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Abstract

This document presents corrections to errors in the textbook Simple
Type Theory: A Practical Logic for Expressing and Reasoning About
Mathematical Ideas.

1 Introduction

The textbook Simple Type Theory: A Practical Logic for Expressing and
Reasoning About Mathematical Ideas [3] is an introduction to simple type
theory [2]. It presents a practice-oriented logic called Alonzo that is based
on Alonzo Church’s formulation of simple type theory known as Church’s
type theory [1]. Unlike traditional predicate logics, Alonzo admits undefined
expressions. The book illustrates using Alonzo how simple type theory is
exceptionally well suited for expressing and reasoning about mathemati-
cal ideas.

We have found 16 minor errors in Simple Type Theory that the reader
may not notice or know how to correct. This document describes the errors
and presents corrections for them. There are other errors in Simple Type
Theory, mostly of a typographical nature, that the reader should be able to
immediately identify and correct.
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Corrigendum 1

On p. 27 (Section 3.4), the definition of a finite sequence as a partial function
on the natural numbers should be written as:

A finite sequence of values in A can be formalized as a function s :
N→ A such that, for some n ∈ N, s(m) is defined iff m < n.

That is, “m < n” should be used instead of “m ≤ n”.
The same mistake appears on p. 127 (Section 10.0) in the definition of a

finite sequence and on p. 129 (Section 10.2) in the notational definition for
lists{α→β} given in Table 10.1. And on p. 151 (Subsection 12.3.5) in Def27,
“m ≤ n” needs to be changed to “m < n”.

Corrigendum 2

The definition of a type on p. 38 (Section 4.3) confuses “type” and “set of
types”. This is corrected by beginning the definition with:

A type of Alonzo is a string of symbols defined inductively by the
following formation rules:

Similarly, the definition of a expression on p. 40 (Section 4.4) confuses “ex-
pression” and “set of expressions”. This is corrected by beginning the defi-
nition with:

An expression of type α of Alonzo is a string of symbols defined in-
ductively by the following formation rules:

The same mistake appears on pp. 200 and 201 (Subsection 14.2.2) in the
definitions of a sort and expression of AlonzoS.

Corrigendum 3

On p. 63 (Section 5.11), Exercise 5.11.7 asks the reader to prove that (M,≤)
is a meet-semilattice, which it is not. Instead the exercise should ask the
reader to prove that (M,≤) is a weak partial order with bottom element.
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Corrigendum 4

On p. 65 (Section 6.1), the notation (Ao 7→ Bα | Cα) for a conditional
expression is defined in Table 6.1 as the application of the pseudocon-
stant ifo→α→α→α. As a result, VM

ϕ ((Ao 7→ Bα | Cα)) is undefined when

VM
ϕ (Ao) = t, VM

ϕ (Bα) is defined, and VM
ϕ (Cα) is undefined. Instead,

VM
ϕ ((Ao 7→ Bα | Cα)) should equal VM

ϕ (Bα) in this case. Therefore, a
conditional expression must be defined using an abbreviation instead of an
application of a pseudoconstant.

The last two notational definitions in Table 6.1 need to be removed, and
the following three notational definitions need to be added to the end of
Table 6.4:

IF(Ao,Bo,Co) stands for (Ao ⇒ Bo) ∧ (¬Ao ⇒ Co).
IF(Ao,Bα,Cα) stands for Ix : α .

(Ao ⇒ x = Bα) ∧ (¬Ao ⇒ x = Cα)
where α 6= o.

(Ao 7→ Bα | Cα) stands for IF(Ao,Bα,Cα)

Sections 6.1, 6.4, and 6.8 must be modified to accommodate this change.
Also, on p. 203 (Subsection 14.2.3), the notational definitions for the pseudo-
constant ifo→σ→τ→α and the conditional expression (Ao 7→ Bσ | Cτ ) should
be removed from Table 14.3.

Corrigendum 5

On p. 68 (Section 6.2), the condition for the notational definition for

(∃!x : α . Ao)

given in Table 6.3 should be

where y does not occur in (λx : α . Ao)

instead of

where y is not free in (λx : α . Ao) .
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Corrigendum 6

On p. 74 (Section 6.9), the notational definitions for (Q{α} → R{β}),
(α→ R{β}), and (Q{α} → β) given in Table 6.9 require the condition

where β 6= o.

To complete this correction, the following notational definitions need to be
added to Table 6.9:

(Q{α} → o) stands for {s : {α} | s ⊆ Q{α}}.
P(Q{α}) stands for Q{α} → o.

Corrigendum 7

The introductory remarks in Example 9.6 on p. 98 (Section 9.1) say

... Giuseppe Peano presented a characterization of the natural num-
bers based on 0 and the successor function S. We express his character-
ization in Alonzo as the following theory PA called Peano Arithmetic:

However, this is not true: Peano’s characterization of the natural numbers
starts with 1, not 0. Thus the introductory remarks should instead say

... Giuseppe Peano presented a characterization of the natural num-
bers based on 1 and the successor function S. We express his char-
acterization in Alonzo as the following theory PA (in which we start
with 0 instead of 1) called Peano Arithmetic:

Corrigendum 8

Example 4.47 on p. 114 and the proof of Theorem 9.49 on p. 115 (both
in Section 9.4) assume, without proof, that there is a standard model of
RAT. This hole in the example can be eliminated by simplifying RAT and
then reorganizing the proof that RAT is categorical in the standard sense as
follows:

Example 9.47 (Rational Numbers Order) In Example 9.18, we defined
DWTOWE, a theory of dense weak total orders without endpoints. Let us
now define an extension RAT of DWTOWE called Rational Numbers Order.

Theory Extension 9.48 (Rational Numbers Order)
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Name: RAT

Extends DWTOWE

New base types: (none)

New constants: (none)

New axioms:

9. COUNT(U{S}). (S is countable.)

All dense weak total orders without endpoints are infinite and either
countable, such as (Q,≤), or uncountable, such as (R,≤). Let M be a
standard model of DWTOWE. Then, by virtue of axiom 9, M is model of
RAT iff DM

S is countable. Hence the standard model Mrat of DWTOWE that
defines (Q,≤) is a model of RAT. 2

Proposition 9.49 RAT is a specification in the standard sense of all count-
able dense weak total orders without endpoints.

Proof This follows from the fact given in Example 9.47 that a standard
model M of DWTOWE is a model of RAT iff DM

S is countable. 2

Theorem 9.50 (Categoricity of RAT) RAT is categorical in the standard
sense.

Proof As shown in Example 9.47, the standard model Mrat of DWTOWE
that defines (Q,≤) is a model of RAT. Georg Cantor proved in 1895 that
every two countable dense weak total orders without endpoints are order iso-
morphic [20]. Thus, by Proposition 9.49, every model of RAT is isomorphic
to Mrat, and so RAT is categorical in the standard sense. 2

Corrigendum 9

On p. 115 (Section 9.5), a theory T = (L,Γ) is defined to be (semantically)
complete if either T � Ao or T � ¬Ao holds for all sentences Ao of L. Hence
every unsatisfiable theory is incomplete. Therefore, Example 9.51 (Theory
of False) and Proposition 9.52 are incorrect and should be removed.

Corrigendum 10

On p. 126 (Section 9.9), the hint for Exercise 9.9.17 is misleading and should
be removed.
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Corrigendum 11

On p. 131 (Section 11.1), the definition of a theorem package P being valid
in a theory should be:

P is valid in a theory T = (L,Γ) if Ao is a sentence of L and π is a
proof of Ao from Γ.

That is, Ao is required to be a sentence of L.

Corrigendum 12

On p. 164 (Subsection 13.3.2), the statement and proof of Lemma 13.9 tacitly
assume that µ(α) is defined, but µ(α) may be undefined in some cases. The
lemma and its proof are corrected as follows:

Lemma 13.9 Let Φ = (µ, ν) be a translation from T1 to T2.

1. If α ∈ T (L1) and µ(α) ∈ Q2, then T2 � µ(α)↓ ⇒ ν(U{α}) = µ(α).

2. If α ∈ T (L1) and µ(α) ∈ Q2, then T2 � µ(α)↑ ⇒ ν(U{α}) = ∅{τ(µ(α))}.

3. If a ∈ B1 and µ(a) ∈ Q2, then

T2 � ν(U{a} 6= ∅{a})⇔ (µ(a)↓ ∧ µ(a) 6= ∅{τ(µ(a))}).

4. If cα ∈ C1 and µ(α) ∈ T2, then T2 � ν(cα ↓ U{α})⇔ ν(cα)↓.

5. If cα ∈ C1 and µ(α) ∈ Q2, then

T2 � µ(α)↓ ⇒ ν(cα ↓ U{α})⇔ ν(cα) ↓ µ(α).

Proof Let α ∈ T (L1), µ(α) ∈ Q2, and (?) M be a general model of T2 in
which µ(α)↓ is true. We must show that ν(U{α}) = µ(α) is true in M . Then

ν(U{α})

≡ ν(λx : α . To)

≡ λx : µ(α) . To

≡ λx : τ(µ(α)) . (x ∈ µ(α) 7→ To | Fo).

6



by the definition of ν and notational definitions. The last expression is
clearly equal to λx : τ(µ(α)) . µ(α)x, which is equal to µ(α) in M by (?).
This proves part 1. Part 2 follows from the proof of part 1 and the notational
definition for the empty set pseudoconstant. Part 3 follows immediately from
the definition of ν and parts 1 and 2. Part 4 follows from the definition of
ν and the notational definition for the defined-in-quasitype operator. And
part 5 follows immediately from the definition of ν and part 1. 2

Corrigendum 13

On p. 166 (Subsection 13.3.2), the proof of Theorem 13.13 (Morphism Theo-
rem) is incorrect for nonnormal translations. The extraction of the structure
M1 from a model M2 of T2 is more complicated when Φ is not a normal trans-
lation and it takes more work to prove that, if each obligation of Φ is true
in M2, then M1 is a model of T1.

More specifically, the text between Lemma 13.11 and Theorem 13.13
needs be replaced with the following text (which will require the subsequence
theorems and examples to be renumbered):

Let Φ = (µ, ν) be a translation from T1 to T2,

M2 = ({D2
α | α ∈ T2}, I2)

be a model of T2 in which each obligation of Φ of the first and second kind
is true, and ϕ ∈ assign(M2). We will extract an interpretation M1 from M2

using Φ as follows. To start, let us define

Dα =

{
D2
µ(α) if µ(α) ∈ T2
{d ∈ D2

τ(µ(α)) | d ∈ V
M2
ϕ (µ(α))} if µ(α) ∈ Q2

for α ∈ T1.

Lemma 13.12 Dα is nonempty for all α ∈ T1.

Proof The proof is by induction on the syntactic structure of types. Do

is obviously nonempty. If µ(a) ∈ T2, then Da is also obviously nonempty.
If µ(a) ∈ Q2, then Da is nonempty by part 3 of Lemma 13.9 and the fact
that the obligations of Φ of the first kind are true in M2. If α = β → γ and
Dβ and Dγ are nonempty, then Dα is nonempty since it contains the empty
function. If α = β × γ and Dβ and Dγ are nonempty, then Dα is nonempty
since it equals Dβ ×Dγ . 2
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If Φ is normal, then {Dα | α ∈ T1} is clearly a frame for L1. On the other
hand, if Φ is not normal, then {Dα | α ∈ T1} may not be a frame. This will
happen because Dα→β ⊆ D2

τ(µ(α)) → D2
τ(µ(β)) and thus Dα→β 6⊆ Dα → Dβ if

Dα ⊂ D2
τ(µ(α)) or Dβ ⊂ D2

τ(µ(β)). However, dom(f) ⊆ Dα and ran(f) ⊆ Dβ

for all f ∈ Dα→β. Therefore, we can turn a recalcitrant {Dα | α ∈ T1} of
this kind into a frame by modifying the members of its function domains as
follows.

We will define D1
α and Hα : Dα → D1

α for all α ∈ T1 by recursion on the
syntactic structure of types. We will also prove that Hα is a bijection for
all α ∈ T1 by induction on the syntactic structure of types. There are four
cases to consider:

Case 1: α = o. Define D1
α = Dα and Hα to be the identity function. Hα is

clearly a bijection.

Case 2: α = a. Define D1
α = Dα and H to be the identity function. Hα is

clearly a bijection.

Case 3: α = β → γ. Assume D1
β and D1

γ are defined and Hβ : Dβ → D1
β

and Hγ : Dγ → D1
γ are bijections. Define Hα(f)(x) ' Hγ(f(H−1β (x)))1 for

all f ∈ Dα and x ∈ D1
β and D1

α = Hα[Dα], i.e., the image of Dα under Hα.
Hα is clearly a bijection since Hβ and Hγ are bijections.

Case 4: α = β × γ. Assume D1
β and D1

γ are defined and Hβ : Dβ → D1
β

and Hγ : Dγ → D1
γ are bijections. Define D1

α = D1
β ×D1

γ and Hα((a, b)) =
(Hβ(a), Hγ(b)). Hα is clearly a bijection since Hβ and Hγ are bijections.

Lemma 13.13 {D1
α | α ∈ T1} is a frame of L1.

Proof Follows from Lemma 13.12 and the construction of the D1
α. 2

Finally, define I1(cα) ' Hα(VM2
ϕ (ν(cα)))2 for cα ∈ C1 and

M1 = ({D1
α | α ∈ T1}, I1).

Lemma 13.14 M1 is an interpretation of L1.

1That is, Hα(f)(x) = Hγ(f(H−1
β (x))) if f(H−1

β (x)) is defined and Hα(f)(x) is unde-
fined otherwise.

2That is, I1(cα) = Hα(VM2
ϕ (ν(cα))) if VM2

ϕ (ν(cα)) is defined and I1(cα) is undefined
otherwise.
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Proof {D1
α | α ∈ T1} is a frame of L1 by Lemma 13.13. Let cα ∈ C1. If

µ(α) ∈ T2, then I1(cα) = Hα(VM2
ϕ (ν(cα))) = VM2

ϕ (ν(cα)) ∈ D2
µ(α) = D1

α by
part 4 of Lemma 13.9 and the fact that the obligations of Φ of the second
kind are true in M2. If µ(α) ∈ Q2, then VM2

ϕ (ν(cα)) ∈ D2
µ(α) by part 5 of

Lemma 13.9 and the fact that the obligations of Φ of the second kind are
true in M2, and thus I1(cα) ∈ D1

α since Hα is a bijection. Therefore, M1 is
an interpretation of L1. 2

Lemma 13.15 Let Φ = (µ, ν) be a translation from T1 to T2, M2 be a model
of T2 in which each obligation of Φ is true in M2, and M1 be the structure
defined above. Then M1 is a model of T1.

Proof M1 is an interpretation of L1 by Lemma 13.14.
For all Aα ∈ E1 and ϕ ∈ assign(M1), define

(?) VM1
ϕ (Aα) ' Hα(VM2

ν(ϕ)(ν(Aα)))3,

where ν(ϕ) is any ψ ∈ assign(M2) such that ψ(ν((x : β))) = H−1β (ϕ((x : β)))
for all variables (x : β) ∈ E1. By induction on the syntactic structure of
expressions, VM1

ϕ satisfies the seven conditions of the definition of a general
model. Therefore, M1 is a general model of L1.

(?) implies

(??) M1 � Ao iff M2 � ν(Ao) for all sentences Ao ∈ E1.
If Ao ∈ Γ1, then M2 � ν(Ao) since each obligation of Φ of the third kind
is true in M2. Hence M1 � Ao for all Ao ∈ Γ1 by (??). Therefore, M1 is a
model of T1. 2

Corrigendum 14

The definition transportation and theorem transportation modules defined
on p. 184 (Subsection 13.4.2) should include Source development and Target
development fields.

Corrigendum 15

The F2 component of the definition of a frame for AlonzoS on p. 202 (Sub-
section 14.2.3) is not correctly formulated. It should say that f(d) = f for
all f ∈ Dσ→o and d ∈ Dξ(σ) \Dσ. The following is the correct formulation:

3That is, VM1
ϕ (Aα) = Hα(VM2

ν(ϕ)(ν(Aα))) if VM2
ν(ϕ)(ν(Aα)) is defined and VM1

ϕ (Aα) is
undefined otherwise.
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F2. Predicate domain: Dσ→o is a set of some total functions f from Dξ(σ)

to Do such that f(d) = f for all d ∈ Dξ(σ) \Dσ for σ ∈ U(L).

Corrigendum 16

The V9 component of the definition of a general model of AlonzoQE on
p. 208 (Subsection 14.3.3) is not correct when VM

ϕ (Aε) denotes an expres-

sion Eα such that VM
ϕ (Eα) is undefined. The following is the correct for-

mulation:

V9. VM
ϕ (JAεKα) = VM

ϕ (VM
ϕ (Aε)) if VM

ϕ (Aε) is an expression Eα such that

VM
ϕ (Eα) is defined. Otherwise, VM

ϕ (JAεKα) = f if α = o and is unde-
fined if α 6= o.

To complete this correction, Theorem 14.9 and its proof must be changed
as follows where several = symbols are replaced with ' symbols:

Theorem 14.9 (Law of Disquotation) Let AlonzoQE be the logic. Then
JpAαqKα ' Aα is valid.

Proof Let Aα be an eval-free expression of a language L, M be a general
model of L, and ϕ ∈ assign(M). Then

VM
ϕ (JpAαqKα)

' VM
ϕ (VM

ϕ (pAαq)) (1)

' VM
ϕ (Aα). (2)

(a) VM
ϕ (pAαq) = Aα by condition V8 of the definition of a general model.

(a) implies (b) VM
ϕ (pAαq) is an expression of type α. (1) is by (b) and

condition V9 of the definition of a general model; and (2) is by (a). Hence
VM
ϕ (JpAαqKα) ' VM

ϕ (Aα) for all general modelsM that interpret Aα and all
ϕ ∈ assign(M), and so JpAαqKα ' Aα is valid by part 5 of Lemma 6.5. 2
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