
Formalizing Mathematical Knowledge as a
Biform Theory Graph: A Case Study?

Jacques Carette and William M. Farmer

Computing and Software, McMaster University, Canada
http://www.cas.mcmaster.ca/~carette
http://imps.mcmaster.ca/wmfarmer

June 25, 2019

Abstract. A biform theory is a combination of an axiomatic theory and
an algorithmic theory that supports the integration of reasoning and
computation. These are ideal for formalizing algorithms that manipu-
late mathematical expressions. A theory graph is a network of theories
connected by meaning-preserving theory morphisms that map the formu-
las of one theory to the formulas of another theory. Theory graphs are
in turn well suited for formalizing mathematical knowledge at the most
convenient level of abstraction using the most convenient vocabulary. We
are interested in the problem of whether a body of mathematical knowl-
edge can be effectively formalized as a theory graph of biform theories.
As a test case, we look at the graph of theories encoding natural number
arithmetic. We used two different formalisms to do this, which we de-
scribe and compare. The first is realized in cttuqe, a version of Church’s
type theory with quotation and evaluation, and the second is realized in
Agda, a dependently typed programming language.

1 Introduction

There are many methods for encoding mathematical knowledge. The two most
prevalent are the axiomatic and the algorithmic. The axiomatic method, fa-
mously employed by Euclid in his Elements circa 300 BCE, encodes a body of
knowledge as an axiomatic theory composed of a language and a set of axioms
expressed in that language. The axioms are assumptions about the concepts of
the language and the logical consequences of the axioms are the facts about
the concepts. The algorithmic method in contrast uses an algorithmic theory,
composed of a language and a set of algorithms that perform symbolic com-
putations over the expressions of the language. Each algorithm procedurally
encodes its input/output relation. For example, an algorithm that symbolically

? Published without appendices in: H. Geuvers et al., eds, Intelligent Computer
Mathematics (CICM 2017), Lecture Notes in Computer Science, Vol. 10383,
pp. 9–24, Springer, 2017. The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-62075-6_2. This research was supported
by NSERC.



2

adds expressions that represent rational numbers encodes the addition function
+ : Q×Q→ Q over the rational numbers.

A complex body of mathematical knowledge comprises many different theo-
ries; these can be captured by the little theories method [9] as a theory graph [13]
consisting of theories as nodes and theory morphisms as directed edges. A theory
morphism is a meaning-preserving mapping from the formulas of one theory to
the formulas of another. The theories serve as abstract mathematical models
and the morphisms serve as information conduits that enable definitions and
theorems to be transported from one theory to another [2]. A theory graph en-
ables mathematical knowledge to be formalized at the most convenient level of
abstraction using the most convenient vocabulary. Moreover, the structure of
a theory graph provides the means to access relevant concepts and facts (c&f),
reduce the duplication of c&f, and enable c&f to be interpreted in multiple ways.

The axiomatic method is the basis for formalizing mathematical knowledge
in proof assistants and logical frameworks. Although many proof assistants sup-
port the little theories method to some extent, very few provide the means to
explicitly build theory graphs. Notable exceptions are the imps theorem proving
system [10] and the Mmt module system for mathematical theories [16].

Computer algebra systems on the other hand are based on algorithmic the-
ories, which are not usually organized as a graph. An exception is the Axiom
system [12] in which a network of abstract and concrete algorithmic theories are
represented by Axiom categories and domains, respectively. Algorithmic theories
are challenging to fully formalize because a specification of a symbolic algorithm
that encodes a mathematical function requires the ability to talk about the re-
lationship between syntax and semantics.

Axiomatic and algorithmic knowledge complement each other, and both are
needed. A biform theory [3, 4, 11] combines both, and furthermore supports the
integration of reasoning and computation. We argue in [3] that biform theories
are needed to build high-level theories analogous to high-level programming lan-
guages. Biform theories are challenging to formalize for the same reasons that
algorithmic theories are challenging to formalize.

We are interested in the problem of whether the little theories method can
be applied to biform theories. That is, can a body of mathematical knowledge be
effectively formalized as a theory graph of biform theories? We use a graph (of
biform theories) encoding natural number arithmetic as a test case. We describe
two different formalizations, and compare the results. The first formalization is
realized using the global approach in cttuqe [8], a variant of cttqe [6, 7], a ver-
sion of Church’s type theory with quotation and evaluation, while the second is
realized using the local approach in Agda [14, 15], a dependently typed program-
ming language. This dual formalization, contrasting the two approaches, forms
the core of our contribution; each formalization has some smaller contributions,
some of which may be of independent interest.

The rest of the paper is organized as follows. The notion of a biform theory
is defined and discussed in section 2. The theories that encode natural number
arithmetic are presented in section 3. The cttuqe formalization is discussed in



3

section 4, and the Agda version in section 5. These two are presented in full in
appendices A and B. Section 6 compares the two formalizations. The paper ends
with conclusions and future work in section 7.

The authors are grateful to the reviewers for their comments and suggestions.

2 Biform Theories

Let E be a set of expressions and f : En → E be an n-ary function where
n ≥ 1. A transformer for f is an algorithm that implements f . Transform-
ers manipulate expressions in various ways. Simple transformers, for example,
build bigger expressions from pieces, select components of expressions, or check
whether a given expression satisfies some syntactic property. More sophisticated
transformers manipulate expressions in mathematically meaningful ways. We call
these kinds of transformers syntax-based mathematical algorithms (SBMAs) [5].
Examples include algorithms that apply arithmetic operations to numerals, fac-
tor polynomials, transpose matrices, and symbolically differentiate expressions
with variables. The computational behavior of a transformer is the relationship
between its input and output expressions. When the transformer is an SBMA, its
mathematical meaning is the relationship between the mathematical meanings
of its input and output expressions.

A biform theory T is a triple (L,Π, Γ ) where L is a language of some under-
lying logic, Π is a set of transformers for functions over expressions of L, and Γ
is a set of formulas of L. L is generated from a set of symbols that include, e.g.,
types and constants. Each symbol is the name for a concept of T . The trans-
formers in Π are for functions represented by symbols of L. The members of Γ
are the axioms of T . They specify the concepts of T including the computational
behaviors of transformers and the mathematical meanings of SBMAs. The un-
derlying logic provides the semantic foundation for T . We say T is an axiomatic
theory if Π is empty and an algorithmic theory if Γ is empty.

Expressing a biform theory in the underlying logic requires infrastructure for
reasoning about expressions manipulated by the transformers as syntactic en-
tities. The infrastructure provides a basis for metareasoning with reflection [6].
There are two main approaches for obtaining this infrastructure [5]. The local
approach is to produce a deep embedding of a sublanguage L′ of L that include
all the expressions manipulated by the transformers of Π. The deep embedding
consists of (1) an inductive type of syntactic values that represent the syntactic
structures of the expressions in L′, (2) an informal quotation operator that maps
the expressions in L′ to syntactic values, and (3) a formal evaluation operator
that maps syntactic values to the values of the expressions in L′ that they rep-
resent. The global approach is to replace the underlying logic of L with a logic
such as that of [6] that has (1) an inductive type of syntactic values for all the
expressions in L, (2) a global formal quotation operator, and (3) a global formal
evaluation operator.

There are several ways, in a proof assistant, to construct a transformer π
for f : En → E . The simplest is to define f as a lambda abstraction Af , and



4

then π computes the value f(e1, . . . , en) by reducing Af (e1, . . . , en) using β-
reduction (and possibly other transformations such as δ-reduction, etc). Another
method is to specify the computational behavior of f by axioms, and then π can
be implemented as a tactic that applies the axioms to f(e1, . . . , en) as, e.g.,
rewrite rules or conditional rewrite rules. Finally, the computational behavior
or mathematical meaning of f can be specified by axioms, and then π can be a
program which satisfies these axioms; this program can operate on either internal
or external data structures representing the expressions e1, . . . , en.

3 Natural Number Arithmetic: A Test Case

Figure 1 shows a theory graph composed of biform theories encoding natural
number arithmetic. We start with eight axiomatic theories (seven in first-order
logic (FOL) and one in simple type theory (STT)) and then add a variety of use-
ful transformers in the appropriate theories. These eight are chosen because they
fit together closely and have simple axiomatizations. Of the first-order theories,
BT1 and BT5 are theories of 0 and S (which denotes the successor function);
BT2 and BT6 are theories of 0, S, and +; and BT3, BT4, and BT7 are theories
of 0, S, +, and ∗. Several other biform theories could be added to this graph,
most notably Skolem arithmetic, the complete theory of 0, S, and ∗, which has a
very complicated axiomatization [17]. The details of each theory is given below.

BT1 BT2 BT3 BT4

BT5 BT6 BT7 BT8

Fig. 1. Biform Theory Graph Test Case

Figure 1 shows the morphisms that connect these theories. The ↪→ arrows
denote strict theory inclusions. The morphism from BT4 to BT7 is the identity
mapping. It is meaning-preserving since each axiom of BT4 is a theorem of BT7.
In particular, A7 follows from the induction schema A10. The theory morphism
from BT7 to BT8 is interlogical since their logics are different. It is defined by
the mapping of 0, S,+, ∗ to 0ι, Sι→ι,+ι→ι→ι, ∗ι→ι→ι, respectively, where +ι→ι→ι

and ∗ι→ι→ι are defined constants in BT8. It is meaning-preserving since A1–A6
and the instances of the induction schema A10 map to theorems of BT8.

We have formalized this biform theory graph in two ways: the first in cttuqe

using the global approach and the second in Agda using the local approach.



5

These are discussed in the next two sections, while the full details are given in
appendices A and B. A “conventional” mathematical presentation of the theories
would be as follows.

Biform Theory 1 (BT1: Simple Theory of 0 and S)
Logic: FOL. Constants: 0 (0-ary), S (unary).
Axioms:

A1. S(x) 6= 0.
A2. S(x) = S(y) ⊃ x = y.

Properties: Incomplete, undecidable.
Transformers: Recognizer for the formulas of the theory.

Biform Theory 2 (BT2: Simple Theory of 0, S, and +)
Extends BT1.
Logic: FOL. Constants: + (binary, infix).
Axioms:

A3. x+ 0 = x.
A4. x+ S(y) = S(x+ y).

Properties: Incomplete, undecidable.
Transformers: Recognizer for the formulas of the theory and algorithm for adding
natural numbers as binary numerals.

Biform Theory 3 (BT3: Simple Theory of 0, S, +, and ∗)
Extends BT2.
Logic: FOL. Constants: ∗ (binary, infix).
Axioms:

A5. x ∗ 0 = 0.
A6. x ∗ S(y) = (x ∗ y) + x.

Properties: Incomplete, undecidable.
Transformers: Recognizer for the formulas of the theory and algorithm for mul-
tiplying natural numbers as binary numerals.

Biform Theory 4 (BT4: Robinson Arithmetic (Q))
Extends BT3.
Logic: FOL.
Axioms:

A7. x = 0 ∨ ∃ y . S(y) = x.
Properties: Essentially incomplete, essentially undecidable.

Biform Theory 5 (BT5: Complete Theory of 0 and S)
Extends BT1.
Logic: FOL.
Axioms:

A8. (A(0) ∧ ∀x . (A(x) ⊃ A(S(x)))) ⊃ ∀x . A(x)
where A is any formula of BT5 in which x is not bound and A(t) is the result
of replacing each free occurrence of x in A with the term t.

Properties: Complete, decidable.



6

Transformers: Generator for instances of the theory’s induction schema and
decision procedure for the theory.

Biform Theory 6 (BT6: Presburger Arithmetic)
Extends BT2 and BT5.
Logic: FOL.
Axioms:

A9. (A(0) ∧ ∀x . (A(x) ⊃ A(S(x)))) ⊃ ∀x . A(x)
where A is any formula of BT6 in which x is not bound and A(t) is the result
of replacing each free occurrence of x in A with the term t.

Properties: Complete, decidable.
Transformers: Generator for instances of the theory’s induction schema and
decision procedure for the theory.

Biform Theory 7 (BT7: First-Order Peano Arithmetic)
Extends BT3 and BT6.
Logic: FOL.
Axioms:

A10. (A(0) ∧ ∀x . (A(x) ⊃ A(S(x)))) ⊃ ∀x . A(x)
where A is any formula of BT7 in which x is not bound and A(t) is the result
of replacing each free occurrence of x in A with the term t.

Properties: Essentially incomplete, essentially undecidable.
Transformers: Generator for instances of the theory’s induction schema.

Biform Theory 8 (BT8: Higher-Order Peano Arithmetic)
Logic: STT. Types: ι. Constants: 0ι, Sι→ι.
Axioms:

A11. Sι→ι(xι) 6= 0ι.
A12. Sι→ι(xι) = Sι→ι(yι) ⊃ xι = yι.
A13. (pι→o(0) ∧ ∀xι . (pι→o(xι) ⊃ pι→o(S(xι)))) ⊃ ∀xι . pι→o(xι).

Properties: Essentially incomplete, essentially undecidable, categorical for stan-
dard models.

It is important to note that axioms A8, A9 and A10 are all different since
they are over different languages; in particular, BT6 adds + to the language of
BT5, and BT7 adds ∗ to the language of BT6.

4 Study 1: Test Case Formalized in CTTuqe

cttuqe supports the global approach for metareasoning with reflection. cttuqe

contains (1) a logical base type ε that is an inductive type of syntactic val-
ues called constructions which are expressions of type ε, (2) a global quotation
operator p·q that maps each expression Aα of cttuqe to a construction that rep-
resents the syntactic structure of Aα, and (3) a typed global evaluation operator
J·Kα that maps each construction Bε of cttuqe representing an expression Aα

of type α to an expression whose value is the same as Aα. See [8] for details.



7

A biform theory of cttuqe is a triple (L,Π, Γ ) where L is a language gener-
ated by a set of base types and constants of cttuqe, Π is a set of transformers
over expressions of L, and Γ is a set of formulas of L. Each transformer is for a
constant in L whose type has the form ε→ · · · → ε. We present biform theories
in cttuqe as a set of base types, constants, axioms, transformers, and theorems.
The base types are divided into primitive and defined base types. A defined base
type is declared by a formula that equates the base type to a nonempty subset
of some type of L. Similarly, the constants are divided into primitive and defined
constants. A defined constant cα is declared by an equation cα = Aα where Aα

is a defined expression.
The biform theory graph test case given in section 3 is formalized in cttuqe

as a theory graph of eight cttuqe theories as shown in appendix A. Since cttuqe

is not currently implemented, it is not possible to give the transformers as im-
plemented algorithms. Instead we described their intended behavior.

We will concentrate our discussion on BT6 (given below). We have not in-
cluded the following components of BT6 (that should be in BT6 according to
its definition in section 3) that are redundant or are subsumed by other compo-
nents: Constants BT5-DEC-PROCε→ε, IS-FO-BT1ε→ε, and IS-FO-BT1-ABSε→ε;
axioms 27 and 28; and transformers π1, π2, π11, π12, and π13. See [8] for details.
Expressions of type ε, i.e., expressions that denote constructions, are colored red
to identify where reasoning about syntax occurs.

BT6 has the usual constants (0ι, Sι→ι, and +ι→ι→ι) and axioms (axioms 1–4
and 29) of Presburger arithmetic. Axiom 29 is the direct formalization of A9, the
induction schema for Presburger arithmetic, stated in section 3. It is expressed as
a single universal formula in cttuqe that ranges over constructions representing
function abstractions of the form λxι . Ao. These constructions are identified by
the transformers π15 and π16 for the defined constant IS-FO-BT2-ABSε→ε. π15
works by accessing data about variables, constants, and other subexpressions
stored in the data structure for an expression, while π16 works by expanding the
definition of IS-FO-BT2-ABSε→ε. π15 is sound if the definition expansion mecha-
nism is sound. Showing the soundness of π14 would require a formal verification
of the implementation of the data structure for expressions. Of course, the results
of π14 could be checked using π16.

This biform theory has a defined constant bnatι→ι→ι with the usual base 2
notation for expressing natural numbers in a binary form. There is a constant
BPLUSε→ε→ε specified by axioms 5–15 for adding quotations of these natural
numbers in binary form. BPLUSε→ε→ε is implemented by transformers π3 and
π4. π3 is some efficient algorithm implemented outside of cttuqe, and π4 is
an algorithm that uses axioms 5–15 as conditional rewrite rules. π4 is sound if
the rewriting mechanism is sound. Showing the soundness of π3 would require
a formal verification of its program. The meaning formula for BPLUSε→ε→ε,
theorem 3, follows from axioms 5–15.

This biform theory also has a transformer π14 for BT6-DEC-PROCε→ε that
implements an efficient decision procedure for the first-order formulas of the
theory that is specified by axiom 30. The first-order formulas of the theory are



8

identified by the transformers π5 and π6 for the defined constant IS-FO-BT2ε→ε

that are analogous to the transformers π15 and π16 for IS-FO-BT2-ABSε→ε.

Biform Theory 6 (BT6: Presburger Arithmetic)
Primitive Base Types
1. ι (type of natural numbers).
Primitive Constants
1. 0ι.
2. Sι→ι.
3. +ι→ι→ι (infix).
4. BPLUSε→ε→ε (infix).
6. BT6-DEC-PROCε→ε.
Defined Constants (selected)
1. 1ι = S 0ι.
3. bnatι→ι→ι = λxι . λ yι . ((xι + xι) + yι).

Notational definition:
(0)2 = bnat 0ι 0ι.
(1)2 = bnat 0ι 1ι.
(a1 · · · an0)2 = bnat (a1 · · · an)2 0ι where each ai is 0 or 1.
(a1 · · · an1)2 = bnat (a1 · · · an)2 1ι where each ai is 0 or 1.

4. is-bnumε→o = I fε→o . ∀uε . (fε→ε uε ≡
∃ vε . ∃wε . (uε = pbnat bvεc bwεcq ∧
(vε = p0ιq ∨ fε→ε vε) ∧ (wε = p0ιq ∨ wε = p1ιq))).1

5. IS-FO-BT2ε→ε = λxε . Bε where Bε is a complex expression such that
(λxε . Bε) pAαq equals pToq [pFoq] if Aα is [not] a term or formula of
first-order logic with equality whose variables are of type ι and whose
nonlogical constants are members of {0ι, Sι→ι,+ι→ι→ι}.

7. IS-FO-BT2-ABSε→ε =
λxε . (if (is-absε→o xε) (IS-FO-BT2ε→ε (abs-bodyε→ε xε)) pFoq).

Axioms
1. S xι 6= 0ι.
2. S xι = S yι ⊃ xι = yι.
3. xι + 0ι = xι.
4. xι + S yι = S (xι + yι).
5. is-bnumuε ⊃ uε BPLUS p(0)2q = uε.

...
15. (is-bnumuε ∧ is-bnum vε) ⊃

pbnat buεc 1ιq BPLUS pbnat bvεc 1ιq =
pbnat b(uε BPLUS vε) BPLUS p(1)2qc 0ιq.

29. Induction Schema for S and +
∀ fε . ((is-exprι→o

ε→o fε ∧ JIS-FO-BT2-ABSε→ε fεKo) ⊃
((JfεKι→o 0ι ∧ (∀xι . JfεKι→o xι ⊃ JfεKι→o (Sxι))) ⊃ ∀xι . JfεKι→o xι)).

1 Notation of the form p· · · b·c · · ·q represents a quasiquotation; see [6] for details.



9

30. Meaning formula for BT6-DEC-PROCε→ε.
∀uε . ((is-exproε→o uε ∧ is-closedε→o uε ∧ JIS-FO-BT2ε→ε uεKo) ⊃
((BT6-DEC-PROCε→ε uε = pToq ∨ BT6-DEC-PROCε→ε uε = pFoq) ∧
JBT6-DEC-PROCε→ε uεKo = JuεKo)).

Transformers
3. π3 for BPLUSε→ε→ε is an efficient program that satisfies Axioms 5–15.
4. π4 for BPLUSε→ε→ε uses Axioms 5–15 as conditional rewrite rules.
5. π5 for IS-FO-BT2ε→ε is an efficient program that accesses the data stored

in the data structures that represent expressions.
6. π6 for IS-FO-BT2ε→ε uses the definition of IS-FO-BT2ε→ε.
14. π14 for BT6-DEC-PROCε→ε→ε is an efficient decision procedure that sat-

isfies Axiom 30.
15. π15 for IS-FO-BT2-ABSε→ε is an efficient program that accesses the data

stored in the data structures that represent expressions.
16. π16 for IS-FO-BT2-ABSε→ε uses the definition of IS-FO-BT2-ABSε→ε.
Theorems (selected)
3. Meaning formula for BPLUSε→ε→ε

∀uε . ∀ vε . ((is-bnumuε ∧ is-bnum vε) ⊃
(is-bnum (uε BPLUS vε) ∧ (Juε BPLUS vεKι = JuεKι + JvεKι))).

5 Study 2: Test Case Formalized in Agda

As our goal is to, in part, compare the global approach and the local approach,
the formalization in Agda [15, 18] eschews the use of its reflection capabilities2.
Thus this formalization replaces the global type ε (of cttuqe) by a set of in-
ductive types, one for each of the biform theories. This is still reflection, just
hand-rolled. We also need to express formulas in FOL (as syntax), so we need a
type for that as well. To be more modular, this is done as a type for first-order
logic (with equality) over any ground language. We display some illustrative
samples here; the full code is available in appendix B.

An abstract theory is modeled as a record. For example, we have BT1:

record BT1 : Set1 where
field

nat : Set0
Z : nat
S : nat → nat
S6=Z : ∀ x → ¬ (S x ≡ Z)
inj : ∀ x y → S x ≡ S y → x ≡ y

One : nat
One = S Z

2 As of early 2017, there is no official publication describing these features outside of
the Agda documentation, but see [20, 21]



10

where we see a field nat for the new type (pronounced Set in Agda), the two
constants, and the two axioms. The host logic is dependently typed, and so
the axioms refer to the constants just defined. One is not a field, but a defined
constant.

For simplicity, we will take the built-in type N, defined as an inductive type,
as the syntax for natural numbers, which is also the syntax associated to the
theory BT1. Whereas in cttuqe there is a global evaluation, here we also need
to define evaluation explicitly (a subscript is used to indicate which theory it
belongs to).

J_K1 : N → nat
J 0 K1 = Z
J suc x K1 = S J x K1

The accompanying code furthermore proves some basic coherence theorems which
are elided here. We make two further definitions (GroundLanguage describing
some language features, and FOL as our definition of first order logic) which will
be explained in more detail on the next page.

nat-lang : GroundLanguage nat
nat-lang = record { Lang = ń X → NX (Carrier X)

; value = ń {V} → val {V} }
where

val : {V : DT} → NX (Carrier V) → (Carrier V → nat) → nat
val z env = Z
val {V} (s e) env = S (val {V} e env)
val (v x) env = env x

module fo1 = FOL nat-lang

We can also demonstrate that the natural numbers are a model:

N-is-T1 : BT1

N-is-T1 = record { nat = N ; Z = 0 ; S = suc
; S 6=Z = ń x → ń () ; inj = ń { x .x refl → refl } }

One of the languages needed is an extension of the naturals which allows
variables:

data NX (Var : Set0) : Set0 where
z : NX Var
s : NX Var → NX Var
v : Var → NX Var

But where the informal description in section 3 can get away with saying
“Logic: FOL” and “Transformers: Recognizers for the formulas of the theory”,
here we need to be very explicit. To do so, we need to define some language
infrastructure.

One of the important concepts is that of a language with variables, in other
words a language with a reasonable definition of substitution. This requires vari-



11

ables to come from a type which has the structure of a decidable setoid (from
the Agda library DecSetoid, and denoted DT below).

A language, expressed as an inductive type, is closed, i.e., cannot be extended.
If a language does not have variables, we cannot add them. One solution is to
deal with contexts as first-class citizens. While that is likely the best long-term
solution, here we have gone with something simpler: create another language
which does, and show that its variable-free fragment is equivalent to the original.
As that aspect of our development is straightforward, albeit tedious, we elide it.

As we are concerned with statements in first-order logic over a variety of
languages, it makes sense to modularize this aspect somewhat. Note that, as we
are building syntax via inductive types, we can either build these as functors and
then use a fixpoint combinator to tie the knot, or we can just bite the bullet and
make one large definition. For now, we chose the latter. We do parametrize over
a ground language with variables. In turn, this is defined as a type parametrized
by a decidable setoid along with an evaluation function into some type T.

record GroundLanguage (T : Set0) : Set1 where
open DecSetoid using (Carrier)
field

Lang : DT → Set0
value : {V : DT} → Lang V → (Carrier V → T) → T

A logic over a language (with variables), is then also a parametrized type
as well as a parametrized interpretation into types. The definition is almost the
same, except that a ground language interprets into T and a logic into Set0.

record LogicOverL (T : Set0) (L : GroundLanguage T) : Set1 where
open DecSetoid using (Carrier)
field

Logic : DT → Set0
J_K_ : ∀ {V} → Logic V → (Carrier V → T) → Set0

The definition of first-order logic is then straightforward.
module FOL {T : Set0} (L : GroundLanguage T) where

open DecSetoid using (Carrier)
open GroundLanguage L

data FOL (V : DT) : Set where
tt : FOL V
ff : FOL V
_and_ : FOL V → FOL V → FOL V
_or_ : FOL V → FOL V → FOL V
not : FOL V → FOL V
_⊃_ : FOL V → FOL V → FOL V
_==_ : Lang V → Lang V → FOL V
all : Carrier V → FOL V → FOL V
exist : Carrier V → FOL V → FOL V

override : {V : DT} → (Carrier V → T) → Carrier V → T → (Carrier V → T)



12

override {V} f x t y with DecSetoid._ ?
=_ V y x

... | yes _ = t

... | no _ = f y
We can also prove that FOL is a logic over L by providing an interpretation. Of
course, as we are modeling classical logic into a constructive logic, we have to use
a double-negation embedding. We also choose to interpret the logic’s equality
_==_ as propositional equality, but we could make that choice a parameter as
well.

LoL-FOL : LogicOverL T L
LoL-FOL = record { Logic = FOL ; J_K_ = interp }

where
interp : {Var : DT} → FOL Var → (Carrier Var → T) → Set0
interp tt env = >
interp ff env = ⊥
interp (e and f) env = interp e env × interp f env
interp (e or f) env = ¬ ¬ (interp e env ] interp f env)
interp (not e) env = ¬ (interp e env)
interp (e ⊃ f) env = (interp e env) → (interp f env)
interp (x == y) env = value x env ≡ value y env
interp {V} (all x p) env = ∀ z → interp p (override {V} env x z)
interp {V} (exist x p) env = ¬ ¬ (Σ T (ń t → interp p (override {V} env x t)))

With the appropriate infrastructure in place, it is now possible to define BT6

from the theories it extends.
record BT6 {t1 : BT1} (t2 : BT2 t1) (t5 : BT5 t1) : Set1 where

open VarLangs using (XV; x)
open DecSetoid using (Carrier)
open BT2 t2 public
open fo2 using (FOL; tt; ff; LoL-FOL; _and_; all)
open LogicOverL LoL-FOL

field
induct : (e : FOL XV) →

J e K (ń { x → J 0 K1 }) →
(∀ y → J e K (ń {x → y}) → J e K (ń {x → S y})) →
∀ y → J e K (ń {x → y})

postulate
decide : ∀ {W} → (Carrier W → nat) → FOL W → FOL NoVars
meaning-decide : {W : DT} (env : Carrier W → nat) → (env′ : ⊥ → nat) →

(e : FOL W) →
let res = decide env e in
(res ≡ tt ] res ≡ ff) × (J e K env) ' (J res K env′)

While section 4 presents the flattened theory, here we need only define what is
new over the extended theory, namely an induction schema, a decision procedure
and its meaning formula.



13

Here is a guide to understanding the above definition: (1) XV is a (decid-
able) type with a single inhabitant, x. (2) All fields of BT2 are made publicly
visible for BT6. (3) The language of first-order logic FOL over t2 (and some of
its constructors) is also made visible. (4) (ń {x → y}) denotes a substitution for
the single variable x. (5) ' denotes type equivalence.

We represent numerals as vectors (of length at least 1) of binary digits.
data BinDigit : Set where zero one : BinDigit
data BNum : Set where

bn : {n : N} → Vec BinDigit (suc n) → BNum
This then allows a straightforward implementation of bplus to add numerals. It
is then possible to prove that the meaning function for bplus is a theorem.

bplus-is-+ : ∀ x y → J bplus x y K2 ≡ J x K2 + J y K2

6 Comparison of the Two Formalizations

As expected, we were able to formalize this network of theories using both meth-
ods. Neither are fully complete; both are missing the actual decision procedures
(which would be large undertakings). In particular,

– The cttuqe formalization is missing the definition of the language recogniz-
ers, as well as the full assurance of being mechanically checked. It has no
“implementation” of any transformers.

– The Agda version implements evaluation but not substitution — which
means that the induction statement in BT5–BT7 are not quite the same
as in cttuqe; the models will be the same however. It also does not im-
plement any theory morphisms, as record definitions are not first-class in
Agda.

More importantly, because of our (explicit) choice to contrast the global
and local approaches, each version uses different infrastructure to reason about
syntax.

– cttuqe has a built-in inductive type of “all syntax”, along with quotation
and evaluation operators for the entire language of expressions.

– In the local approach, a new inductive type for each new “language” (the
numerals, the numerals with plus, the numerals with plus and times, all three
of these augmented with variables, first-order logic, binary digits, binary
numerals) has to be created. For many of these, a variety of traversals (folds)
have to be implemented “by hand” even though the recursion patterns are
obvious, at least to humans. Some of these are evaluation operators (one per
language). There is no formal quotation operator.

The Agda version has a number of extra features: some transformers (such
as for bplus and btimes) are implemented. Furthermore, the meaning formula for
bplus is shown to be a theorem. A variety of coherence theorems are also shown,
to gain confidence that the theories really are the ones we want.



14

It is worth remarking that defining the language of first-order formulas is
complicated in both versions. This has been noticed before by people doing pro-
gramming language meta-theory with proof assistants: encoding languages, es-
pecially languages with binders (such as FOL) along with traversals and basic
reasoning can be very tedious [1].

The most notable differences in the two formalizations are:

1. Because FOL is classical, but Agda’s host logic is constructive, a double-
negation embedding was needed.

2. The use of type equivalence instead of boolean equality for verifying that the
interpretation of a formula of FOL and the results of the decision procedure
are “the same”,

3. Borrowing the notion of contractibility from HoTT [19], to encode definite
description.

4. Extending the decision procedure to closeable terms (by providing an ex-
plicit, total valuation) instead of restricting to closed terms.

The first is basically forced upon us by Agda: it has no Prop type (unlike Coq),
and so we do not know a priori that all interpretations of first-order formulas
are actually 0-types. The second is an active design decision: the infrastructure
required to define the meaning of closed which is useful in a constructive setting
is quite complex3. We believe the third is novel. The fourth point requires deeper
investigating.

7 Conclusion

We have proposed a biform theory graph test case composed of eight theories
that encode natural number arithmetic and include a variety of useful transform-
ers. We have formalized this test case (as a set of biform theories and theory
morphisms) in cttuqe using the global approach (for metareasoning with reflec-
tion) and in Agda using the local approach. In both cases, we have produced
substantial partial formalizations that indicate that full formalizations could be
obtained with additional work.

Our results show that, by providing a built-in global infrastructure, the global
approach has a significant advantage over the local approach. The local approach
is burdened by the necessity to define an infrastructure — consisting of an induc-
tive type and an evaluation operator for the type — for every set of expressions
manipulated by a transformer. In general, new local infrastructures must be cre-
ated each time a new theory is added to the theory graph. On the other hand,
the global approach employs an infrastructure — consisting of an inductive type,
a quotation operator, and an evaluation operator — for the entire set of expres-
sions in the logic. This single infrastructure is used for every theory in the theory
graph.
3 It would require us to define paths in terms, bound and free variables along paths,
quantification over paths, etc.



15

We recommend that future research is directed toward making the global
approach for metareasoning with reflection into a practical method for formal-
izing biform theories. This can be done by developing and implementing logics
such as cttqe [6, 7] and cttuqe [8] and by adding global infrastructures to proof
systems such as Agda and Coq (see [20, 21] for work in this direction).

References

1. B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell,
D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metatheory
for the masses: The PoplMark challenge. In Theorem Proving in Higher Order
Logics, volume 3603 of Lecture Notes in Computer Science, pages 50–65. Springer
Berlin Heidelberg, 2005.

2. J. Barwise and J. Seligman. Information Flow: The Logic of Distributed Systems,
volume 44 of Tracts in Computer Science. Cambridge University Press, 1997.

3. J. Carette and W. M. Farmer. High-level theories. In A. Autexier, J. Campbell,
J. Rubio, M. Suzuki, and F. Wiedijk, editors, Intelligent Computer Mathematics,
volume 5144 of Lecture Notes in Computer Science, pages 232–245. Springer, 2008.

4. W. M. Farmer. Biform theories in Chiron. In M. Kauers, M. Kerber, R. R.
Miner, and W. Windsteiger, editors, Towards Mechanized Mathematical Assistants,
volume 4573 of Lecture Notes in Computer Science, pages 66–79. Springer, 2007.

5. W. M. Farmer. The formalization of syntax-based mathematical algorithms us-
ing quotation and evaluation. In J. Carette, D. Aspinall, C. Lange, P. Sojka,
and W. Windsteiger, editors, Intelligent Computer Mathematics, volume 7961 of
Lecture Notes in Computer Science, pages 35–50. Springer, 2013.

6. W. M. Farmer. Incorporating quotation and evaluation into church’s type theory.
Computing Research Repository (CoRR), abs/1612.02785 (72 pp.), 2016.

7. W. M. Farmer. Incorporating quotation and evaluation into Church’s type theory:
Syntax and semantics. In M. Kohlhase, M. Johansson, B. Miller, L. de Moura,
and F. Tompa, editors, Intelligent Computer Mathematics, volume 9791 of Lecture
Notes in Computer Science, pages 83–98. Springer, 2016.

8. W. M. Farmer. Theory morphisms in Church’s Type theory with quotation and
evaluation. Computing Research Repository (CoRR), abs/1703.02117 (15 pp.),
2017.

9. W. M. Farmer, J. D. Guttman, and F. J. Thayer. Little theories. In D. Kapur, ed-
itor, Automated Deduction—CADE-11, volume 607 of Lecture Notes in Computer
Science, pages 567–581. Springer, 1992.

10. W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An Interactive Mathe-
matical Proof System. Journal of Automated Reasoning, 11:213–248, 1993.

11. W. M. Farmer and M. von Mohrenschildt. An overview of a Formal Framework
for Managing Mathematics. Annals of Mathematics and Artificial Intelligence,
38:165–191, 2003.

12. R. D. Jenks and R. S. Sutor. Axiom : The Scientific Computation System. Springer,
1992.

13. M. Kohlhase. Mathematical knowledge management: Transcending the one-brain-
barrier with theory graphs. European Mathematical Society (EMS) Newsletter,
pages 22—-27, June 2014.

14. U. Norell. Towards a Practical Programming Language based on Dependent Type
Theory. PhD thesis, Chalmers University of Technology, 2007.



16

15. U. Norell. Dependently typed programming in Agda. In A. Kennedy and
A. Ahmed, editors, Proceedings of TLDI’09, pages 1–2. ACM, 2009.

16. F. Rabe and M. Kohlhase. A scalable model system. Information and Computation,
230:1–54, 2013.

17. C. Smoryński. Logical Number Theory I: An Introduction. Springer, 1991.
18. Agda Team. Agda wiki. http://wiki.portal.chalmers.se/agda/pmwiki.php.

Accessed: 2017-05-15.
19. The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-

dations of Mathematics. https://homotopytypetheory.org/book, Institute for
Advanced Study, 2013.

20. P. van der Walt. Reflection in Agda. Master’s thesis, Universiteit Utrecht, 2012.
https://dspace.library.uu.nl/handle/1874/256628.

21. P. van der Walt and W. Swierstra. Engineering proof by reflection in Agda. In
R. Hinze, editor, Implementation and Application of Functional Languages, volume
8241 of Lecture Notes in Computer Science, pages 157–173. Springer, 2012.

A CTTuqe Formalization

cttqe [6] is a version of simple type theory with quotation and evaluation.
cttuqe [8] is a variant of cttqe that admits undefined expressions, partial func-
tions, and multiple base types of individuals. cttuqe also includes a definite de-
scription operator and conditional expression operator. This appendix presents
a formalization of the biform theory graph test case in cttuqe (instead of cttqe)
since cttuqe contains a notion of theory morphism. The reader is expected to
be familiar with the notation of cttuqe. The following are additional notes to
the reader:

1. {o, ε, ι} is the set of base types for all eight biform theories given below. The
single nonlogical base type ι is used to represent the natural numbers.

2. All constants that are not introduced as components of one of the biform
theories listed below are logical constants of cttuqe, either primitive or de-
fined. is-absε→o, abs-bodyε→ε, and is-closedε→o are defined logical constants
not in [6]. is-absε→oAε holds iffAε represents an abstraction. IfAε represents
an abstraction, then abs-bodyε→εAε represents the body of the abstraction.
is-closedε→oAε holds iff Aε represents an expression that is closed (and eval-
free).

3. The type attached to a constant may be dropped when there is no loss of
meaning.

4. A constant of a type of the form ε → · · · → ε that is intended to be imple-
mented by a transformer has a name in upper case letters.

5. Expressions of type ε, i.e., expressions that denote constructions, are colored
red to identify where reasoning about syntax occurs.

The following are the eight biform theories and the two noninclusive theory
morphisms in the test case:

Biform Theory 1 (BT1: Simple Theory of 0 and S)



17

Primitive Base Types
1. ι (type of natural numbers).
Primitive Constants
1. 0ι.
2. Sι→ι.
Defined Constants (selected)
1. 1ι = S 0ι.
2. IS-FO-BT1ε→ε = λxε . Bε where Bε is a complex expression such that

(λxε . Bε) pAαq equals pToq [pFoq] if Aα is [not] a term or formula of
first-order logic with equality whose variables are of type ι and whose
nonlogical constants are members of {0ι, Sι→ι}.

Axioms
1. S xι 6= 0ι.
2. S xι = S yι ⊃ xι = yι.
Transformers
1. π1 for IS-FO-BT1ε→ε is an efficient program that accesses the data stored

in the data structures that represent expressions.
2. π2 for IS-FO-BT1ε→ε uses the definition of IS-FO-BT1ε→ε.

Biform Theory 2 (BT2: Simple Theory of 0, S, and +)
Extended Theories
1. BT1.
Primitive Constants
3. +ι→ι→ι (infix).
4. BPLUSε→ε→ε (infix).
Defined Constants (selected)
3. bnatι→ι→ι = λxι . λ yι . ((xι + xι) + yι).

Notational definition:
(0)2 = bnat 0ι 0ι.
(1)2 = bnat 0ι 1ι.
(a1 · · · an0)2 = bnat (a1 · · · an)2 0ι where each ai is 0 or 1.
(a1 · · · an1)2 = bnat (a1 · · · an)2 1ι where each ai is 0 or 1.

4. is-bnumε→o = I fε→o . ∀uε . (fε→ε uε ≡
∃ vε . ∃wε . (uε = pbnat bvεc bwεcq ∧
(vε = p0ιq ∨ fε→ε vε) ∧ (wε = p0ιq ∨ wε = p1ιq))).

5. IS-FO-BT2ε→ε = λxε . Bε where Bε is a complex expression such that
(λxε . Bε) pAαq equals pToq [pFoq] if Aα is [not] a term or formula of
first-order logic with equality whose variables are of type ι and whose
nonlogical constants are members of {0ι, Sι→ι,+ι→ι→ι}.

Axioms
3. xι + 0ι = xι.
4. xι + S yι = S (xι + yι).
5. is-bnumuε ⊃ uε BPLUS p(0)2q = uε.
6. is-bnumuε ⊃ p(0)2q BPLUS uε = uε.



18

7. p(1)2q BPLUS p(1)2q = p(10)2q.
8. is-bnumuε ⊃

pbnat buεc 0ιq BPLUS p(1)2q = pbnat buεc 1ιq.
9. is-bnumuε ⊃

pbnat buεc 1ιq BPLUS p(1)2q = pbnat buε BPLUS p(1)2qc 0ιq.
10. is-bnumuε ⊃

p(1)2q BPLUS pbnat buεc 0ιq = pbnat buεc 1ιq.
11. is-bnumuε ⊃

p(1)2q BPLUS pbnat buεc 0ιq = pbnat buε BPLUS p(1)2qc 0ιq.
12. (is-bnumuε ∧ is-bnum vε) ⊃

pbnat buεc 0ιq BPLUS pbnat bvεc0ιq = pbnat buε BPLUS vεc 0ιq.
13. (is-bnumuε ∧ is-bnum vε) ⊃

pbnat buεc 0ιq BPLUS pbnat bvεc 1ιq = pbnat buε BPLUS vεc 1ιq.
14. (is-bnumuε ∧ is-bnum vε) ⊃

pbnat buεc 1ιq BPLUS pbnat bvεc 0ιq = pbnat buε BPLUS vεc 1ιq.
15. (is-bnumuε ∧ is-bnum vε) ⊃

pbnat buεc 1ιq BPLUS pbnat bvεc 1ιq =
pbnat b(uε BPLUS vε) BPLUS p(1)2qc 0ιq.

Transformers
3. π3 for BPLUSε→ε→ε is an efficient program that satisfies Axioms 5–15.
4. π4 for BPLUSε→ε→ε uses Axioms 5–15 as conditional rewrite rules.
5. π5 for IS-FO-BT2ε→ε is an efficient program that accesses the data stored

in the data structures that represent expressions.
6. π6 for IS-FO-BT2ε→ε uses the definition of IS-FO-BT2ε→ε.
Theorems (selected)
1. Meaning formula schema for BPLUSε→ε→ε

((is-bnumAε ∧ is-bnumBε) ⊃
(is-bnum (Aε BPLUS Bε) ∧
(JAε BPLUS BεKι = JAεKι + JBεKι))).

Biform Theory 3 (BT3: Simple Theory of 0, S, +, and ∗)
Extended Theories
2. BT2.
Primitive Constants
5. ∗ι→ι→ι (infix).
6. BTIMESε→ε→ε (infix).
Defined Constants (selected)
4. IS-FO-BT3ε→ε = λxε . Bε where Bε is a complex expression such that

(λxε . Bε) pAαq equals pToq [pFoq] if Aα is [not] a term or formula of
first-order logic with equality whose variables are of type ι and whose
nonlogical constants are members of {0ι, Sι→ι,+ι→ι→ι, ∗ι→ι→ι}.

Axioms
16. xι ∗ 0ι = 0ι.
17. xι ∗ S yι = (xι ∗ yι) + xι.
18. is-bnumuε ⊃ uε BTIMES p(0)2q = p(0)2q.



19

19. is-bnumuε ⊃ p(0)2q BTIMES uε = p(0)2q.
20. is-bnumuε ⊃ uε BTIMES p(1)2q = uε.
21. is-bnumuε ⊃ p(1)2q BTIMES uε = uε.
22. (is-bnumuε ∧ is-bnum vε) ⊃

pbnat buεc 0q BTIMES vε = pbnat buε BTIMES vεc 0ιq.
23. (is-bnumuε ∧ is-bnum vε) ⊃

pbnat buεc 1ιq BTIMES vε = pbnat buε BTIMES vεc 0ιq BPLUS vε.
24. (is-bnumuε ∧ is-bnum vε) ⊃

vε BTIMES pbnat buεc 0ιq = pbnat buε BTIMES vεc 0ιq.
25. (is-bnumuε ∧ is-bnum vε) ⊃

vε BTIMES pbnat buεc 1ιq = pbnat buε BTIMES vεc 0ιq BPLUS vε.
Transformers
7. π7 for BTIMESε→ε→ε is an efficient program that satisfies Axioms 18–25.
8. π8 for BTIMESε→ε→ε uses Axioms 18–25 as conditional rewrite rules.
9. π9 for IS-FO-BT3ε→ε is an efficient program that accesses the data stored

in the data structures that represent expressions.
10. π10 for IS-FO-BT3ε→ε uses the definition of IS-FO-BT3ε→ε.
Theorems (selected)
2. Meaning formula schema for BTIMESε→ε→ε

((is-bnumAε ∧ is-bnumBε) ⊃
(is-bnum (Aε BTIMES Bε) ∧
(JAε BTIMES BεKι = JAεKι ∗ JBεKι))).

Biform Theory 4 (BT4: Robinson Arithmetic (Q))
Extended Theories
3. BT3.
Axioms
26. xι = 0ι ∨ ∃ yι . S yι = xι.

Biform Theory 5 (BT5: Complete Theory of 0 and S)
Extended Theories
1. BT1.
Primitive Constants
7. BT5-DEC-PROCε→ε.
Defined Constants (selected)
6. IS-FO-BT1-ABSε→ε =

λxε . (if (is-absε→o xε) (IS-FO-BT1ε→ε (abs-bodyε→ε xε)) pFoq).
Axioms
27. Induction Schema for S
∀ fε . ((is-exprι→o

ε→o fε ∧ JIS-FO-BT1-ABSε→ε fεKo) ⊃
((JfεKι→o 0ι ∧ (∀xι . JfεKι→o xι ⊃ JfεKι→o (Sxι))) ⊃ ∀xι . JfεKι→o xι)).

28. Meaning Formula for BT5-DEC-PROCε→ε

∀uε . ((is-exproε→o uε ∧ is-closedε→o uε ∧ JIS-FO-BT1ε→ε uεKo) ⊃
((BT5-DEC-PROCε→ε uε = pToq ∨ BT5-DEC-PROCε→ε uε = pFoq) ∧
JBT5-DEC-PROCε→ε uεKo = JuεKo)).



20

Transformers
11. π11 for BT5-DEC-PROCε→ε→ε is an efficient decision procedure that sat-

isfies Axiom 28.
12. π12 for IS-FO-BT1-ABSε→ε is an efficient program that accesses the data

stored in the data structures that represent expressions.
13. π13 for IS-FO-BT1-ABSε→ε uses the definition of IS-FO-BT1-ABSε→ε.

Biform Theory 6 (BT6: Presburger Arithmetic)
Extended Theories
1. BT2.
5. BT5.
Primitive Constants
8. BT6-DEC-PROCε→ε.
Defined Constants (selected)
7. IS-FO-BT2-ABSε→ε =

λxε . (if (is-absε→o xε) (IS-FO-BT2ε→ε (abs-bodyε→ε xε)) pFoq).
Axioms
29. Induction Schema for S and +
∀ fε . ((is-exprι→o

ε→o fε ∧ JIS-FO-BT2-ABSε→ε fεKo) ⊃
((JfεKι→o 0ι ∧ (∀xι . JfεKι→o xι ⊃ JfεKι→o (Sxι))) ⊃ ∀xι . JfεKι→o xι)).

30. Meaning formula for BT6-DEC-PROCε→ε.
∀uε . ((is-exproε→o uε ∧ is-closedε→o uε ∧ JIS-FO-BT2ε→ε uεKo) ⊃
((BT6-DEC-PROCε→ε uε = pToq ∨ BT6-DEC-PROCε→ε uε = pFoq) ∧
JBT6-DEC-PROCε→ε uεKo = JuεKo)).

Transformers
14. π14 for BT6-DEC-PROCε→ε→ε is an efficient decision procedure that sat-

isfies Axiom 30.
15. π15 for IS-FO-BT2-ABSε→ε is an efficient program that accesses the data

stored in the data structures that represent expressions.
16. π16 for IS-FO-BT2-ABSε→ε uses the definition of IS-FO-BT2-ABSε→ε.
Theorems (selected)
3. Meaning formula for BPLUSε→ε→ε

∀uε . ∀ vε . ((is-bnumuε ∧ is-bnum vε) ⊃
(is-bnum (uε BPLUS vε) ∧
(Juε BPLUS vεKι = JuεKι + JvεKι))).

Biform Theory 7 (BT7: First-Order Peano Arithmetic)
Extended Theories
3. BT3.
6. BT6.
Defined Constants (selected)
8. IS-FO-BT3-ABSε→ε =

λxε . (if (is-absε→o xε) (IS-FO-BT3ε→ε (abs-bodyε→ε xε)) pFoq).
Axioms



21

31. Induction Schema for S, +, and ∗
∀ fε . ((is-exprι→o

ε→o fε ∧ JIS-FO-BT3-ABSε→ε fεKo) ⊃
((JfεKι→o 0ι ∧ (∀xι . JfεKι→o xι ⊃ JfεKι→o (Sxι))) ⊃ ∀xι . JfεKι→o xι)).

Transformers
17. π17 for IS-FO-BT3-ABSε→ε is an efficient program that accesses the data

stored in the data structures that represent expressions.
18. π18 for IS-FO-BT3-ABSε→ε uses the definition of IS-FO-BT3-ABSε→ε.
Theorems (selected)
4. Axiom 26.
5. Meaning formula BTIMESε→ε→ε

∀uε . ∀ vε . ((is-bnumuε ∧ is-bnum vε) ⊃
(is-bnum (uε BTIMES vε) ∧
(Juε BTIMES vεKι = JuεKι ∗ JvεKι))).

Biform Theory 8 (BT8: Higher-Order Peano Arithmetic)
Extended Theories
1. BT1.
Defined Constants (selected)
9. +ι→ι→ι = I fι→ι→ι . ∀xι . ∀ yι .

(fι→ι→ι xι 0ι = xι ∧
fι→ι→ι xι (S yι) = S (fι→ι→ι xι yι)).

10. ∗ι→ι→ι = I fι→ι→ι . ∀xι . ∀ yι .
(fι→ι→ι xι 0ι = 0ι ∧
fι→ι→ι xι (S yι) = (fι→ι→ι xι yι) + xι).

Axioms
32. Induction Axiom for the Natural Numbers
∀ pι→o . ((pι→o 0ι ∧ (∀xι . (pι→o xι ⊃ pι→o (S xι)))) ⊃
∀xι . pι→o xι).

Theorems (selected)
6. Axiom 27 (Induction Schema for S).
7. Axiom 39 (Induction Schema for S and +).
8. Axiom 31 (Induction Schema for S, +, and ∗).

Theory Morphism 1 (BT4-to-BT7)
Source Theory BT4.
Target Theory BT7.
Translation

µ is defined as follows:
µ(o) = λxo . To.
µ(ε) = λxε . To.
µ(ι) = λxι . To.

ν is the identity on the constants of BT4.
Nontrivial Obligations

Axiom 26.



22

Theory Morphism 2 (BT7-to-BT8)
Source Theory BT7.
Target Theory BT8.
Translation

µ is defined as follows:
µ(o) = λxo . To.
µ(ε) = λxε . To.
µ(ι) = λxι . To.

ν is the identity on the constants of BT7.
Nontrivial Obligations

Axioms 3–25, 27–31.

B Agda Formalization

First, some infrastructure, then the theories themselves.

B.1 Definite Description

This defines the tools needed to do the equivalent of definite description in
MLTT.

module DefiniteDescr where
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Data.Product using (Σ;_×_)

Normal contractability of a type
isContr : Set0 → Set0
isContr A = Σ A (ń a → ∀ b → a ≡ b)

We now "expand out" that definition when A is a Σ-type with the first
type that of a 2-argument function, and the second is a predicate (and thus
automatically contractible). We could elide the second part via proof irrelevance.

isContr2 : (B : Set0) → let bin = B → B → B in (bin → Set0) → Set0
isContr2 A P =

let bin = A → A → A in
Σ bin (ń f → P f ×

(∀ (g : A → A → A) → P g → ∀ a b → f a b ≡ g a b) ×
(∀ (pf1 pf2 : P f) → pf1 ≡ pf2))

B.2 Equivalences of Types

{-# OPTIONS –without-K #-}

module Equiv where

open import Level using (_t_)
open import Function using (_◦_; id; flip)



23

open import Relation.Binary using (IsEquivalence)
open import Relation.Binary.PropositionalEquality

using (_≡_; refl; sym; trans; cong; cong2; module ≡-Reasoning)

infix 4 _∼_
infix 4 _'_
infixr 5 _•_

–––––––––––––––––––––––––––––––––––––––
– Extensional equivalence of (unary) functions

_∼_ : ∀ {` `’} → {A : Set `} {B : Set `’} → (f g : A → B) → Set (` t `’)
_∼_ {A = A} f g = (x : A) → f x ≡ g x

refl∼ : ∀ {` `’} {A : Set `} {B : Set `’} {f : A → B} → (f ∼ f)
refl∼ _ = refl

sym∼ : ∀ {` `’} {A : Set `} {B : Set `’} {f g : A → B} → (f ∼ g) → (g ∼ f)
sym∼ H x = sym (H x)

trans∼ : ∀ {` `’} {A : Set `} {B : Set `’} {f g h : A → B} → (f ∼ g) → (g ∼ h) → (f ∼ h)
trans∼ H G x = trans (H x) (G x)

◦-resp-∼ : ∀ {`A `B `C} {A : Set `A} {B : Set `B} {C : Set `C} {f h : B → C} {g i : A → B} →
(f ∼ h) → (g ∼ i) → f ◦ g ∼ h ◦ i

◦-resp-∼ {f = f} {i = i} f∼h g∼i x = trans (cong f (g∼i x)) (f∼h (i x))

isEquivalence∼ : ∀ {` `′} {A : Set `} {B : Set `′} → IsEquivalence (_∼_ {`} {`′} {A} {B})
isEquivalence∼ = record { refl = refl∼ ; sym = sym∼ ; trans = trans∼ }

–––––––––––––––––––––––––––––––––––––––
– Quasi-equivalences, in a more useful packaging

record _'_ {` `’} (A : Set `) (B : Set `’) : Set (` t `’) where
constructor qeq
field

f : A → B
g : B → A
α : (f ◦ g) ∼ id
B : (g ◦ f) ∼ id
– to make it contractible, could add
– τ : ∀ x → cong f (B x) P.≡ α (f x)

id' : ∀ {`} {A : Set `} → A ' A
id' = qeq id id (ń _ → refl) (ń _ → refl)



24

sym' : ∀ {` `′} {A : Set `} {B : Set `′} → (A ' B) → B ' A
sym' (qeq f g α B) = qeq g f B α

trans' : ∀ {` `′ `′′} {A : Set `} {B : Set `′} {C : Set `′′} →
A ' B → B ' C → A ' C

trans' {A = A} {B} {C} (qeq f f-1 fα fB) (qeq g g-1 gα gB) =
qeq (g ◦ f) (f-1 ◦ g-1) (ń x → trans (cong g (fα (g-1 x))) (gα x))

(ń x → trans (cong f-1 (gB (f x))) (fB x))

– more convenient infix version, flipped

_•_ : ∀ {` `′ `′′} {A : Set `} {B : Set `′} {C : Set `′′} →
B ' C → A ' B → A ' C

_•_ = flip trans'

'IsEquiv : IsEquivalence {Level.suc Level.zero} {Level.zero} {Set} _'_
'IsEquiv = record { refl = id' ; sym = sym' ; trans = trans' }

– equivalences are injective

inj' : ∀ {` `’} {A : Set `} {B : Set `’} →
(eq : A ' B) → (x y : A) → (_'_.f eq x ≡ _'_.f eq y → x ≡ y)

inj' (qeq f g α B) x y p = trans
(sym (B x)) (trans
(cong g p) (
B y))

B.3 Numerals

module Numerals where
Rather that defining our own isomorphic copy, re-use N and Vec.

open import Data.Nat using (N; suc)
open import Data.Vec using (__; []; Vec)

plus is a function on N, which will (of course) implement addition. Note that
this is not a ’good’ function, in the sense that it is extremely inefficient. it does
have the advantage of being simple and facilitate proofs. Note that it is defined
(on purpose) by recursion on the left argument, while the properties in T2 turn
out to be "recursive" on the right.

plus : N → N → N
plus 0 y = y
plus (suc x) y = suc (plus x y)

We represent numerals as vectors (of length at least 1) of binary digits.
data BinDigit : Set where zero one : BinDigit
data BNum : Set where

bn : {n : N} → Vec BinDigit (suc n) → BNum



25

This then allows a straightforward implementation of bplus to add numerals. It
is then possible to prove that the meaning function for bplus is a theorem.
Convenient abbreviations

0b 1b 2b : BNum
0b = bn (zero [])
1b = bn (one [])
2b = bn (zero one [])

« : BNum → BNum
« (bn l) = bn (zero l)

Note how +1 is defined by induction on BNum.
+1 : BNum → BNum
+1 (bn (zero l)) = bn (one l)
+1 (bn (one [])) = bn (zero one [])
+1 (bn (one x l)) = « (+1 (bn (x l)))

Now we want to define a transformer on BNum with a "meaning formula"
that says that it is addition. this too is defined by induction on BNum bplus is
essentially ξ3. It is not the only such transformer, as different representations
could be even more efficient. It is also kind of ξ4 ! What happens it that all
the conditions are all vacuously true. So the axioms are then just a bunch of
pattern-match. Turns out that the rules below are more ’syntax directed’ than
the ones given in the axioms.

bplus : BNum → BNum → BNum
bplus (bn {0} (zero [])) y = y
bplus (bn {0} (one [])) y = +1 y
bplus (bn {suc n} (d0 l0)) (bn {N.zero} (zero [])) = bn (d0 l0)
bplus (bn {suc n} (d0 l0)) (bn {N.zero} (one [])) = +1 (bn (d0 l0))
bplus (bn {suc n} (zero l0)) (bn {suc m} (zero l1)) =

« (bplus (bn l0) (bn l1))
bplus (bn {suc n} (one l0)) (bn {suc m} (zero l1)) =

+1 (« (bplus (bn l0) (bn l1)))
bplus (bn {suc n} (zero l0)) (bn {suc m} (one l1)) =

+1 (« (bplus (bn l0) (bn l1)))
bplus (bn {suc n} (one l0)) (bn {suc m} (one l1)) =

+1 (+1 (« (bplus (bn l0) (bn l1))))
Important: because BNum is a type, there is no need for is-bnum, as it is

simply true by construction. However, here BNum is an explicit representation
(as a Vector of digits) whereas in cttuqe it is done as a ’recognizer of expres-
sions’ which picksout expressions which are made up of sequences of digits. The
sequencing is buried (as a right-leaning tree) in a bunch of ’bnat’ calls. If we’re
going to go through codes to represent things, may as well use codes which are
specially built for the task!

Of course, we will need an interpretation of BNum in nat, but that will be
done inside T2.

For btimes, rather than be axiomatic, we go directly to a transformer.



26

_btimes_ : BNum → BNum → BNum
x btimes bn (zero []) = 0b
x btimes bn (one []) = x
bn (zero []) btimes bn (x2 x3 x4) = 0b
bn (one []) btimes bn (x2 x3 x4) = bn (x2 x3 x4)
bn (zero x1 x2) btimes bn (x3 x4 x5) =

« (bn (x1 x2) btimes bn (x3 x4 x5))
bn (one x1 x2) btimes bn (x3 x4 x5) =

let y = bn (x3 x4 x5) in
bplus (« (bn (x1 x2) btimes y)) y

B.4 NumPlus

module NumPlus where

data N+ : Set0 where
z+ : N+
s+ : N+ → N+
_‘+_ : N+ → N+ → N+

data N+X (V : Set0) : Set0 where
z : N+X V
s : N+X V → N+X V
_‘+_ : N+X V → N+X V → N+X V
v : V → N+X V

B.5 NumPlusTimes

module NumPlusTimes where

data N* (V : Set0) : Set0 where
z : N* V
s : N* V → N* V
_‘+_ : N* V → N* V → N* V
_‘*_ : N* V → N* V → N* V
v : V → N* V

B.6 Naturals as variables, and with variables

Showing that N has decidable equality (and thus can be used as a set of vari-
ables). Also build NX which is N augmented with variables.

module NatVar where

open import Level renaming (zero to lzero) hiding (suc)

open import Data.Nat using (N; zero; suc; _ ?
=_)



27

open import Equiv
open import Data.Empty using (⊥)
open import Function using (_◦_; id)
open import Relation.Binary.PropositionalEquality

using (_≡_; refl; cong; isEquivalence)
open import Relation.Binary using (DecSetoid)

private
DT : Set1
DT = DecSetoid lzero lzero

NS : DT
NS = record

{ Carrier = N
; _≈_ = _≡_
; isDecEquivalence = record

{ isEquivalence = isEquivalence

; _ ?
=_ = _ ?

=_ } }
data NX (Var : Set0) : Set0 where

z : NX Var
s : NX Var → NX Var
v : Var → NX Var

N⊥'N : NX ⊥ ' N
N⊥'N = qeq f g f◦g∼id g◦f∼id

where
f : NX ⊥ → N
f z = 0
f (s x) = suc (f x)
f (v ())
g : N → NX ⊥
g zero = z
g (suc n) = s (g n)
f◦g∼id : f ◦ g ∼ id
f◦g∼id zero = refl
f◦g∼id (suc x) = cong suc (f◦g∼id x)
g◦f∼id : g ◦ f ∼ id
g◦f∼id z = refl
g◦f∼id (s x) = cong s (g◦f∼id x)
g◦f∼id (v ())

B.7 Language infrastructure

Note that much of this code is in the main paper already.
module Language where



28

open import Level using (Level; zero; suc; _t_)
open import Relation.Binary using (DecSetoid)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Data.Bool using (Bool; true; false; _∧_; _∨_; _xor_)

renaming (not to bnot; _ ?
=_ to _=B_)

open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; cong2)

open import Data.Empty using (⊥)
open import Data.Unit using (>)
open import Data.Product using (Σ; _×_; proj1; proj2; _,_)
open import Data.Sum using (_]_)
open import Data.List using (List; []; __; [_])

open import Variables

private
DT : Set (suc zero)
DT = DecSetoid zero zero

One of the important concepts is that of a language with variables, in other
words a language with a reasonable definition of substitution. This requires vari-
ables to come from a type which has the structure of a decidable setoid (from
the Agda library DecSetoid, and denoted DT below).

A language, expressed as an inductive type, is closed, i.e., cannot be extended.
If a language does not have variables, we cannot add them. One solution is to
deal with contexts as first-class citizens. While that is likely the best long-term
solution, here we have gone with something simpler: create another language
which does, and show that its variable-free fragment is equivalent to the original.
As that aspect of our development is straightforward, albeit tedious, we elide it.

As we are concerned with statements in first-order logic over a variety of
languages, it makes sense to modularize this aspect somewhat. Note that, as we
are building syntax via inductive types, we can either build these as functors and
then use a fixpoint combinator to tie the knot, or we can just bite the bullet and
make one large definition. For now, we chose the latter. We do parametrize over
a ground language with variables. In turn, this is defined as a type parametrized
by a decidable setoid along with an evaluation function into some type T.

record GroundLanguage (T : Set0) : Set1 where
open DecSetoid using (Carrier)
field

Lang : DT → Set0
value : {V : DT} → Lang V → (Carrier V → T) → T

A logic over a language (with variables), is then also a parametrized type
as well as a parametrized interpretation into types. The definition is almost the
same, except that a ground language interprets into T and a logic into Set0.

record LogicOverL (T : Set0) (L : GroundLanguage T) : Set1 where
open DecSetoid using (Carrier)



29

field
Logic : DT → Set0
J_K_ : ∀ {V} → Logic V → (Carrier V → T) → Set0

The definition of first-order logic is then straightforward.
module FOL {T : Set0} (L : GroundLanguage T) where

open DecSetoid using (Carrier)
open GroundLanguage L

data FOL (V : DT) : Set where
tt : FOL V
ff : FOL V
_and_ : FOL V → FOL V → FOL V
_or_ : FOL V → FOL V → FOL V
not : FOL V → FOL V
_⊃_ : FOL V → FOL V → FOL V
_==_ : Lang V → Lang V → FOL V
all : Carrier V → FOL V → FOL V
exist : Carrier V → FOL V → FOL V

override : {V : DT} → (Carrier V → T) → Carrier V → T → (Carrier V → T)

override {V} f x t y with DecSetoid._ ?
=_ V y x

... | yes _ = t

... | no _ = f y
We can also prove that FOL is a logic over L by providing an interpretation. Of
course, as we are modeling classical logic into a constructive logic, we have to use
a double-negation embedding. We also choose to interpret the logic’s equality
_==_ as propositional equality, but we could make that choice a parameter as
well.

LoL-FOL : LogicOverL T L
LoL-FOL = record { Logic = FOL ; J_K_ = interp }

where
interp : {Var : DT} → FOL Var → (Carrier Var → T) → Set0
interp tt env = >
interp ff env = ⊥
interp (e and f) env = interp e env × interp f env
interp (e or f) env = ¬ ¬ (interp e env ] interp f env)
interp (not e) env = ¬ (interp e env)
interp (e ⊃ f) env = (interp e env) → (interp f env)
interp (x == y) env = value x env ≡ value y env
interp {V} (all x p) env = ∀ z → interp p (override {V} env x z)
interp {V} (exist x p) env = ¬ ¬ (Σ T (ń t → interp p (override {V} env x t)))

B.8 Some languages of variables

module Variables where



30

open import Level using (Level; zero; suc)
open import Relation.Binary using (DecSetoid)
open import Relation.Nullary using (Dec; yes; no)

open import Data.Bool using (Bool) renaming (_ ?
=_ to _=B_)

open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans)

open import Data.Empty using (⊥)
open import Data.Unit using (>; tt)

private
DT : Set (suc zero)
DT = DecSetoid zero zero

NoVars : DT
NoVars = record

{ Carrier = ⊥
; _≈_ = ń _ _ → >
; isDecEquivalence = record

{ isEquivalence = record { refl = tt ; sym = ń _ → tt ; trans = ń _ _ → tt }

; _ ?
=_ = ń () } }

DBool : DT
DBool = record

{ Carrier = Bool
; _≈_ = _≡_
; isDecEquivalence = record

{ isEquivalence = record { refl = refl ; sym = sym ; trans = trans }

; _ ?
=_ = _=B_ } }

– For convenience, some simple "languages of variables"
module VarLangs where

data X : Set0 where x : X
XV : DT
XV = record

{ Carrier = X
; _≈_ = ń _ _ → >
; isDecEquivalence = record

{ isEquivalence = record
{ refl = tt
; sym = ń _ → tt
; trans = ń _ _ → tt }

; _ ?
=_ = ń _ _ → yes tt } }



31

B.9 T1

– The encoding uses the ’local method’.
module T1 where

open import Relation.Binary using (DecSetoid)
open DecSetoid using (Carrier)
open import Level using () renaming (zero to lzero)

– we use ⊥, ¬ and ≡ from the ’meta’ logic
open import Data.Empty using (⊥)
open import Relation.Nullary using (¬_)
open import Relation.Binary.PropositionalEquality

using (_≡_; refl)
open import Data.Nat using (N; suc) – instead of defining our own

– isomorphic copy
open import Data.Product using (Σ; _,_; proj1; proj2)
open import Data.List using ([_])
open import Data.Bool using (false)

– we will eventually need this
open import Language
open import NatVar

private
DT = DecSetoid lzero lzero

record BT1 : Set1 where
field

nat : Set0
Z : nat
S : nat → nat
S6=Z : ∀ x → ¬ (S x ≡ Z)
inj : ∀ x y → S x ≡ S y → x ≡ y

One : nat
One = S Z

where we see a field nat for the new type (pronounced Set in Agda), the two
constants, and the two axioms. The host logic is dependently typed, and so
the axioms refer to the constants just defined. One is not a field, but a defined
constant.

For simplicity, we will take the built-in type N, defined as an inductive type,
as the syntax for natural numbers, which is also the syntax associated to the
theory BT1. Whereas in cttuqe there is a global evaluation, here we also need
to define evaluation explicitly (a subscript is used to indicate which theory it



32

belongs to).

J_K1 : N → nat
J 0 K1 = Z
J suc x K1 = S J x K1
– and some coherence theorems:
pres-S 6=Z : (x : N) → ¬ J suc x K1 ≡ J 0 K1
pres-S 6=Z x = S 6=Z J x K1

pres-inj : (x y : N) → S J x K1 ≡ S J y K1 → J x K1 ≡ J y K1
pres-inj x y pf = inj J x K1 J y K1 pf

The accompanying code furthermore proves some basic coherence theorems which
are elided here. We make two further definitions (GroundLanguage describing
some language features, and FOL as our definition of first order logic) which will
be explained in more detail on the next page.

nat-lang : GroundLanguage nat
nat-lang = record { Lang = ń X → NX (Carrier X)

; value = ń {V} → val {V} }
where

val : {V : DT} → NX (Carrier V) → (Carrier V → nat) → nat
val z env = Z
val {V} (s e) env = S (val {V} e env)
val (v x) env = env x

module fo1 = FOL nat-lang
We can also demonstrate that the natural numbers are a model:

N-is-T1 : BT1

N-is-T1 = record { nat = N ; Z = 0 ; S = suc
; S 6=Z = ń x → ń () ; inj = ń { x .x refl → refl } }

– inverse of the type of sub-term of NX
SubTermType : {V : DT} → NX (Carrier V) → Set0
SubTermType {_} z = ⊥
SubTermType {V} (s x) = NX (Carrier V)
SubTermType {V} (v x) = Carrier V

– paths in a NX
data Path {V : DT} : (e : NX (Carrier V)) → SubTermType {V} e → Set0 where

sp : (x : NX (Carrier V)) → Path (s x) x
vp : (x : Carrier V) → Path (v x) x

B.10 T2

module T2 where
open import T1 using (BT1)



33

open import Numerals
open import NumPlus
open import NatVar using (NX)

open import Relation.Binary using (DecSetoid)
open DecSetoid using (Carrier)
open import Level using () renaming (zero to lzero)

open import Relation.Binary.PropositionalEquality
using (_≡_; refl; trans; cong; sym; cong2)

open import Data.Nat using (N; suc) – instead of defining our own
– isomorphic copy

open import Data.Vec using (__; []; Vec)
open import Language using (GroundLanguage; module FOL)
open GroundLanguage using (value)

private
DT = DecSetoid lzero lzero

–––––––––––––––––––––––––––––––––-

record BT2 (t1 : BT1) : Set where
open BT1 t1 public
field

_+_ : nat → nat → nat
right-0 : ∀ x → x + Z ≡ x
x+Sy≡Sx+y : ∀ x y → x + S y ≡ S (x + y)
– Wikipedia lists
– y ≡ 0 ] Σ N (ń x → S x ≡ y)
– as an additional axiom. It allows addition
– to be defined recursively.

bnat : nat → nat → nat
bnat x y = (x + x) + y

– the following two functions are not (unfortunately)
– private, as T2a will need to prove things about them.
dig-to-nat : BinDigit → nat
dig-to-nat zero = Z
dig-to-nat one = S Z

unroll : {n : N} → Vec BinDigit n → nat
unroll [] = Z
unroll (x l) = bnat (unroll l) (dig-to-nat x)

J_K2 : BNum → nat



34

J bn (x l) K2 = bnat (unroll l) (dig-to-nat x)

– just to make sure we’ve done things right.
lemma1 : J 0b K2 ≡ Z
lemma1 = trans (right-0 _) (right-0 Z)

lemma2 : J 1b K2 ≡ S Z
lemma2 = trans (cong (ń z → z + S Z) (right-0 Z)) (

trans (x+Sy≡Sx+y Z Z)
(cong S (right-0 Z)))

– two coherence theorems are provable here (« x is x + x and + 1 on the right is S)
«-is-*2 : ∀ x → J « x K2 ≡ J x K2 + J x K2
«-is-*2 (bn (x x1)) = let num = J bn (x x1) K2 in right-0 (num + num)

x+1 : ∀ x → S x ≡ x + J 1b K2
x+1 x = sym (trans (cong (ń z → x + z) lemma2) (

trans (x+Sy≡Sx+y x Z) (
cong S (right-0 x))))

nat+-lang : GroundLanguage nat
nat+-lang = record { Lang = ń X → N+X (Carrier X)

; value = ń {V} → val {V} }
where

val : {V : DT} → N+X (Carrier V) → (Carrier V → nat) → nat
val z env = Z
val {V} (s n) env = S (val {V} n env)
val {V} (e ‘+ f) env = val {V} e env + val {V} f env
val (v x) env = env x

module fo2 = FOL nat+-lang

– we can inject NX into N+X
inject1⇒2 : ∀{V} → NX V → N+X V
inject1⇒2 NX.z = z
inject1⇒2 (NX.s t) = s (inject1⇒2 t)
inject1⇒2 (NX.v x) = v x

B.11 T2a

module T2a where
open import T1 using (BT1)
open import T2 using (BT2)
open import Numerals

open import Relation.Binary.PropositionalEquality



35

using (_≡_; refl; trans; cong; sym; cong2)
open import Data.Nat using (N; suc) – instead of defining our own

– isomorphic copy
open import Data.Vec using (__; []; Vec)

–––––––––––––––––––––––––––––––––-
– an extension of BT2 that assumes commutativity and associativity
record BT2ext {t1 : BT1} (t2 : BT2 t1) : Set0 where

open BT2 t2 public
field

– commutativity is needed for some proofs
– and is not provable; neither is associativity,
– in general. So while this is more than Q,
– it is still ’ok’ in the sense that these are
– equational axioms and not schemas.
comm-+ : ∀ x y → x + y ≡ y + x
assoc-+ : ∀ x y z → (x + y) + z ≡ x + (y + z)

– useful below.
left-0 : ∀ x → Z + x ≡ x
left-0 x = trans (comm-+ Z x) (right-0 x)

– to show that this definition is correct, we need a number
– of properties
shift-S : ∀ x y → x + S y ≡ S x + y
shift-S x y = trans (x+Sy≡Sx+y x y) (

trans (cong S (comm-+ x y)) (
trans (sym (x+Sy≡Sx+y y x)) (

(comm-+ y (S x)))) )

– two different ways of writing 2x+2
2x+2 : ∀ x → S x + S x ≡ S ((x + x) + S Z)
2x+2 x = trans (x+Sy≡Sx+y (S x) x)

(cong S (trans (comm-+ (S x) x) (
trans (x+Sy≡Sx+y x x) (
trans (cong S (sym (right-0 (x + x)))) (

(sym (x+Sy≡Sx+y (x + x) Z)))))))

shuffle : ∀ x y → (x + y) + (x + y) ≡ (x + x) + (y + y)
shuffle x y = trans (assoc-+ x y (x + y))

(trans (cong (ń z → x + z) (trans (sym (assoc-+ y x y))
(trans (cong (ń z → z + y) (comm-+ y x))

(assoc-+ x y y))))
(sym (assoc-+ x x _)))



36

add1-is-S : ∀ x → J 1b K2 + x ≡ S x
add1-is-S x = trans (cong (ń z → z + x) (lemma2)) (

trans (comm-+ (S Z) x) (
trans (x+Sy≡Sx+y x Z)

(cong S (right-0 x))))

+1-is-S : ∀ x → J +1 x K2 ≡ S J x K2
+1-is-S (bn (zero l)) = x+Sy≡Sx+y (unroll l + unroll l) Z
+1-is-S (bn (one [])) =

trans (right-0 _) (
trans (cong (ń x → J 1b K2 + x) lemma2) (
trans (x+Sy≡Sx+y _ Z)

(cong S (right-0 _))))
+1-is-S (bn (one x x1)) =

trans («-is-*2 (+1 (bn (x x1)))) (
trans (cong2 _+_ (+1-is-S (bn (x x1))) (+1-is-S (bn (x x1))))

(2x+2 _))

– because of the invariants that we keep in the types, and the
– way that bplus is defined _as a function_, we can actually
– prove the meaning function ’internally’. Only needs 8 cases
– whereas the paper proof needs 10 (?).
– Plus I have no idea if the paper spec is complete.

bplus-is-+ : ∀ x y → J bplus x y K2 ≡ J x K2 + J y K2

bplus-is-+ (bn {0} (zero [])) y = trans (sym (left-0 J y K2)) (cong (ń z → z + J y K2) (sym lemma1))
bplus-is-+ (bn {0} (one [])) y = trans (+1-is-S y) (sym (add1-is-S J y K2))
bplus-is-+ (bn {suc n} (d0 l0)) (bn {N.zero} (zero [])) =

trans (sym (right-0 _)) (cong (ń x → J bn (d0 l0) K2 + x) (sym lemma1))
bplus-is-+ (bn {suc n} (d0 l0)) (bn {N.zero} (one [])) =

let num = bn (d0 l0) in
trans (+1-is-S num) (x+1 J num K2)

bplus-is-+ (bn {suc n} (zero l0)) (bn {suc n1} (zero l1)) =
let n1 = bn l0

n2 = bn l1
num = bplus n1 n2
v1 = J n1 K2
v2 = J n2 K2 in

trans («-is-*2 num) (trans (cong2 _+_ (bplus-is-+ n1 n2) (bplus-is-+ n1 n2))
(trans (cong (ń z → z + (v1 + v2)) (comm-+ v1 v2))
(trans (assoc-+ v2 v1 _) (

trans (cong (ń z → v2 + z) (trans (sym (assoc-+ v1 v1 v2)) (cong (ń z → z + v2) (sym («-is-*2 n1)))))
(trans (comm-+ v2 _) (
trans (assoc-+ _ v2 v2)

(cong (ń z → J « n1 K2 + z) (sym («-is-*2 n2)))))))))
bplus-is-+ (bn {suc n} (zero l0)) (bn {suc n1} (one l1)) =



37

let n1 = bn l0
n2 = bn l1
num = bplus n1 n2
v1 = J n1 K2
v2 = J n2 K2 in

trans (+1-is-S (« num)) (
trans (cong S (trans («-is-*2 num)

(trans (cong2 _+_ (bplus-is-+ n1 n2) (bplus-is-+ n1 n2))
(shuffle v1 v2))))

(trans (sym (x+Sy≡Sx+y (v1 + v1) (v2 + v2)))
(cong2 _+_ (sym («-is-*2 n1))

(trans (x+1 _)
(cong2 _+_ (trans (sym («-is-*2 n2)) (right-0 _)) lemma2)))))

bplus-is-+ (bn {suc n} (one l0)) (bn {suc n1} (zero l1)) =
let n1 = bn l0

n2 = bn l1
num = bplus n1 n2
v1 = J n1 K2
v2 = J n2 K2 in
trans (+1-is-S (« num)) (
trans (cong S (trans («-is-*2 num)

(trans (cong2 _+_ (bplus-is-+ n1 n2) (bplus-is-+ n1 n2))
(trans (shuffle v1 v2)

(comm-+ _ _)))))
(trans (sym (x+Sy≡Sx+y _ _))
(trans (comm-+ _ _) (cong2 _+_ (trans (x+1 _) (trans (cong2 _+_ (sym («-is-*2 n1)) lemma2) (cong (ń z → z + S Z) (right-0 _))))

(sym («-is-*2 n2))))))
bplus-is-+ (bn {suc n} (one l0)) (bn {suc n1} (one l1)) =

let n1 = bn l0
n2 = bn l1
num = bplus n1 n2
v1 = J n1 K2
v2 = J n2 K2 in
trans (+1-is-S (+1 (« num)))
(trans (cong S (+1-is-S (« num)))
(trans (cong (ń z → S (S z)) (trans («-is-*2 num)

(trans (cong2 _+_ (bplus-is-+ n1 n2) (bplus-is-+ n1 n2))
(shuffle v1 v2))))

(trans (cong S (trans (sym (x+Sy≡Sx+y _ _)) (comm-+ _ _)))
(trans (sym (x+Sy≡Sx+y _ _))
(trans (comm-+ _ _)

(cong2 _+_ (trans (cong S (sym («-is-*2 n1))) (sym (x+Sy≡Sx+y _ _)))
(trans (cong S (sym («-is-*2 n2))) (sym (x+Sy≡Sx+y _ _)))))))))



38

B.12 T3

module T3 where
open import T1 using (BT1)
open import T2 using (BT2)
open import Numerals using (_btimes_)
open import NumPlusTimes
open import Language using (GroundLanguage; module FOL)

open import Level renaming (zero to lzero)
open import Relation.Binary using (DecSetoid)
open DecSetoid using (Carrier)
open import Relation.Binary.PropositionalEquality using (_≡_)
private

DT = DecSetoid lzero lzero

record BT3 (t1 : BT1) (t2 : BT2 t1) : Set0 where
open BT2 t2 public

field
_*_ : nat → nat → nat
right-zero : ∀ x → x * Z ≡ Z
S* : ∀ x y → x * S y ≡ (x * y) + x
btimes-is-* : ∀ a b → J a btimes b K2 ≡ J a K2 * J b K2

nat*-lang : GroundLanguage nat
nat*-lang = record { Lang = ń X → N* (Carrier X)

; value = ń {V} → val {V} }
where

val : {V : DT} → N* (Carrier V) → (Carrier V → nat) → nat
val z env = Z
val {V} (s n) env = S (val {V} n env)
val {V} (e ‘+ f) env = val {V} e env + val {V} f env
val {V} (e ‘* f) env = val {V} e env + val {V} f env
val (v x) env = env x

module fo3 = FOL nat*-lang

B.13 T4

module T4 where
open import T1 using (BT1)
open import T2 using (BT2)
open import T3 using (BT3)
open import Numerals



39

open import Relation.Binary.PropositionalEquality using (_≡_)
open import Data.Sum using (_]_)
open import Data.Product using (Σ)

record BT4 (t1 : BT1) (t2 : BT2 t1) (t3 : BT3 t1 t2) : Set0 where
open BT3 t3 public
field

no-junk : ∀ x → x ≡ Z ] Σ nat (ń y → S y ≡ x)

B.14 T5

module T5 where
open import Relation.Binary using (DecSetoid)
open import Level using () renaming (zero to lzero)

DT : Set1
DT = DecSetoid lzero lzero

open import T1 using (BT1)

open import Relation.Binary.PropositionalEquality using (_≡_)
open import Data.Empty using (⊥)
open import Data.Sum using (_]_)
open import Data.Product using (Σ;_×_;_,_)
open import Data.Bool using (Bool)
open import Equiv using (_'_)

open import Variables using (module VarLangs; NoVars; DBool)
open import Language

using (module FOL;
module LogicOverL)

record BT5 (t1 : BT1) : Set1 where
open BT1 t1 public
open VarLangs using (XV; x)
open DecSetoid using (Carrier)
open DecSetoid DBool using (_≈_)
open LogicOverL fo1.LoL-FOL
open fo1 using (FOL; tt; ff)

field
induct : (e : FOL XV) →

J e K (ń { x → Z }) →
(∀ (y : nat) → J e K (ń {x → y}) → J e K (ń {x → S y})) →
∀ (y : nat) → J e K (ń {x → y})

postulate



40

decide : ∀ {W} → (Carrier W → nat) → FOL W → FOL NoVars – T5-dec-proc
meaning-decide : {W : DT} (env : Carrier W → nat) → (env′ : ⊥ → nat) →

(e : FOL W) →
let res = decide env e in
(res ≡ tt ] res ≡ ff) × (J e K env) ' (J res K env′)

B.15 T6

module T6 where
open import Relation.Binary using (DecSetoid)
open import Level using () renaming (zero to lzero)

DT : Set1
DT = DecSetoid lzero lzero

open import T1 using (BT1)
open import T2 using (BT2)
open import T5 using (BT5)

open import Relation.Binary.PropositionalEquality using (_≡_)
open import Data.Empty using (⊥)
open import Data.Sum using (_]_)
open import Data.Product using (Σ;_×_;_,_)
open import Data.Bool using (Bool)
open import Equiv using (_'_)

open import Variables using (module VarLangs; NoVars; DBool)
open import Language

using (module FOL;
module LogicOverL)

With the appropriate infrastructure in place, it is now possible to define BT6

from the theories it extends.
record BT6 {t1 : BT1} (t2 : BT2 t1) (t5 : BT5 t1) : Set1 where

open VarLangs using (XV; x)
open DecSetoid using (Carrier)
open BT2 t2 public
open fo2 using (FOL; tt; ff; LoL-FOL; _and_; all)
open LogicOverL LoL-FOL

field
induct : (e : FOL XV) →

J e K (ń { x → J 0 K1 }) →
(∀ y → J e K (ń {x → y}) → J e K (ń {x → S y})) →
∀ y → J e K (ń {x → y})

postulate
decide : ∀ {W} → (Carrier W → nat) → FOL W → FOL NoVars



41

meaning-decide : {W : DT} (env : Carrier W → nat) → (env′ : ⊥ → nat) →
(e : FOL W) →
let res = decide env e in
(res ≡ tt ] res ≡ ff) × (J e K env) ' (J res K env′)

While section 4 presents the flattened theory, here we need only define what is
new over the extended theory, namely an induction schema, a decision procedure
and its meaning formula.

Here is a guide to understanding the above definition: (1) XV is a (decid-
able) type with a single inhabitant, x. (2) All fields of BT2 are made publicly
visible for BT6. (3) The language of first-order logic FOL over t2 (and some of
its constructors) is also made visible. (4) (ń {x → y}) denotes a substitution for
the single variable x. (5) ' denotes type equivalence.

B.16 T7

module T7 where
open import Relation.Binary using (DecSetoid)
open import Level using () renaming (zero to lzero)

DT : Set1
DT = DecSetoid lzero lzero

open import T1 using (BT1)
open import T2 using (BT2)
open import T3 using (BT3)
open import T5 using (BT5)
open import T6 using (BT6)

open import Relation.Binary.PropositionalEquality using (_≡_)
open import Data.Empty using (⊥)
open import Data.Sum using (_]_)
open import Data.Product using (Σ;_×_;_,_)
open import Data.Bool using (Bool)
open import Equiv using (_'_)

open import Variables using (module VarLangs; NoVars; DBool)
open import Language

using (module FOL;
module LogicOverL)

record BT7 {t1 : BT1} {t2 : BT2 t1} (t3 : BT3 t1 t2) (t5 : BT5 t1) (t6 : BT6 t2 t5) : Set1 where
open VarLangs using (XV; x)
open DecSetoid using (Carrier)
open BT3 t3 public
open fo3 using (FOL; tt; ff; LoL-FOL; _and_; all)
open LogicOverL LoL-FOL



42

field
induct : (e : FOL XV) →

J e K (ń { x → J 0 K1 }) →
(∀ y → J e K (ń {x → y}) → J e K (ń {x → S y})) →
∀ y → J e K (ń {x → y})

postulate
decide : ∀ {W} → (Carrier W → nat) → FOL W → FOL NoVars
meaning-decide : {W : DT} (env : Carrier W → nat) → (env′ : ⊥ → nat) →

(e : FOL W) →
let res = decide env e in
(res ≡ tt ] res ≡ ff) × (J e K env) ' (J res K env′)

B.17 T8

module T8 where
open import DefiniteDescr using (isContr2)

open import Relation.Nullary using (¬_)
open import Relation.Binary.PropositionalEquality using (_≡_)
open import Data.Product using (Σ; proj1; _×_)

record BT8 : Set1 where
field

Ì : Set0
ze : Ì
S : Ì → Ì
S 6=Z : ∀ x → ¬ (S x ≡ ze)
inj : ∀ x y → S x ≡ S y → x ≡ y
induct : (p : Ì → Set0) → p ze → (∀ x → p x → p (S x)) → (∀ y → p y)

bin : Set0
bin = Ì → Ì → Ì

+-pred : bin → Set0
+-pred f = (∀ x → f x ze ≡ x) ×

(∀ x y → f x (S y) ≡ S (f x y))

field
+-uniq : isContr2 Ì +-pred

_+_ : bin
_+_ = proj1 +-uniq

*-pred : bin → Set0
*-pred f = (∀ x → f x ze ≡ ze) ×

(∀ x y → f x (S y) ≡ f x y + x)



43

field
*-uniq : isContr2 Ì *-pred

_*_ : bin
_*_ = proj1 *-uniq


