Security for Mobile Agents: Authentication and
State Appraisal *

William M. Farmer, Joshua D. Guttman, and Vipin Swarup

The MITRE Corporation
202 Burlington Road
Bedford, MA 01730-1420

{farmer, guttman, swarup }@mitre.org

Abstract. Mobile agents are processes which can autonomously migrate
to new hosts. Despite its many practical benefits, mobile agent technol-
ogy results in significant new security threats from malicious agents and
hosts. The primary added complication is that, as an agent traverses
multiple hosts that are trusted to different degrees, its state can change
in ways that adversely impact its functionality. In this paper, we discuss
achievable security goals for mobile agents, and we propose an architec-
ture to achieve these goals. The architecture models the trust relations
between the principals of mobile agent systems. A unique aspect of the
architecture is a “state appraisal” mechanism that protects users and
hosts from attacks via state modifications and that provides users with
flexible control over the authority of their agents.

1 Introduction

Currently, distributed systems employ models in which processes are statically
attached to hosts and communicate by asynchronous messages or synchronous
remote procedure calls. Mobile agent technology extends this model by including
mobile processes, i.e., processes which can autonomously migrate to new hosts.
Numerous benefits are expected; they include dynamic customization both at
servers and at clients, as well as robust remote interaction over unreliable net-
works and intermittent connections [5,11,17].

Despite its many practical benefits, mobile agent technology results in sig-
nificant new security threats from malicious agents and hosts. In fact, security
issues are recognized as critical to the acceptability of distributed systems based
on mobile agents. The primary added complication is that, as an agent traverses
multiple machines that are trusted to different degrees, its state can change
in ways that adversely impact its functionality. In this paper, we will discuss
achievable security goals for mobile agents, and we will propose an architecture
to achieve these goals. We use existing theory—the distributed authentication

* Work supported by the MITRE-Sponsored Research Program.
Appeared in the Proceedings of the European Symposium on Research in Computer
Security (ESORICS), pages 118-130, September 1996.

theory of Lampson et al. [10]—to clarify the architecture and to show that it
meets its objectives.

The process of deducing which principal made a request is called authenti-
cation. In a distributed system, authentication is complicated by the fact that
a request may originate on a distant host and may traverse multiple machines
and network channels that are secured in different ways and are not equally
trusted [10]. The process of deciding whether or not to grant a request—once
its principal has been authenticated—is called authorization. The authentication
mechanism underlies the authorization mechanism in the sense that authoriza-
tion can only perform its function based on the information provided by au-
thentication, while conversely authentication requires no information from the
authorization mechanism.

State Appraisal The unique aspect of our architecture is a “state appraisal”
mechanism. State appraisal lies above the lower authentication layer, and pro-
vides input to an authorization mechanism like those of static distributed sys-
tems. When an agent arrives at a new site of execution, it must decide what
privileges it will need at that site. A state appraisal function computes a set of
privileges to request as a function of the state of the agent when it arrives at
the new execution site. After state appraisal has determined which permissions
to request, the authorization mechanism on the new execution site may then
determine which of the requested permissions it is willing to grant.
The state appraisal mechanism serves several purposes:

1. Tt can protect a host from attacks, when these attacks alter the states of
agents in dangerous but detectable ways;

2. Tt can protect an agent’s author and sender (the user who dispatched this
agent) from misuse of the agent in their name via dangerous but detectable
state modification;

3. It can check whether an agent’s state meets important state invariants;

4. Tt enables an agent’s privilege at a new host to be dependent on the agent’s
current state, and therefore on the task to be carried at that host.

Not all state alteration can be detected, because agents travel to new hosts to
acquire information that is not available elsewhere. Some deceptive alterations
of the agent’s state will be indistinguishable from the normal result of different
(but possible) information on the remote host. However, alterations that would
cause the agent to become harmful—either to sites it visits later or else to the
user who dispatched it—can frequently be detected.

Our work contrasts with other work on mobile agent security [12-14,16,17]
because it focuses on the state information that agents carry with them. We
also explain the relationship between state appraisal, authentication, and au-
thorization. We emphasize agents written by known software developers, which
we think will be the predominant way of using software agents; most other work
looks at security for agents written by unknown parties.

We avoid making assumptions about the environment offered by different
sites of execution. In particular, we do not assume that the agents can count on

protection from the operating system at those sites. We believe that many of the
most useful applications for mobile agents will be in heterogeneous environments.
Different sites will use different operating systems, none of them likely to provide
a very high level of protection. Moreover, in these heterogeneous environments,
some sites will be in hostile or at least competitive relations with each other.
Thus, they cannot be expected to leave their operating systems unmodified,
if modifying the systems—for instance to defeat security mechanisms—would
further their competitive goals.

Mobile Agents and Languages A mobile agent is a program that can migrate
from one networked computer to another while executing. This contrasts with
the client/server model where non-executable messages traverse the network,
but the executable code remains permanently on the computer on which it was
installed. Mobile agents have numerous potential benefits. For instance, in a
specialized search of a large free-text database, it may be more efficient to move
the program to the database server rather than to move large amounts of data
back to the client’s host.

In recent years, several programming languages for mobile agents have been
designed. These languages make different design choices as to which components
of a program’s state can migrate from machine to machine. In Java [11], only
program code can migrate; no state is carried with the programs. In Obliq [1],
first-class function values (closures) can migrate; closures consist of program
code together with an environment that binds variables to values or memory
locations [16]. In Kali Scheme [2], again, closures can migrate; however, since
continuations [8,6] are first-class values, Kali Scheme permits entire processes
to migrate autonomously to new hosts. In Telescript [17], functions are not
first-class values; however, Telescript provides special operations that permit
processes to migrate autonomously.

In this paper, we adopt a fairly simple but general model of mobile agents.
Agent interpreters run on individual networked computers and communicate
among themselves using host-to-host communication services. An agent consists
of code together with execution state. The state may include a program counter,
registers, environment, recursion stack, and store; the agent executes by being
interpreted by an agent interpreter.

Agents communicate among themselves by message passing. In addition,
agents can invoke a special asynchronous “remote apply” operation that applies
a closure to arguments on a specified remote interpreter. Remote procedure calls
can be implemented with this primitive operation and message passing. Agent
migration and cloning can also be implemented with this primitive operation,
using first-class continuation values.

Example: Travel Agents, Mobile Agents to Plan Travel We turn now to
an example mobile agent system. We believe that it is typical of many—though
not of all—ways that mobile agents will be used. We will use the example to

extract the most important principles that a security architecture for mobile
agents should obey.

Consider a mobile agent that visits sites run by airlines, hotel chains, and
rental car companies searching for a travel plan that meets a customer’s require-
ments. We focus on four kinds of hosts: the personal communication systems of
the end customers, the hosts run by travel agencies in the traditional sense of
organizations that broker travel arrangements, and the hosts run by the com-
peting airlines, hotel chains, and car rental firms. Let us refer to the airlines as
Airline 1 and Airline 2, which we assume for the sake of this example do not
share a common reservation system.

The mobile agent is programmed by the travel agency. A customer dispatches
the agent to the Airline 1 server where the agent queries the flight database. With
the results stored in its environment, the agent then migrates to the Airline 2
server where again it queries the flight database. From either of these hosts, it
may visit a hotel host, where it may be eligible for a special deal depending
on whether the customer will be traveling on an allied air carrier. The agent
compares flight and fare information, decides on a travel plan, migrates to the
appropriate airline and hotel hosts, and reserves the desired flights and rooms.
Finally, the agent returns to the customer with the results.

The customer can expect that the individual airlines and hotels will provide
true information on flight schedules and fares in an attempt to win her business,
just as we assume nowadays that the reservation information the airlines provide
over the telephone is accurate, although it is not always complete.

However, the airline servers are in a competitive relation with each other. The
airline servers illustrate a crucial principle: For many of the most natural and
important applications of mobile agents, we cannot expect all the participants to
trust one another.

There are a number of attacks they may attempt. For instance, the second
airline server may be able to corrupt the flight schedule information of the first
airline, as stored in the environment of the agent. It could surreptitiously raise
its competitor’s fares, or it could advance the agent’s program counter into the
preferred branch of conditional code. Thus, the mobile agent cannot decide its
flight plan on an airline host since the host has the ability to manipulate the
decision. Instead, the agent would have to migrate to a neutral host such as the
customer’s host or a travel agency host, make its flight plan decision on that
host, and then migrate to the selected airline to complete the transaction. This
attack illustrates a principle: An agent’s critical decisions should be made on
neutral hosts, which is to say hosts trusted by its sender.

A second kind of attack is also possible: the first airline may hoodwink the
second airline, for instance when the second airline has a cheaper fare available.
The first airline’s server surreptitiously increases the number of reservations to be
requested, say from two seats to 100. The agent will then proceed to reserve 100
seats at the second airline’s cheap fare. Later, legitimate customers will have to
book their tickets on the first airline, as the second believes that its flight is full.

This attack suggests a third principle: a migrating agent can become malicious
by virtue of its state being corrupted.

Moreover, it may not be sufficient to seal certain state components crypto-
graphically, such as the number of seats to be requested, which in our example
was two. Rather, we would like to be able to ensure that a state invariant is
preserved: in this case, that the sum of the number of seats already booked and
those still to be requested should remain constantly the value two. Otherwise, the
first airline may be able to send the same agent to the second airline repeatedly,
booking two more unnecessary seats on each visit.

On the other hand, some organizations may trust each other, as for instance
in the case where they are divisions of the same corporation. An agent arriv-
ing from a trusted partner may be subjected to less security examination (to
reduce overhead), or it may be accorded special privileges. Authentication and
authorization may be handled specially between hosts with reciprocal trust.

2 Security Goals

There are some basic constraints on what security goals are achievable. We
assume that different parties will have different degrees of trust for each other,
and in fact some parties may be in a competitive or even hostile relation to
one another. As a consequence, we may infer that one party cannot be certain
that another party is running an untampered interpreter. An agent that reaches
that party may not be allowed to run correctly, or it may be discarded. The
interpreter may forge messages purporting to be from the agent. Moreover, the
interpreter may inspect the state of the agent to ferret out its secrets. For this
reason, we assume that agents do not carry keys. In particular, we claim that
agents cannot carry keys in a form that can be used on untrusted interpreters.

Existing approaches for distributed security [9] do allow us to achieve sev-
eral basic goals. These include authenticating an agent’s author and its sender,
checking the integrity of its code, and offering it privacy during transmission, at
least between interpreters willing to engage in symmetric encryption. We have
discussed these points in more detail in [4].

However, at least three crucial security goals remain:

1. Certification that an interpreter has the authority to execute an agent on
behalf of its sender;

2. Flexible selection of privileges, so that an agent arriving at an interpreter
may be given the privileges necessary to carry out the task for which it has
come to the interpreter; and

3. State appraisal, to ensure that an agent has not become malicious as a
consequence of alterations to its state.

3 Authentication

Authentication is the process of deducing which principal has made a specific re-
quest. In a distributed system, authentication is complicated by the fact that a

request may originate on a distant host and may traverse multiple machines and
network channels that are secured in different ways and are not equally trusted.
For this reason, Lampson and his colleagues [10] developed a logic of authenti-
cation that can be used to derive one or more principals who are responsible for
a request.

Elements of a Theory of Authentication The theory—which is too rich to
summarize here—involves three primary ingredients. The first is the notion of
principal. Atomic principals include persons, machines, and roles; groups of prin-
cipals may also be introduced as principals; and in addition principals may also
be constructed from simpler principals by operators. The resulting compound
principals have distinctive trust relations with their component principals. Sec-
ond, principals make statements, which include assertions, requests, and perfor-
matives.! Third, principals may stand in the “speaks for” relation; one principal
Py speaks for a second principal P, if, when P; says s, it follows that P says s.
This does not mean that Pj is prevented from uttering phrases not already ut-
tered by P»; on the contrary, it means that if P; makes a statement, P, will be
committed to it also. For instance, granting a power of attorney creates this sort
of relation (usually for a clearly delimited class of statements) in current legal
practice. When P; speaks for P», we write P; = P,. One of the axioms of the
theory allows one principal to pass the authority to speak for him to a second
principal, simply by saying that it is so:

(PlsaysP2:>P1) D P2:>P1

This is called the hand-off axiom; it says that a principal can hand his authority
off to a second principal. It requires a high degree of trust.

Three operators will be needed for building compound principals, namely
the as, for, and quoting operators. If P; and P, are principals, then P; as P,
is a compound principal whose authority is more limited than that of P;. P,
is in effect a role that P; adopts. In our case, the programs (or rather, their
names or digests) will be regarded as roles. Quoting, written P | @ is defined
straightforwardly: (P|(Q) says s abbreviates P says () says s.

The for operator expresses delegation. P, for P, expresses that P is acting
on behalf of P,. In this case P, must delegate some authority to P;; however, P
may also draw on his own authority. For instance, to take a traditional example,
if a database management system makes a request on behalf of some user, the
request may be granted based on two ingredients, namely the user’s identity
supplemented by the knowledge that the database system is enforcing some

1 A statement is a performative if the speaker performs an action by means of uttering
it, at least in the right circumstances. The words “I do” in the marriage ceremony are
a familiar example of a performative. Similarly, “I hereby authorize my attorneys,
Dewey, Cheatham and Howe, jointly or severally, to execute bills of sale on my
behalf.” Semantically it is important that requests and performatives should have
truth values, although it is not particularly important how those truth values are
assigned.

constraints on the request. Because P; is combining his authority with P’s, to
authenticate a statement as coming from P; for P,, we need evidence that P;
has consented to this arrangement, as well as P;.

Mobile agents require no additions to the theory presented in [10]; the theory
as it exists is an adequate tool for characterizing the different sorts of trust
relations that mobile agents may require.

Atomic Principals for Mobile Agents Five categories of basic principals
are relevant:

— The authors (whether people or organizations) that write programs to exe-
cute as agents;

— The programs they create, which, together with supplemental information,
are signed by the author;

— The senders (whether people or other entities) that send agents to act on
their behalf. A sender may need a trusted device to sign and transmit agents;

— The agents themselves, consisting of a program together with data added by
the sender on whose behalf it executes, signed by the sender;

— The interpreters that execute agents; they may transfer the agents among
themselves, and may eventually return results to the sender.

Naturally, an implementation will also require one or more certification author-
ities, but their role is perfectly standard and we will not discuss them further.

The Natural History of an Agent There are three crucial types of events
in the life history of an agent. They are the creation of the underlying program;
the creation of the agent; and migration of the agent from one execution site
to another. These events introduce compound principals built from the atomic
principals just given.

Program Creation. The author of a program prepares source code and a state
appraisal function max for the program. The function max will calculate the
maximum safe permissions to be accorded an agent running the program, as a
function of its current state.

In addition, an access control list (or other mechanism) may also be included
for determining which users are permitted to send the resulting agent.

After compiling the source code for the program and its state appraisal func-
tion, the author C' then compiles these pieces, constructs a message digest D
for the result, and signs that with her private key. By doing so, she permits the
program to make statements on her behalf, in her role as author of this program.
That is, D, when attributing a statement to C, may speak for the compound
principal C as D (formally, D|C = C as D).2

% Since we regard D as a name of the program of which it is a digest, we regard actions
performed by the program while executing as utterances of D.

Agent Creation. To prepare a program for sending, the sender attaches a second
state appraisal function, called the request function; this will calculate the per-
missions the sender wants an agent running the program to have, as a function of
its current state. We will call the sender’s state appraisal function req. For some
states X, req(X) may be a proper subset of max(X); for instance, the sender
may not be certain how D will behave, and she may want to ensure she is not
liable for some actions.

The sender may also include an interpreter access control list (or other mech-
anism) specifying interpreters that are allowed to run the resulting agent on the
sender’s behalf, either via delegation or hand-off.

The sender S attaches her name, and then she computes a message digest A
for the following items: the program, its digest D, the function req, S’s name,
and a counter S increments for each agent she sends. She signs the message
digest A with her private key.

This signature says that the resulting agent A may make statements for
the compound principal A for S. This is a delegation, which requires some
sort of acceptance by A. This acceptance amounts to permission for S to use
A. The acceptance may then be attested by the access control list, mentioned
above as a component of D, for determining the users authorized to send agents
built from D. Alternatively, if C wants D to be usable by the general public,
this acceptance may be vacuous. As a consequence of the delegation, A, when
attributing a statement to S, may speak for the compound principal A for S
(formally, A|S = A for S).

In addition, A can speak for D: Statements made by an agent A are state-
ments made by its program, and D is the digest of that program.

Before the sender dispatches A, she also attaches a list of parameters, which
are in effect the initial state Xy for the agent. The state is not included un-
der any cryptographic seal, because it must change as the agent carries out its
computation. However, S’s request function may impose invariants on the state.

Agent Migration. When an agent is ready to migrate from one interpreter to
the next, the current interpreter must construct a message containing the agent
A, its current state X, the current interpreter Iy, the principal P; on behalf of
whom I; is executing the agent, and a description of the principal P> on behalf
of whom the next interpreter I should execute the agent starting from X.

The authentication machinery can be construed as providing a proof that
I | P, = P,. Depending on whether I, is trusted by I; or by the agent A, four
different values of P, are possible, expressing different trust relationships.

1. I1 can hand the agent off to I2; I> will then execute the agent on behalf of
Py. In this case, I | P says I | P, = P;. P2 is Py.

2. I can delegate the agent to I5. Is will combine its authority with that of P
while executing the agent. P, is I for P;.

3. The agent can directly hand itself off to I5. I> will execute A on behalf of
the agent. In this case, A|S says I>|(A for S) = (A for S). This statement
may be contained in an interpreter access control list the sender has attached
to the agent. P, is A for S.

4. The agent can delegate itself to I. I3 will then combine its authority with
that of the agent while executing A. The delegation statement may be con-
tained in an interpreter access control list the sender has attached to the
agent. In this case, P, is I for A for S.

In the first case, I> does not appear in the resulting compound principal. This
requires I; to trust I not to do anything I; would not be willing to do. In the
third and fourth cases, because the agent itself is explicitly expressing trust in
I5, the resulting compound principal does not involve I;. The agent trusts I to
appraise the state before execution. Assuming that the result of the appraisal is
accepted, I; has discharged its responsibility.

In all four cases, if P; is of the form @ for ...(A for S), where the initial
chain of delegations @ for ... may be vacuous, then P; is also of the same form.
Since agent creation—which serves as a base case—yields the principal A for S,
by induction the relevant principal is always of the form shown.?

What happens when an interpreter I, receives a message requesting that it
execute an agent? The message contains an agent (A for S), together with its
current state X and the name of a principal P, on behalf of whom I will execute
it. I, must evaluate the certificates contained in the message to authenticate P;.
This may require it to fetch certificates from a directory service for principals it
does not recognize. It will also check the author’s signature on the program and
the sender’s signature on the agent. However, the mechanisms needed for this
purpose are well-understood [10]; indeed, they provide a proof that Iy | P> = Ps.
We have now met the first of the security goals proposed in Section 2, namely
certification that an interpreter has the authority to execute an agent, ultimately
on behalf of its sender.

Trust Relationships for Travel Agents We now return to our travel agents
example (Section 1) and describe how the various trust relationships of that
example can be expressed in our security architecture.

In the example, a travel agency creates a travel reservation program and a
state appraisal function while a customer adds a permit request function. The
customer also provides certificates to hand off or delegate authority to inter-
preters. For instance, the customer’s certificates may hand off authority to her
own interpreter and to a neutral travel agency interpreter (since she trusts them),
but her certificates may only delegate authority to Airline 1 and Airline 2 (since
they have vested interests). The customer sends the agent to her interpreter,
with an initial state containing her desired travel plans.

As its first task, the agent migrates to the Airline 1 host I;. The agent
contains a certificate that directly delegates to Airline 1 the authority to speak on
its behalf. Airline 1 accepts this delegation and runs the agent as I; for A for S.
In our architecture, this kind of trust relationship is an example of the agent
delegating its authority to Airline 1 (case 4). This ensures that Airline 1 takes

3 Indeed, we may regard agent creation as an instance of case 3, where the new inter-
preter I» is the sender’s local host.

responsibility while speaking for the agent, for instance, while making airline
reservations on the agent’s behalf.

The agent now seeks to gather hotel reservation information. Airline 1 owns
a hotel chain and has strong trust in its hotels such as Hotel 1. It sends the
agent to the Hotel 1 host I» and gives Hotel 1 whatever authority it has over the
agent. Hotel 1 runs the agent as I; for A for S, which is the principal that Iy
hands it. This kind of trust relationship is an example of Airline 1’s interpreter
handing off its authority to Hotel 1 (case 1). As a consequence of this trust, I»
may grant the agent access to a database of preferred room rates.

Next, the agent migrates to Airline 1’s preferred car rental agency
Car Rental 1, whose interpreter is I3. Since Airline 1 does not own Car
Rental 1, it delegates its authority to Car Rental 1 which runs the agent as
I3 for I; for A for S. This causes Car Rental 1 to take responsibility while
speaking on Airline 1’s behalf. It also gives the agent combined authority from
I, and I3; for instance, the agent can obtain access to rental rates negotiated
for travelers on Airline 1. Airline 1’s interpreter has delegated its authority to
Car Rental 1 (case 2).

The agent now migrates to the Airline 2 host ;. The agent contains a cer-
tificate that directly delegates to Airline 2 the authority to speak on its behalf.
Airline 2 accepts this delegation and runs the agent as I, for A for S, again
case 4. Airline 1’s interpreter I; has now discharged its responsibility; it is no
longer an ingredient in the compound principal.

Once the agent has collected all the information it needs, it migrates to the
customer’s trusted travel agency (Travel Agency 1) host I5 to compare informa-
tion and decide on an itinerary. The agent contains a certificate that directly
hands Travel Agency 1 the authority to speak on its behalf. Travel Agency 1 can
thus run the agent as A for S. This permits Travel Agency 1 to make critical de-
cisions for the agent, for instance, to make reservations or purchase a ticket. This
kind of trust relationship is an example of the agent handing off its authority to
Travel Agency 1 (case 3).

4 Authorization

The result of the authentication layer is a principal P, on behalf of whom I,
has been asked to execute the agent. The purpose of the authorization layer
is to determine what level of privilege to provide to the agent for its work.
The authorization layer has two ingredients. First, the agent’s state appraisal
functions are executed; their result is to determine what privileges (“permits”)
the agent would like to request given its current state. Second, the interpreter
has access control lists associated with these permits; the access control lists
determine which of the requested permits it is willing to grant.

We will assume that the request is for a set a of permits; thus, a request is a
statement of the form please grant a. In our approach, agents are programmed
to make this request when they arrive at a site of execution; the permits are
then treated as capabilities during execution: no further checking is required.

10

We distinguish one special permit run. By convention, an interpreter will run
an agent only if it grants the permit run as a member of a.

The request is made by means of the two state appraisal functions. The
author-supplied function max is applied to X returning a maximum safe set
of permits. The sender-supplied appraisal function req specifies a desired set of
permits; this may be a proper subset of the maximum judged safe by the author.
However, it should not contain any other, unsafe permits. Thus, we consider P,
to be making the conditional statement:

ifreq(X) C max(X) then please grant req(X) else please grant ()

I, evaluates req(X) and max(XY). If either req or max detects dangerous tamper-
ing to X, then that function will request @. Likewise, if req makes an excessive
request, then the conditional ensures that the result will be §). Since run ¢ 0,
the agent will then not be run by I5. Otherwise, P, has requested some set ag
of permits.

In the logic of authentication presented in [10], authorization—the granting
of permits—is carried out using access control lists. Logically, an access control
list is a set of formulas of the form (Q says s) D s, where the statements s are
requests for access to resources. If a principal P says sg, then I, tries to match
P and sg against the access control list. For any entry (@) says s) D s,if P = @
and s9 DO s, then I, may infer s, thus effectively granting the request. This
matching may be made efficient if P, (), and s take certain restricted syntactic
forms.

Since we are concerned with requests for sets of permits, if a C ag then
please grant ag D please grant a. Hence, a particular access control list entry
may allow only a subset of the permits requested. The permits granted will be
the union of those allowed by each individual access control list entry

(Q says please grant a) D please grant a

that matches in the sense that P = @ and a C ap.

Authorization for Travel Agents We again return to our example of mobile
travel agents, in order to illustrate how state appraisal functions may be used
to achieve their security goals. In particular, we will stress the goals 2 and 3
of Section 2, namely flexible selection of permits and the use of state appraisal
functions to detect malicious alterations.

In our first example, we will illustrate how the flexible selection of privilege
may benefit the servers, in this case the airlines. Let us suppose that agents
requesting full-fare, unrestricted tickets are to be given priority over those re-
questing restricted tickets at discount fares. Since the author of the program
knows best how these facts are stored in the agent’s state, he knows how to
perform this test. It may thus be incorporated into the state appraisal function
max. Since the author is a disinterested, knowledgeable party, the interpreter
can safely grant a requested privilege whenever it is within max(X'). The priority
treatment might consist of faster service, or access to a larger pool of seats.

11

The flexible selection of privilege may also benefit the sender. For instance,
when the agent returns to the travel agency’s trusted interpreter, it may attempt
to book a ticket if sufficient information has already been retrieved. The sender
may decide that she wants at least four airlines to be consulted. Thus, she
writes—or selects—a permit request function req that, on reaching the travel
agency’s host, checks the number of candidate itineraries in the agent’s state.If
this is at least four, then she requests the make-booking permit. An exception-
handling mechanism will send the agent out for more information if it tries to
make a booking without this permit.

State appraisal may also be used to disarm a maliciously altered agent. Let
us alter our example slightly so that the agent maintains—in its state—a linked
list of records, each of which represents a desired flight. The code that generates
this list ensures that it is finite (free of cycles); the code that manipulates the
list preserves the invariant. Thus, there is never a need for the program to check
that this list is finite. However, when an agent is received, it is prudent for the
state appraisal function to check that the list has not been altered in transit. For
if it were, then when the agent began to make its reservations, it would exhaust
the available seats, causing legitimate travelers to choose a different carrier.

5 Conclusion

In this paper, we have briefly described a framework for authenticating and
authorizing mobile agents, building on existing theory. Our approach models a
variety of trust relations, and allows a mobile agent system to be used effectively
even when some of the parties stand in a competitive relation to others. We
have introduced the idea of packaging state appraisal functions with an agent.
The state-appraisal functions provide a flexible way for an agent to request
permits, when it arrives at a new interpreter, depending on its current state,
and depending on the task that it needs to do there. The same mechanism
allows the agent and interpreter to protect themselves against attacks in which
the state of the agent is modified at an untrustworthy interpreter or in transit.
We believe that this is the primary security challenge for mobile agents, beyond
those implicit in other kinds of distributed systems.

References

1. L. Cardelli. A language with distributed scope. In Proceedings of the 22nd
ACM Symposium on Principles of Programming Languages, pages 286—298, 1995.
http://www.research.digital.com/SRC/0bliq/0bliq.html.

2. H. Cejtin, S. Jagannathan, and R. Kelsey. Higher-order distributed objects. ACM
Transactions on Programming Languages and Systems, 17(5):704-739, September
1995. http://www.neci.nj.nec.com:80/PLS/Kali.html.

3. D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik. Itinerant
agents for mobile computing. IEEE Personal Communications Magazine, 2(5):34—
49, October 1995. http://www.research.ibm.com/massive.

12

10.

11.

12.

13.

14.

15.

16.

17.

W. Farmer, J. Guttman, and V. Swarup. Security for mobile agents: Issues and
requirements. In National Information Systems Security Conference. National In-
stitute of Standards and Technology, October 1996.

C. G. Harrison, D. M. Chess, and A. Kershenbaum. Mobile agents: Are they
a good idea? Technical report, IBM Research Report, IBM Research Division,
T.J. Watson Research Center, Yorktown Heights, NY, March 1995. http://
www.research.ibm.com/massive.

C. Haynes and D. Friedman. Embedding continuations in procedural objects. ACM
Transactions on Programming Languages and Systems, 9:582-598, 1987.

IBM Corporation. Things that go bump in the net. Web page at http://
www.research.ibm.com/massive, 1995.

IEEE Std 1178-1990. IEEE Standard for the Scheme Programming Language.
Institute of Electrical and Electronic Engineers, Inc., New York, NY, 1991.
Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Security: Private
Communication in a Public World. PTR Prentice Hall, Englewood Cliffs, 1995.
B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Systems,
10:265-310, November 1992. http://DEC/SRC/research-reports/abstracts/
src-rr-083.html.

Sun Microsystems. Java: Programming for the internet. Web page available at
http://java.sun.com/.

Sun Microsystems. HotJava: The security story. Web page available at http://
java.sun.com/doc/overviews.html, 1995.

J. Tardo and L. Valente. Mobile agent security and Telescript. In IEEE CompCon,
1996. http://www.cs.umbc.edu/agents/ security.html.

C. Thirunavukkarasu, T. Finin, and J. Mayfield. Secret agents — a security ar-
chitecture for KQML. In CIKM Workshop on Intelligent Information Agents,
Baltimore, December 1995.

T. D. Tock. An extensible framework for authentication and delegation. Master’s
thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1994. ftp://
choices.cs.uiuc.edu/Papers/Theses/MS.Authentication.Delegation.ps.Z.
Leendert van Doorn, Martin Abadi, Mike Burrows, and Edward Wobber. Secure
network objects. In Proceedings, Symposium on Security and Privacy, pages 211—
221. 1EEE Computer Society, 1996.

J. E. White. Telescript technology: Mobile agents. In General Magic White Paper,
1996. Will appear as a chapter of the book Software Agents, Jeffrey Bradshaw
(ed.), AAAI Press/The MIT Press, Menlo Park, CA.

13

