
MathScheme: Project Description⋆

Jacques Carette, William M. Farmer, and Russell O’Connor⋆⋆

Department of Computing and Software
McMaster University

Hamilton, Ontario, Canada

28 June 2011

The mission of mechanized mathematics is to develop software systems that
support the process people use to create, explore, connect, and apply mathe-
matics. Working mathematicians routinely leverage a powerful synergy between
deduction and computation. The artificial division between (axiomatic) theorem
proving systems and (algorithmic) computer algebra systems has broken this
synergy. To significantly advance mechanized mathematics, this synergy needs
to be recaptured within a single framework. MathScheme [6] is a long-term
project being pursued at McMaster University with the aim of producing such
a framework in which formal deduction and symbolic computation are tightly
integrated. In the short-term, we are developing tools and techniques to support
this approach, with the long-term objective to produce a new system.

Towards this aim, we have already developed several techniques, with some
laying the theoretical foundations of our framework, while others are implemen-
tation techniques. In particular, we rely on biform theories and an expressive
logic (Chiron) for grounding. We rely on various meta-programming techniques
as well as the increased safety offered by a modern statically typed programming
language (Objective Caml [8]) to greatly simplify our implementation burden.

A biform theory [1, 3] is a combination of an axiomatic theory and an
algorithmic theory. It is the basic unit of mathematical knowledge that consists
of a set of concepts, transformers, and facts. The concepts are symbols that
denote mathematical values and, together with the transformers, form a language
L for the theory. The transformers are programs whose input and output are
expressions of L. Transformers represent syntax-manipulating operations such
as inference and computation rules. The facts are statements expressed in L

about the concepts and transformers. In a typical biform theory, the concepts
are classified as primitive or defined, the transformers as primitive or derived,
and the facts as axioms, definitions, or theorems. A pure axiomatic theory is a
biform theory with no transformers, and a pure algorithmic theory is a biform
theory with no facts or only facts about the transformers.

Since transformers manipulate the syntax of expressions, biform theories are
difficult to formalize in a traditional logic without the means to reason about

⋆ To be published in: J. H. Davenport, W. M. Farmer, F. Rabe, and J. Urban, eds.,
Intelligent Computer Mathematics, Lecture Notes in Computer Science, Vol. 6824,
pp. 287–288, Springer-Verlag, 2011; will be available at www.springerlink.com. This
research was supported by NSERC.

⋆⋆ {carette,wmfarmer}@mcmaster.ca, roconnor@theorem.ca.



2

syntax. Chiron [4, 5] is a derivative of von-Neumann-Bernays-Gödel (nbg) set
theory that is intended to be a practical, general-purpose logic for mechanizing
mathematics. It is equipped with a type system that includes dependent types,
subtypes, and possibly empty types. It handles undefined expressions according
to the traditional approach to undefinedness. Its most noteworthy component is a
facility for reasoning about the syntactic structure of expressions using quotation
and evaluation à la Lisp. We have an implementation [7] of Chiron which uses the
Objective Caml type system to track most of the invariants of Chiron expressions
statically. It includes a convenient foreign function interface (to facilitate building
of biform theories out of existing libraries) and a sophisticated set of pretty-
printers for rendering Chiron in ASCII, MathML, and LaTeX.

We also have an implementation of the MathScheme Language, which
has a user-oriented, high-level syntax (unlike Chiron), influenced by our work on
high-level theories [1]. The MathScheme Library is an experimental formal-
ization of the theories of abstract algebra, basic data-structures, and structured
type constructors. The library is organized by the tiny theories method in which
knowledge is distributed over a network of theories that are built up one con-
cept at a time. Much of the structure of the library resides in theory morphisms
instead of in the theories themselves. We have an expander (to see what our
theories correspond to in traditional notation), a type-checker, pretty-printing
facilities similar to Chiron’s, as well as an experimental translator to Chiron.

Eventually, the library will form a network of biform theories interconnected
by theory morphisms. Some biform theories are implementations for developers
while others are interfaces for users. Meta-programming techniques [2] will be
used to generate efficient implementations from the MathScheme Language.

We are actively working on MathScheme. Current work is first focusing on
further leveraging the structure already present in our library to automatically
generate as much information as possible, rather than implementing all of this
by hand, as is traditionally done.

References

1. J. Carette and W. M. Farmer. High-level theories. In A. Autexier et al., editor, Intel-
ligent Computer Mathematics, volume 5144 of Lecture Notes in Computer Science,
pages 232–245. Springer-Verlag, 2008.

2. J. Carette and O. Kiselyov. Multi-stage programming with functors and monads:
Eliminating abstraction overhead from generic code. Science of Computer Program-

ming, 76(5):349–375, 2011.
3. W. M. Farmer. Biform theories in Chiron. In M. Kauers, M. Kerber, R. R. Miner,

and W. Windsteiger, editors, Towards Mechanized Mathematical Assistants, volume
4573 of Lecture Notes in Computer Science, pages 66–79. Springer-Verlag, 2007.

4. W. M. Farmer. Chiron: A multi-paradigm logic. In R. Matuszewski and A. Za-
lewska, editors, From Insight to Proof: Festschrift in Honour of Andrzej Trybulec,
volume 10(23) of Studies in Logic, Grammar and Rhetoric, pages 1–19. University
of Bia lystok, 2007.

5. W. M. Farmer. Chiron: A set theory with types, undefinedness, quotation, and
evaluation. SQRL Report No. 38, McMaster University, 2007. Revised 2011.



3

6. MathScheme Web Site. http://www.cas.mcmaster.ca/research/mathscheme/.
7. H. Ni. Chiron: Mechanizing Mathematics in OCaml. Master’s thesis, McMaster

University, 2009.
8. Objective Caml. http://caml.inria.fr/.


