
A Formal Language for Writing Contracts
William M. Farmer
McMaster University

Hamilton, Ontario, Canada
wmfarmer@mcmaster.ca

Qian Hu
McMaster University

Hamilton, Ontario, Canada
huq6@mcmaster.ca

Abstract—A contract is an artifact that records an agreement
made by the parties of the contract. Although contracts are
considered to be legally binding and can be very complex, they
are usually expressed in an informal language that does not have
a precise semantics. As a result, it is often not clear what a
contract is intended to say. This is particularly true for contracts,
like financial derivatives, that express agreements that depend
on certain things that can be observed over time such as actions
taken of the parties, events that happen, and values (like a stock
price) that fluctuate with respect to time. As the complexity of
the world and human interaction grows, contracts are naturally
becoming more complex. Continuing to write complex contracts
in natural language is not sustainable if we want the contracts
to be understandable and analyzable. A better approach is to
write contracts in a formal language with a precise semantics.
Contracts expressed in such a language have a mathematically
precise meaning and can be manipulated by software. The
formal language thus provides a basis for integrating formal
methods into contracts. This paper outlines a formal language
with a precise semantics for expressing general contracts that
may depend on temporally based conditions. We argue that the
language is more effective for writing and analyzing contracts
than previously proposed formal contract languages.

Index Terms—Contracts, formal languages, simple type theory,
observables, deontic logic, conditional agreements, temporally
based conditions.

I. INTRODUCTION

A contract records, orally or in writing, a legally binding
agreement between two or more parties [1]. Contracts come
in many forms and are used for many purposes [1], [2].
Written contracts are artifacts that can be stored, analyzed,
modified, and reused. As artifacts, contracts are usually ex-
pressed informally in a natural language such as English. Since
natural language does not have a precise semantics, it can be
difficult to write complex ideas in a natural language in a clear
and unambiguous way. Thus contracts that embody complex
agreements can be very difficult to both write and understand
when natural language is used.

The meaning of a contract — that is, what the agreement
is — often depends on certain things that can be observed,
called observables, such as actions taken by the parties of the
contract, events that happen, and values (like a stock price)
that fluctuate with respect to time. A contract of this kind is
dynamic: the contract’s meaning changes over the course of
time. A dynamic contract contains temporally based conditions
that trigger changes to the contract’s meaning when the

conditions become true. Since the structure of these conditions
can be very complex, dynamic contracts can be very difficult
to understand and analyze. For example, financial derivatives
that derive their values from fluctuating underlying assets are
dynamic contracts that are notorious for being difficult to
value [3].

Contracts — in particular, dynamic contracts — are natu-
rally becoming more complex as the complexity of the world
and human interaction grows. Continuing to write complex
contracts in natural language is not sustainable if we want
the contracts to be understandable and analyzable. A better
approach is to write contracts in a formal language with a
precise semantics. Then a contract becomes a formal object
that has a mathematically precise meaning and that can be
manipulated by software. A formal contract of this kind can
be written, analyzed, and manipulated in various ways with
the help of sophisticated software tools.

This paper outlines FCL, a Formal Contract Language with
a precise semantics for writing general contracts. In FCL, a
contract is a set of components (definitions, agreements, and
rules) that can refer to observables and can include conditions
that depend on observables. The meanings of these compo-
nents can change when the values of observables mentioned
in them change, and new components can be added when
conditions become true. Hence the state of a contract as a
set of components can evolve over time in much the same
way as the state of a computer program evolves over time.

The paper is organized as follows. Section II presents a
simple example of a dynamic contract. Section III discusses
what properties contracts have. An overview of FCL is given
in section IV, and the formal semantics of FCL is outlined in
section V. Section VI shows how the example from Section II
can be expressed in FCL. A more complex example expressed
in FCL is given in Section VII. How FCL is related to other
formal and informal contract languages is summarized in
section VIII, and the paper concludes with section IX.

II. EXAMPLE

To illustrate the role of observables and conditions that
depend on them in a dynamic contract, we will consider the
following simple example.

Example 1: Consider an American call option for purchas-
ing one share of a certain kind of stock on June 30, 2015 for
$5. The expiration date of the option is December 17, 2015
(and so the option may be exercised on any date from June 30,c© 2016 IEEE

2015 to December 17, 2015). The strike price of the option is
$80. The transaction of the sale of the stock must be finished
within 30 days of payment.

An American option is a contract that gives the owner the
right, but not the obligation, to buy or sell a specified asset
at a specified price on or before a specified date [4]. This
example describes the conditions that are required for the sale
of one share of stock. It shows the role that observables and
conditions commonly play in contracts. If a payment of $5 on
June 30, 2015 is made to the option seller to buy the option
(first condition), the option contract will become effective. If
the option buyer exercises the option by paying $80 to the
option seller on or before December 17, 2015 (the second
condition), the option seller will transfer one share of the
stock to the option buyer within 30 days after the option is
exercised. The payments of $5 and $80 are both observables
on which the first and second conditions respectively depend.
The transference of the stock is also an observable.

This American call option can be deconstructed into three
components:

1. Condition 1: The option buyer gives the option seller
$5 on June 30, 2015 to buy an American call option
consisting of a conditional agreement composed of the
following two components.

2. Condition 2: The option buyer chooses to exercise the
option by paying $80 to option seller on or before
December 17, 2015.

3. Agreement: The option seller is obligated to transfer
one share of stock to the option buyer no later than 30
days after the option is exercised.

The contract thus has the following form:

i f Condition 1
t h e n

i f Condition 2
t h e n Agreement

Both if-then parts of the contract are conditional agreements.
The second conditional agreement consists of Condition 2 and
Agreement, and the first conditional consists of Condition 1
and the second conditional agreement.

The offer time of the American call option is the time
the option contract is offered by the option seller to possible
buyers. At the offer time, the option contract is not a legally
binding agreement. It becomes a legally binding agreement
only when the option contract is purchased by the option buyer
(i.e., the time when Condition 1 is satisfied).

A conditional agreement, like either of the two in this ex-
ample, can be viewed as a “rule” that generates an agreement
depending on the values of certain observables. In general,
different agreements are generated when observables have
different values. Observables determine both the meaning of
a contract and how the meaning of the contract evolves over
time.

III. WHAT IS A CONTRACT?

Before we present FCL, our formal language for writing
contracts, we need to discuss what a contract is. A contract
is an artifact with certain properties. There is not a clear
consensus of which of these properties are necessary and
which are optional. We favor the definition of a contract given
by Brian Blum in [2, p. 2]. He says a contract must have each
of the following properties:

• Is an oral or written agreement.
• Involves at least two parties.
• Includes at least one promise made by the parties.
• Establishes an exchange relationship between the parties.
• Is legally enforceable.

A contract is created only because the parties reach agree-
ment on the terms of the contract. The parties are the people or
entities that have mutually agreed to the contract and are bound
by its terms and conditions. In the case of written agreements,
the parties are typically identified as the people or entities that
signed the agreement. For any contract to be valid, there must
be at least two parties. Typically, one party makes an offer and
the other party accepts it. In addition, to be valid a contract
must involve the parties in an exchange of something of value
such as services, goods, or a promise to perform some action.
Note that the exchange of money is not necessary.

A contract involves a promise which Blum defines as an
“undertaking to act or refrain from acting in a specified way
at some future time” [2, p. 5]. We think of “undertaking to act”
as the deontic notion of obligation. Similarly, we understand
“refrain from acting” as the deontic notion of prohibition.
Obligation and prohibition are concepts studied in deontic
logic [5]. They have the distinctive characteristic of being
violable. When a promise made in a contract is honored, we
say the promise has been satisfied. If it has not been honored,
we say it has been violated. A promise may be restricted by
a temporal bound, that is, a period of time during which an
obligation or prohibition is in force. For example, a tenant
may be obliged to pay rent on the first day of each month.

We will use an expanded definition of a contract that
includes “degenerate contracts” that would not be considered
contracts according to Blum’s definition but are convenient to
include in the space of all possible contracts. For example, a
contract is void if it violates the law [3]. Void contracts are
not legally enforceable agreements, so by Blum’s definition
they are not genuine contracts. We will consider them to be
contracts, but we will designate them as being degenerate.
Similarly, we will consider an agreement between two parties
that does not include a promise or establish an exchange
relationship between the parties as a degenerate contract.

IV. OVERVIEW OF FCL

This section describes the main components of FCL and
informally explains their purpose and meaning. The formal
semantics of FCL is outlined in the section V.

A. Underlying Logic

We will assume that the underlying logic of FCL is some
version of simple type theory [6]. The underlying logic must
have the following base types:

1. Bool, a type consisting of the boolean values T (true)
and F (false).

2. Time, a type consisting of the integers Z. That is, we
assume that time is represented as a discrete linearly
ordered set of values such that each value has a pre-
decessor and a successor. The values many denote any
convenient measure of time such as days, hours, seconds,
etc.

3. Event, a type of events. These can be actions performed
by the parties of a contract as well as events that the
parties have no control over.

The underlying logic must have the following constants:
1. true and false of type Bool.
2. obs-event of type Time× Event→ Bool.

true and false represent the truth values T and F, respectively.
obs-event is used to express observations of events as de-
scribed in section IV-B.

The underlying logic must also have the variable Xtime of
type Time. Xtime is used to instantiate expressions with the
current time of a contract.

An expression of FCL is any expression in the underlying
logic of FCL.

Building FCL on simple type theory gives FCL access to
the high expressivity and reasoning power of simple type
theory [6]. This means that FCL can be developed largely by
utilizing the standard machinery of simple type theory without
the need to develop new logical ideas.

B. Observables

An observable is something that has a variable value that
can be observed at a particular time [7], [8]. Let us look
at a couple of examples. The temperature of a room is an
observable. Its value at a given time t is the temperature
measured in the room at t. An event is an observable whose
value is either true or false. Its value at a given time t is true
[false] if the event occurs [does not occur] at t.

An observable of FCL is the application of a constant f of
type

Time× α1 × · · · × αn → β

where n ≥ 0. Thus the value of the observable f(t, a1, . . . , an)
depends on time in the sense that it depends on the value
of its first argument which is of type Time. The value of
f(t, a1, . . . , an) also depends on the parameters a1, . . . , an.
An observation of FCL is an atomic formula of the form
o = v where o is an observable f(t, a1, . . . , an) and v is
a value in the output type of f . When the output type of
f is Bool, o = true and o = false can be written as o
and ¬o, respectively. An observational statement of FCL is
a formula of the underlying logic of FCL constructed from
observations using the machinery of the underlying logic —

O(a, T) stands for λ t : Time . ∃u : Time .
u ∈ T ∧ u ≤ t ∧ obs-event(u, a).

F(a, T) stands for λ t : Time . ∀u : Time .
u ∈ T ⊃ (u ≤ t ∧ ¬obs-event(u, a)).

TABLE I
NOTATIONAL DEFINITIONS

which includes propositional connectives, quantifiers, and the
other usual machinery of simple type theory.

We will show how the two examples of observables men-
tioned above can be expressed in FCL. Let obs-temp be a
constant of type Time→ Z. Then obs-temp(t) = a represents
the observation that the temperature in a particular room is a
at time t. obs-event(t, e) represents the observation that the
event e occurs at time t.

C. Actions

An action is an event that can be performed by the parties of
a contract. There are two sorts of entities involved in an action:
subjects and objects. The former are the entities who perform
the action, while the latter are the entities that are acted upon
by the subjects. An action a of type Event is defined as a tuple
of the form (L,α,S,O) where L is the label of an action, α
is the act of the action (i.e., the thing that is performed), S is
the set of subjects of the action, and O is the set of objects.

Contracts typically include actions that specify the transfer
of resources (money, goods, services, and even pieces of
information) between parties. The act of the action would be
the transfer of resources from one party (the subject) to another
party (the object). Notice that an action of this kind encodes
both what is transferred and what parties are involved in the
transference.

D. Constant Definitions

A constant definition of FCL is an expression of the form
c = e where c is a new constant or an application of new
constant and e is an expression that defines the value of c.
Constant definitions are used, among other things, to define
temporally based values.

E. Notational Definitions

We will introduce now the notational definitions in Table I.
Let a be an action and T be a set of times. Expressions
of the form O(a, T) and F(a, T) are called obligations and
prohibitions. respectively. These two kinds of expressions are
used in FCL to represent agreements (which are defined in
the next subsection). O(a, T)(t) asserts that the action a has
been observed at some time in T at or before the time t,
and F(a, T)(t) asserts that action a has not been observed
at any time in T at or before the time t. The operators O
and F are inspired by the deontic operators for obligation and
prohibition [5].

F. Agreements

An agreement is a promise to do or not do a specific action.
An agreement of FCL is a time predicate p such that p(t)

asserts that the promise represented by p has been met at
time t. Obligations O(a, T) and prohibitions F(a, T), where
a is an action and T is a set of times, are especially useful
examples of agreements. O(a, T) represents the promise that
the action a will occur at some time in T , and F(a, T)
represents the promise that the action a will not occur at any
time in T .

Notice that agreements in FCL do not include an expression
formed using an operator corresponding to the deontic operator
for permission. Permissions and obligations are really the same
thing looked at from different points of view. For example, A’s
obligation to pay B money, is the same thing as B’s permission
to be paid by A, and A’s permission to receive a payment from
B, is the same as B shall pay A the money.

We think permission more properly refers to a discretionary
authority to trigger an obligation for the other party to perform.
In FCL, one party’s permission to perform an action a will
often be expressed by:

1. The absence of an obligation to perform a;
2. The absence of a prohibition to perform a; and
3. A conditional agreement that says, if a is performed,

then the other party is obligated to perform some action
b.

Thus, a permitted action will be expressed as a rule that
can create the other party’s obligations in response to the
performance of this action. Consider Example 1 in which
the option buyer is permitted to exercise the option. This
permission is captured by the conditional agreement that, if
the option buyer exercises this option, then the option seller
is obligated to sell a share of stock to the option buyer.

G. Rules

A rule R of FCL is inductively defined as an expression of
the form

ϕ 7→ B

where ϕ is a formula of the underlying logic and B is a set of
constant definitions, agreements, and rules. We assume that
each free variable occurring in a constant definition or an
agreement in B also occurs in ϕ. We will see in section V
that, if ϕ is satisfied at time t, the members of B are added to
the state of a contract at t + 1. Thus a rule can dynamically
change the meaning of a contract.

A rule of the form ϕ 7→ {A}, where A is an agreement,
represents a conditional agreement.

H. Contracts

A contract C of FCL is a pair (toffer,B) where toffer is a
time and B is a set of constant definitions, agreements, and
rules. The parties of C are the parties mentioned in the rules
in B. toffer is the time the contract is offered to the parties.

As we will see in the next section, a contract has a
state consisting of a set of constant definitions, agreements,
and rules. The state evolves over time like the state of a
program evolves over time. A contract is fulfilled when all
the agreements in its state are satisfied and all the rules in its

state are no longer applicable. A contract is breached when
some agreement in its state is violated.

V. FORMAL SEMANTICS OF FCL
This section presents the highlights of the formal semantics

of FCL.

A. Models
A model of FCL is a model of the underlying logic of FCL.

Throughout this section let M be a model of FCL. Let VM

be the valuation function of M that assigns each (closed)
expression of FCL a value in M. In particular, VM assigns
each observable f(t, a1, . . . , an) a value for all times t (and
parameters a1, . . . , an).

B. Agreements
Let A be an agreement of FCL and t ∈ Z. The value of A

in M at time t is VM(A(t)), where t is some canonical ex-
pression whose value is t. An agreement is satisfied [violated]
in M at time t if its value in M at t is T [F].

C. Rules
Let R = ϕ 7→ B be a rule of FCL and t ∈ Z.

Define sub(ϕ, t) to be the set of substitutions σ that map
the free variables in ϕ to appropriate expressions such that
σ(Xtime) = t. The variable Xtime is used to instantiate a rule
with the current time of a contract. For any expression e and
substitution σ ∈ sub(ϕ, t), let eσ be the result of applying σ
to e. Let Bσ = {eσ | e ∈ B} for σ ∈ sub(ϕ, t). Then define
new-items(R,M, t) to be

{Bσ |VM(ϕσ) = T ∧ σ ∈ sub(ϕ, t)}.

R is active in M at t if VM(ϕσ) = T for some σ ∈
sub(ϕ, t). R is defunct in M at t if VM(ϕσ) = F for all
u ≥ t and all σ ∈ sub(ϕ, u). If R is defunct in M at t, then
R is not active in M at u and new-items(R,M, u) = ∅ for
all u ≥ t.

D. Contracts
Let C = (toffer,B) be a contract. The state of C in
M at time t ≥ toffer, written state(C,M, t), is the set of
constant definitions, agreements, and rules defined inductively
as follows:

1. state(C,M, toffer) = B.
2. If t ≥ toffer, then state(C,M, t+ 1) =

(state(C,M, t) ∪
⋃
R∈B

new-items(R,M, t).

C is fulfilled in M at time t ≥ toffer if every agreement
in state(C,M, t) is satisfied in M at t and every rule in
state(C,M, t) is defunct in M at t. C is breached in M
at time t ≥ toffer if there is an agreement in state(C,M, t)
that is violated in M at t. C is null in M at time t ≥ toffer

if state(C,M, t) contains no agreements and every rule in
state(C,M, t) is defunct in M at t.
C is perpetually fulfilled [perpetually breached] in M if

there is a time t ≥ toffer such that C is fulfilled [breached] in
M at every u ≥ t.

VI. EXAMPLE 1: AN AMERICAN CALL OPTION

We formalize here the American Call Option introduced in
Section II as a contract C of FCL. C has two parties: a seller
and a buyer. The unit of time is one day. Let the offer time
toffer of the contract be the day before June 30, 2015 when
the seller offered the contract to the buyer. C is defined as the
pair (toffer, {D1, D2, R1}) where:

D1 : tbuy = 0 (June 30, 2015).
D2 : texpire = 170 (December 17, 2015).
R1 is defined below.

C is constructed from two rules R1 and R2:
1. Rule for Buying the Option:

R1 = ϕ1 7→ {R2} where:
ϕ1 = obs-event(Xbuy, e1) ∧Xbuy = tbuy.
e1 = (“Buy Option”, transfer($5), {buyer}, {seller}).
R2 is defined below.

2. Rule for Exercising the Option:
R2 = ϕ2 7→ {D3, A} where:
ϕ2 = obs-event(Xtime, e2) ∧ tbuy ≤ Xtime ≤ texpire.
e2 = (“Exercise Option”, transfer($80), {buyer},

{seller}).
D3 : texercise = Xtime.
A = O(e3, [texercise, texercise + 30]).
e3 = (“Transfer Stock”, transfer(stock), {seller},

{buyer}).
tbuy, texpire, and texercise are new constants of type Time.

[texercise, texercise + 30] is the interval representing the set of
times {texercise, texercise + 1, . . . , texercise + 30}.

Each of the three events e1, e2, and e3 are actions by one
of the two parties. The three events are tied to the contract.
For example, a more exact name for “Buy Option” would be
“Buy Option Described by Contract C”. We assume that each
of the three events can happen as most once. ϕ1 asserts the
option is bought on June 30, 2015, and ϕ2 asserts the option
is exercised at a time after the option is bought and before the
option expires.

The state of C in a model M at time t ≥ toffer, written as
state(C,M, t), evolves over time as indicated in Figure 1. In
the figure, let u be the time that R2 becomes active, i.e, when
the buyer exercises the option. Let σ be the substitution that
maps Xtime to u. Applying σ has the effect of replacing Xtime

with u, whose value is the time u. D3σ is thus the equation
texercise = u.

VII. EXAMPLE 2: A SALE OF GOODS CONTRACT

We previously saw an encoding of the American Call Option
in FCL. In this section, we extend an example of a sale of a
laser printer contract from [9, p. 5] and provide a formalization
of this contract in FCL.

Example 2: The contract consists of five clauses:
1. Seller agrees to transfer and deliver to Buyer one laser

printer within 22 days after an order is made.
2. Buyer agrees to accept the goods and to pay a total of

$200 for them according to the terms further set out
below.

state(C,M, toffer) = {D1, D2, R1} null

state(C,M, tbuy) = {D1, D2, R1, R2} null

state(C,M, texercise) = {D1, D2, D3σ,A,R1, R2} breached

fulfilled

R1 is defunct

R1 is active

R1, R2 are defunct

R2 is active

A is violated

A is satisfied; R1, R2 are defunct

Fig. 1. Execution of the American Call Option C

3. Buyer agrees to pay for the goods half upon receipt,
with the remainder due within 30 days of delivery.

4. If Buyer fails to pay the second half within 30 days, an
additional fine of 10% has to be paid within 14 days.

5. Upon receipt, Buyer has 14 days to return the goods to
Seller in original, unopened packaging. Within 7 days
thereafter, Seller has to repay the total amount to Buyer.

Although this example contract is very simple, two points
should be noticed. First, a contract usually specifies actions
to be taken in case of the violation of a part of the contract.
In the deontic literature [5], this is known as contrary-to-duty
obligations (CTDs) or reparational obligations. Clause 4 of
this contract is such an example in which a potential violation
can generate obligations to “repair” the violation. Second,
consider the total amount specified in clause 5. Taken literally,
it would imply that the total amount the seller must repay to
buyer in case of a return of the printer should be $200 as
stated in clause 2. Actually, this is not the buyer’s intention.
In fact, the total amount to repay is the amount that the buyer
has already paid the seller.

Now we formalize this contract in FCL to explain how we
deal with the above problems. Let C be this contract expressed
in FCL. C has two parties: a seller and a buyer. The unit of
time is one day. C is defined as the pair (toffer, {R1}) where
toffer is the time when the seller offered the contract to the
buyer.
C is constructed from the following ten rules:
1. Rule for Ordering a Printer:

R1 = ϕ1 7→ {D1, A1, R2}.
ϕ1 = obs-event(Xtime, e1) ∧ toffer ≤ Xtime.
e1 = (“Order Printer”, transfer(order), {buyer},

{seller}).
D1 : torder = Xtime.
A1 = O(e2, [torder, torder + 22]).
e2 = (“Deliver Printer”, transfer(printer), {seller},

{buyer}).
R2 is defined below.

2. Rule for Delivering the Printer:
R2 = ϕ2 7→ {D2, D3, R3, R4, R5, R6}.
ϕ2 = obs-event(Xtime, e2)

∧ torder ≤ Xtime ≤ torder + 22.
D2 : tdeliver = Xtime.
D3 : obs-total-paid(Xtime) = 0.
R3, R4, R5 and R6 are defined below.

3. Rule for Returning the Printer:
R3 = ϕ3 7→ {D4, A2}.
ϕ3 = obs-event(Xtime, e3)

∧ tdeliver ≤ Xtime ≤ tdeliver + 14.
e3 = (“Return Printer”, transfer(printer), {buyer},

{seller}).
D4 : treturn = Xtime.
A2 = O(e4(obs-total-paid(Xtime)), [treturn, treturn+7]).
e4 = λXtotal.(“Return Payment”, transfer(Xtotal),

{seller}, {buyer}).
4. Rules for Recording the Payment:

R4 = ϕ4 ∧ ϕ5 7→ {D5}.
R5 = ¬ϕ4 ∧ ϕ5 7→ {D6}.
ϕ4 = obs-event(Xtime, e5(Xpayment))

∧ tdeliver ≤ Xtime.
e5 = λXpayment.(“Pay Seller”, transfer(Xpayment),

{buyer}, {seller}).
ϕ5 = ¬obs-event-before(Xtime, e3).
D5 : obs-total-paid(Xtime) =

obs-total-paid(Xtime − 1) +Xpayment.
D6 : obs-total-paid(Xtime) = obs-total-paid(Xtime − 1).

5. Rules for Making Payments:
R6 = ϕ6 7→ {A3, R7}.
ϕ6 = ¬obs-event-before(tdelivery + 1, e3).
A3 = O(e5(200/2), [tdeliver, tdeliver + 1]).
R7 = ϕ7 ∧ ϕ5 7→ {D7, R8, R9, R10}.
ϕ7 = obs-event(Xtime, e5(200/2))

∧ tdeliver ≤ Xtime ≤ tdeliver + 1.
D7 : tfirst = Xtime.
R8 = ϕ8 ∧ ϕ5 7→ {A4}.
ϕ8 = ¬obs-event-before(Xtime, e5(200/2))

∧ tfirst + 1 ≤ Xtime ≤ tdeliver + 14.
A4 = O(e5(200/2), [tdeliver + 15, tdeliver + 44]).
R9, R10 are defined below.

6. Rules for Paying Fine for a Late Payment:
R9 = ϕ9 ∧ ϕ5 7→ {D8}.
R10 = ϕ10 7→ {A5}.
ϕ9 = obs-event(Xtime, e5(200/2))

∧ tfirst ≤ Xtime ≤ tdeliver + 44.
D8 : tsecond = Xtime.
ϕ10 = tdeliver + 31 ≤ tsecond ≤ tdeliver + 44.
A5 = O(e5(10% ∗ 200/2), [tsecond, tsecond]).

torder, tdeliver, treturn, tfirst, and tsecond are new constants
of type Time. Each of the five events e1, e2, e3, e4, and e5 are
actions by one of the two parties. We assume that the events
e1, e2, e3, e4 can happen at most once and the “Pay Seller”
event e5 can happen at most twice.

obs-total-paid(t) represents the total amount that the buyer
has been observed to have paid the seller at time t. When rule
R4 is active, D5 is generated. D5 is used to add a payment to
the total amount paid at the previous time point. D5 and D6

work together to record the happenings of the “Pay Seller”
event e5 in the timeline. obs-event-before(t, e) represents the
observation that the event e occurred before time t.

We identify that the buyer has the following options to
choose from after he has accepted the printer and made the
first payment:

1. Buyer makes a return within 14 days after the delivery
is made.

2. Buyer makes the second payment within 14 days after
the delivery made.

3. Buyer makes the second payment between 15 to 30 days
after the delivery made.

4. Buyer makes the second payment with an additional fine
between 31 to 44 days after the delivery made.

R8, R9, and R10 work together for the reparation purpose
if the violation occurs. Within 14 days the buyer has the first
and second options to choose from. R8 says if the first two
options have not been chosen, then between 15 to 44 days the
buyer is obligated to make the second payment. If it is paid
late, which means R10 is active, then an additional fine must
be paid.

VIII. RELATED WORK

Several formal languages for writing contracts have been
proposed. Our language FCL is most closely related to the
following work:
• S. L. Peyton Jones and J. M. Eber (J&E) [7], [8].
• A. Goodchild, C. Herring, and Z. Milosevic (GHM) [10].
• G. Governatori and Z. Milosevic (G&M) [11], [12], [13].
• J. Andersen, E. Elsborg, F. Henglein, J.G. Simonsen, and

C. Stefansen (AEHSS) [14].
• C. Prisacariu and G. Schneider (P&S) [12], [15], [16],

[17], [18].
• P. Bahr, J. Berthold, M. Elsman (BBE) [19].
• LegalRuleML Technical Committee (TC) [20], [21].
The domains of these approaches are varied: J&E’s and

BBE’s works are restricted to financial contracts; GHM builds
a domain-specific language for business contracts; AEHSS
is concerned with formalizing commercial contracts; and the
LegalRuleML TC focuses on the creation of machine-readable
forms of the contents of legal texts, such as legislation,
regulations, contracts, and case law, for different concrete Web
applications. Same as P&S’s work, our proposed language
FCL considers the formalization of general contracts that are
agreements written by and for humans.

Several techniques are employed in the literature for de-
veloping a precise formal language for specifying contracts.
Most of the techniques, such as those given in [10], [13], [12],
belong to the event-condition-action (ECA) based scheme.
GHM and G&M model contracts as sets of policies. A policy
specifies that a legal entity is either forbidden or obliged

to perform an action under certain event-based conditions.
AEHSS provide an action-trace based language [14] to model
contracts. J&E’s functional programming based language [7],
[8] and BBE’s cash-flow trace based approach [19] use the idea
of observables to specify events. P&S introduce in [15], [16],
[17], [18] a contract language CL for expressing electronic
contracts based on a combination of concepts from deontic,
dynamic, and temporal logic. CL restricts deontic modalities
to ought-to-do statements and add the modalities of dynamic
logic to be able to reason about what happens after an action
is performed. Rather than providing a logical language for
contracts, the LegalRuleML TC extends RuleML to provide
a rule interchange language with formal features specific for
the legal domain. This enables implementers to structure the
contents of the legal texts in a machine-readable format by
using the representation tools. Motivated by the ECA-based
formalisms and idea of observables, we introduce in FCL the
concept of a rule that is a conditional agreement that depends
on certain observations. The use of observables to determine
both the meaning of a contract and how the meaning of the
contract evolves over time provides a basis for monitoring the
dynamic aspects of a contract.

Only P&S’s CL language and LegalRuleML can specify
reparation clauses. CL language incorporates the notions of
contrary-to-duty and contrary-to-prohibition by explicitly at-
taching to the deontic modalities a reparation which is to be
enforced in case of violations. The LegalRuleML introduces
in [20] a suborder list that is a list of deontic formulas to model
penalies. In FCL, we interpret an agreement in a contract in
terms of the deontic concepts of obligation and prohibition.
These concepts are applied in expressions to actions that are
executed by the parties of the contract. Thus, the concepts
express what a party ought to do and or ought not do. FCL rules
can also be used for reparational purposes when an agreement
is violated.

With the exception of works provided by AEHSS, P&S, and
LegalRuleML TC, all of the languages above are informal.
GHM and G&M lack a formal semantics and a reasoning
system even though they provide a good framework for
monitoring contracts. The semantics provided by J&E in [8]
and BBE in [19] are based on stochastic processes. But since
both of the two approaches pay more attention to finding
the monetary value of contracts, they consider the semantic
meaning of a contract to be its cash-flow gains which is too
limited for general contracts from our point of view. We find
this lack of work on formal semantics surprising since one of
the main benefits of defining a contract language to be formal
is to enable the language to have a precise, unambiguous
semantics.

Although the languages of AEHSS and P&S provide a
formal mathematical model for contracts with a formal se-
mantics and are able to express some important features of
contracts, they are not as expressive as FCL. For example,
in the case where a contract is breached, the monitor should
not only report a breach of contract, but also who among
the contract parties is responsible (blame assignment). Except

for the languages provided by BBE and LegalRuleML TC,
all other contracts covered by these approaches, including the
work of AEHSS and P&S, are two-party contracts in which the
parties are implicit. These approaches are not able to determine
who is to be blamed when a contract is breached. Our proposed
language provides explicit participants and thus provides the
possibility of having both contracts with any number of parties
and blame assignment.

In addition, because time constraints are implicit in P&S’s
CL language, it only has relative deadlines where one party’s
commitment to do something depends on when the other
party has performed an action. Our proposed language has not
only relative temporal constraints, but also absolute temporal
constraints.

IX. CONCLUSION AND FUTURE WORK

In this paper we have presented FCL, a formal language for
writing contracts that may contain temporally based condi-
tions. Changes to the meaning of a FCL contract are triggered
when the conditions in it become true. FCL admits agreements
that correspond to the deontic notions of obligation and
prohibition, can express conditions that depend on events and
other observables, and include condition-based rules to define
new constants and introduce new agreements. FCL can be
extended to express laws and regulations and to thus identify
agreements of a contract that are in conflict with the underlying
laws and regulations of the contract. To our knowledge, no
other formal contract language is as expressive as FCL.

FCL offers three advantages to the contract writer. First,
since FCL has a precise semantics, contracts written in FCL
have an unambiguous meaning. Since the underlying logic of
FCL is simple type theory, the semantics of contracts written in
FCL is based on very well understood ideas. Third, since FCL is
a formal language, software-implemented formal methods can
be used to assist in the writing and analysis of FCL contracts.
In particular, we can use software tools to check whether
an action in a contract has been performed or not, to report
whether a contract has been fulfilled or violated, to compute
the value of a contract, etc. We can also use software tools to
reason about possible future outcomes of a contract and about
the relationship between different contracts.

Our future work will include (1) extending the design
of FCL, (2) writing several additional examples of contracts
in FCL, (3) developing a reasoning system for FCL, (4)
designing a module system for building contracts out of
contract modules, and (5) integrating FCL with contract law
and regulations. We will also validate FCL by implementing
it in Agda [22], [23], [24], a dependently typed functional
programming language. In a future paper, we will give a full
presentation of FCL and its implementation in Agda.

ACKNOWLEDGMENTS

The authors are grateful to the reviewers for their comments
and suggestions. This research was supported by NSERC.

REFERENCES

[1] J. Poole, Textbook on Contract Law, 11th ed. Oxford University Press,
2012.

[2] B. A. Blum, Contracts: Examples and Explanations, 4th ed. Aspen
Publishers, 2007.

[3] R. S. Attorney, Contracts: The Essential Business Desk Reference.
Nolo, 2010.

[4] M. B. Finan, A Discussion of Financial Economics in Actuarial Models:
A Preparation for Exam MFE/3F., Arkansas Tech University, 2015.

[5] P. McNamara, “Deontic logic,” in The Stanford Encyclopedia of Philos-
ophy, winter 2014 ed., E. N. Zalta, Ed., 2014.

[6] W. M. Farmer, “The seven virtues of simple type theory,” Journal of
Applied Logic, vol. 6, pp. 267–286, 2008.

[7] S. L. Payton Jones, “Composing contracts: An adventure in financial
engineering,” in Proceedings of the International Symposium of Formal
Methods Europe on Formal Methods for Increasing Software Productiv-
ity, ser. Lecture Notes in Computer Science, vol. 2021. Springer, 2001,
p. 435.

[8] S. L. Peyton Jones and J. M. Eber, “How to write a financial contract,”
in The Fun of Programming, ser. Cornerstones in Computing, J. Gibbons
and O. de Moor, Eds. Palgrave, 2003, pp. 105–130.

[9] T. Hvitved, F. Klaedtke, and E. Zălinescu, “A trace-based model for
multiparty contracts,” Journal of Logic and Algebraic Programming,
2011.

[10] A. Goodchild, C. Herring, and Z. Milosevic, “Business contracts for
b2b,” in Proceedings of the CAISE00 Workshop on Infrastructure for
Dynamic Business-to-Business Service Outsourcing, Stockholm, Sweden,
2000.

[11] G. Governatori and Z. Milosevic, “A formal analysis of a business
contract language,” International Journal of Cooperative Information
Systems, vol. 15, no. 04, pp. 659–685, 2006.

[12] G. Governatori and A. Rotolo, “Logic of violations: a gentzen system
for reasoning with contrary-to-duty obligations,” Australasian Journal
of Logic, vol. 4, pp. 193–215, 2005.

[13] P. F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni, and
S. Neal, “A unified behavioural model and a contract language for
extended enterprise,” Data & Knowledge Engineering, vol. 51, no. 1,
pp. 5–29, 2004.

[14] J. Andersen, E. Elsborg, F. Henglein, J. Simonsen, and C. Stefansen,
“Compositional specification of commercial contracts,” International
Journal on Software Tools for Technology Transfer (STTT), vol. 8, no. 6,
pp. 485–516, 2006.

[15] C. Prisacariu and G. Schneider, “An algebraic structure for the action-
based contract language cl-theoretical results,” Technical Report 361,
Department of Informatics, University of Oslo, Oslo, Norway, Tech.
Rep., 2007.

[16] ——, “A formal language for electronic contracts,” Formal Methods for
Open Object-Based Distributed Systems, pp. 174 – 189, 2007.

[17] ——, “Towards a formal definition of electronic contracts,” Technical
Report 348, Department of Informatics, University of Oslo, Oslo,
Norway, Tech. Rep., 2007.

[18] ——, “A dynamic deontic logic for complex contracts,” The Journal of
Logic and Algebraic Programming, pp. 458–490, 2012.

[19] P. Bahr, J. Berthold, and M. Elsman, “Certified symbolic management
of financial multi-party contracts,” in Proceedings of the 20th ACM
SIGPLAN International Conference on Functional Programming, ICFP
2015, Vancouver, BC, Canada, September 1-3, 2015, 2015, pp. 315–327.
[Online]. Available: http://doi.acm.org/10.1145/2784731.2784747

[20] T. Athan, H. Boley, G. Governatori, M. Palmirani, A. Paschke, and
A. Wyner, “Oasis legalruleml.” in ICAIL, E. Francesconi and B. Verheij,
Eds. ACM, 2013, pp. 3–12.

[21] T. Athan, G. Governatori, M. Palmirani, A. Paschke, and A. Z. Wyner,
“LegalRuleML: Design principles and foundations,” in The 11th Rea-
soning Web Summer School, Wolfgang Faber and Adrian Pashke, Ed.
Berlin, Germany: Springer, jul 2015, pp. 151–188.

[22] A. Bove, P. Dybjer, and U. Norell, “A brief overview of Agda —
A functional language with dependent types,” in TPHOLs, vol. 9.
Springer, 2009, pp. 73–78.

[23] U. Norell, “Towards a practical programming language based on depen-
dent type theory,” Ph.D. dissertation, Chalmers University of Technol-
ogy, 2007.

[24] ——, “Dependently typed programming in Agda,” in TLDI, A. Kennedy
and A. Ahmed, Eds. ACM, 2009, pp. 1–2.

