . 〈u, v, w〉 ∈ y ≡ 〈v, w, u〉 ∈ x.

12. ∀x : C . ∃ y : C . ∀u, v, w : V . 〈u, v, w〉 ∈ y ≡ 〈u,w, v〉 ∈ x.

13. ∃u : V . u 6= ∅ ∧ (∀ v : V . v ∈ u ⊃ (∃w : V . w ∈ u ∧ v ⊂ w)).

14. ∀u : V . sum(u) ↓ V.

15. ∀u : V . power(u) ↓ V.

16. ∀x : C . univocal(x) ⊃
(∀u : V . ∃ v : V . ∀ t : V . t ∈ v ≡ (∃ s : V . s ∈ u ∧ 〈s, t〉 ∈ x)).

17. ∀x : C . x 6= ∅ ⊃ (∃u : V . u ∈ x ∧ ∀ v : V . ¬(v ∈ u ∧ v ∈ x)).

18. ∃ f : C . fun(f) ∧ (∀u : V . u 6= ∅ ⊃ f(u) ∈ u).

Conditional terms are specified by two axiom schemas.

Axiom Schemas 8 (Conditional Terms)

1. A ⊃ if(A, b, c) ' b.

2. ¬A ⊃ if(A, b, c) ' c.

Definite description is specified by the Definite Description rule of in-
ference given above and the following two axiom schemas, one for proper
definite descriptions and one for improper.

Axiom Schemas 9 (Definite Description)

1. (∃ !x : α . A) ⊃ (ι x : α . A) ↓ α).

2. ¬(∃ !x : α . A) ⊃ (ι x : α . A)↑ .

Indefinite description is specified by the Indefinite Description rule of
inference given above and the following three axiom schemas, one for proper
indefinite descriptions, one for improper indefinite descriptions, and one for
formulas that are satisfied by the same classes.
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Axiom Schemas 10 (Indefinite Description)

1. (∃x : α . A) ⊃ (ε x : α . A) ↓ α).

2. ¬(∃x : α . A) ⊃ (ε x : α . A)↑ .

3. (∀x : C . A ≡ B) ⊃ (ε x : C . A) = (ε x : C . B).

Quotation is specified by the following three axiom schemas. Note that
the quotation of a symbol and the quotation of an operator name are not
fully specified.

Axiom Schemas 11 (Quotation)

1. psq ↓ Esy

where s ∈ S.

2. poq ↓ Eon

where o ∈ O.

3. ps1q 6= ps2q

where s1, s2 ∈ S ∪ O with s1 6= s2.

4. p(e1, . . . , en)q =E [pe1q, . . . , penq]

where e1, . . . , en ∈ EL and n ≥ 0.

Evaluation is specified by the following six axiom schemas. This set of
axiom schemas expresses the same information as parts 1–6 of Lemma 6.3.1.

Axiom Schemas 12 (Evaluation)

1. is-eval-free(pαq) ⊃ JpαqKty =ty α.

2. ¬gea(b, ptypeq) ⊃ JbKty =ty C.

3. is-eval-free(paq) ⊃ JpaqKα = if(a ↓ α, a,⊥C).

4. ¬gea(b, pαq) ⊃ JbKα ' ⊥C.

5. is-eval-free(pAq) ⊃ JpAqKfo ≡ A.

6. ¬gea(b, pformulaq) ⊃ JbKfo ≡ F.
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The following eight axiom schemas specify the eight kinds of construction
types. The type operators named expr-sym and expr-op-name are specified
by their properties. expr is specified from expr-sym and expr-op-name by
induction. And those named expr-op, expr-type, expr-term-type, expr-term,
and expr-formula are defined by mutual recursion.

Axiom Schemas 13 (Construction Types)

1. ` = term(Eon).

2. Esy ∪ Eon � V.

3. Esy ∩ Eon =ty ∇.

4. countably-infinite(term(Esy)).

5. ∃u : V . countably-infinite(u) ∧ term(Eon) ⊆ u.

6. ∀x : Esy ∪ Eon . x 6= ∅ ∧ ¬ is-ord-pair(x).

7. ∀u : L, u = term(Eon,u).

8. ∀u : L, v : V .
((∀u0 : Esy ∪ Eon,u . u0 ∈ v) ∧
∅ ∈ v ∧
(∀u1, u2 : V . (u1 ∈ v ∧ u2 ∈ v ∧ u2 ↑ Esy ∪ Eon,u) ⊃ 〈u1, u2〉 ∈ v))
⊃ term(Eu) ⊆ v.

9. ∀u : L, x : C . x ↓ Eop,u ≡
(∃ e : Eon,u . x = p(bec :: type)q ∨

(∃ e′ : Ety,u . x = p(bec :: be′c)q) ∨
x = p(bec :: formula)q) ∨

(∃ e : Eop,u . x = e^[ptypeq] ∨
(∃ e′ : Ety,u . x = e^[e′])
x = e^[pformulaq]).

10. ∀u : L, x : C . x ↓ Ety,u ≡
(∃ e : Eon,u . x = [pop-appq, [popq, e, ptypeq]]) ∨
(∃ e1 : Eon,u, e2, e3 : Eu .

[pop-appq, [popq, e1]^e2^[ptypeq]]^e3 ∈ Ety,u ∧
((∃ e : Ety,u .

x = [pop-appq, [popq, e1]^e2^[ptypeq, ptypeq]]^e3^[e]) ∨
(∃ e : Ety,u, e

′ : Ete,u .
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x = [pop-appq, [popq, e1]^e2^[e, ptypeq]]^e3^[e′])
(∃ e : Efo,u .
x = [pop-appq, [popq, e1]^e2^[pformulaq, ptypeq]]^e3^[e])

)) ∨
(∃ e1 : Ety,u, e2 : Ete,u . x = pbe1c(be2c)q) ∨
(∃ e1 : Eon,u, e2, e3 : Ety,u . x = p(Λ be1c : be2c . be3c)q) ∨
(∃ e : Ete,u . x = pJbecKtyq).

11. ∀u : L, ê : Ety,u, x : C . x ↓ Eête,u ≡
(∃ e : Eon,u . x = [pop-appq, [popq, e, ê]]) ∨
(∃ e1 : Eon,u, e2, e3 : Eu .

[pop-appq, [popq, e1]^e2^[ê]]^e3 ∈ Eête,u ∧
((∃ e : Ety,u .

x = [pop-appq, [popq, e1]^e2^[ptypeq, ê]]^e3^[e]) ∨
(∃ e : Ety,u, e

′ : Ete,u .
x = [pop-appq, [popq, e1]^e2^[e, ê]]^e3^[e′])

(∃ e : Efo,u .
x = [pop-appq, [popq, e1]^e2^[pformulaq, ê]]^e3^[e]))) ∨

(∃ e : Esy,u . x = p(bec : bêc)q) ∨
(∃ e1 : Ety,u, e2 : Ee1te,u, e3 : Ete,u .

x = pbe2c(be3c)q ∧ ê = pbe1c(be3c)q) ∨
(∃ e1 : Esy,u, e2, e3 : Ety,u, e4 : Ee3te,u .

x = pλ be1c : be2c . be4cq ∧ ê = pΛ be1c : be2c . be3cq) ∨
(∃ e1 : Efo,u, e2, e3 : Ety,u, e4 : Ee2te,u, e5 : Ee3te,u .

x = pif, be1c, be4c, be5cq ∧ ê = if(e2 = e3, e2, pCq)) ∨
(∃ e1 : Esy,u, e2 : Efo,u . x = p(ι be1c : bêc . be2c)q) ∨
(∃ e1 : Esy,u, e2 : Efo,u . x = p(ε be1c : bêc . be2c)q) ∨
(∃ e : Eu . x = pbecq ∧ ê = pEuq) ∨
(∃ e : Ete,u . x = pJbecKbêcq).

12. ∀u : L, x : C . x ↓ Ete,u ≡ (∃ ê : Ety,u . x ↓ Eête,u).

13. ∀u : L, x : C . x ↓ Efo,u ≡
(∃ e : Esy,u . x = [pop-appq, [popq, e, pformulaq]]) ∨
(∃ e1 : Esy,u, e2, e3 : Eu .

[pop-appq, [popq, e1]^e2^[pformulaq]]^e3 ∈ Efo,u ∧
((∃ e : Ety,u .

x = [pop-appq, [popq, e1]^e2^[ptypeq, pformulaq]]^e3^[e]) ∨
(∃ e : Ety,u, e

′ : Ete,u .
x = [pop-appq, [popq, e1]^e2^[e, pformulaq]]^e3^[e′])

(∃ e : Efo,u .
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x = [pop-appq, [popq, e1]^e2^[pformulaq, pformulaq]]
^e3^[e]))) ∨

(∃ e1 : Esy,u, e2 : Ety,u, e3 : Efo,u . x = p(∃ be1c : be2c . be3c)q) ∨
(∃ e : Ete,u . x = pJbecKfoq).

8.4 Soundness

Fix a normal theory T = (L,Γ) for the rest of this subsection. We will prove
that CL is sound (with respect to the set of all normal theories over L and
the set of all formulas of L) by showing that its rules of inference preserve
validity in every standard model of T and its axioms are valid in T .

Proposition 8.4.1 (Propositional Connectives) The built-in operators
and defined operators that represent propositional connectives in Chiron—
the formula operators named formula-equal, not, or, true, false, and, and
implies—have their usual meanings in every standard model of T .

Proof Let M be a standard model of T . The built-in operator names
formula-equal, not, and or are assigned their usual meanings in M by the
definition of a standard model. The defined operators true, false, and, and
implies are given their usual meanings in M by their definitions. 2

Proposition 8.4.2 (Quantification over Empty Types) Let M =
(S, V ) be a standard model of T and ϕ ∈ assign(S). If Vϕ(α) is empty,
then:

1. Vϕ(∃x : α . A) = f.

2. Vϕ(∀x : α . A) = t.

Proof Vϕ(∃x : α . A) = f by the definition of V on existential quantifica-
tions. This implies Vϕ(∀x : α . A) = t by the notational definition of ∀ and
Proposition 8.4.1. 2

Lemma 8.4.3 (Modus Ponens) The rule Modus Ponens preserves valid-
ity in every standard model of T .

Proof Let M = (S, V ) be a standard model of T . Suppose M |= A and
M |= A ⊃ B. It follows immediately by Proposition 8.4.1 that M |= B.
Therefore, Modus Ponens preserves validity in every standard model of T .
2
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Lemma 8.4.4 (Universal Generalization) The rule Universal General-
ization preserves validity in every standard model of T .

Proof Let M = (S, V ) be a standard model of T . Suppose M |= A.
Then (i) Vϕ(A) = t for all ϕ ∈ assign(S). We need to show that M |=
∀x : α . A. That is, we need to show (ii) Vϕ(∀x : α . A) = t for all
ϕ ∈ assign(S). Let ϕ ∈ assign(S). If Vϕ(α) is empty, then Vϕ(∀x : α . A) = t
by Proposition 8.4.2. So we may assume that Vϕ(α) is nonempty. Let d be
in Vϕ(α). Then ϕ[x 7→ d](x) is in Vϕ(α), and so by (i), Vϕ[x 7→d](A) = t.
This implies Vϕ(∀x : α . A) = t by the notational definition of ∀ and the
definition of V on existential quantifications. Therefore, (ii) holds and thus
Universal Generalization preserves validity in every standard model of T . 2

Lemma 8.4.5 (Universal Quantifier Shifting) The rule Universal
Quantifier Shifting preserves validity in every standard model of T .

Proof Let M = (S, V ) be a standard model of T . Suppose (i) M |=
¬free-in(pxq, pAq) and (ii) Vϕ(∀x : α . (A ∨ B)) = t for ϕ ∈ assign(S). We
must show Vϕ(A ∨ (∀x : α . B)) = t. Our argument is by cases:

Case 1: Vϕ(A) = t. Hence, by Proposition 8.4.1, Vϕ(A ∨ (∀x : α .
B)) = t.

Case 2: Vϕ(A) = f. It suffices to show (iii) Vϕ(∀x : α . B) = t since
this implies Vϕ(A∨ (∀x : α . B)) = t by Proposition 8.4.1. If Vϕ(α) is
empty, then (iii) holds by Proposition 8.4.2. So let d be in Vϕ(α). By
the notational definition of ∀, the definition of V on existential quan-
tifications, and (ii), Vϕ[x 7→d](A ∨B) = t. This implies Vϕ[x 7→d](A) = t
or Vϕ[x 7→d](B) = t by Proposition 8.4.1. By the hypothesis, (i), and
Lemma 6.4.5, Vϕ[x7→d](A) = f. This implies Vϕ[x 7→d](B) = t, and hence
(iii) holds by the notational definition of ∀ and the definition of V on
existential quantifications.

2

Lemma 8.4.6 (Universal Instantiation) The rule Universal Instantia-
tion preserves validity in every standard model of T .

Proof Let M = (S, V ) be a standard model of T . Suppose (i) M |=
sub(paq, pxq, pAq)↓, (ii) M |= free-for(paq, pxq, pAq), and (iii) Vϕ((∀x : α .
A) ∧ a ↓ α) = t for ϕ ∈ assign(S). We must show

Vϕ(Jsub(paq, pxq, pAq)Kfo) = t.
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By Proposition 8.4.1, (iii) implies (iv) Vϕ(∀x : α . A) = t and (v) Vϕ(a ↓
α) = t. (v) implies (vi) Vϕ(a) 6= ⊥ and (vii) Vϕ(a) is in Vϕ(α). (iv) and
(vii) imply (viii) Vϕ[x7→Vϕ(a)](A) = t by the notational definition of ∀ and
the definition of V on existential quantifications. (i), (ii), (vi), and (viii)
imply

Vϕ(Jsub(paq, pxq, pAq)Kfo) = Vϕ[x 7→Vϕ(a)](A) = t

by Lemma 6.4.10. 2

Lemma 8.4.7 (Definite Description) The rule Definite Description
preserves validity in every standard model of T .

Proof Let M = (S, V ) be a standard model of T . Suppose (i) M |=
sub(p(ι x : α . A)q, pxq, pAq) ↓, (ii) M |= free-for(p(ι x : α . A)q, pxq, pAq)
and (iii) Vϕ(∃ !x : α . A) = t for ϕ ∈ assign(S). We need to show

Vϕ(Jsub(p(ι x : α . A)q, pxq, pAq)Kfo) = t.

By the notational definition of unique existential quantification and the defi-
nition of V on existential quantifications, (iii) implies (iv) there is a unique d
in Vϕ(α) such that Vϕ[x 7→d](A) = t, and by the definition of V on definite de-
scriptions, (iv) implies (v) there is a d in Vϕ(α) such that Vϕ(ι x : α . A) = d.
(v) implies (vi) Vϕ(ι x : α . A) 6= ⊥. (i), (ii), (iv), (v), and (vi) imply

Vϕ(Jsub(p(ι x : α . A)q, pxq, pAq)Kfo) = Vϕ[x 7→Vϕ(ι x:α.A)](A)

= Vϕ[x 7→d](A)

= t

by Lemma 6.4.10. 2

Lemma 8.4.8 (Indefinite Description) The rule Indefinite Description
preserves validity in every standard model of T .

Proof Similar to the proof of Lemma 8.4.7. 2

Lemma 8.4.9 (Functions) The four rules of inference for functions pre-
serve validity in every standard model of T .

Proof The rule Type Application specifies the value of a type applica-
tion α(a) by Proposition 8.4.1, the definitions of free-in, fun, and ord-pair,
and the definition of V on type applications. The rule Dependent Func-
tion Type specifies the value of a dependent function type (Λx : α . β) by
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Proposition 8.4.1, the definition of free-in and fun, and the definition of V
on dependent function types. The rule Function Application specifies the
value of a function application f(a) by Proposition 8.4.1, the definitions of
free-in, and fun, and ord-pair, and the definition of V on type and function
applications. And, finally, the rule Function Abstraction specifies the value
of a function abstraction (λx : α . b) of a function abstraction by Propo-
sition 8.4.1, the definition of free-in, and the definition of V on dependent
function types, function applications, and function abstractions. Therefore,
each of the four rules of inference for functions preserves validity in every
standard model of T . 2

Lemma 8.4.10 (Axiom Schemas 1) Each instance of the axiom
schemas in Axiom Schemas 1 is valid in T .

Proof The instances of these five axiom schemas are tautologies under
the usual interpretations of the propositional connectives. Therefore, by
Proposition 8.4.1, each such instance is valid in T . 2

Lemma 8.4.11 (Axiom Schemas 2) Each instance of the axiom
schemas in Axiom Schemas 2 is valid in T .

Proof The instances of these six axiom schemas are valid in T by clauses n,
o, and p of the definition of I in a structure for L, the notational definition
of ', and the compositionality of the definition of the standard valuation.
2

Lemma 8.4.12 (Axiom Schemas 3) Each instance of the axiom
schemas in Axiom Schemas 3 is valid in T .

Proof The instances of the eight axiom schemas are valid in T by Propo-
sition 8.4.1, the definition of I in a structure for L, and the definition of the
standard valuation on operator applications. 2

Lemma 8.4.13 (Axiom Schemas 4) Each instance of the axiom
schemas in Axiom Schemas 4 is valid in T .

Proof The instances of these ten axiom schemas are valid in T by Propo-
sition 8.4.1 and clauses c–d and f–m, respectively, of the definition of I in a
structure for L. 2

Lemma 8.4.14 (Axiom Schemas 5) Each instance of the axiom
schemas in Axiom Schemas 5 is valid in T .
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Proof The instances of this axiom schema are valid in T by Proposi-
tion 8.4.1 and the definition of the standard valuation on variables. 2

Lemma 8.4.15 (Axiom Schemas 6) Each instance of the axiom
schemas in Axiom Schemas 6 is valid in T .

Proof The instances of the first axiom schema are valid in T by the
definition of Ds and clause n of the definition of I in a structure for L. The
instances of the second axiom schema are valid in T by the definition of ∇
and Proposition 8.4.2. 2

Lemma 8.4.16 (Axiom Schemas 7) Each instance of the axiom
schemas in Axiom Schemas 7 is valid in T .

Proof Let M = (S, V ) be a standard model of T . The set-theoretic built-
in operator names class, set, and in are given their usual meanings in M
by the definition of a standard model. The defined set-theoretic operators
empty-set, pair, ord-pair, subclass, intersection, complement, fun, dom, sum,
and power are given their usual meanings in M by their definitions. S is
constructed from a prestructure (D,∈) that satisfies the axioms of nbg set
theory. The instances of the axiom schemas in Axiom Schema 7 are exactly
these axioms expressed in the language of Chiron. Therefore, the instances
are valid in M and thus valid in T . 2

Lemma 8.4.17 (Axiom Schemas 8) Each instance of the axiom
schemas in Axiom Schemas 8 is valid in T .

Proof The instances of these two axiom schemas are valid in T by Propo-
sition 8.4.1, the definition of the standard valuation on conditional terms,
and the notational definition of '. 2

Lemma 8.4.18 (Axiom Schemas 9) Each instance of the axiom
schemas in Axiom Schemas 9 is valid in T .

Proof Let M = (S, V ) be a standard model of T and ϕ ∈ assign(S).

Schema 1 Follows from the proof of Lemma 8.4.7.

Schema 2 Assume (i) Vϕ(¬(∃ !x : α . A)) = t. By Proposition 8.4.1,
we must show (ii) Vϕ((ι x : α . A) ↑) = t. By the notational definition
of unique existential quantification and the definition of V on existential
quantifications, (i) implies (iii) there is no unique d in Vϕ(α) such that
Vϕ[x 7→d](A) = t, and by the definition of V on definite descriptions, (iii)
implies (ii). 2
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Lemma 8.4.19 (Axiom Schemas 10) Each instance of the axiom
schemas in Axiom Schemas 10 is valid in T .

Proof The proof for the first two axiom schema is similar to the proof of
Lemma 8.4.18. The proof for the third axiom schema follows immediately
from the definition of the standard valuation on indefinite descriptions. 2

Lemma 8.4.20 (Axiom Schemas 11) Each instance of the axiom
schemas in Axiom Schemas 11 is valid in T .

Proof The instances of these three axiom schemas are valid in T by the
definition of H in a structure for L, the definition of the defined operator
named ord-pair, and the definition of the standard valuation on quotations.
2

Lemma 8.4.21 (Axiom Schemas 12) Each instance of the axiom
schemas in Axiom Schemas 12 is valid in T .

Proof The instances of these six axiom schemas are valid in T by Propo-
sition 8.4.1, Lemma 6.3.1, and the definition of the defined operator named
gea. 2

Lemma 8.4.22 (Axiom Schemas 13) Each instance of the axiom
schemas in Axiom Schemas 13 is valid in T .

Proof Let M = (S, V ) be a standard model of T and I be the last
component of S. The first schema specifies op-names to be I(op-names).
The second to ninth schemas specify expr-sym and expr-op-name to be
I(expr-sym) and I(expr-op-name), respectively. Using induction, the first
tenth schema specifies expr to be I(expr). Using mutual recursion, the re-
maining schemas define expr-op, expr-type, expr-term-type, expr-term, and
expr-formula to be I(expr-op), I(expr-type), I(expr-term-type), I(expr-term),
and I(expr-formula), respectively. Therefore, each instance of these schemas
is valid in T . 2

Theorem 8.4.23 (Soundness) CL is sound with respect to the set of all
normal theories over L and the set of all formulas of L.

Proof Let T = (L,Γ) be a normal theory of Chiron and A be a formula
of L. By Lemma 8.4.3–8.4.9, the rules of inference of CL preserve validity
in every standard model of T . By Lemmas 8.4.10–8.4.22, each axiom of CL

is valid in T . Therefore, if T ` A, then T |= A, and hence CL is sound with
respect to all formulas of L. 2
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8.5 Some Metatheorems

Fix an eval-free normal theory T = (L,Γ) for the rest of this subsection.
Let C∗L be CL where the schema variables in Rules 3–10 are restricted

to eval-free expressions. Let T `∗ A mean there is a proof of A from T in
C∗L. T is consistent∗ if there is some formula A of L such that T `∗ A does
not hold. Obviously T `∗ A implies T ` A.

Theorem 8.5.1 (Tautology) If T `∗ A1, . . . , T `∗ An and (A1 ∧ · · · ∧
An) ⊃ B is a tautology for n ≥ 1, then T `∗ B. Also, if B is tautology, then
T `∗ B.

Proof Follows from Axiom Schemas 1 and the Modus Ponens rule of
inference by a standard argument. 2

Lemma 8.5.2 Let a be an eval-free term, x be a symbol, and e, e′ be eval-
free proper expressions of L.

1. If x is free in e, then T `∗ free-in(pxq, peq).

2. If x is not free in e, T `∗ ¬free-in(pxq, peq).

3. If a is free for x in e, then T `∗ free-for(paq, pxq, peq).

4. If a is not free for x in e, then T `∗ ¬free-for(paq, pxq, peq).

5. If e is syntactically closed, then T `∗ syn-closed(peq).

6. If TLker |= cleanse(peq) = peq, then T `∗ cleanse(peq) = peq.

7. If TLker |= sub(paq, pxq, peq) = pe′q, then T `∗ sub(paq, pxq, peq) =
pe′q.

Proof By induction on the length of e using the Tautology theorem, Axiom
Schemas 2, and the definitions of free-in, free-for, syn-closed, cleanse, and sub.
The Universal Generalization rule of inference is also needed for part 5. 2

Theorem 8.5.3 (Deduction) Let A be a syntactically closed, eval-free
formula of L and T ′ = (L,Γ ∪ {A}). If T ′ `∗ B, then T `∗ A ⊃ B.

Proof Follows from Lemmas 6.4.1 and 8.5.2; Axiom Schemas 1; and the
Modus Ponens, Universal Generalization, and Universal Quantifier Shifting
rules of inference by a standard argument. (A standard argument fails if
CL is used in place of C∗L.) 2
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Lemma 8.5.4 Let A be a syntactically closed, eval-free formula of L and
T ′ = (L,Γ ∪ {A}). If T ′ is not consistent∗, then T `∗ ¬A.

Proof It follows from the hypotheses of the lemma and the Tautology and
Deduction theorems by a standard argument that T `∗ ¬A. 2

Lemma 8.5.5 If A is an eval-free formula of L, then

T `∗ (∀x : C . A) ⊃ A.

Proof By the Deduction theorem, the Universal Instantiation rule of
inference, the first axiom schema of Axiom Schemas 7, Lemmas 6.4.1 and
8.5.2, the definition of sub, and the fifth axiom schema of Axiom Schemas 12.
2

8.6 Completeness

Let T be the set of all eval-free normal theories over L and F be the set of
all eval-free formulas of L. We will prove that C∗L is complete with respect
to T and F . This will then immediately imply that CL is complete with
respect to T and F as well. The key component of the proof is the following
lemma that says a standard model can be constructed for any consistent∗

eval-free normal theory. The proof of this lemma is long and tedious.

Lemma 8.6.1 (Model Construction) Let T = (L,Γ) be a consistent∗

eval-free normal theory. Then T has a standard model M = (S, V ) such
that, for every class x in M , there is a syntactically closed, eval-free term a
of L whose value in M (with respect to any ϕ) is x.

Proof Let T ′ = (L,Γ′) be an extension of T that is maximal consistent∗.
We will tacitly use the Tautology theorem, Lemma 8.5.2, and the fact that
T is maximal consistent∗ throughout this proof.

Step 1 Let C be the set of syntactically closed terms c of L such that c = c′

is in Γ′ for some syntactically closed, eval-free term c′ of L. Let C′ be the
set of syntactically closed terms c of L such that c ∈ C or c↑ is in Γ′. And
let T be the set of types α such that (1) α = C or (2) for all c 6∈ C, c ↑ α is
in Γ′. For c, d ∈ C, define c ∼ d iff c = d is in Γ′. By Axiom Schemas 2, ∼
is an equivalence relation on C. For each c ∈ C, let

c̃ = {d ∈ C | c ∼ d}
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be the equivalence class of c. Note that each c̃ contains an eval-free term.
Define Dc = {c̃ | c ∈ C}. For c, d ∈ C, define c̃ ∈ d̃ iff c ∈ d is in Γ′. By

Axiom Schemas 2, the definition of ∈ is well defined. Define Dv, Ds, Df ,
Do, De, t, f, and ⊥ as in the definition of a structure for L. Let ξ be any
choice function on Ds. H and I will be defined later.

Step 2 For a syntactically closed type α of L, define

U(α) = {c̃ ∈ Dc | c ∈ C and c ↓ α is in Γ′}

if α ∈ T and U(α) = C if α 6∈ T . For a syntactically closed term a of L,
define U(a) = ã if a ∈ C and U(a) = ⊥ if a 6∈ C. For a syntactically closed
formula A of L, define U(A) = t if A in Γ′ and U(A) = f if ¬A is in Γ′.

Claim 1

1. For all syntactically closed types α and β of L with α, β ∈ T , U(α) =
U(β) iff α =ty β is in Γ′.

2. For all syntactically closed terms a and b of L with a, b ∈ C′, U(a) =
U(b) iff a ' b is in Γ′.

3. For all syntactically closed formula A and B of L, U(A) = U(B) iff
A ≡ B is in Γ′.

Proof

1. U(α) = U(β) iff {c̃ ∈ Dc | c ∈ C and c ↓ α is in Γ′} =
{c̃ ∈ Dc | c ∈ C and c ↓ β is in Γ′} iff for all c̃ ∈ Dc, (c ↓ α in Γ′

iff c ↓ β in Γ′) iff for all c̃ ∈ Dc, c ↓ α ≡ c ↓ β is in Γ′ by the
Tautology theorem iff ∀x : C . x ↓ α ≡ x ↓ β is in Γ′ by the Universal
Instantiation rule of inference iff α =ty β is in Γ′ by the first axiom
schema of Axiom Schemas 6. Therefore, U(α) = U(β) iff α =ty β is
in Γ′.

2. U(a) = U(b) 6= ⊥ iff ã = b̃ iff a ∼ b iff (1) a = b is in Γ′. U(a) =
U(b) = ⊥ iff (2) a↑ and b↑ are in Γ′. (1) and (2) hold iff a ' b is in Γ′

by the definition of quasi-equal. Therefore, U(a) = U(b) iff a ' b is in
Γ′.

3. U(A) = U(B) = t iff (1) A and B are in Γ′, and U(A) = U(B) = f
iff (2) ¬A and ¬B are in Γ′. (1) and (2) hold iff A ≡ B is in Γ′.
Therefore, U(A) = U(B) iff A ≡ B is in Γ′.
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This completes the proof of Claim 1.

Step 3 Recall that each quotation is syntactically closed and eval-free.
Let G be the mapping from S ∪ O to Dc such that, for all s ∈ S ∪ O,
G(s) = U(psq). By the first axiom schema of Axiom Schemas 11 and the
fourth axiom schema of Axiom Schemas 13, the range of G is a subset of Dv.
By part 2 of Claim 1 and the third axiom schema of Axiom Schemas 11, G
is injective. Define H from G as in the definition of a structure for L.

Step 4 Let o be an operator name of L with the signature form s1, . . . , sn+1

where n ≥ 0. Then let k1, . . . , kn+1 be the signature where ki = si if si is
type or formula and ki = C if si is term for all i with 1 ≤ i ≤ n+ 1, and let
Di = Ds if si is type, Di = Dc ∪ {⊥} if si is term, and Di = {t, f} if si is
formula for all i with 1 ≤ i ≤ n+ 1. Define U(o) to be any operation σ from
D1 × · · · ×Dn into Dn+1 such that, for all syntactically closed expressions
e1, . . . , en where ei is a type in T if si = type, a term in C′ if si = term, and
a formula if si = formula for all i with 1 ≤ i ≤ n,

σ(U(e1), . . . , U(en)) = U((o :: k1, . . . , kn+1)(e1, . . . , en)).

By Claim 1 and Axiom Schemas 2, σ(U(e1), . . . , U(en)) is well defined by
this equation.

Claim 2 U on operator names satisfies the specification for I in the definition
of a structure for L.

Proof Let o be an operator name of L with the signature form s1, . . . , sn+1

where n ≥ 0. We must show that U(o) satisfies the specification for I(o) in
the definition of a structure for L. First, we have to show that U(o) is an
operation from D1× · · · ×Dn into Dn+1 where the Di are defined as above.
This is true immediately by the definition of U(o). Second, if o is a built-in
operator name of Chiron, we have to verify that the clause of part 5 of the
definition of I corresponding to o is satisfied.

Clause a: set.

U(set)( ) = U(V)

= {c̃ ∈ Dc | c ↓ V is in Γ′}
= {c̃ ∈ Dc | ∃ y : C . c ∈ y is in Γ′}
= {c̃ ∈ Dc | for some d̃ ∈ Dc, c ∈ d is in Γ′}
= {c̃ ∈ Dc | for some d̃ ∈ Dc, c̃ ∈ d̃}
= Dv.
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The second line is by the definition of U on syntactically closed types;
the third line is by the second axiom schema of Axiom Schemas 7
and the Universal Instantiation rule of inference; fourth line is by the
Indefinite Description rule of inference; the fifth line is by the definition
of ∈ on Dc; and sixth line is by the definition of Dv. Therefore, U(set)
satisfies clause a.

Clause b: class.

U(class)( ) = U(C)

= {c̃ ∈ Dc | c ↓ C is in Γ′}
= {c̃ ∈ Dc | c↓ is in Γ′}
= Dc.

The second line is by the definition of U on syntactically closed types;
the third line is by the definition of the notation c ↓; and the fourth
line is by the definition of Dc. Therefore, U(class) satisfies clause b.

Clauses c–l: op-names, lang, expr-sym, expr-op-name, expr, expr-op,
expr-type, expr-term-type, expr-formula. Follows from Axiom
Schemas 4 and 13.

Clause m: in. Let x and y be in Dc ∪ {⊥}. Then x = U(c) and
y = U(d) for some syntactically closed terms c and d. U(in)(x, y) =
U(in)(U(c), U(d)) = U(c ∈ d). U(c ∈ d) = t iff c ∈ d is in Γ′ iff
U(c), U(d) ∈ Dc and U(c) ∈ U(d) by the definition of ∈ on C. U(c ∈
d) = f iff c 6∈ d is in Γ′ iff either (1) U(c), U(d) ∈ Dc and U(c) 6∈ U(d)
by the definition of ∈ on C or (2) U(c) = ⊥ or U(d) = ⊥ by the second
axiom schema of Axiom Schema 4. Therefore, U(in) satisfies clause m.

Clauses n–p: type-equal, term-equal, formula-equal. Follow from Axiom
Schemas 2. The third axiom schema of Axiom Schema 4 is needed for
term-equal.

Clauses q–r: not, or. Follow from Axiom Schemas 1.

This completes the proof of Claim 2.

If we define I(o) = U(o) for all o ∈ O, then

S = (Dv, Dc, Ds, Df , Do, De,∈,t, f,⊥, ξ,H, I)
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is a structure for L provided (Dc,∈) is a prestructure. We will show that
(Dc,∈) is a prestructure in Step 6 of the proof.

Step 5 Let e be an eval-free type, term, or formula, and let ϕ ∈ assign(S).
Assume that the members of S∪O are linearly ordered by <S∪O. For n ≥ 0,
let

Sa1···anx1···xne =

{
e if n = 0
Jsub(pa1q, px1q, pS

a2···an−1
x2···xn−1eq)Kk[e] if n > 0

where

{x1, . . . , xn} = {x ∈ S ∪ O | T `∗ free-in(pxq, peq)},

x1 <S∪O · · · <S∪O xn, and ai is the first eval-free member (in some fixed
enumeration) of C such that ϕ(xi) = U(ai) for all i with 1 ≤ i ≤ n. Then
define

eϕ = Sa1···anx1···xne

and

eϕ−xi = S
a1a2···ai−1ai+1···an
x1x2···xi−1xi+1···xne

where 1 ≤ i ≤ n.

Claim 3 Saixi(e
ϕ−xi) = eϕ.

Proof Follows from e being eval-free and a1, . . . , an being syntactically
closed and eval-free. This completes the proof of Claim 3.

Let V be defined by (1) Vϕ(e) is undefined when e is improper, (2) Vϕ(e)
is I(o) when e = (o :: k1, . . . , kn+1) is proper, (3) Vϕ(e) = U(eϕ) when e is
an eval-free type, term, or formula, and (4) Vϕ(e) is the standard valuation
for S (provided (Dc,∈) is a prestructure) applied to e and ϕ when e is a
non-eval-free type, term, or formula. When e is an eval-free type, term, or
formula, eϕ is clearly a syntactically closed, eval-free type, term, or formula,
and so V is a valuation for S (provided (Dc,∈) is a prestructure).

Claim 4 V is the standard valuation for S (provided (Dc,∈) is a prestruc-
ture).

Proof We must show that, for all e ∈ EL and ϕ ∈ assign(S), V is the
standard evaluation applied to e and ϕ. This is true by the definition of V
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when e is improper, an operator, or a non-eval-free type, term, or formula.
So let e be an eval-free type, term, or formula and ϕ ∈ assign(S). Our proof
will be by induction on the length of e. There are 14 cases corresponding to
the 14 clauses of the definition of a standard valuation. The proofs for cases
1, 2, and 14 are trivial. The proofs for cases 4 and 10 are given in detail.
And the proofs for the remaining cases are briefly sketched.

Case 1: e is improper. This case does not occur because e is proper.

Case 2: e = (o :: k1, . . . , kn+1). This case does not occur because e is
not an operator.

Case 3: e = O(e1, . . . , en) and O = (o :: k1, . . . , kn+1). Follows from
Axiom Schemas 3.

Case 4: e = (x : α). Let a be some eval-free member of C such that
ϕ(x) = U(a). By the induction hypothesis, Vϕ(α) = U(αϕ) is the
standard valuation applied to α and ϕ.

If ϕ(x) ∈ Vϕ(α), then U(a) ∈ U(αϕ) and

Vϕ((x : α)) = U((x : α)ϕ)

= U(Jsub(paq, pxq, p(x : α)ϕ−xq)Kte)
= U(Jpif(a ↓ bsub(paq, pxq, Jαϕ−xK)c,

bcleanse(paq)c,
⊥C)qKte)

= U(if(a ↓ Jsub(paq, pxq, Jαϕ−xK)Kty,
Jcleanse(paq)Kte,
⊥C))

= U(if(a ↓ αϕ, JpaqKte,⊥C)

= U(if(a ↓ αϕ, a,⊥C))

= U(a)

= ϕ(x)

The first line is by the definition of V ; the second line is by Claim 3; the
third line is by the definition of sub; the fourth line is by Lemmas 6.3.1
and 6.3.2; the fifth is by Claim 3 and part 6 of Lemma 8.5.2; the sixth
is by the first schema of Axiom Schemas 7, by Axiom Schemas 8, and
by the third schema of Axiom Schemas 12; and the seventh line is
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by Axiom Schemas 8 and the fact that U(a) ∈ U(αϕ). Therefore, if
ϕ(x) ∈ Vϕ(α), then Vϕ((x : α)) = ϕ(x), and so in this case Vϕ(x : α)
is the standard valuation applied to (x : α) and ϕ.

Similarly, if ϕ(x) 6∈ Vϕ(α), then Vϕ(e) = ⊥.

Case 5: e = α(a). Follows from the Type Application rule of inference.

Case 6: e = (Λx : α . β). Follows from the Dependent Function Types
rule of inference.

Case 7: e = f(a). Follows from the Function Application rule of
inference.

Case 8: e = (λx : α . b). Follows from the Function Abstraction rule
of inference.

Case 9: e = if(A, b, c). Follows from Axiom Schemas 8.

Case 10: e = (∃x : α . B). By the induction hypothesis, Vϕ(α) =
U(αϕ) is the standard valuation applied to α and ϕ and Vψ(B) =
U(Bψ) is the standard valuation applied to B and ψ for all ψ ∈
assign(S). Then

Vϕ((∃x : α . B)) = t

iff U((∃x : α . B)ϕ) = t

iff U(∃x : αϕ . Bϕ−x) = t

iff U(Jsub(pcq, pxq, pBϕ−xq)Kfo) = t and U(c ↓ αϕ) = t

iff U(Bϕ[x 7→U(c)]) = t and U(c) ∈ U(αϕ)

iff Vϕ[x 7→Vϕ(c)](B) = t and Vϕ(c) ∈ Vϕ(α)

where c is (ε x : αϕ . Bϕ−x). The second line is by the definition of V ;
the third line is by the definitions of eϕ and sub; the fourth line is by
Lemma 8.5.2, the Indefinite Description rule of inference and the first
schema of Axiom Schemas 10 since c is both syntactically closed and
eval-free; the fifth line is by Claim 3 and the definition of defined-in;
and the sixth line is by the induction hypothesis. Therefore, Vϕ((∃x :
α . B)) = t iff there is some d in Vϕ(α) such that Vϕ[x 7→d](B) = t, and
so in this case Vϕ((∃x : α . B)) is the standard valuation applied to
(∃x : α . B) and ϕ.

Similarly, Vϕ((∃x : α . B)) = f iff there is no d in Vϕ(α) such that
Vϕ[x 7→d](B) = t.

126



Case 11: e = (ι x : α . B). Follows from the Definite Description rule
of inference and Axiom Schemas 9.

Case 12: e = (ε x : α . B). Follows from the Indefinite Description
rule of inference and Axiom Schemas 10.

Case 13: e = pe′q. Follows from Axiom Schemas 11.

Case 14: e = JaKk. This case does not occur because e is eval-free.

This completes the proof of Claim 4.

Step 6 We have only now to show that (Dc,∈) is a prestructure and
that M is a standard model for T . Let A be an eval-free formula in Γ′.
Then U(A) = t, and so by Claim 4, Vϕ(A) = U(Aϕ) = U(A) = t for
all ϕ ∈ assign(S). Each instance of Axiom Schemas 7 is eval-closed and a
member of Γ′. Thus, by Axiom Schemas 7, (Dc,∈) satisfies the axioms of
nbg set theory and hence M is a model for L. And so M |= A for each
eval-free formula A in Γ′. Since Γ ⊂ Γ′ and each member of Γ is eval-free,
M |= A for each A in Γ. Therefore, M is a standard model for T . 2

Theorem 8.6.2 (Consistency and Satisfiability) Let T = (L,Γ) be an
eval-free normal theory of Chiron. Then T is consistent∗ iff T is satisfiable.

Proof Let T be consistent∗. Then there is a standard model M of T by
the Model Construction lemma. Therefore, T is satisfiable.

Now let T be satisfiable. Then there is a standard model M of T .
Assume T is not consistent∗. Then T `∗ F. By the Soundness theorem,
T |= F, which contradicts the definition of a standard model. Therefore, T
is consistent∗. 2

Theorem 8.6.3 (Completeness) CL is complete with respect to the set
of all eval-free normal theories over L and the set of all eval-free formulas
of L.

Proof Let T = (L,Γ) be an eval-free normal theory and A be an eval-
free formula of L such that T |= A. We need to show T ` A. Obviously
it suffices to show T `∗ A. Let A′ be a universal closure of A. (A′ exists
by Lemma 6.4.1.) A′ is obviously eval-free and is syntactically closed by
Lemma 6.4.3. The hypothesis implies T |= A′, and this implies that there
is no standard model of T ′ = (L,Γ ∪ {¬A′}). Hence T ′ is not consistent∗

by the Consistency and Satisfiability theorem. Therefore, T `∗ ¬¬A′ by
Lemma 8.5.4 and hence T `∗ A′ by the Tautology theorem. Finally, T `∗ A
by Lemma 8.5.5. 2
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9 Interpretations

A theory interpretation [3, 4, 24] is a meaning-preserving mapping from
the expressions of one theory to the expressions of another theory. An
interpretation serves as a conduit for passing information (in the form of
formulas) from an abstract theory to a more concrete theory, or an equally
abstract theory. Interpretations are the basis for the little theories method [9]
for organizing mathematics where mathematical knowledge and reasoning
is distributed across a network of theories.

9.1 Translations

Let Li = (Oi, θi) be a language of Chiron for i = 1, 2. A translation from
L1 to L2 is an injective, total mapping Φ : O1 → O2 such that, for each
o ∈ O1, θ1(o) = θ2(Φ(o)). Φ is extended to an injective, total mapping

Φ̂ : EL1 → EL2

by the following rules:

1. Let e ∈ S. Then Φ̂(e) = e.

2. Let e ∈ O1. Then Φ̂(e) = Φ(e).

3. Let e = (e1, . . . , en) ∈ EL1 . Then Φ̂(e) = (Φ̂(e1), . . . , Φ̂(en)).

Hence, for every e ∈ EL1 , Φ̂(e) is exactly the same as e except that each
operator name o in e has been replaced by the operator name Φ(o).

Proposition 9.1.1 Let Φ be a translation from L1 to L2. If e is a symbol,
an operator name, an operator, a type, a term, a term of type α, or a formula
of L1, then Φ̂(e) is a symbol, an operator name, an operator, a type, a term,
a term of type Φ̂(α), or a formula of L2, respectively.

9.2 Interpretations

Let Ti = (Li,Γi) be a normal theory of Chiron for i = 1, 2 and Φ be a
translation from L1 to L2. Φ fixes a language L = (O, θ) ≤ L1 if Φ(o) = o
for all o ∈ O \ {op-names, lang}.

Proposition 9.2.1 Suppose Φ fixes L ≤ L1. Then Φ̂(e) = e for all expres-
sions e of L that do not contain the operator names op-names or lang.
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Recall from subsection 5.4 that (eval, a, k, b) is the relativization of
(eval, a, k) to the language denoted by b and that (eval, a, k, `) is logically
equivalent to (eval, a, k). The relativization of an expression e, written e,
is the expression obtained from e by repeatedly replacing each occurrence
in e of an expression of the form (eval, a, k) that is not within a quotation
with the expression (eval, a, k, `) until every original occurrence of this kind
has been replaced. Clearly, e = e if e is eval-free. The next proposition
follows immediately from the fact that (eval, a, k, `) is logically equivalent to
(eval, a, k).

Proposition 9.2.2 For all e ∈ EL, e and e are logically equivalent.

Let Φ be normal for T2 if:

1. O1 is finite, i.e., O1 = {o1, . . . , on} for some n ≥ 1.

2. Φ fixes Lker.

3. T2 |= Φ̂(`) = {pΦ(o1)q, . . . , pΦ(on)q}.

4. T2 |= Φ̂(L) =ty type(power({pΦ(o1)q, . . . , pΦ(on)q})).

Lemma 9.2.3 Let Φ be normal for T2. Then T2 |= Φ̂(A) for each A ∈ ΓL1
ker.

Proof Let A ∈ ΓL1
ker. By Proposition 9.2.2 and the fact that T2 is normal,

(a) T2 |= A. Since Φ is normal for T2, (b) Φ fixes Lker, (c) T2 |= Φ̂(`) ⊆ `,
and (d) T2 |= term(Φ̂(L)) ⊆ term(L). (a), (b), (c), and (d) imply T2 |= Φ̂(A).
2

Suppose M2 = (S2, V2) is a standard model of T2 where

S2 = (Dv, Dc, Ds, Df , Do, De,2,∈,t, f,⊥, ξ,H2, I2).

Let

S1 = (Dv, Dc, Ds, Df , Do, De,1,∈,t, f,⊥, ξ,H1, I1)

where:

1. De,1 = {H1(e) | e ∈ EL1}.

2. H1(e) = H2(Φ̂(e)) for each e ∈ EL1 .

3. I1(o) = I2(Φ(o)) for each o ∈ O1.
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Lemma 9.2.4 Suppose Φ is normal for T2.

1. S1 is a structure for L1.

2. M1 = (S1, V1), where V1 is the standard valuation for S1, is a standard
model for L1.

3. For all proper expressions e of L1 and ϕ ∈ assign(S1),

V1,ϕ(e) = V2,ϕ(Φ̂(e)).

4. For all formulas of L1,

M1 |= A iff M2 |= Φ̂(A).

Proof

Part 1 Since M2 is a standard model for L2, we need to only show that
De,1, H1, and I1 are defined correctly.

1. De,1 is defined correctly provided H1 is defined correctly.

2. Let e ∈ EL1 . We will show that H1(e) is a correct value by induction
on the length of e. If e ∈ S, then H1(e) = H2(Φ̂(e)) = H2(e), which is
a member of Dv that is neither the empty set nor an ordered pair. If
e ∈ O1, then Φ(e) ∈ O2 and H1(e) = H2(Φ̂(e)) = H2(Φ(e)), which is
a member of Dv that is neither the empty set nor an ordered pair. If
e = ( ), then H1(e) = H2(Φ̂(e)) = H2(e), which is ∅. Thus, in each of
these three cases, H1(e) is a correct value. Now if e = (e1, . . . , en) ∈
EL1 with n ≥ 1, then

H1(e) = H2(Φ̂(e))

= H2(Φ̂((e1, . . . , en)))

= H2((Φ̂(e1), . . . , Φ̂(en)))

= 〈H2(Φ̂(e1)), H2((Φ̂(e2), . . . , Φ̂(en)))〉
= 〈H1(e1), H1((e2, . . . , en))〉,

which is a correct value by the induction hypothesis.
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3. We will show that I1 satisfies the fifth condition of the definition of
a structure for L1. Let o ∈ O1. Notice that I2(Φ(o)) is an operation
of the signature form θ2(Φ(o)) since S2 is a structure for L2. θ1(o) =
θ2(Φ(o)) since Φ is a translation. Hence I2(Φ(o)) is an operation of
the signature form θ1(o). It remains only to show that clauses a–q
of this condition (for built-in operator names) are satisfied. Assume
O1 = {o1, . . . , on}. Let Don,1 = {H1(o1), . . . ,H1(on)} and Don,2 =
{H2(o) | o ∈ O2}, the sets of representations of operator names in De,1

and De,2, respectively. Don,1 ⊆ Don,2 since H1(oi) = H2(Φ̂(oi)) =
H2(Φ(oi)) and Φ(oi) ∈ O2 for each i with 1 ≤ i ≤ n.

Clause a: o = set. Hence

I1(set)( ) = I2(Φ(set))( )

= I2(set)( )

= Dv.

The first line is by the definition of I1. The second line is by
the fact Φ fixes Lker. And the third line is by the fact S2 is a
structure for L2.

Clauses b, e, m–r: Similar to clause a.

Clause c: o = op-names. Hence

I1(op-names)( ) = I2(Φ(op-names))( )

= V2,ϕ(Φ̂((op-names :: term)))( )

= V2,ϕ(Φ̂(`))

= V2,ϕ({pΦ(o1)q, . . . , pΦ(on)q})
= {H2(Φ̂(o1)), . . . ,H2(Φ̂(on))}
= {H1(o1), . . . ,H1(on)}
= Don,1.

The first line is by the definition of I1. The second and third lines
are by the definitions of Φ̂ and the standard valuation function
on operator and operator applications, respectively. The fourth
line is by the facts M2 is a standard model of T2 and Φ is normal
for T2. The fifth line is by the definition of the standard valuation
function on quotations and the definition of Φ̂. The sixth is by
the definition of H1. And the seventh is by the definition of Don,1.

Clauses d: Similar to clause c.
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Clause f : o = expr-op-name. Let x ∈ Dc ∪ {⊥}.

I1(expr-op-name)(x)

= I2(Φ(expr-op-name))(x)

= I2(expr-op-name)(x)

=


x if x ⊆ Don,2

Dc if x = ⊥
not Dc otherwise.

=


x if x ⊆ Don,1

Dc if x = ⊥
not Dc otherwise.

The second line is by the definition of I1. The third line is by the
fact Φ fixes Lker. The fourth line is by the fact S2 is a structure
for L2. The fifth line is by Don,1 ⊆ Don,2.

Clauses g–l: Similar to clause f.

Therefore, S1 is a structure for L1.

Part 2 This part follows immediately from part 1 of this lemma.

Part 3 Our proof is by induction on the length of e. There are 13 cases
corresponding to the 13 clauses of the definition of V on proper expressions.

Case 1: O = (op, o, k1, . . . , kn+1) is proper where o ∈ O1. Then

V1,ϕ(O)

= V1,ϕ((op, o, k1, . . . , kn+1))

= “I1(o) restricted by V1,ϕ(k1), . . . , V1,ϕ(kn+1)”

= “I2(Φ(o)) restricted by V1,ϕ(k1), . . . , V1,ϕ(kn+1)”

= “I2(Φ(o)) restricted by V2,ϕ(Φ̂(k1)), . . . , V2,ϕ(Φ̂(kn+1))”

= V2,ϕ((op,Φ(o), Φ̂(k1), . . . , Φ̂(kn+1)))

= V2,ϕ(Φ̂((op, o, k1, . . . , kn+1)))

= V2,ϕ(Φ̂((op, o, k1, . . . , kn+1)))

= V2,ϕ(Φ̂(O)).

The third and sixth lines are by the definition of the standard valuation
function on operators. The fourth line is by the definitions of I1 and
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Φ̂. The fifth line is by the induction hypothesis. The seventh line is
by the definition of Φ̂. And the eighth line is by the definition of a
relativization.

Case 2: e = (op-app, O, e1, . . . , en) is proper. Then

V1,ϕ(e)

= V1,ϕ((op-app, O, e1, . . . , en))

= V1,ϕ(O)(V1,ϕ(e1), . . . , V1,ϕ(en))

= V2,ϕ(Φ̂(O))(V2,ϕ(Φ̂(e1)), . . . , V2,ϕ(Φ̂(en)))

= V2,ϕ(op-app, Φ̂(O), Φ̂(e1), . . . , Φ̂(en))

= V2,ϕ(Φ̂((op-app, O, e1, . . . , en)))

= V2,ϕ(Φ̂((op-app, O, e1, . . . , en)))

= V2,ϕ(Φ̂(e)).

The third and fifth lines are by the definition of the standard valuation
function on operator applications. The fourth line is by the induction
hypothesis. The sixth line is by the definition of Φ̂. And the seventh
line is by the definition of a relativization.

Cases 3–12. Similar to case 2.

Case 13a: e = (eval, a, type). Assume (a) V1,ϕ(a) is a member of De,1

that represents a type and H−11 (V1,ϕ(a)) is eval-free. Let

α = (Ety,` ∪ Ete,` ∪ Efo,`).

Then

V1,ϕ(e)

= V1,ϕ((eval, a, type))

= V1,ϕ((eval, a, type, `))

= V1,ϕ(if(a↓ α, JaKty, J⊥CKty))

= if V1,ϕ(a↓ α) = t

then V1,ϕ(H−11 (V1,ϕ(a)))

else C

= if V2,ϕ(Φ̂(a↓ α) = t
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then V2,ϕ(Φ̂(H−11 (V2,ϕ(Φ̂(a)))))

else C

= if V2,ϕ(Φ̂(a↓ α) = t

then V2,ϕ(Φ̂(Φ̂−1(H−12 (V2,ϕ(Φ̂(a))))))

else C

= if V2,ϕ(Φ̂(a↓ α) = t

then V2,ϕ(H−12 (V2,ϕ(Φ̂(a))))

else C

= V2,ϕ(if(Φ̂(a↓ α), JΦ̂(a)Kty, J⊥CKty))

= V2,ϕ(Φ̂(if(a↓ α, JaKty, J⊥CKty))

= V2,ϕ(Φ̂(if(a↓ α, JaKty, J⊥CKty))

= V2,ϕ(Φ̂((eval, a, type, `)))

= V2,ϕ(Φ̂((eval, a, type)))

= V2,ϕ(Φ̂(e))

The third line is by Proposition 9.2.2. The fourth and twelveth lines
are by the definition of relativized evaluation. The fifth and ninth lines
are by assumption (a) and the definition of the standard evaluation
function on conditional terms and evaluations. The sixth line is by
assumption (a) and the inductive hypothesis. The seventh line is by
the definition of H1 and the condition V2,ϕ(Φ̂(a↓ α) = t. The eighth
line is a simple simplification. The tenth line is by the definition of Φ̂.
The eleventh is by the fact that α is eval-free. And the thirteenth line
is by the definition of a relativization.

A similar argument works when assumption (a) is false.

Case 13b: e = (eval, a, α). Similar to case 13a.

Case 13c: e = (eval, a, formula). Similar to case 13a.

Part 4 This part follows immediately from part 3 of this lemma. 2

Lemma 9.2.5 Suppose Φ is normal for T2, M2 is a standard model of T2,
and T2 |= Φ̂(A) for each A ∈ Γ1. Then M1 is a standard model of T1.

Proof By part 2 of Lemma 9.2.4, M1 is a standard model for L1. Let
A ∈ Γ1. Then, by the hypothesis, T2 |= Φ̂(A), and thus M2 |= Φ̂(A). By
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part 4 of Lemma 9.2.4, this implies M1 |= A. Therefore, M1 is a standard
model of T1. 2

Φ is a (semantic) interpretation of T1 in T2 if:

1. Φ is normal for T2.

2. T1 |= A implies T2 |= Φ̂(A) for all formulas A of L1.

Proposition 9.2.6 Suppose Φ is an interpretation of T1 in T2. Then T1 |=
A implies T2 |= Φ̂(A) for all eval-free formulas A of L1.

Theorem 9.2.7 (Relative Satisfiability) Suppose Φ is an interpretation
of T1 in T2. If there is a standard model of T2, then there is a standard model
of T1.

Proof Let M2 be a standard model of T2 and M1 be defined as above.
Suppose A ∈ Γ1. Then T1 |= A and so by the hypothesis T2 |= Φ̂(A).
Therefore, M1 is a standard model of T1 by Lemma 9.2.5. 2

Theorem 9.2.8 (Interpretation) Suppose Φ is normal for T2 and T2 |=
Φ̂(A) for each A ∈ Γ1. Then Φ is an interpretation of T1 in T2.

Proof Let A be a formula of L1 and suppose T1 |= A. We need to only
show T2 |= Φ̂(A) since Φ is normal for T2 by hypothesis. This holds if T2 is
unsatisfiable, so without loss of generality we may assume M2 is a standard
model of T2. We are done if we show M2 |= Φ̂(A). Let M1 be defined as
above. By the hypothesis and Lemma 9.2.5, M1 is a standard model of T1.
Hence M1 |= A. By the hypothesis and part 4 of Lemma 9.2.4, M2 |= Φ̂(A).
2

Φ is an anti-interpretation of T1 in T2 if T2 |= Φ̂(A) implies T1 |= A for
all formulas A of L1. Φ is an faithful interpretation of T1 in T2 if Φ is both
an interpretation and anti-interpretation of T1 in T2. T2 is conservative over
T1 if there is a faithful interpretation of T1 in T2.

The following lemma shows that there are theories in Chiron that cannot
be extended “conservatively”.

Lemma 9.2.9 Let Li = (Oi, θi) be a language of Chiron and Ti = (Li,Γi) be
a normal theory of Chiron for i = 1, 2. Suppose T1 ≤ T2, O1 = {o1, . . . , on},
O1 ⊂ O2, and Γ1 contains the following formula A:

` = {po1q, . . . , ponq}.

Then T2 is unsatisfiable, i.e., T2 does not have a standard model.
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Proof Since T1 ≤ T2, A ∈ Γ2 and so T2 |= A. Since O1 = {o1, . . . , on} and
O1 ⊂ O2, T2 |= ¬A. Therefore, T2 is unsatisfiable. 2

9.3 Pseudotranslations

We will define an alternate notion of a translation in which constants may be
translated to expressions other than constants. Translations of this kind are
often more convenient than regular translations, but they are not applicable
to all expressions.

Let Li = (Oi, θi) be a language of Chiron for i = 1, 2 and

O−1 = O1 \ {op-names, lang}.

A pseudotranslation from L1 to L2 is a total mapping

Ψ : O−1 → EL2

such that:

1. For each 0-ary o ∈ O−1 , either Ψ(o) ∈ O2 and θ1(o) = θ2(Ψ(o)) or Ψ(o)
is a semantically closed type, term, or formula of L2 if θ1(o) is type,
term, or formula, respectively.

2. For each n-ary o ∈ O−1 with n > 0, Ψ(o) ∈ O2 and θ1(o) = θ2(Ψ(o)).

3. Ψ is injective on the {o ∈ O−1 | Ψ(o) ∈ O2}.

Let ∆(Ψ) = {o ∈ O−1 | Ψ(o) 6∈ O2}. (Note that ∆(Ψ) is a set of 0-ary op-
erator names that does not contain op-names or lang.) Ψ is extended to a
partial mapping

Ψ̂ : EL1 → EL2

by the following rules:

1. Let e ∈ S. Then Ψ̂(e) = e.

2. Let e ∈ O−1 \∆(Ψ). Then Ψ̂(e) = Ψ(e).

3. Let e ∈ ∆(Ψ) ∪ {op-names, lang}. Then Ψ̂(e) is undefined.

4. Let e ∈ EL1 be a constant of the form (o :: type)( ), (o :: C)( ), or
(o :: formula)( ) where o ∈ ∆(Ψ). Then Ψ̂(e) = Ψ(o).
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5. Let e be a quotation that contains an operator name in ∆(Ψ) ∪
{op-names, lang}. Then Ψ̂(e) is undefined.

6. Let e = (e1, . . . , en) ∈ EL1 such that e is neither a constant of the
form (o :: type)( ), (o :: C)( ), or (o :: formula)( ) where o ∈ ∆(Ψ) nor a
quotation that contains an operator name in ∆(Ψ)∪{op-names, lang}.
If Ψ̂(e1), . . . , Ψ̂(en) are defined, then

Ψ̂(e) = (Ψ̂(e1), . . . , Ψ̂(en)).

Otherwise Ψ̂(e) is undefined.

Proposition 9.3.1 Let Ψ be a pseudotranslation from L1 to L2.

1. If e is a symbol, an operator name, an operator, a type, a term, or a
formula of L1, then Ψ̂(e) is a symbol, an operator name, an operator, a
type, a term, or a formula of L2, respectively, provided Ψ̂(e) is defined.

2. If e is an expression of L1 such that Ψ̂(e) is defined, then the operator
names op-names and lang do not occur in e and an operator name in
∆(Ψ) occurs in e, if at all, only as the name of a constant of the form
(o :: type)( ), (o :: C)( ), or (o :: formula)( ) that is in not within a
quotation.

9.4 Pseudointerpretations

Let Ti = (Li,Γi) be a normal theory of Chiron for i = 1, 2 and Ψ be a
pseudotranslation from L1 to L2. Ψ fixes a language L = (O, θ) ≤ L1 if
Ψ(o) = o for all o ∈ O \ {op-names, lang}. Ψ is normal if O1 is finite and Ψ
fixes Lker. Assume Ψ is normal with O1 = {o1, . . . , on}.

An associate of Ψ is a pair (T,Φ) where T = (L,Γ) is a theory of Chiron,
L = (O, θ), and Φ is a (regular) translation from L1 to L such that:

1. Φ(o) = Ψ(o) for all o ∈ O−1 \∆(Ψ).

2. O2 ∩ {Φ(o) | o ∈ ∆(Ψ) ∪ {op-names, lang}} = ∅.

3. O = O2 ∪ {Φ(o) | o ∈ ∆(Ψ) ∪ {op-names, lang}}.

4. θ = θ2 ∪ {〈Φ(o), θ1(o)〉 | o ∈ ∆(Ψ) ∪ {op-names, lang}}.

5. Γty = {Φ̂((o :: type)( )) =ty Ψ(o) | o ∈ ∆(Ψ) and θ(o) = type}.

6. Γte = {Φ̂((o :: C)( )) ' Ψ(o) | o ∈ ∆(Ψ) and θ(o) = term}.
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7. Γfo = {Φ̂((o :: formula)( )) ≡ Ψ(o) | o ∈ ∆(Ψ) and θ(o) = formula}.

8. A1 is Φ̂(`) = {pΦ(o1)q, . . . , pΦ(on)q}.

9. A2 is Φ̂(L) =ty type(power({pΦ(o1)q, . . . , pΦ(on)q}))

10. Γ = Γ2 ∪ ΓLker ∪ Γty ∪ Γte ∪ Γfo ∪ {A1, A2}.

Remark 9.4.1 If Ti = (Li,Γi) is a normal theory of Chiron for i = 1, 2 and
Ψ is a normal pseudotranslation from L1 to L2, an associate of Ψ can be
easily constructed after an appropriate set of “new” 0-ary operator names
are added to L2 to obtain L. Moreover, two associates (T,Φ) and (T ′,Φ′)
of Ψ are identical except that Φ and Φ′ may map ∆(Ψ) ∪ {op-names, lang}
to different sets of new 0-ary operator names.

Let L be a language of Chiron and T = (L,Γ) be a theory of Chiron. A
formula A of L is independent of L in T if (L′,Γ) |= A for some language L′

with L ≤ L′ implies (L′,Γ) |= A for all languages L′ with L ≤ L′.

Lemma 9.4.2 Let Ti = (Li,Γi) be a normal theory of Chiron for i = 1, 2;
Ψ be a normal pseudotranslation from L1 to L2; and (T,Φ) where T = (L,Γ)
be an associate of Ψ.

1. T2 ≤ T .

2. T is normal.

3. For all formulas A of L1 such that Ψ̂(A) is defined,

T |= Ψ̂(A) ≡ Φ̂(A).

4. For all formulas A of L1 such that Ψ̂(A) is defined and independent
of L2 in T2,

T2 |= Ψ̂(A) implies T |= Φ̂(A).

Proof

Part 1 Obvious.

Part 2 Follows immediately from part 1 and the fact that T2 is normal.

Part 3 By the definition of Ψ̂ and the construction of Γ.
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Part 4 Let A be a formula of L1 such that Ψ̂(A) is defined and independent
of L2 in T2 and T2 |= Ψ̂(A). We must show T |= Φ̂(A). Let T ′2 = (L,Γ2).

T ′2 |= Ψ̂(A) since Ψ̂(A) is independent of L2 in T2. By part 1, T2 ≤ T ′2 ≤ T ,

and so, by Lemma 4.6.1, T |= Ψ̂(A). By part 3, T |= Ψ̂(A) ≡ Φ̂(A).
Therefore, T |= Φ̂(A). 2

A pseudotranslation Ψ from L1 to L2 is a (semantic) pseudointerpreta-
tion of T1 in T2 if:

1. Ψ is normal.

2. For each A ∈ Γ1 \ΓL1
ker, A is eval-free, Ψ̂(A) is defined and independent

of L2 in T2, and T2 |= Ψ̂(A).

Theorem 9.4.3 Let Ti = (Li,Γi) be a normal theory of Chiron for i = 1, 2;
Ψ be a pseudointerpretation of T1 in T2; and (T,Φ) be an associate of Ψ.

1. Φ is an interpretation of T1 in T .

2. For all formulas A of L1 such that Ψ̂(A) is defined and independent
of L2 in T2,

T1 |= A implies T2 |= Ψ̂(A).

Proof

Part 1 First, we must show that T is a normal theory. T is normal since
ΓLker ≤ Γ by the construction of T .

Second, we must show that Φ is normal for T . Since Ψ is a pseudoint-
erpretation, Ψ is normal and hence O1 is finite and Ψ fixes Lker. The latter
implies Φ fixes Lker. The last conditions required for Φ to be normal for
T are met since the axioms of T include the formulas A1 and A2 from the
definition of an associate of a pseudotranslation.

By Theorem 9.2.8, it remains for us to show that T |= Φ̂(A) for each
A ∈ Γ1. Let A ∈ Γ1 \ ΓL1

ker. Then T |= Φ̂(A) by Lemma 9.2.3 and the

fact that Φ is normal for T . Now let A ∈ Γ1 \ ΓL1
ker. Then, since Ψ is a

pseudointerpretation, (a) A is eval-free, (b) Ψ̂(A) is defined and independent
of L2 in T2, and (c) T2 |= Ψ̂(A). (a) implies (d) A = A. By part 4 of
Lemma 9.4.2, (b) and (c) imply (e) T |= Φ̂(A). And (d) and (e) implies
T |= Φ̂(A).
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Part 2 Let A be a formula of L1 such that (a) Ψ̂(A) is defined, (b) Ψ̂(A) is
independent of L2 in T2, and (c) T1 |= A. We must show T2 |= Ψ̂(A). (c) im-
plies (d) T |= Φ̂(A) since Φ is an interpretation. By part 3 of Lemma 9.4.2,
(d) implies T |= Ψ̂(A). (a) and (d) imply (e) T ′2 |= Ψ̂(A) where T ′2 = (L,Γ2).

Finally, (b) and (e) imply T2 |= Ψ̂(A). 2

Remark 9.4.4 By virtue of Theorem 9.4.3 a pseudointerpretation can be
viewed as a regular interpretation in a more convenient form.

10 Conclusion

In this paper we have presented the syntax and semantics of a set theory
named Chiron that is intended to be a practical, general-purpose logic for
mechanizing mathematics. Several operator definitions and simple examples
are given that illustrate Chiron’s practical expressivity, especially its facility
for reasoning about the syntax of expressions. A proof system for Chiron is
presented that is intended to be a system test of Chiron’s definition and a
reference system for other, more practical, proof systems for Chiron. The
proof system is proved to be sound and also complete in a restricted sense.
And a notion of an interpretation of one theory in another is defined.

This paper is a first step in a long-range research program to design,
analyze, and implement Chiron. In the future we plan to:

1. Design a practical proof system for Chiron.

2. Implement Chiron and its proof system.

3. Develop a series of applications to demonstrate Chiron’s reach and
level of effectiveness. As a first step, we have shown how biform the-
ories can be formalized in Chiron [7]. A biform theory is a theory in
which both formulas and algorithms can serve as axioms [7, 10].
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A Appendix: Alternate Semantics

This appendix presents two alternate semantics for Chiron based on
S. Kripke’s framework for defining semantics with truth-value gaps which
is described in his famous paper Outline of a Theory of Truth [15]. Both
semantics use value gaps for types and terms as well as for formulas. The
first defines the value gaps according to weak Kleene logic [14], while the
second defines the values gaps according to a valuation scheme based on
B. van Fraassen’s notion of a supervaluation [28] that Kripke describes in [15,
p. 711].

A.1 Valuations

The notion of a valuation for a structure was defined in subsection 4.4. Fix
a structure S for L. Let val(S) be the collection of valuations for S. Given
U, V ∈ val(S), U is a subvaluation of V , written U v V , if, for all e ∈ EL
and ϕ ∈ assign(S), Uϕ(e) is defined implies Uϕ(e) = Vϕ(e). A valuation
functional for S is a mapping from val(S) into val(S). Let Ψ be a valuation
functional for S. A fixed point of Ψ is a V ∈ val(S) such that Ψ(V ) = V . Ψ
is monotone if U v V implies Ψ(U) v Ψ(V ) for all U, V ∈ val(S).

Theorem A.1.1 Let Ψ be a monotone valuation functional for S. Then Ψ
has a fixed point.

Proof The construction of a fixed point of Ψ is similar to the construction
of the fixed point Kripke gives in [15, pp. 703–705]. 2

ΨS
1 is the valuation functional for S defined by the following rules where

V ∈ val(S) and V ′ = ΨS
1 (V ). There is a rule for the category of improper

expressions and a rule for each of the 13 categories of proper expressions.
Note that only part (a) of the rule 14 (the rule for evaluation) makes use
of V . ΨS

1 defines value gaps according to the weak Kleene logic valuation
scheme in which a proper expression is denoting only if all of its proper
subexpressions are also denoting.

1. Let e ∈ EL be improper. Then V ′ϕ(e) is undefined.

2. Let O = (op, s, k1, . . . , kn, kn+1) be proper.

a. Let V ′ϕ(ki) be defined for all i with 1 ≤ i ≤ n+ 1 and typeL[ki].
Then I(o) is an n-ary operation in Do from D1 × · · · × Dn into
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Dn+1. V ′ϕ(O) is the n-ary operation in Do from D1 × · · · × Dn

into Dn+1 defined as follows. Let (d1, . . . , dn) ∈ D1 × · · · × Dn

and d = I(o)(d1, . . . , dn). If di is in V ′ϕ(ki) or di = ⊥ for all i
such that 1 ≤ i ≤ n and typeL[ki] and d is in V ′ϕ(kn+1) or d =
⊥ when typeL[kn+1], then V ′ϕ(O)(d1, . . . , dn) = d. Otherwise,
V ′ϕ(O)(d1, . . . , dn) is Dc if kn+1 = type, ⊥ if typeL[kn+1], and f
if kn+1 = formula.

b. Let V ′ϕ(ki) be undefined for some i such that 1 ≤ i ≤ n + 1 and
typeL[ki]. Then V ′ϕ(e) is undefined.

3. Let e = (op-app, O, e1, . . . , en) be proper.

a. Let V ′ϕ(O), V ′ϕ(e1), . . . , V
′
ϕ(en) be defined. Then

V ′ϕ(e) = V ′ϕ(O)(V ′ϕ(e1), . . . , V
′
ϕ(en)).

b. Let one of V ′(O), V ′ϕ(e1), . . . , V
′
ϕ(en) be undefined. Then V ′ϕ(e) is

undefined.

4. Let a = (var, x, α) be proper.

a. Let V ′ϕ(α) be defined. If ϕ(x) is in V ′ϕ(α), then V ′ϕ(a) = ϕ(x).
Otherwise V ′ϕ(a) = ⊥.

b. Let V ′ϕ(α) be undefined. Then V ′ϕ(a) is undefined.

5. Let β = (type-app, α, a) be proper.

a. Let V ′ϕ(α) and V ′ϕ(a) be defined. If V ′ϕ(a) 6= ⊥, then V ′ϕ(β) =
V ′ϕ(α)[V ′ϕ(a)]. Otherwise V ′ϕ(β) = Dc.

b. Let V ′ϕ(α) or V ′ϕ(a) be undefined. Then V ′ϕ(β) is undefined.

6. Let γ = (dep-fun-type, (var, x, α), β) be proper.

a. Let V ′ϕ(α) be defined, and let V ′ϕ[x 7→d](β) be defined for all sets d

in V ′ϕ(α). Then V ′ϕ(γ) is the superclass of all g in Df such that,
for all d in Dv, if g(d) is defined, then d is in V ′ϕ(α) and g(d) is
in V ′ϕ[x 7→d](β).

b. Let V ′ϕ(α) be undefined, or let V ′ϕ[x7→d](β) be undefined for some

set d in V ′ϕ(α). Then V ′ϕ(γ) is undefined.

7. Let b = (fun-app, f, a) be proper.
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a. Let V ′ϕ(f) and V ′ϕ(a) be defined. If V ′ϕ(f) 6= ⊥ and V ′ϕ(a) 6= ⊥,
then V ′ϕ(b) = V ′ϕ(f)(V ′ϕ(a)). Otherwise V ′ϕ(b) = ⊥.

b. Let V ′ϕ(f) or V ′ϕ(a) be undefined. Then V ′ϕ(b) is undefined.

8. Let f = (fun-abs, (var, x, α), b) be proper.

a. Let V ′ϕ(α) be defined, and let V ′ϕ[x 7→d](b) be defined for all sets d

in V ′ϕ(α). If

g = {〈d, d′〉 | d is a set in V ′ϕ(α) and

d′ = V ′ϕ[x 7→d](b) is a set}

is in Df , then V ′ϕ(f) = g. Otherwise V ′ϕ(f) = ⊥.

b. Let V ′ϕ(α) be undefined, or let V ′ϕ[x 7→d](b) be undefined for some

set d in V ′ϕ(α). Then V ′ϕ(f) is undefined.

9. Let a = (if, A, b, c) be proper.

a. Let V ′ϕ(A), V ′ϕ(b), V ′ϕ(c) be defined. If V ′ϕ(A) = t, then V ′ϕ(a) =
V ′ϕ(b). Otherwise V ′ϕ(a) = V ′ϕ(c).

b. Let one of V ′ϕ(A), V ′ϕ(b), V ′ϕ(c) be undefined. Then V ′ϕ(a) is unde-
fined.

10. Let A = (exists, (var, x, α), B) be proper.

a. Let V ′ϕ(α) be defined, and let V ′ϕ[x 7→d](B) be defined for all d in

V ′ϕ(α). If there is some d in V ′ϕ(α) such that V ′ϕ[x 7→d](B) = t,

then V ′ϕ(A) = t. Otherwise, V ′ϕ(A) = f.

b. Let V ′ϕ(α) be undefined, or let V ′ϕ[x7→d](B) be undefined for some

d in V ′ϕ(α). Then V ′ϕ(A) is undefined.

11. Let a = (def-des, (var, x, α), B) be proper.

a. Let V ′ϕ(α) be defined, and let V ′ϕ[x 7→d](B) be defined for all d in

V ′ϕ(α). If there is a unique d in V ′ϕ(α) such that V ′ϕ[x 7→d](B) = t,

then V ′ϕ(a) = d. Otherwise, V ′ϕ(a) = ⊥.

b. Let V ′ϕ(α) be undefined, or let V ′ϕ[x 7→d](B) be undefined for some

d in V ′ϕ(α). Then V ′ϕ(a) is undefined.

12. Let a = (indef-des, (var, x, α), B) be proper.
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a. Let V ′ϕ(α) be defined, and let V ′ϕ[x 7→d](B) be defined for all d in

V ′ϕ(α). If there is some d in V ′ϕ(α) such that V ′ϕ[x 7→d](B) = t,

then V ′ϕ(a) = ξ(Σ) where Σ is the superclass of all d in V ′ϕ(α)
such that V ′ϕ[x 7→d](B) = t. Otherwise, V ′ϕ(a) = ⊥.

b. Let V ′ϕ(α) be undefined, or let V ′ϕ[x 7→d](B) be undefined for some

d in V ′ϕ(α). Then V ′ϕ(a) is undefined.

13. Let a = (quote, e) be proper. Then V ′ϕ(a) = H(e).

14. Let b = (eval, a, k) be proper.

a. Let V ′ϕ(a) be defined and V ′ϕ(k) be defined if typeL[k].

i. Let V ′ϕ(a) be in Dty and k = type, V ′ϕ(a) be in Dte and
typeL[k], or V ′ϕ(a) be in Dfo and k = formula.

A. Let Vϕ(H−1(V ′ϕ(a))) be defined. If k ∈ {type, formula} or
typeL[k] and Vϕ(H−1(V ′ϕ(a))) is in V ′ϕ(k), then V ′ϕ(b) =
Vϕ(H−1(V ′ϕ(a))). Otherwise V ′ϕ(b) is ⊥.

B. Let Vϕ(H−1(V ′ϕ(a))) be undefined. Then V ′ϕ(b) is unde-
fined.

ii. Let V ′ϕ(a) not be in Dty or k 6= type, V ′ϕ(a) not be in Dte or
not typeL[k], and V ′ϕ(a) not be in Dfo or k 6= formula. Then
V ′ϕ(b) is Dc if k = type, ⊥ if typeL[k], and f if k = formula.

b. Let V ′ϕ(a) be undefined or V ′ϕ(k) be undefined if typeL[k]. Then
V ′ϕ(b) is undefined.

Lemma A.1.2 ΨS
1 is monotone.

Proof Let U, V ∈ val(S) such that U v V . Assume U ′ϕ and V ′ϕ mean

(ΨS
1 (U))ϕ and (ΨS

1 (V ))ϕ, respectively. We must show that, for all e ∈ EL
and ϕ ∈ assign(S), if U ′ϕ(e) is defined, then U ′ϕ(e) = V ′ϕ(e). Our proof will
be by induction on the number of symbols in e.

There are three cases:

1. e is improper. Then U ′ϕ(e) is undefined by the definition of ΨS
1 .

2. e = (eval, a, k) is proper. If either U ′ϕ(a) or U ′ϕ(k) is undefined, then
U ′ϕ(e) is undefined. So assume U ′ϕ(a) and U ′ϕ(k) are defined. By the
induction hypothesis, U ′ϕ(a) = V ′ϕ(a) and U ′ϕ(k) = V ′ϕ(k). Assume

U ′ϕ(e) is defined. By the definition of ΨS
1 , there are two subcases:
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a. For some e1, e2 ∈ EL, U ′ϕ(e) = Uϕ(e1) and V ′ϕ(e) = Vϕ(e2). Since
U ′ϕ(a) = V ′ϕ(a), e1 = e2, and since U v V , Uϕ(e1) = Vϕ(e2).
Hence, U ′ϕ(e) = V ′ϕ(e).

b. U ′ϕ(e) and V ′ϕ(e) both equal Dc if k = type, ⊥ if typeL[k], and
f if k = formula. Hence, U ′ϕ(e) = V ′ϕ(e).

3. e is proper but not an evaluation. Assume U ′ϕ(e) is defined. Then
U ′ϕ(e′) is defined for each subexpression e′ of e. By the induction
hypothesis, U ′ϕ(e′) = V ′ϕ(e′) for each such subexpression e′ of e. Hence,
U ′ϕ(e) = V ′ϕ(e).

2

Corollary A.1.3 ΨS
1 has a fixed point.

Proof By Lemma A.1.2, ΨS
1 is monotone. Therefore, by Theorem A.1.1,

ΨS
1 has a fixed point. 2

ΨS
2 is the valuation functional for S defined by the following three rules

where V ∈ val(S) and V ′ = ΨS
2 (V ). ΨS

2 defines value gaps according to the
supervaluation scheme.

1. Let e ∈ EL be improper. Then V ′ϕ(e) is undefined.

2. Let e ∈ EL be proper but not an evaluation. If there is a value d such
that, for all total valuations V ∗ with V v V ∗, (ΨS

1 (V ∗))ϕ(e) = d, then
V ′ϕ(e) = d. Otherwise V ′ϕ(e) is undefined.

3. Let e ∈ EL be proper with e = (eval, a, k). This rule is exactly the
same as the ΨS

1 rule for evaluations.

Lemma A.1.4 ΨS
2 is monotone.

Proof The proof is exactly the same as the proof of Lemma A.1.2 except
for the argument for the third case:

3. e is proper but not an evaluation. Assume U ′ϕ(e) is defined. Then
there is a value d such that, for all total valuations U∗ with U v U∗,
U∗ϕ(e) = d. Since U v V , it follows that, for all total valuations V ∗

with V v V ∗, V ∗ϕ (e) = d. Hence, U ′ϕ(e) = V ′ϕ(e).

2

Corollary A.1.5 ΨS
2 has a fixed point.

Proof By Lemma A.1.4, ΨS
2 is monotone. Therefore, by Theorem A.1.1,

ΨS
2 has a fixed point. 2
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A.2 Models

The valuation functionals ΨS
1 and ΨS

2 define two semantics, which we will
refer to as the weak Kleene semantics and the supervaluation semantics,
respectively. Clearly, the supervaluation semantics allows more expressions
to be denoting than the weak Kleene semantics.

A weak Kleene model for L is a model M = (S, V ) where S is a structure
for L and V is a valuation for S that is a fixed point of ΨS

1 . A supervaluation
model for L is a model M = (S, V ) where S is a structure for L and V is a
valuation for S that is a fixed point of ΨS

2 .

Theorem A.2.1 Let L be a language of Chiron. For each structure S for
L there exists a weak Kleene model and a supervaluation model for L.

Proof Let L be a language of Chiron and S be a structure for L. By
Corollary A.1.3, ΨS

1 has a fixed point V1. Similarly, by Corollary A.1.5, ΨS
2

has a fixed point V2. Therefore, M = (S, V1) is a weak Kleene model for L,
and M = (S, V2) is a supervaluation model for L. 2

The weak Kleene semantics defined by ΨS
1 is “strict” in the sense that,

if any proper subexpression e of a proper expression e′ is nondenoting, then
e′ itself is nondenoting. The supervaluation semantics defined by ΨS

2 is not
strict in this sense. For example, the value of an application of the operator

(op, or, formula, forumla, formula)

to a pair of formulas (A,B) is t if the value of A is t and B is nondenoting
or vice versa.

A.3 Discussion

There are various Kripke-style value-gap semantics for Chiron; the weak
Kleene and supervaluation semantics are just two examples. The weak
Kleene semantics is a conservative example: every expression that could
be nondenoting is nondenoting. On the other hand, the supervaluation se-
mantics is much more liberal: many expressions that are nondenoting in the
weak Kleene semantics are denoting in the supervaluation semantics.

It is not possible to define a denoting formula checker in any Kripke-
style value-gap semantics. If the operator O = (o :: formula, formula) were a
denoting formula checker, then O(e) would be true whenever e is denoting
and false whenever e is nondenoting. However, such an operator breaks
the monotonicity lemmas proved above because, if U ′ϕ(e) is undefined but
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V ′ϕ(e) is defined, then U ′ϕ(O(e)) = f 6= t = V ′ϕ(O(e)). Similarly, it is not
possible to define denoting type and term checkers in a Kripke-style value-
gap semantics.

The lack of available checkers for denoting types, terms, and formulas
makes reasoning in Kripke-style value-gap semantics very difficult. For ex-
ample, consider the formalization of the law of excluded middle given in
subsection 7.1:

∀ e : Efo . JeK ∨ ¬JeK.

This formula is nondenoting in the weak Kleene semantics because, if e
represents a nondenoting formula, then JeK∨¬JeK is nondenoting. Since this
formula is nondenoting, we cannot use it as a basis for proof by cases.

This formula is true in the supervaluations semantics because, if e rep-
resents a nondenoting formula, then JeK ∨ ¬JeK is true because JeK ∨ ¬JeK is
true no matter what value is assigned to JeK. Even though this formula is
true, we cannot use it as a basis for proof by cases because, if e is the liar
paradox, we can derive a contradiction from either JeK or ¬JeK.

We expect that reasoning in the official semantics for Chiron will be
much easier than in any Kripke-style value-gap semantics for Chiron.

B Appendix: An Expanded Definition of a Proper
Expression

We give in this appendix an expanded definition of a proper expression
with 25 proper expression categories. There are modified categories for
operator applications, conditional terms, and quotations and new categories
for constants (applications of 0-ary operators), four variable binders given
above as notational definitions, finite sets of sets, finite lists of sets, and
dependent ordered pairs

The following symbols are added to the the set K of key words:
con, uni-exists, forall, set-cons, list-cons, class-abs, dep-type-prod, left-type,
right-type, dep-ord-pair, dep-head, and dep-tail. The following formation rules
define the expanded set of proper expression categories:

P-Expr-1 (Operator)

o ∈ O,kindL[k1], . . . ,kindL[kn+1]

operatorL[(op, o, k1, . . . , kn+1)]

where n ≥ 0; θ(o) = s1, . . . , sn+1; and ki = si = type, typeL[ki] and
si = term, or ki = si = formula for all i with 1 ≤ i ≤ n+ 1.
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P-Expr-2 (Operator application)

operatorL[(op, o, k1, . . . , kn+1)], exprL[e1], . . . , exprL[en]

p-exprL[(op-app, (op, o, k1, . . . , kn+1), e1, . . . , en) : kn+1]

where n ≥ 1 and (ki = type and typeL[ei]), (typeL[ki] and
termL[ei]), or (ki = formula and formulaL[ei]) for all i with 1 ≤
i ≤ n.

P-Expr-3 (Constant)

operatorL[(op, o, k)]

p-exprL[(con, o, k) : k]

P-Expr-4 (Variable)

x ∈ S, typeL[α]

termL[(var, x, α) : α]

P-Expr-5 (Type application)

typeL[α], termL[a]

typeL[(type-app, α, a)]

P-Expr-6 (Dependent function type)

termL[(var, x, α)], typeL[β]

typeL[(dep-fun-type, (var, x, α), β)]

P-Expr-7 (Function application)

termL[f : α], termL[a]

termL[(fun-app, f, a) : (type-app, α, a)]

P-Expr-8 (Function abstraction)

termL[(var, x, α)], termL[b : β]

termL[(fun-abs, (var, x, α), b) : (dep-fun-type, (var, x, α), β)]

P-Expr-9 (Conditional term)

formulaL[A], termL[b : β], termL[c : γ]

termL[(if, A, b, c) : β ∪ γ]
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P-Expr-10 (Existential quantification)

termL[(var, x, α)], formulaL[B]

formulaL[(exists, (var, x, α), B)]

P-Expr-11 (Unique existential quantification)

termL[(var, x, α)], formulaL[B]

formulaL[(uni-exists, (var, x, α), B)]

P-Expr-12 (Universal quantification)

termL[(var, x, α)], formulaL[B]

formulaL[(forall, (var, x, α), B)]

P-Expr-13 (Definite description)

termL[(var, x, α)], formulaL[B]

termL[(def-des, (var, x, α), B) : α]

P-Expr-14 (Indefinite description)

termL[(var, x, α)], formulaL[B]

termL[(indef-des, (var, x, α), B) : α]

P-Expr-15 (Set construction)

termL[a1 : α1], . . . , termL[a1 : α1]

termL[(set-cons, a1, . . . , an) : β]

where n ≥ 0 and β =

{
C if n = 0
α1 ∪ · · · ∪ αn otherwise.

P-Expr-16 (List construction)

termL[a1 : α1], . . . , termL[a1 : α1]

termL[(list-cons, a1, . . . , an) : list-type(β)]

where n ≥ 0 and β =

{
C if n = 0
α1 ∪ · · · ∪ αn otherwise.

P-Expr-17 (Class abstraction)

termL[(var, x, α)], formulaL[B]

termL[(class-abs, (var, x, α), B) : power-type(α)]
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P-Expr-18 (Left type)

typeL[α]

typeL[(left-type, α)]

P-Expr-19 (Right type)

typeL[α], termL[a]

typeL[(right-type, α, a)]

P-Expr-20 (Dependent type product)

termL[(var, x, α)], typeL[β]

typeL[(dep-type-prod, (var, x, α), β)]

P-Expr-21 (Dependent ordered pair)

termL[a : α], termL[b : β]

termL[(dep-ord-pair, a, b) : (dep-type-prod, (var, x, α), β)]

P-Expr-22 (Dependent head)

termL[a : α]

termL[(dep-head, a) : (left-type, α)]

P-Expr-23 (Dependent tail)

termL[a : α]

termL[(dep-tail, a) : (right-type, α, (dep-head, a))]

P-Expr-24 (Quotation)

exprL[e]

termL[(quote, e) : α]

where α is:

1. Esy if e ∈ S.

2. Eon if e ∈ O.

3. Eop if e is an operator.

4. Ety if e is a type.

5. Epβq
te if e is a term of type β.

6. Efo if e is a formula.
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7. E if none of the above.

P-Expr-25 (Evaluation)

termL[a],kindL[k]

p-exprL[(eval, a, k) : k]

Table 6 defines the compact notation for each of the 25 proper expression
categories. Note: The definitions for the compact notations {a1, . . . , an},
[a1, . . . , an], 〈a, b〉, hd(a), and tl(a) supersede the definitions for these nota-
tions given in subsection 5.1.

The semantics for the new definition of a proper expression is the same
as before except for the definition of the valuation function, which is left to
the reader as an exercise.
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[12] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathemat-
ica und verwandter Systeme I. Monatshefte für Mathematik und Physik,
38:173–198, 1931.
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