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Chapter 1

Introduction

IMPS is an Interactive Mathematical Proof System developed at The MITRE
Corporation by W. Farmer, J. Guttman, and J. Thayer. For a technical
overview of the system, see [11].

1.1 Overview of the Manual
The manual consists of three parts:

(1) Introductory Material. This part should definitely be read first. Chap-
ter 2, “A Brief Tutorial,” provides a quick way to start using IMPS.

(2) User’s Guide. This part describes how to use IMPS, particularly, how
to build theories.

(3) Reference Manual.

1.2 Goals

IMPS aims at computational support for traditional techniques of mathemat-
ics. It is based on three observations about rigorous mathematics:

o Mathematics emphasizes the axiomatic method. Characteristics of
mathematical structures are summarized in axioms. Theorems are
derived for all structures satisfying the axioms. Frequently, a clever
change of perspective shows that a structure is an instance of another
theory, thus also bringing its theorems to bear.
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e Many branches of mathematics emphasize functions, including partial
functions. Moreover, the classes of objects studied may be nested,
as are the integers and the reals; or overlapping, as are the bounded
functions and the continuous functions.

e Proof proceeds by a blend of computation and formal inference.

1.2.1 Support for the Axiomatic Method

IMPS supports the “little theories” version of the axiomatic method, as op-
posed to the “big theory” version. In the big theory approach, all reasoning
is carried out within one theory—usually some highly expressive theory, such
as Zermelo-Fraenkel set theory. In the little theories approach, reasoning is
distributed over a network of theories. Results are typically proved in com-
pact, abstract theories, and then transported as needed to more concrete
theories, or indeed to other equally abstract theories. Theory interpreta-
tions provide the mechanism for transporting theorems. The little theories
style of the axiomatic method is employed extensively in mathematical prac-
tice; in [10], we discuss its benefits for mechanical theorem provers, and how
the approach is used in IMPS.

1.2.2 Logic

Standard mathematical reasoning in many areas focuses on functions and
their properties, together with operations on functions. For this reason, IMPS
is based on a version of simple type theory.! However, we have adopted
a version, called LUTINS,? containing partial functions, because they are
ubiquitous in both mathematics and computer science. Although terms,
such as 2/0, may be nondenoting, the logic is bivalent and formulas always
have a truth value. In particular, an atomic formula is false if any of its
constituents is nondenoting. This convention follows an approach common
in traditional rigorous mathematics, and it entails only small changes in the
axioms and rules of classical simple type theory [4].

IThis version is many sorted, in that there may be several types of basic individuals.
Moreover, it is multivariate, in that a function may take more than one argument. Cur-
rying is not required. However, taking (possibly n-ary) functions is the only type-forming
operation.

*Pronounced as in French. See [4, 5, 7] for studies of logical issues associated with
LUTINS; see [16] for a detailed description of its syntax and semantics.
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Moreover, LUTINS allows subtypes to be included within types. Thus,
for instance, the natural numbers form a subtype of the reals, and the con-
tinuous (real) functions a subtype of the functions from reals to reals. The
subtyping mechanism facilitates machine deduction, because the subtype
of an expression gives some immediate information about the expression’s
value, if it is defined at all. Moreover, many theorems have restrictions that
can be stated in terms of the subtype of a value, and the theorem prover
can be programmed to handle these assertions using special algorithms.

This subtyping mechanism interacts well with the type theory only be-
cause functions may be partial. If og is a subtype of 7y, while o7 is a subtype
of 7, then o9 — o1 is a subtype of 79 — 71. In particular, it contains just
those partial functions that are never defined for arguments outside o9, and
which never yield values outside o7;.

1.2.3 Computation and Proof

One problem in understanding and controlling the behavior of theorem
provers is that a derivation in predicate logic contains too much information.

The mathematician devotes considerable effort to proving lemmas that
justify computational procedures. Although these are frequently equations
or conditional equations, they are sometimes more complicated quantified
expressions, and sometimes they involve other relations, such as ordering
relations. Once the lemmas are available, they are used repeatedly to trans-
form expressions of interest. Algorithms justified by the lemmas may also
be used; the algorithm for differentiating polynomials, for example. The
mathematician has no interest in those parts of a formal derivation that
“implement” these processes within predicate logic.

On the other hand, to understand the structure of a proof (or especially,
a partial proof attempt), the mathematician wants to see the premises and
conclusions of the informative formal inferences.

Thus, the right sort of proof is broader than the logician’s notion of a for-
mal derivation in, say, a Gentzen-style formal system. In addition to purely
formal inferences, IMPS also allows inferences based on sound computations.
They are treated as atomic inferences, even though a pure formalization
might require hundreds of Gentzen-style formal inference steps. We believe
that this more inclusive conception makes IMPS proofs more informative to
its users.

15



1.3 Components of the System

The 1MPS system consists of four components.

1.3.1 Core

All the basic logical and deductive machinery of IMPS on which the soundness
of the system depends is included in the core of IMPS. The core is the
specification and inference engine of iMPS. The other components of the
system provide the means for harnessing the power of the engine.

The organizing unit of the core is the IMPS theory. Mathematically, a
theory consists of a LUTINS language plus a set of axioms. A theory is im-
plemented, however, as a data structure to which a variety of information
is associated. Some of this information procedurally encodes logical con-
sequences of the theory that are especially relevant to low-level reasoning
within the theory. For example, the great majority of questions about the
definedness of expressions are answered automatically by IMPS using tabu-
lated information about the domain and range of the functions in a theory.
Theories may be enriched by the definition of new sorts and constants and
by the installation of theorems.

Proofs in a theory are constructed interactively using a natural style of
inference based on sequent calculus. IMPS builds a data structure which
records all the actions and results of a proof attempt. This object, called
a deduction graph, allows the user to survey the proof, and to choose the
order in which he works on different subgoals. Alternative approaches may
be tried on the same subgoal. Deduction graphs also are suitable for analysis
by software.

The user is only allowed to modify a deduction through the application
of primitive inferences, which are akin to rules of inference. Most primitive
inferences formalize basic laws of predicate logic and higher-order functions.
Others implement computational steps in proofs. For example, one class
of primitive inferences performs expression simplification, which uses the
logical structure of the expression [20], together with algebraic simplification,
deciding linear inequalities, and applying rewrite rules.

Another special class of primitive inferences “compute with theorems”
by applying extremely simple procedures called macetes.> An elementary
macete, which is built by IMPS whenever a theorem is installed in a theory,

3 Macete, in Portuguese, means a chisel, or in informal usage, a clever trick.
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applies the theorem in a manner determined by its syntax (e.g., as a con-
ditional rewrite rule). Compound macetes are constructed from elementary
and other kinds of atomic macetes (including macetes that beta-reduce and
simplify expressions). They apply a collection of theorems in an organized
way.

In addition to the machinery for building theories and reasoning within
them, the core contains machinery for relating one theory to another via
theory interpretations. A theory interpretation can be used to “transport”
a theorem from the theory it is proved in to any number of other theories.
Theory interpretations are also used in IMPS to show relative consistency
of theorems, to formalize symmetry and duality arguments, and to prove
universal facts about polymorphic operators. The great majority of the
theory interpretations needed by the IMPS user are built by software without
user assistance. For example, when a theorem is applied outside of its home
theory via a transportable macete, IMPS automatically builds the required
theory interpretation if needed.

1.3.2 Supporting Machinery

We have built an extension of the core machinery with the following goals
in mind:

e To facilitate building and printing of expressions by providing various
parsing and printing procedures.

e To make the inference mechanism more flexible and more autonomous.
In particular, the set of commands available to users includes an ex-
tensible set of inference procedures called strategies. Strategies affect
the deduction graph only by using the primitive inference procedures
of the core machinery, but are otherwise unrestricted.

e To facilitate construction of theories and interpretations between
them.

1.3.3 User Interface

The user interface, which is a completely detachable component of IMPS, is
mainly designed to provide users with facilities to easily direct and moni-
tor proofs. Specifically, it controls three critical elements of an interactive
System:
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e The display of the state of the proof. This includes graphical displays
of the deduction graph as a tree, TEX typesetting of the proof history,
and proof scripts composed of the commands used to build the proof.
The graphical display of the deduction graph permits the user to vi-
sually determine the set of unproven subgoals and to select a suitable
continuation point for the proof. The TEX typesetting facilities allow
the user to examine the proof in a mathematically more appealing no-
tation than is possible by raw textual presentation alone. And, with
proof scripts, the user can replay the proof, in whole or in part.

e The presentation of options for new proof steps. For any particular
subgoal, the interface presents the user with a well-pruned list of com-
mands and macetes to apply. This list is obtained by using syntactic
and semantic information which is made available to the interface by
the IMPS supporting machinery. For example, in situations where over
400 theorems are available to the user, there are rarely more than ten
macetes presented to the user as options.

e The processing of user commands. The commands are then submitted
to the inference software, while any additional arguments required to
execute the command are requested from the user.

1.3.4 Theory Library

IMPS is equipped with a library of basic theories, which can be augmented as
desired by the user. The theory of the reals, the central theory in the library
specifies the real numbers as a complete ordered field. (The completeness
principle is formalized as a second-order axiom, and the rationals and inte-
gers are specified as the usual substructures of the reals.) The library also
contains various “generic” theories that contain no nonlogical axioms (ex-
cept possibly the axioms of the theory of the reals). These theories are used
for reasoning about objects such as sets, unary functions, and sequences.
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Chapter 2

A Brief Tutorial

In this tutorial, we will assume that you have a PC running Linux under
the X Window System. We will also assume that you have the shell variable
IMPS correctly set.

To start IMPS enter this command at the shell prompt:

$IMPS/../bin/start_imps
Executing this command will do the following;:
e Start an Emacs session.

e Start IMPS (which is actually a “Common Lisp” process) subordinate
to Emacs.

e Make two new directories in your home directory:
$HOME /imps and $SHOME /imps/theories
needed for the IMPS exercises.
e Add some files to your /tmp directory.
e Start one or more iconified TEX preview windows.

To quit IMPS type C-x C-c. This will kill Tea and the Emacs process.

If you are trying to learn to use IMPS, it would be a good idea to work
through the exercises described in Chapters 3 and 4, after reading this tu-
torial.
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2.1 Interacting with IMPS

Most of your interaction with IMPS can be initiated by selecting of one
of a number of menu options. The menu format depends on the version
of Emacs you are using. In this manual, we will assume you are running
Xemacs, version 19.15 or above. The menus are invoked by clicking on the
menubar. The resulting menu has a number of options. Some of the options
open up to new submenus.

You select an option within a menu or pane by pointing with the mouse
(notice the selected option is enclosed in a box) and clicking the right mouse
button. If you do not want to select anything after the menu appears, click
right on the option CANCEL (or just click right when the mouse points
to somewhere off the menu.) This will cause the menu to disappear.

Notice that some of the options are followed by a sequence of keystrokes
enclosed in parentheses. This means that these options can also be invoked
directly using these keystrokes. As you become more familiar with IMPs,
you will probably want to use these more direct invocations. Note that you
can use the menus to change buffers or modify the number of windows on
the screen.

You should also be aware that the panes which appear on the menu, and
the options within each pane, usually depend on the window you clicked on
to bring up the menu.

2.2 On-line Documentation

The following documentation is available on-line:

e The User’s Manual. If you have a TEX previewer, the IMPS manual !
is available on-line. You can locate specific items in the manual by
clicking right on the option IMPS manual entry in the pane Help.

e Def-forms. A def-form is essentially a specification of an IMPS entity.
In the course of your interaction with IMPS you may want to exam-
ine the definition of some object. You can locate the def-form which
specifies it by clicking right on the option Find def-form (C- .) in
the pane Help.

For more details on on-line documentation, see Chapter ?7.

The 1MPs manual is the document you are looking at.
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2.3 Languages and Theories

For now, you can think of a theory as a mathematical object consisting of
a language and a set of closed formulas in that language called azioms. For
example, one of the last things that was printed out in the startup procedure
was the line

Current theory: #{imps-theory 3: H-O-REAL-ARITHMETIC}

h-o-real-arithmetic is a basic IMPS theory which contains an axiomatic
theory of the real numbers, characterized as a complete ordered field with
the integers and rationals as imbedded structures. This is a fairly extensive
theory, so we only describe it informally here. The atomic sorts of the
language are N, Z, Q, R denoting the natural numbers, integers, rationals,
and reals. The language constants of this theory are of three kinds:

e The primitive function and relation constants +, %, /, *, sub, —, <, <
that denote the arithmetic operations of addition, multiplication, divi-
sion, exponentiation, subtraction, negation, and the binary predicates
less than, and less than or equal to, respectively.

e An infinite set of individual constants, one for each rational number.

e Various defined constants such as the operator > .

The domains of the primitive constants and some of the defined constants
are given in Table 2.1.

The axioms of this theory are the usual field and order axioms as well as
the completeness axiom which states that any predicate which is nonvacuous
and bounded above has a least upper bound. This theory also contains the
full second-order induction principle for the integers as an axiom.

At any given time there is a theory that IMPS regards as the current
theory. For example, as we mentioned above, the current theory is h-o-
real-arithmetic when IMPS finishes loading. The current theory affects
the behavior of IMPS in two very significant ways:

e Any expression that is read in by IMPS belongs to the language of the
current theory (unless another language is explicitly specified).

e In any proof that you begin, you may avail yourself of all the axioms of
the current theory and all the theorems previously proved and entered
in the current theory.
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H Operator ‘ Domain H

+ R xR
* R xR
- R
sub R xR
- E

/ R x (R\ {0})
sum S
prod S

! N

< R xR
<= R xR
> R xR
>= R xR

where:
e E=((R\{0}) xZ)U ({0} x{z€Z:0<z})
e S={(mn, f)eZXZx(Z—-R):YVkeZm<k<nDf(k)|}

Table 2.1: Domains of Arithmetic Operators.
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You can change the current theory by selecting the Set current theory
option of the pane General. When you are finished playing around with
changing theories, set the current theory back to h-o-real-arithmetic,
which is needed for the tutorial.

2.4 Syntax

Mathematicians and logicians usually think of a formula as a syntactic object
represented by some text such as x4y = y+x. For iMPS, on the other hand,
a formula is a complex data structure, essentially a record, with numerous
fields. To build a formula in a convenient way, you need to have a parser.
A parser takes a formula represented as a string and produces a formula
represented as a data structure that IMPS can deal with. You will probably
want to use a parser which supports infix and prefix operators, and settable
precedence relations between different operators. You can also use a Lisp-like
syntax if you prefer. The syntax we will use by way of illustration is quite
straightforward and you should have no difficulty in building expressions
after seeing a few examples.

We now describe the string syntax for 1MPS. First, some preliminary
considerations. A language in IMPS has two kinds of objects: sorts and
expressions. Sorts are intended to denote classes of elements; they are used
to help specify the value of an expression and to restrict quantification. They
are especially useful for reasoning with respect to overlapping domains. For
example, suppose zz and rr are sorts denoting the integers and the real
numbers, respectively. Then the Archimedean principle for the real numbers
can be expressed quite naturally as

forall(a:rr,forsome(n:zz,a<n)).

Sorts are of two kinds: atomic sorts and compound sorts. An atomic sort
is just a name. A compound sort is a list [s0, ...,sn] where each si is itself
a compound sort or an atomic sort. Compound sorts are intended to denote
the set of all n-ary partial functions from the “domain” sorts s0,...,s(n-1)
into the “range” sort sn (an exception to this rule about intended meanings
of sorts is discussed in the Chapter 5). A language distinguishes certain
sorts as types and assigns a type to every sort. Distinct types are intended
to denote sets of elements which need not be related. prop is a “base” type
which belongs to every language and which is intended to denote the set of
truth values. The sorts for h-o-real-arithmetic are given in Table 2.2.
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H Sort ‘ Type of Sort ‘ Expressions of given sort H

nn ind iota(k:nn,k”~2=9)
zZz ind [-1]1,0,1

qq ind [3/2]

rr ind iota(x:rr,x"2=2)
ind | ind with(x:ind,x)
prop | prop truth, falsehood

Table 2.2: Sorts for h-o-real-arithmetic

The expressions of a language are built from language constants and
variables as specified by Table 2.3 below. A constant is a character string
specified as such by the def-language form. A variable is also character
string. Variables however, must begin with a text character (that is, an
alphabetic character or one of the symbols _ % $ &) and contain only text
characters or digits. Moreover, the sorting of a variable within an expression
must be specified either by an enclosing binder or by an enclosing “with”
declaration.

In the theory h-o-real-arithmetic there is additional syntax for arith-
metic operators, described in Table 2.4. For example, - is used for both
sign negation and the binary subtraction operator. The binary operators
are all infix with different binding powers to reduce parentheses on input
and output: In order of increasing binding power, the arithmetic operators
are + * / ~ -,

To check the syntax of an expression (enclosed in double quotes), select
the entry Check expression syntax in the pane IMPS help. 1MPS will
request an expression, which you can supply by clicking the right mouse but-
ton on the formula. You can also type the formula directly in the minibuffer.
As an exercise, build the formula which asserts that for every nonnegative
integer n the sum of squares of the first n integers is n(n + 1)(2n + 1) /6.

2.5 Proofs
A formula in a theory is walid if it is true in every “legitimate” model of

the theory; if the formula has free variables, we have to add: “with every
legitimate assignment of values to its free variables.” To prove a formula
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H Expression Category \ Syntax \ Sort H
Truth truth prop
Falsehood falsehood prop
Negation not (p) prop
Conjunction pl and ... and pn prop
Disjunction pl or ... or pn prop
Implication pl implies p2 prop
Biconditional pl iff p2 prop
If-then-else formula if_form(pl,p2,p3) prop
Universal forall(vl:sl,...,vn:sn,p) | prop
Existential forsome(vl:sl,...,vn:sn,p) | prop
Equality t1=t2 prop
Application f(t1,...,tn) T
Abstraction lambda(vl:sl,...,vn:sn,t) [s1,...,sn,s]
Definite description iota(v:s,p) S
If-then-else term if(p,t1,t2) sl L s2
Definedness #(t) prop
Sort-definedness #(t,s) prop
Undefined expression | 7s s

H With ‘ with(vl:sl,...,vn:sn,t) ‘ s H

Notes:
p, pl

sort s, s1...sn.

For application, £ is an arbitrary expression of sort [r1,..

and the sorts ri and si must have the same enclosing type.

free variables.

Table 2.3: String Syntax for Constructors
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...pn are syntactic variables which denote formulas, that is,
expressions of sort prop. t, t1 ...tn denote arbitrary expressions of

s1 LI s2 is the smallest sort which syntactically includes s1 and s2.
For equality and if-then-else term, t1, t2 must be of the same type.

.,rn,r],

With is not a constructor; it is merely a device to specify the sorts of



H Term Category \ Syntax \ Sort H
Sum tl+ ... +tn rr
Product tl* ... *tn rr
Sign negation -t rr
Subtraction t1-t2 T
Exponentiation t17t2 rr
Division t1/t2 rr
Sequential sum sum(t1,t2,t3) rr
Sequential product prod(t1,t2,t3) | rr
Factorial t! rr
Less than t1<t2 prop
Less than or equals t1<=t2 prop
Greater than t1>t2 prop
Greater than or equals | t1>=t2 prop

Notes:

(1) The terms t1 ...tn must be of type ind. Do not confuse this syn-
tactic requirement for well-formedness with semantic conditions for

well-definedness.

(2) For sequential sum and product, the term t3 must be of type

[ind,ind].

(3) All operators associate on the left except exponentiation which asso-

ciates on the right.

Table 2.4: Syntax for h-o-real-arithmetic
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means to offer conclusive mathematical evidence of its validity. The rules
for admissible evidence are given by something called a proof system. In this
section we will describe the IMPS proof system.

To begin an interactive proof in IMPS, select the start dg option in
the Deduction Graphs pane of the menu. For version 19, click on the
menubar on DG and then select Start dg. 1MPs will then prompt you in
the minibuffer with the text

Formula or reference number:

This is an IMPS request for some formula to prove. You can supply this
formula by typing its reference number in the minibuffer. Alternatively, you
can click the right mouse button on the formula (provided that it is enclosed
between double quotes), and then press <RET>. You are then ready to begin
proving the formula.

After telling Emacs to start the deduction, two new buffers will be cre-
ated. One buffer, labelled *Deduction-graph* displays a graphical repre-
sentation of a data structure called a deduction graph. The other Emacs
buffer labeled *Sequent-nodes* displays a textual representation of a data
structure called a sequent node. Notice that the mode-line for the sequent
node buffer also contains the text

h-o-real-arithmetic: Sgn 1 of 1.
This gives you the following information:

(1) h-o-real-arithmetic is the theory in which the proof is being carried
out.

(2) You are currently looking at the first sequent node of the deduction
graph.

(3) There is only one sequent node in the deduction graph.

To understand the significance of the new buffer, note that a deduction
graph provides a snapshot of the current status of the proof. A deduction
graph is a directed graph with nodes of two kinds, called sequent nodes
and inference nodes. An interactive proof in IMPS is carried out by adding
inference nodes and sequent nodes to the deduction graph.

A sequent node consists of the following:

e A theory.
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Figure 2.1: An Inference Node.

e A single formula B called the sequent node assertion.
e A set of formulas Aq,---, A, called the sequent node assumptions.

Logically, a sequent node just represents the formula
AN NA, D B.
In the *Sequent-nodes* buffer, a sequent node is represented as a list
A+ A, =>B.

Inference nodes are to be understood in part by their relationship to
sequent nodes: Every inference node 4 has a unique conclusion node ¢ and
a (possibly empty) set of hypothesis nodes {hy,---,h,}. An inference node
represents the following mathematical relationship between c and hy, - - -, hy:
if every one of the sequent nodes hq, - - -, hy is valid, then the sequent node
c is valid. Alternatively, we can view this as asserting that the validity
of the sequent node ¢ can be reduced to the validity of hy,---,hy,. An
inference node also contains other information, providing the mathematical
justification for asserting the relationship between ¢ and hq, -, hy,. This
justification is called an inference rule.

Note that if the inference node ¢ has no hypotheses, then ¢ is obviously
valid. When this is the case, ¢ is said to be immediately grounded. More gen-
erally, ¢ is valid if all the hypotheses hi,- -, hy, of ¢ are valid. Thus validity
propagates from hypotheses to conclusion. A sequent node which is recog-
nized as valid in this way is said to be grounded. The system indicates that
it has recognized validity of a sequent node when it marks it as grounded.
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A proof is complete when the original sequent node of the deduction graph
(i.e., the deduction graph’s goal node) is marked as grounded.

Sequent nodes and inference nodes are added to a deduction graph using
deduction graph commands. Some commands correspond to the use of one
inference rule; for example extensionality or force-substitution fall into
this category. Applying such a command either does nothing or adds exactly
one inference node to the deduction graph. Moreover, this one inference
node corresponds quite closely to the application of one mathematical fact.
Other commands such as simplify have similar behavior in that they either
do nothing or add exactly one inference node. Yet they are fundamentally
different because behind the scene they are often carrying out thousands
of very low-level inferences, such as logical and algebraic simplification and
rewrite-rule application. Finally a third class of commands are essentially
strategies developed to systematically apply primitive commands in search
of a proof.

2.6 Extending IMPS

IMPS can be extended in the following ways:
e By adding definitions to an existing theory.

e By building a new theory altogether, with new primitive constants,
sorts, and axioms.

For example, in the theory of h-o-real-arithmetic, evaluation of the fol-
lowing s-expression adds the definition of convergence to co of a real-valued
sequence:

(def-constant CONVERGENT}TO%INFINITY
"lambda(s: [zz,rr],
forall(m:rr, forsome(x:zz, forall(j:zz,
x<=j implies m<=s(j)))))"
(theory h-o-real-arithmetic))

As an exercise, try defining the concept of limit of real-valued sequences.
Next, we illustrate how new theories are built by building a theory of
monoids. Building a theory is a two-step process. First, we build a lan-
guage with the required sorts and constants:

30



(def-language MONOID-LANGUAGE
(embedded-languages h-o-real-arithmetic)
(base-types uu)

(constants
(e "uu"
(x* " [uu,uu,uul")))

The next step builds the theory itself by listing the axioms:

(def-theory MONOID-THEORY

(component-theories h-o-real-arithmetic)

(language monoid-language)

(axioms
(associative-law-for-multiplication-for-monoids
"forall(z,y,x:uu, x¥*(y**z)=(x**y)**xz)" rewrite)
(right-multiplicative-identity-for-monoids
"forall (x:uu,x**e=x)" rewrite)
(left-multiplicative-identity-for-monoids
"forall (x:uu,e**x=x)" rewrite)

("total_q(**, [uu,uu,uu] )" d-r-convergence)))

There are numerous other ways IMPS can be extended. These are dis-
cussed in detail in Chapter 15. In addition, there are a number of annotated
files which show you how theories are built and theorems proved in them.
These are described in the chapters of this manual (3 and 4) on the micro
exercises and the exercises.

2.7 The Little Theories Style

The mMPs methodology for formalizing mathematics is based on a particular
version of the axiomatic method. The axiomatic method is commonly used
both for encoding existing mathematics and for creating new mathematics.
A chunk of mathematics is represented as an aziomatic theory consisting
of a formal language plus a set of sentences in the language called azioms.
The axioms specify the mathematical objects to be studied, and facts about
the objects are obtained by reasoning logically from the axioms, that is, by
proving theorems.

The axiomatic method comes in two styles, both well established in
modern mathematical practice. We refer to them as the “big theory” version
and the “little theories” version. In the “big theory” version all reasoning is
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performed within a single powerful and highly expressive axiomatic theory,
such as Zermelo-Fraenkel set theory. The basic idea is that the theory we
work in is expressive enough so that any model of it contains all the objects
that will be of interest to us, and powerful enough so that theorems about
these objects can be proved entirely within this single theory.

In the little theories version, a number of theories are used in the course
of developing a portion of mathematics. Different theorems are proved in
different theories, depending on the amount and kind of mathematics that is
required. Theories are logically linked together by translations called theory
interpretations which serve as conduits to pass results from one theory to
another. We argue in [10] that this way of organizing mathematics across
a network of linked theories is advantageous for managing complex mathe-
matics by means of abstraction and reuse.

IMPs supports both the big theory and little theories versions of the ax-
iomatic method. However, the 1MPS little theories machinery of multiple
theories and theory interpretations offers the user a rich collection of for-
malization techniques (described in Chapter 7) that are not easy to imitate
in a strict big theory approach.
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Chapter 3

Micro Exercises

The purpose of these micro exercises is to familiarize you with the basic
techniques used in IMPS. Hence we will want to illustrate aspects of the
interface as well as several of the basic deductive methods. To describe
the micro-exercises, we will assume that you are using the Free Software
Foundation Emacs version 19 menu system.

If you have not already done so, start IMPS by issuing the command
start_imps to a Unix shell, from within the X Window System. When
IMPS is ready and has informed you of the current theory (the theory of real
arithmetic), pull down the IMPS-Help menu on the menubar by depressing
and holding any mouse button while pointing to it. Point to the entry Next
micro exercise and then release the mouse button. At any point in this
sequence of exercises, you can always restart the exercise you are working
on, advance to the next exercise, or return to the previous one by selecting
the appropriate entry under IMPS-Help.

3.1 A Combinatorial Identity

The first four micro exercises use variants of a single formula, which 1MPS

prints (through TEX) in the form shown in Figure 3.1. The word “implica-

tion” here asserts that the implication that follows holds between the bul-

leted items. Similarly, the word “conjunction” on the next line refers to the

conjunction of the following (subbulleted) items. The symbol <=, which

we will encounter later, asserts that the the following items are equivalent.
m

This formula asserts that the comb function () (often read m choose
k) may be computed by Pascal’s triangle, in which each entry is the sum of
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the two entries above it. In our development, (7,?) is defined to be equal to
m!/ (k! (m — k)!) for any integers m and k. The proof of our combinatorial
identity will involve unfolding the definition of comb and using a number
of algebraic laws (including the recursive properties of factorial). Because of
the role of division here, and the fact that we must avoid division by zero,
we will also need to reason about the well-definedness of several expressions.

The exercises will involve carrying out portions of the proof several times.
At first, for didactic reasons only, we will do the proofs in the slowest, most
explicit way imaginable.

A Word about the IMPS Interface. In the course of these micro-
exercises, several X windows will be used:

(1) One or more Emacs windows. This is the primary way of interacting
with 1MPS, which is implemented by a process running a Lisp-like
language under Emacs’s control.

(2) A TgX previewer. This window displays typeset output created by
IMPS. When IMPS creates new output, raising the window will suffice
to have it refresh its contents with the new output. If the window is
already raised, a capital R (for “Redisplay”) will cause it to do the
same. The lower case letters n and p can be used to display the next
and previous pages, when more than one page is available.!

To raise a partly obscured window, click with the left button on its
header stripe.

We also refer to this as the “xview” window, and the process of displaying something
in this form as “xviewing” it.

for every k,m : Z implication
e conjunction
ol1<k
ok<m

« (V) = (") + ()

Figure 3.1: The Combinatorial Identity
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Sequent 1.

for every k,m : Z implication
e conjunction
ol1<k
ok<m
o (LEm)l/ (k- (Lt m =) = (") + (7).

Figure 3.2: The Combinatorial Identity, with One Occurrence Unfolded

for every z,y,z : R <=
oy/z=uzx
e conjunction
oz 1 i}
ox-z=y.

Figure 3.3: The left-denominator-removal-for-equalities Theorem

3.2 A First Step

If you have not started the first micro exercise by means of the Next micro
exercise item on the IMPS-Help menu, do so now.

You will find that IMPS starts a derivation with the formula shown in
Figure 3.2. This is simply the identity with the left-most occurrence of comb
unfolded using its definition. To proceed, you would like to eliminate the
denominator on the left side of the equality by multiplying both sides. This
manipulation is justified by the theorem shown in Figure 3.3 (be sure to read
the <= as “the following are equivalent”). The downward arrow in z~!]
asserts that z~! is well defined; in effect, it requires that the denominator
was nonzero. In the ASCII display used in Emacs buffers, this is written
in the form #(z~[-1]). This theorem has been proved from the axioms of
real arithmetic, and it has been made available for a kind of rewriting in the
form of a macete.? Tts behavior as a rewrite is to replace the equation by a

2A macete, meaning a clever trick in Portuguese slang, is a lemma or group of lemmas
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Replace: with z,z,y: R y/z ==x.

By: withy,z,z:R 2z7'| Az-2=uy.

Figure 3.4: Rewriting Done by Left Denominator Removal

conjunction, as indicated in Figure 3.4.

Step 1. You want to extend the deduction graph (i.e., the partial proof)
that you have just begun. Thus, hold down a mouse button while pointing to
the Extend-DG menubar item and select the option Macete description.
This will cause IMPS to compute all the macetes that can in fact alter the
current goal. In the case at hand, there are 11 macetes that are potentially
applicable to our goal, out of 362 currently loaded. A description of each
applicable macete is sent to TEX, and will be available after 10-15 seconds
on the “xdvi” window.

When you have inspected the possibilities, and have noted the number of
left denominator removal on the list, return to the Emacs window. Type the
number, followed by a carriage return, to cause IMPS to apply that macete.

Result. You will now see a new subgoal on the Emacs display. It is the
result of the rewriting carried out by the selected macete. The letters p and
n will carry you to the previous display and then back to the next one. To
inspect both sequents using TEX, pull down the TeX menu and select the
Xview sqns item. Emacs will prompt you (at the bottom of the screen)
for the numbers. Enter 1 and 2 separated by a space and terminated by a
carriage return. After 10-15 seconds you will be able to compare the two
formulas on the “xdvi” screen.

Please also observe in the “xdg” window that Sequent 1 has been reduced
to Sequent 2 by the inference left-denominator-removal-for-equalities.
If one later carries out inferences that complete the proof of Sequent 2, then
they will also suffice to establish (or “ground”) Sequent 1.

made available to the user for various kinds of rewriting depending on syntactic form.
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3.3 Taking More Steps

Under the IMPS-Help menu, please select the next micro exercise. You will
now see the combinatorial identity displayed as the goal of a new deduction.

Step 1. Under the Extend-DG menu, please select the item Commands
(this function may also be invoked without menus by typing a 7). This will
cause IMPS to examine which proof steps (other than macetes) are applicable
to the current sequent. Of the 70 commands currently loaded, only 16 are
possible, given the syntactic form of the goal. They will be displayed on
a menu. Move your mouse to the item unfold-single-defined-constant,
and click on it (this function may also be invoked without menus by typing a
lower case u). IMPS will prompt at the bottom of the screen for the numerical
index of the occurrence to unfold. This is a zero-based index. Please unfold
the leftmost occurrence by typing 0, followed by a carriage return.

Result. 1MPs will post a new sequent with the leftmost occurrence re-
placed by its definition. This is identical to the formula you started the first
micro exercise with.

Step 2. Invoke the macete left denominator removal again. This may be
done as before by using the macete description item. Alternatively, it is less
cumbrous to find Macetes (with minor premises) entry under Extend-
DG. Clicking on this will put up a menu of names of the currently applicable
macetes. Click on left-denominator-removal-for-equalities.

Result. 1MPs will post an additional sequent with the result of the rewrit-
ing. This is identical to the formula you obtained in the first micro exercise.

Step 3. Again unfold the leftmost occurrence of comb. As this formula
has more than one defined constant in it (factorial is also introduced by def-
inition), IMPS will prompt with a menu displaying the syntactically available
constants which may be chosen. You will again need to type 0 to the prompt
at the bottom of the Emacs screen to indicate the leftmost occurrence.

Result. 1MPs will post another sequent with the subgoal shown in Fig-
ure 3.5. Since this has a subexpression of the form (a/b) + ¢, you will want
to rewrite it to the form (a + b - ¢)/b.
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for every k,m : Z implication
e conjunction
ol1<k
ok<m
e conjunction
o(kl-(1+m—k)H)™|
o (m!/(k—1)! (m—(k=1))+ (7)) k- Q+m—Fk)!=(1+m).

Figure 3.5: Result of the Second Unfolding

Step 4. Use the macete description menu item under Extend-DG to find
a macete to carry out this transformation.

Result. The resulting sequent has a subexpression of the form a/b-c. You
will want to bring this to the form (a - ¢)/b.

Step 5. Use the macete description menu item under Extend-DG to find
a macete to carry out this transformation.

Clearly, invoking individual macetes in this way can become unbearably
tedious. You can now see the importance of being able to group together a
collection of lemmas into a “compound macete.” They can thus all be used
in one step, wherever they apply syntactically. A compound macete may be
constructed so as to apply the lemmas repeatedly until there are no more
opportunities for applying any of them.

3.4 Taking Larger Steps

Under the IMPS-Help menu, please select the next micro exercise. You
will again see the combinatorial identity displayed as the goal of a new
deduction. This time we will start by eliminating all the occurrences of
comb in favor of the defining expression.

Step 1. Under the Extend-DG menu, please again select the item Com-
mands. Move your mouse to the item unfold-single-defined-constant-
globally, and click on it (this function may also be invoked without menus
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Sequent 3.

for every k,m : Z implication
e conjunction
ol1<k
ok<m
o (1+m)/(k!-(1+m—E)!
=m!/(k—=1D!- (m—(k—1))+m!/(k! (m—Ek)!).

Figure 3.6: All Occurrences have been Eliminated

by typing U. IMPS does not need to prompt for a numerical index of the
occurrence to unfold, as it will operate on all of the occurrences.

Result. The resulting sequent, shown in Figure 3.6, will need a good deal
of algebraic manipulation. A large part of it can be carried out by a single
compound macete, named fractional-expression-manipulation.

Step 2. Under the TeX menubar item, click on Xview Macete. IMPS
will prompt you at the bottom of the screen for a name. Type the first few
letters of fractional-expression-manipulation followed by a few spaces, and
Emacs will complete the name by comparing against the possible macete
names.

In 10-15 seconds you will see the description of this bulky compound
macete. It first applies beta-reduction, to plug in the arguments of any
functions expressed using the A variable-binding constructor. After that, it
repeatedly applies a sequence of elementary macetes until none of them can
be applied any more. It then moves on to a second sequence of elementary
macetes, and applies them repeatedly until no further progress is made.

It is possible to write nonterminating macetes using the “repeat” oper-
ator. IMPS is designed so that it can be interrupted easily and safely. To do
so, type ESC x interrupt-tea-process. If you decide that you should not
have interrupted it, you can cause it to return to the computation at which
it was interrupted. To do so, put your cursor at the end of the *tea* buffer
and type (ret) followed by a carriage return.

To execute the macete fractional-expression-manipulation on your
current goal, use the item Macetes (with minor premises) under
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(SERIES BETA-REDUCE

(REPEAT INVERSE-REPLACEMENT
SUBTRACTION-REPLACEMENT
NEGATIVE-REPLACEMENT
ADDITION-OF-FRACTIONS-LEFT
ADDITION-OF-FRACTIONS-RIGHT
MULTIPLICATION-OF-FRACTIONS-LEFT
MULTIPLICATION-OF-FRACTIONS-RIGHT
DIVISION-OF-FRACTIONS
DIVISION-OF-FRACTIONS-2
EXPONENTS-0F-FRACTIONS
NEGATIVE-EXPONENT-REPLACEMENT)

(REPEAT LEFT-DENOMINATOR-REMOVAL-FOR-EQUALITIES
RIGHT-DENOMINATOR-REMOVAL-FOR-EQUALITIES
RIGHT-DENOMINATOR-REMOVAL-FOR-STRICT-INEQUALITIES
LEFT-DENOMINATOR-REMOVAL-FOR-STRICT-INEQUALITIES
RIGHT-DENOMINATOR-REMOVAL-FOR-INEQUALITIES
LEFT-DENOMINATOR-REMOVAL-FOR-INEQUALITIES
MULTIPLICATION-OF-FRACTIONS-LEFT
MULTIPLICATION-OF-FRACTIONS-RIGHT))

Figure 3.7: The Form of fractional-expression-manipulation
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Sequent 4.

for every k,m : Z implication
e conjunction
ol1<k
ok<m
e conjunction
o(k-(14+m+—-1-k)) "]
o conjunction
o (kl-(m+—1-k)-(k+-1-1)-(m+—-1-(k+—-1-1))7" |
o(l4+m)-kl-(m+—-1-K)!-(k+-1-1)!-(m+—-1-(k+-1-1))!
=((k+-1-1)!-(m+—-1-(k+-1-1))!-m!+
El-(m+—=1-kE)!-m!) k- (14+m+—-1-k)\.

Figure 3.8: The Result of fractional expression manipulation

the Extend-DG menubar item. You will find fractional-expression-
manipulation among the list of potentially useful macetes. It will execute
for about 20 seconds.

Result. The macete will cause IMPS to carry out all the algebraic op-
erations involved in adding and multiplying fractions, and will cause it to
cross-multiply (eliminate denominators) for equations such as a/b = c. Since
this is permissible only when b~!|, we obtain a conjunction of assertions.
The first two conjuncts assert that two denominators were nonzero, and the
third is a bulky algebraic equation which—assuming the denominators were
nonzero—suflices for our previous subgoal to be true.

We want next to break up the logical structure of this subgoal. To
dispense with the leading “for all,” we will consider an arbitrary k and m.
To break up the implication, we will pull the antecedent into the left hand
side of the sequent. We refer to this as its context. That is, we shall try to
prove the consequent of the conditional in a context where the antecedent
is assumed true. Finally, we will break up the conjunction so that we can
prove each conjunct separately.

Step 3. To break up the sequent in this way, look for direct-and-
antecedent-inference-strategy under the command menu. The com-
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Sequent 9.
Let m,k : Z.

Assume:
(0) kE<m.
(1) 1 <k.

Then:
(K- (1+m+—1-E)) "],

Figure 3.9: The Simpler Definedness Subgoal

mand menu may be invoked from Extend-DG.

Result. As a consequence nine new sequent nodes will be added to the
deduction graph. Of these, three are “leaf nodes” and will need to be proved
separately. They correspond to the three conjuncts of the previous subgoal.
We will prove one of them in a slightly tedious step-by-step process, and the
other two by applying compound macetes. The first subgoal (Sequent 9) is
shown in Figure 3.9. To prove this in a step-by-step process, we will need
to use the the following facts:

(1) the domain of inverse is R\{0};
(2) a product z -y is nonzero just in case both x and y are;
(3) a factorial j! is always nonzero.

We will then use the iMPs simplifier to complete the proof of this subgoal.

Step 4. Find the macete domain-of-inverse using either Macete de-
scription or the macete menu.

Step 5. Find the macete non-zero-product using either Macete de-
scription or the macete menu.
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Step 5. Find the macete factorial-non-zero using either Macete de-
scription or the macete menu.

Step 6. Under the Command menu item, find simplify (usually about
half-way down the list).

Result. You will see that iMPS has marked this subgoal as “Grounded”
in the black stripe under the sequent node buffer. This means that MPs
has now ascertained that it is true. In the xdg window you will see that
Sequent 7 is marked as grounded and the sequents supporting it are no
longer displayed.

To move to the next subgoal, either click (left) on it in the xdg window,
or else look under the Nodes menubar item for the First unsupported
relative. The resulting sequent is a more complicated definedness assertion.

Step 7. Rather than using the individual lemmas, we will use the com-
pound macete definedness-manipulations. To see how the macete is
built, use the Xview macete item under the TeX menubar item. Invoke
it via the macete menu or through the Macete description item. It will
ground the subgoal after about 30 seconds of computation.

Step 8. To move to the last remaining subgoal, either click (left) on it
in the xdg window, or else look under the Nodes menubar item for the
First unsupported relative. Apply the compound macete factorial-
reduction (Figure 3.10), which will complete the proof after another 30
seconds of computation.

You will note that it uses a macete constructor without minor
premises. This (as well as the phrase “with minor premises” appearing
on the Extend-DG menu) may be explained with reference to the macete
factorial-out. The substitution of (m —1)!-m in place of m! is permissible
only when 1 < m. (! is defined by a syntactic recursion, rather than by
reference to the I' function; thus in particular 0! =1 # (—=1)!-0=0.)

There are two ways then to use the macete, both of them perfectly sound
from a logical point of view. The first is conservative: do the substitution
only when we can immediately see that the condition is satisfied for the
instance at hand. The second approach is more speculative: do the sub-
stitution, but post an additional subgoal for the user to prove later. The
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(REPEAT

(WITHOUT-MINOR-PREMISES

(REPEAT FACTORIAL-OUT FACTORIAL-OF-NONPOSITIVE))
SIMPLIFY)

Where:

(1) factorial-out:

Replace: withm:Z m!.
By: withm:Z (m—1)!-m.
Subject to: withm:Z 1< m.

(2) factorial-of-nonpositive:

Replace: with j:Z jl.
By: 1.
Subject to: with j:Z 5 <0.

Figure 3.10: The factorial-reduction Macete
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(apply-macete-with-minor-premises domain-of-inverse)
(apply-macete-with-minor-premises nonzero-product)
(apply-macete-with-minor-premises factorial-nonzero)
simplify

Figure 3.11: Commands to Delete

additional subgoal states that the condition is satisfied, and the user can
use whatever ingenuity is needed in order to prove it.

We refer to such an additional subgoal as a minor premise. Experience
shows that in the great majority of cases, it is more useful to make the sub-
stitution and to post any conditions that cannot be discharged immediately
as future obligations.

However, in the case of a computational macete such as this one, the
opposite is the case. We want to “compute out” as many of the occurrences
of factorial as we can in the expression at hand. But we can reduce a
particular instance of t!, only if we know which rule to use. In particular,
if whether ¢ is positive depends on the particular choice of values for free
variables in ¢, then no expansion can be correct in general. The macete
constructor without minor premises ensures that the macetes within its
scope will be used without minor premises no matter how the macete is
called by the user.

3.5 Saving a Proof

Do not start another micro exercise. Instead, open a new file. You may use
the File menubar item, clicking on the Open file item, supplying an unused
filename. With your cursor in the buffer for the new file, open the Scripts
menubar item, and click on Insert proof script. You will see a textual
summary of the interactive proof that you have constructed. This textual
summary can be executed again, or edited as text and then re-executed.

Now click on the Next micro exercise item within IMPS-Help. 1MPS
will start yet another derivation of the combinatorial identity.

If you are unfamiliar with Emacs, drag the mouse (left), and use the
Edit menubar entries to remove the text describing four steps shown in
Figure 3.11. These were the detailed steps used to prove the first definedness
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Sequent 1.

for every m : Z implication
e 0<m
oY loj=m- (m+1)/2.

Figure 3.12: The Sum of the First n Natural Numbers

assertion. In their place it would suffice to use definedness manipulations.
Mark the following step by dragging the mouse (left), and then use the
Copy and Paste entries in the Edit menu to duplicate the line. (Add a
carriage return if appropriate.)

Starting with your cursor on the first line of the new sequence of com-
mands, click on the menu item Execute proof line under Scripts. When
IMPS updates the sequent nodes buffer with the new subgoal, repeat the
process. At each step, wait until the previous step has completed. Six steps
complete the proof.

3.6 Induction, Taking a Single Step

Axioms or theorems that we may regard as induction principles play a crucial
role in many theories. IMPS provides good support for inductive reasoning
in a form that is independent of particular theories. That is, when an axiom
or theorem of the right form is available in any theory, then it can be applied
with the full power of the iMPSs induction command.

We will illustrate IMPS’s treatment of induction first in a manual way
that shows only the single most crucial step.

If you again click the menu item for the next micro exercise, you will be
relieved to see a new goal, also shown in Figure 3.12.

Step 1. Invoke the macete little-integer-induction on the macete menu.

Result. The macete will identify the predicate of induction, and apply
the induction principle on the integers, resulting in the subgoal shown in
Figure figiinductdone. The first conjunct here is the base case, and the
second conjunct is the induction step. Within the induction step, we see the
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Sequent 2.

conjunction
39 4i=0-(0+1)/2
e for every t : Z implication
o0<t
o implication
0 Yjgj =t (t+1)/2
o Y= (t+1)-(t+1+1)/2.

Figure 3.13: Result of Applying the little-integer-induction Macete

hypothesis 0 < t which is needed because we are working with Z rather
than N . Subject to this assumption, the induction step asserts that the
predicate remains true of ¢t 4+ 1, assuming that it held true of ¢.

3.7 The Induction Command

There are many heuristics that pay off with induction principles. For in-
stance, recursively defined operators applied to the inductive term should
be expanded in the induction step.

For this reason, IMPS contains a command for induction which will ap-
ply an induction principle as in the previous micro exercise, after which
it separates the base case from the induction step and applies appropriate
heuristics to each.

IMPs offers some flexibility to the developer of a theory to control what
heuristics will be used in induction. This is encoded in an object called an
inductor. An inductor contains the induction principle to be used, in the
form of a macete similar to the little integer induction macete used above.
In addition, it may contain additional macetes or commands to be used in
the base case or induction step. It may also control whether definitions are
expanded, and if so which ones.

Clicking on the next micro exercise will restart a derivation for the sum
of the first » natural numbers.
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Step 1. Within the Extend-DG menubar item, click on the Commands
entry. Near the top of the resulting menu will be the induction com-
mand. Click on it. tMPS will respond with another menu prompting for the
name of an inductor. integer inductor is the most frequent choice, which
expands recursive and nonrecursive definitions in syntactically appropriate
contexts. The nonrecursive-integer-inductor expands only nonrecursive
definitions, and the trivial-integer-inductor expands none. In the case
we are currently considering, select the option integer-inductor.

Result. After about 10-15 seconds IMPS will post 11 new subgoals, all of
which are grounded, thus completing the proof.

To inspect the proof in detail, under the DG menubar item, click on
Verbosely update dg display. This will show the structure of the deriva-
tion. To view all of the individual nodes, under TeX, click on Xview sqns.
Enter all of the numbers from 1 to 12 separated by spaces.

You are now ready for the more interesting exercises which are intended
to illustrate how interesting portions of mathematics and computer science
can be developed using IMPS. This is the topic of the next chapter of this
manual.
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Chapter 4

Exercises

4.1 Introduction

This chapter describes about a dozen self-guided, content-based exercises to
illustrate the use of IMPS. Each exercise uses a fairly self-contained piece
of mathematics, logic, or computer science to show how to organize and
develop a theory in IMPS, and how to carry out the proofs needed for the
process. We will try to describe in each case the main content of the exercise,
as well as the specific techniques that it is intended to illustrate.

We assume in this chapter that you are using the Lucid 19 menu system.

4.1.1 How to Use an Exercise

In order to start an exercise, press down any mouse button while pointing
to the IMPS-Help menubar item. Release the button while pointing to
the entry Exercises. IMPs will present a pop-up menu listing the file names
of the available exercises. Clicking on a file name will cause the following
actions:

e The system will create a new copy of the file under your own directory,
in the subdirectory ~/imps/theories. Since this is a new file, you
can safely edit it or delete it. If a file of the expected name already
exists, IMPS will prompt whether to overwrite the file, thus destroying
the previous copy.

e IMPS will create a new Emacs buffer displaying the copy. You will use
this buffer to view and edit the file.
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e 1MPS will search for the first item in the file meriting your attention.
Each such item will be marked by the string (!). These items may
be candidate theorems to prove, theory declarations or definitions to
read, or macetes or scripts to create.

e Anything above the first (!) will be sent as input to the underlying
T process. Thus, IMPs will define any notions mentioned at the top of
the file.

At any point in the exercise, to proceed to the next item of interest, select—
from the IMPS-Help menubar item—the Current Exercise: Next En-
try request.

e 1MPS will search for the next item in the file marked by the string (!).

e Anything beyond the first (1), up to the current occurrence, will be
sent as input to the underlying T process. Thus, iMPs will install the
definitions, theorems, and so forth described in that portion of the file.

If you want to restart an exercise in a clean way, click on Exit IMPS
under General, and then on Run IMPS. The system will prompt you
to confirm the desired amount of virtual memory; the default is plenty for
current purposes. Having started a fresh invocation of IMPS, put your cursor
in the buffer that you want to work on. Click on the item Restart Exercise
in Current Buffer under IMPS-Help.

4.1.2 Paths Through the Exercises

The exercises divide roughly into four tiers of difficulty, which are summa-
rized in Table 4.1. We recommend that you do one or more exercises in a
tier before moving on to those in the next tier.

4.2 Mathematical Exercises

One of the main goals of the IMPS system is to support the rigorous develop-
ment of mathematics. We hope that it will come to serve as a mathematical
data base, storing mathematical concepts, theories, theorems, and proof
techniques in a form that makes them available when they are relevant to
new work. We believe that as a consequence IMPS will develop into a system
that can serve students as a general mathematics laboratory. In addition,
we hope it will eventually serve as a useful adjunct in mathematics research.
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’ Tier ‘ Exercise file name ‘ Section ‘
1. primes-exercise.t 4.2.1
calculus-exercise.t 4.2.2
2. indicators-exercise.t 4.3.1
monoid-exercise.t 4.2.3
3. compiler.t 4.4.1
limits.t 4.2.4
contraction.t 4.2.5
groups-exercise.t 4.2.6
4. flatten.t 4.4.2
temporal.t 4.3.2

Table 4.1: Exercise Files by “Tier”

4.2.1 Primes

Contents. This exercise introduces two main definitions into the theory
of real arithmetic, namely divisibility and primality. It then includes a few
lemmas, which lead to a “computational” macete! to determine whether a
positive integer is prime. After introducing the notion of twin primes, the
exercise develops two proof scripts that can be used to find a twin prime
pair in a given interval, if one exists.

A more extensive treatment of primes, including the material of this
exercise, is included in the IMPS theory library in the file

$IMPS /theories/reals/primes.t.
That file also contains statements and proofs of the following:
e the infinity of primes;
e the main properties of ged;

e the existence and uniqueness of prime factorizations (the Fundamental
Theorem of Arithmetic).

LA macete, meaning a clever trick in Portuguese slang, is a lemma or group of lemmas
made available to the user for various kinds of rewriting depending on syntactic form.
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Purpose. This exercise illustrates basic definitions, and it illustrates how
to carry out several simple proofs. Its main interest however is to illustrate
the mix of computation and proof in iMPS. This balance is reflected in the
macete mechanism, and in the script that searches for a pair of twin primes.

4.2.2 A Very Little Theory of Differentiation

Contents. This file develops a little axiomatic theory of the derivative
operator on real functions. Its axioms include the rules for:

e sum;
e product;

e constant functions;

e the identity function;

as well as the principle that the derivative of f is defined at a value z only
if f is. Naturally, these properties hold true of the derivative as explicitly
defined in the usual way.

The exercise then develops a succession of consequences of these prop-
erties, such as the power rule shown in Figure 4.1. The properties and their
consequences are then grouped together into a macete that allows expres-
sions involving derivatives to be evaluated.

Purpose. This exercise is intended to illustrate, in addition to inductive
reasoning, the manipulation of higher-order objects (functions represented
using A), and the power of macetes to encode symbolic computations.

foreveryn:Z,f: R— R,z : R implication
e D(f)(x) L N2<n
e DOa: R f(2)" (@) = n- f(2)" " D(f) ().

Figure 4.1: Generalized Power Rule

52



for every f:Z — U,m,n:Z implication
e conjunction
om<n
oVj:Z (m<jAnj<n+1)D f(4)l
e [[;;, 6(f) = minus(f(n + 1), f(m)).

Figure 4.2: Telescoping Product Formula

4.2.3 Monoids

Contents. This exercises introduces a theory of monoids, a monoid being
a domain U equipped with an associative operator - and an identity element
e. A recursive definition introduces an iterated monoid product operator [],
such that, when ¢,j : Z and f : Z — U, then [](4, j, f) satisfies:

. Hgf:ewhenj<i;
o [ f=(T""f) f(j) when i < j.

By adding an inverse operator and axioms on it, the monoid theory
is extended to a theory of groups (defined independently of the theory in
Exercise 4.2.6). The file then defines (slightly incongruously) minus to mean:

Ao,y :U . z-y~ L,

and J to mean:
A :Z—U.)\j:Z . minus(f(j+ 1), f(5))-

That is, if f is a function of sort Z — U, then §(f) is another function of
the same sort, and its value for an integer j is the difference (in the sense of
“minus”) between f(j 4 1) and f(j).

We can then prove the telescoping product formula shown in Figure 4.2.
This in turn can serve as the basis of an alternative proof for formulas such
as the ones for the sum of the first n natural numbers or of their squares. To
do so, we introduce an interpretation mapping U to R and the monoid
operator - to real addition. As a consequence, the operator [[ within the
monoid is carried to the (real-valued) finite summation operator .
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Purpose. This exercise illustrates how to develop little theories and how
to apply them via interpretation. It also illustrates a simple recursive defi-
nition.

4.2.4 Some Theorems on Limits

Contents. This exercise defines the limit of a sequence of real numbers.
A sequence of reals is represented in IMPS as a partial function mapping
integers to real numbers. The limit is defined using the iota constructor
t, where (tx:0 . p(z) has as its value the unique value of = such that p(x)
holds true. The iota-expression is undefined if ¢ is satisfied by more than
one value or if it is not satisfied for any value. In this case, the instance of
 is the familiar property that, for every positive real €, there is an integer
n, such that for indices p greater than n, |z — s(p)| < e.

Theorems include a variant of the definition in which iota does not
occur, as well as the familiar condition for the existence of the limit. The
homogeneity of limit is also proved.

Purpose. The main purpose of this exercise is to illustrate how to reason
with iota. In particular, it illustrates the importance of deriving an “iota-
free” characterization for a notion defined in terms of iota.

4.2.5 Banach’s Fixed Point Theorem

Contents. This extensive file, contraction.t, contains a complete proof
of Banach’s contractive mapping fixed point theorem. An alternative proof
using a little more general machinery is contained in the theory library in
file

$IMPS /theories/metric-spaces/fixed-point-theorem.t

The theorem states that in a complete metric space (P, d), any contrac-
tive function has a unique fixed point. A function f is contractive if, there
exists a real value k < 1 such that for all points z and y in P,

d(f(z), f(y) < k- d(z,y).

The heart of the proof is to show that under this condition the sequence s
of iterates of f starting from an arbitrary point z,

s = (&, f(@), F(f@)),... (@),
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will converge. It is then easy to show that the limit of s is a fixed point.
Finally, if any two distinct points x and y were both fixed, then we would
have

d(z,y) = d(f(z), f(y)) < k- d(z,y) <d(z,y).

This theorem serves as a very good illustration of iIMPS’s “little theories”
approach. It combines:

e Concrete theorems about the reals, such as the geometric series for-
mula, which are needed to bound the differences between points in
53

e A few abstract facts about the sequence of iterates of a function, which
are perfectly generic and independent of the fact that we will eventu-
ally apply them to functions f : P — P;

e A third group of theorems proved in the theory of a metric space,
applying the previous theorems.

Purpose. The exercise has three purposes:

e To illustrate the little theories approach and how natural it is in math-
ematics;

e To illustrate inductive proof (in combination with some other tech-
niques) in real arithmetic and also in the generic theory covering iter-
ation;

e To provide a richer, more extended example of how to develop a sub-
stantial proof using IMPS.

4.2.6 Basics of Group Theory

Contents. This file develops the very rudiments of group theory, only up
to a definition of subgroup and a proof that subgroups are groups. Most of
the content is devoted to building up computational lemmas. This exercise
covers only a very small part of the portion of group theory that is developed
in the iIMPS theory library, in the files contained in the directory:

$IMPS /theories/groups/

55



Purpose. The purpose of this exercise is to illustrate how to handcraft the
simplification mechanism by proving rewrite rules. In addition, a compound
macete is introduced to carry out computations not suited to the simplifier.
The file also illustrates the use of a symmetry translation mapping the theory
to itself. This translation maps the multiplication operator - to

AT, Y .Y -

Thus, for instance, right cancellation follows by symmetry from left cancel-
lation.

4.3 Logical Exercises

4.3.1 Indicators: A Representation of Sets

Contents. An indicator is a function used to represent a set. It has a sort
of the form [a, unit%sort], where « is an arbitrary sort. (In the string syntax,
the sort [a, unit%sort] is printed as sets[a].) unit%sort is a type in the-
kernel-theory that contains exactly one element named an%individual.
The type is of kind ¢, so indicators may be partial functions. Since the-
kernel-theory is a component theory of every IMPS theory, unit%sort is
available in every theory.

Indicators are convenient for representing sets. The basic idea is that
a set s containing objects of sort a can be represented by an indicator of
sort [, unit%sort], namely the one whose domain is s itself. Simplifying
expressions involving indicators is to a large extent a matter of checking
definedness—for which the simplifier is equipped with special-purpose al-
gorithms. The theory indicators consists of just a single base sort U, for
the “universe” of some unspecified domain. Since the theory indicators
contains no constants nor axioms, theory interpretations of indicators are
trivial to construct, and thus theorems of indicators are easy to use as
transportable macetes.

The logical operators in IMPS are fixed, but gquasi-constructors can
in some respects effectively serve as additional logical operators. Quasi-
constructors are desirable for several reasons:

e Once a quasi-constructor is defined, it is available in every theory

whose language contains the quasi-constructor’s home language. That
is, a quasi-constructor is a kind of global constant that can be freely
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used across a large class of theories. (A constructor, which we also call
a logical constant, is available in every theory.)

e Quasi-constructors are polymorphic in the sense that they can be ap-
plied to expressions of several different types. (Several of the construc-
tors, such as = and if, are also polymorphic in this sense.)

e Quasi-constructors are preserved under translation. Hence, to reason
about expressions involving a quasi-constructor, we may prove laws
involving the quasi-constructor in a single generic theory. The transla-
tion mechanism can then be used to apply the theorems to expressions
in any theory that involve the same quasi-constructor.

e Quasi-constructors can be used to represent operators in nonclassical
logics, such as modal or temporal logics (see Section 4.3.2), and op-
erators on generic objects such as sets (as represented by indicators)
and sequences.

Quasi-constructors are implemented as “macro/abbreviations.” The 1MPS
reader treats them as macros which cause the creation of a particular syntac-
tic pattern in the expression, while the IMPS printer is responsible for print-
ing them in abbreviated form (wherever those patterns may have arisen).

The exercise derives a few facts about sets, their unions, and the inclusion
relation. It applies them to intervals of integers.

Purpose. The purpose of this exercise is to provide experience reasoning
with quasi-constructors.

4.3.2 Temporal Logic

Contents. Temporal logic is a kind of modal logic for reasoning about
dynamic phenomenon. In recent years temporal logic has won favor as a
logic for reasoning about programs, particularly concurrent programs. The
following is an exercise to develop a version of propositional temporal logic
(PTL) in IMPS.

In this exercise we view time as discrete and linear; that is, we identify
time with the integers. The goal of the exercise is to build machinery for
reasoning about “time predicates,” which are simply expressions of sort Z —
prop. In traditional PTL, the time argument is suppressed and objects which
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are syntactically formulas are manipulated instead of syntactic predicates.
In iMPS we will deal directly with the predicates.

This is a very open-ended exercise, which should be done after the user
is fairly familiar with IMPS and its modus operand;.

4.4 Exercises related to Computer Science

IMPS also provides some facilities for reasoning about computing applica-
tions, although these are still less extensive than those for mathematics.
The exercises illustrate a facility for defining recursive data types, as well as
an application of a theory of state machines.

4.4.1 The World’s Smallest Compiler

Contents. This exercise introduces two syntaxes as abstract data types.
Each syntax is given a semantics as a simple programming language. A
function defined by primitive recursion on one language (the “source lan-
guage”) maps its expressions to values in the other (the “target language”).
This function is the compiler. We prove that the semantics of its output
code matches the semantics of its input.

Purpose. The primary purpose of this exercise is to illustrate the BNF
mechanism for introducing a recursive abstract data type. Connected with
a BNF is a schema for recursion on the data type. This is a form of primitive
recursion, as distinguished from IMPS’s more general facility for monotone
inductive definitions. The primitive recursion schema is preferable when
it applies because it automatically creates rewrite rules for the separate
syntactic cases.

A secondary purpose is to illustrate in a very simple case an approach
to compiler verification.

4.4.2 A Linearization Algorithm for a Compiler

Contents. A linearizer is a compiler component responsible for trans-
forming a tree-like intermediate code into a linear structure. Its purpose
is typically to transform (potentially nested) conditional statements into
the representation using branch and conditional branch instructions that
take numerical arguments. The exercise is contained in the file flatten.t.
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It also depends on the BNF and primitive recursion mechanisms. How-
ever, the proofs have more interesting induction hypotheses than in the
world’s smallest compiler, and the development calls for an auxiliary notion
of “regular” instruction sequences.

Purpose. This exercise can be used as a more realistic and open-ended
example of a computer science verification.

4.4.3 The Bell-LaPadula Exercise

Contents. This exercise consists of two files, namely:
e SIMPS /theories/exercises/fun-thm-security.t
e SIMPS /theories/exercises/bell-lapadula.t

The first file proves the Bell-LaPadula “Fundamental Theorem of Security”
in the context of the theory of an arbitrary deterministic state machine
with a start state, augmented by an unspecified notion of “secure state.” (A
similar theorem also holds for nondeterministic state machines.) The proof
is by induction on the accessible states of the machine.

The second file instantiates this theory in the case of a simple access
control device (reference monitor). The states are functions, which, given a
subject and an object returns a pair; one component of the pair represents
whether the subject has current read access to the object, while the other
represents current write access. The operations of the machine correspond
to four requests by a subject concerning an object; the request may be to add
or delete and access, which may in turn be either read or write access. The
subjects and objects have security levels, and the requests are adjudicated
based on their levels.

The theory exploits the fact that read and write are duals, when the
sense of the partial ordering on levels is inverted. This duality is expressed
by means of a theory interpretation mapping the theory to itself. It is used
to manufacture definitions; for instance, the %-property is defined to be the
dual of the simple security property. It is also used to create new theorems.
For instance, the theorem that the *-property is preserved under get-write
is the dual of the theorem that the simple security property is preserved
under get-read; hence, it suffices to prove the latter, and the former follows
automatically.

59



Purpose. This exercise has three main purposes:

e To illustrate how to extend and to apply the state machine theory,
and how to prove theorems using state machine induction;

e To illustrate the use of an interpretation from a theory to itself to
encode a “symmetry” or “duality;”

e To provide a model for a familiar kind of security verification.
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Chapter 5

Logic Overview

5.1 Introduction

The logic of IMPS is called LUTINS', a Logic of Undefined Terms for Inference
in a Natural Style. LUTINS is a kind of predicate logic that is intended to
support standard mathematical reasoning. It is classical in the sense that
it allows nonconstructive reasoning, but it is nonclassical in the sense that
terms may be nondenoting. The logic, however, is bivalent; formulas are
always defined.

Unlike first-order predicate logic, LUTINS provides strong support for
specifying and reasoning about partial functions (i.e., functions which are
not necessarily defined on all arguments), including the following mecha-
nisms:

e )\-notation for specifying functions;

e an infinite hierarchy of function types for organizing higher-order func-
tions, i.e., functions which take other functions as arguments;

e full quantification (universal and existential) over all function types.

In addition to these mechanisms, LUTINS possesses a definite description
operator and a system of subtypes, both of which are extremely useful for
reasoning about functions as well as other objects.

The treatment of partial functions in LUTINS is studied in [4], while the
treatment of subtypes is the subject of [5]. In this chapter we give a brief

'Pronounced as the word in French.
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overview of LUTINS. For a detailed presentation of LUTINS, see [16]?.

5.2 Languages

A LUTINS language contains two kinds of objects: sorts and expressions.
Sorts denote nonempty domains of elements (mathematical objects), while
expressions denote members of these domains. Expressions are used for both
referring to elements and making statements about them.

In this section we give a brief description of a hypothetical language
L. This language will be presented using the “mathematical syntax” which
will be used throughout the rest of the manual. There are other syntaxes
for LUTINS, including the “string syntax” introduced in Chapter 2 and the
“s-expression syntax” presented in [16].

Expressions are formed by applying constructors to variables, constants,
and compound expressions. The constructors are given in Table 5.1; they
serve as “logical constants” that are available in every language. Variables
and constants belong to specific languages.

In the mathematical syntax, the symbols for the constructors, the com-
mon punctuation symbols, and the symbol with are reserved. By a name,
we mean any unreserved symbol.

5.2.1 Sorts

The sorts of L are generated from a finite set A of names called atomic sorts.
More precisely, a sort of L is a sequence of symbols defined inductively by:

(1) Each o € A is a sort of L.

(2) If g, ..., pyq are sorts of £ with n > 1, then [, ..., apy41] is a sort
of L.
Sorts of the form [aq,...,an41] are called compound sorts. In the next

section we shall show that a compound sort denotes a domain of functions.
Let § denote the set of sorts of L.

L assigns each a € A a member of S called the enclosing sort of «. The
atomic/enclosing sort relation determines a partial order < on S with the
following properties:

(1) If & € A and S is the enclosing sort of a, then o < 3.

2In [16], LUTINS is called PF.
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Constructor ‘ String syntax

Mathematical syntax H

the-true truth T

the-false falsehood F

not not (p) -

and pl and ... and pn O1A ... A pn

or pl or ... or pn p1 V...V,
implies pl implies p2 DY

iff pl iff p2 o=

if-form if_form(pl,p2,p3) if-form(p1, p2, ©3)
forall forall(vl:sl,...,vn:sn,p) Yor1iaq, ..., UniQn, @
forsome forsome(vl:sl,...,va:sn,p) | vy, ..., 0n:Qn, @
equals t1=t2 t1 =to

apply f(t1,...,tn) flte, ... tn)
lambda lambda(vi:sl,...,vn:sn,t) AVLIQ .., UpiQipy, T
iota iota(vi:si,p) L, o

iota-p iota_p(vl:si,p) LpUi, @

if if(p,t1,t2) if(p,t1,1t2)
is-defined | #(t) t|

defined-in | #(t,s) t] o

undefined | 7s Lo

Table 5.1: Table of Constructors
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[Oé]_,. ..,Oén,O[n+1] j [/Bla" 'aﬁn)ﬂn-‘rl]'

(3) If o, 0 € S with a =< 8 and « is compound, then /3 is compound and
has the same length as a.

(4) For every a € S, there is a unique # € S such that « < 3 and g is
maximal with respect to <.

=< is intended to denote set inclusion.

The members of § which are maximal with respect to < are called types.
A base type is a type which is atomic. Every language has the base type
which denotes the set {T,F} of standard truth values. The type of a sort «,
written 7(«), is the unique type [ such that o < 8. The least upper bound
of o and (3, written a LI 3, is the least upper bound of o and § in the partial
order <. (The least upper bound of two sorts with the same type is always
defined).

A function sort is a sort a such that 7(«) has the form [a, ..., o, apt1].
The range sort of a function sort «, written ran(«), is defined as follows:
if « =[ag,...,an, apy1], then ran(a) = ay41; otherwise, ran(a)) = ran(f3))
where (3 is the enclosing sort of «.

Sorts are divided into two kinds as follows: A sort is of kind * if either it
is * or it is a compound sort [ay, . .., 1] where a,,11 is of kind *; otherwise
it is of kind . We shall see later the purpose behind this division. All atomic
sorts except * are of kind ¢.

5.2.2 Expressions

L contains a set C of names called constants. Each constant is assigned a
sort in S. An expression of L of sort « is a sequence of symbols defined
inductively by:

(1) If x is a name and « € S, then z:« is an expression of sort «.
(2) If A €C is of sort «, then A is an expression of sort «.

(3) If A,B,C,Ay,..., A, are expressions of sort = with n > 0, then T,
F, =(A), (A D B), (A = B), if-form(A, B,C), (A1 A--- N Ay), and
(A1 V---V A,) are expressions of sort

(4) If x1,...,x, are distinct names; a1,...,q, € S; A is an expression of
sort B; and n > 1, then (V z1:a1,...,Tp:qp, A) and
(3 z1:01, ..., Tn:qp, A) are expressions of sort .
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(5) If A and B are expressions of sort o and [3, respectively, with 7(a) =
7(/), then (A = B) is an expression of sort *.

(6) If F is an expression of sort « and type [aq, ..., n, Qni1]; AL, ..., Ap
are expressions of sort of,...,al; and a1 = 7(c), ..., ap, = 7(a)),

then F'(Ay,...,A,) is an expression of sort ran(«).

(7) If x1,...,x, are distinct names; a1,...,a, € S; A is an expression
of sort x; and n > 1, then (A z1:aq,...,Zy:ap, A) is an expression of
sort [aq, ..., an, (]

(8) If z and y are names; o and 3 are sorts are of kind ¢ and *, respectively;
and A is an expression of sort *, then (v z:a, A) and (¢p y:03, A) are
expressions of sort « and (3, respectively.

(9) If A, B, C are expressions of sort *, 3, 7, respectively, with 7(3) = 7(7),
then if(A, B,C') is an expression of sort [ LI +.

(10) If A is an expression and « € S, then (A]) and (A | «) are expressions
of sort *.

(11) If o is a sort of kind ¢, then L, is an expression of sort .

A wariable is an expression of the form z:a. A formula is an expression
of sort *. A sentence is a closed formula. A predicate is an expression with
a sort of the form [aq, ..., ap, *].

An expression is said to be of type « if the type of its sort is «, and it is
said to be of kind ¢ [respectively, #| if its type is of kind ¢ [respectively, x].
Notice that the well-formedness of an expression depends only on the types,
and not directly on the sorts, of its components. Expressions of kind ¢ are
used to refer to mathematical objects; they may be nondenoting. Expres-
sions of kind * are primarily used in making assertions about mathematical
objects; they always have a denotation.

5.2.3 Alternate Notation

Expressions will usually be written in an abbreviated form as follows. Sup-
pose A is an expression whose free variables are x1:aq, ..., Tp:ap,. Then A
is abbreviated as

(with z1:01, ..., 2p:0p, A),

where A’ is the result of replacing each (free or bound) occurrence of a
variable z;:c; in A with z;. This mode of abbreviation preserves meaning as
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long as there are not two variables z:a and x:8 with « # 8 which are either
both free in A or both in the scope of the same binder in A.

Parentheses in expressions may be suppressed when meaning is not lost.
In addition, the following alternate notation may be used in the IMPS math-
ematical syntax:

(1) prop and ind in place of the base sorts * and ¢, respectively.

(2) a1 X -+ X @, — (3 in place of a compound sort [aq,...,an,, 5], and
a1 X -+ X a, — f in place of a compound sort [, ..., a,, §] with 8
of kind .

(3) The symbol “.” in place of “” at the end of variable-sort sequence;

e.g., dr:a.x = x instead of Jx:a, z = x.
(4) < in place of the biconditional =
(5) x:a, p(x) in place of Jz:a, (p(z) A Vy:a, (p(y) D x =1y)).
(6) A # B in place of (A = B).

5.3 Semantics

The semantics for a LUTINS language is defined in terms of models that
are similar to models of many-sorted first-order logic. Let £ be a LUTINS
language, and let S denote the set of sorts of L.

A frame for S is a set {D, : @ € S} of nonempty domains (sets) such
that:

(1) Dy ={1,F} (T #F).
(2) If @ < 3, then D, C Dg.

(3) If « = [, ...,y appy1] s of kind ¢, then D, is the set of all partial
functions f : Dy, X -+ X Dg,, — D

Qn41°

(4) If o« = [a1,...,n,ap41] is of kind *, then D, is the set of all to-

tal functions f : DT(al) X+ X Dra,) — Da n+1 such that, for all
<b1, e by > S DT(al) an) f(by, ) = Fr(ant1) whenever
bi & D, for at least one % w1th <i<n.

For a type a € § of kind *, F,, is defined inductively by:

67



(1) Fu =F.

(2) f o = [ag,. .., nt1], then Fy is the function which maps every n-tuple
(at,...,ap) € Doy X -+ X Dy, 10 Fa,, ;-

A model for L is a pair ({D, : a € S}, I) where {D,, : o € S} is a frame
for S and I is a function which maps each constant of £ of sort o to an
element of D,,.

Let M = ({Dy : « € S}, 1) be a model for L. A wariable assign-
ment into M is a function which maps each variable x:a of £ to an el-
ement of D,. Given a variable assignment ¢ into M; distinct variables
T1:Q, ..., Tpiy (0 >1); and a1 € Dy, .. .an € Dy, let

plriiar - oar, .. ey — ay]
be the variable assignment v such that

a; if A=uz;:0; for some 7 with 1 <i<n
w(4) = { ©(A) otherwise

V = VM is the partial binary function on variable assignments into M
and expressions of £ defined by the following statements:

1) Vo(a:a) = p(a:a)

(1) v

(2) If Ais a constant, V,(A) = I(A).
(3) Vo(T) =

(4) Voo(F) =

T if V,(A)=F
F otherwise

(5) Vo (=(4)) = {

)1 iV (A)=ForV,(B)=T
(6) V(A B) = { F otherwise
_ o ) T if VL (A) =V, (B)
(1) V(A= B) = { F otherwise
o . [ Vu(B) ifVy(A) =T
(8) If O is if-form or if, V,,(O(A, B,C)) = { V.(C) otherwise
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(10)

(11)

(12)

(13)

(14)

T ifV,(A1)=--=V,(4,) =T
Ve(Ar A-oo A dn) = { F oth:rwise o
T if V,(A;) = T for some i with 1 <7 <n
F otherwise
T if ch[a:lZalHal,...,xnlanb—mn] (A) =T
for all (ay,...,a,) €
Doy X -+ X Dqy,
F otherwise

T if ch[xltap—»al,...,xntanHan](A) =T
for some (ai,...,an) €
Doy X -+ X Dg,

F otherwise

_ _ ) 1 iV (A) = V,(B)
Vo(A=B) = { F otherwise
Assume F' is of kind ¢. Then
V@(F(Alv vy An)) - VSD(F)(VSD(AI)a ceey V@(An))

if Vo(F),Vy(Ar), ..., Vy(Ay) are each defined; otherwise
Vo(F(A1,...,Ay)) is undefined.

Assume F is of sort [a1,...,an41] of kind x. Then
Va(F(AL . .., An) = Va(F)(Va(A1) ..., Vio(A))

if V,(A1),...,V,(Ay) are each defined; otherwise
V‘p(F(Al, ey An)) = FT(an+1)'

Assume A is of sort ay,41 of kind ¢. Then V(A z1:a1,. .., 2500, A)
is the partial function f : Dy, X -+ X Dy, — Da,,,, such that

f(ah cee ’an) = V(p[:plIa1»—>a1,...,xn:an»—>an} (A)
if Vioriarmar,...onian—an] (A) 18 defined; otherwise f(a1,...,a,) is un-

defined.
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(17) Assume A is of sort ay41 of kind *. Then Vi, (X z1:a1, ..., zpi0n, A)
is the total function f: D4,y X -+ X Dr(q,) = Da,, , such that

f(ah R an) = Vgo[xl2a1»—>a1,...,xn2an»—>an](A)
if (a1,...,an) € Doy, X -+ X Dy,,; otherwise f(ai,...,an) = Fria,,1)-

(18) Vi (ur:cr, A) is the unique element a € Dy such that Vi j;:qmq)(4) = T;
otherwise V,,(tz:ar, A) is undefined.

(19) Vi (tpricr, A) is the unique element a € D, such that V,|;:qq)(A4) = T;
otherwise Vi, (tpr:ar, A) = Fr(q).

T if V,(A) is defined
F otherwise

(20) Ve(Al) = {

_J 1 if V,,(A) is defined and V,(A) € D,
(21) Ve(A La) = { F otherwise
(22) V(L) is undefined.

Clearly, for each variable assignment ¢ into M and each expression A
of L,

(1) V,(A) € Dy if V,,(A) is defined, and
(2) V,(A) is defined if A is of kind .

Vo(A) is called the value or denotation of A in M with respect to ¢, provided
it is defined. When V,(A) is not defined, A is said to be nondenoting in M
with respect to ¢.

5.4 Extensions of the Logic

The logic can be effectively extended by introducing “quasi-constructors.”
They are the subject of Chapter 8.

5.5 Hints and Cautions

(1) In most cases, the novice IMPS user is better off relying on his intuition
instead of trying to fully comprehend the formal semantics of LUTINS.
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(2)

(3)

Although 1MPS can handle expressions containing two variables with
the same name (such as, z:a and z:0 with a # (), they tend to be
confusing and should be avoided if possible.

LUTINS is a logic of two worlds: the ¢ world and the * world. Expres-
sions of kind ¢ are part of the « world, and expressions of kind * are part
of the * world. Although both worlds can be used for encoding math-
ematics, the ¢ world is much preferred for this purpose. As a general
rule, expressions of kind * should not be used to denote mathematical
objects. Normally, formulas or predicates (i.e., expressions having a
sort of the form [a, ..., oy, *]) are the only useful expressions of kind
*. Consequently, there is little support in IMPS for the constructor ¢,
the definite description operator for the * world.

The character % is often used in the names of variables and constants
in the string syntax to denote a space (the character _ is used to denote
the start of a subscript). This character is printed in the mathematics
syntax as either % or _.
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Chapter 6

Theories

6.1 Introduction

As a mathematical object, an IMPS theory consists of a LUTINS language
L and a set of sentences in L called azioms. The theory is the basic unit
of mathematical knowledge in 1MPS. In fact, IMPS can be described as a
system for developing, exploring, and relating theories. How a theory is
developed is the subject of several chapters; an overview is given in the next
section. The principal technique for exploring a theory is to discover the
logical implications of its axioms by stating and trying to prove conjectures;
the IMPS proof system is described in Chapter 10. Two theories are related
by creating an interpretation of one in the other; theory interpretations are
discussed in Chapter 7.

We define a theorem of an IMPS theory 7 to be a formula of 7 which is
valid in each model for 7. That is, a theorem of 7 is a semantic consequence
of 7. The reader should note that our definition of a theorem does not
depend on the IMPS proof system or any other proof system for LUTINS.

In the implementation, a theory is represented by a data structure which
encodes the language and axioms of the theory. The data structure also en-
codes in procedural or tabular form certain consequences of the theory’s
axioms. This additional information facilitates various kinds of low-level
reasoning within theories that are encapsulated in the IMPS expression sim-
plifier, the subject of Chapter 11.

Let 71 and 75 be 1MPs theories. 7 is subtheory of To (and 7 is a
supertheory of T3) if the language of 71 is a sublanguage of the language
of 75 and each axiom of 7 is a theorem of 75. Each IMPS theory 7 is
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assigned a set of component theories, each of which is a subtheory of 7. 7
is structural subtheory of To (and 7 is a structural supertheory of T o) if T
is either a component theory of 75 or a structural subtheory of a component
theory of 7.

6.2 How to Develop a Theory

The user creates a theory and the IMPS objects associated with it by evalu-
ating expressions called definition forms (or def-forms for short). There are
approximately 30 kinds of def-forms, each described in detail in Chapter 15.
The user interface provides templates to you for writing def-forms. The def-
forms supplied by the system and created by you are stored in files which
can be loaded as needed into a running IMPS process. In this section, we
give an overview of the tasks that are involved in creating a well-developed
theory. Along the way, we list the def-forms that are relevant to each task.

Task 1: The Primitive Theory

The first task in developing a theory is to build a primitive, bare bones theory
7 from a (possibly empty) set of theories, a language, and a set of axioms.
This is done with the def-theory form; 7 is the smallest theory which
contains the theories, the language, and the set of axioms. The theories
are made the component theories of 7. A language is created with def-
language or def-sublanguage. A primitive theory can also be created by
instantiating an existing theory with def-theory-instance.

Task 2: Theorems

The information held in the axioms of the primitive theory is unlocked by
proving theorems using the IMPS proof system (see Chapter 10). Theorem
proving is crucial to developing a theory and is involved in most of the tasks
below. Proven theorems are installed in the theory with def-theorem using
various “usages.” See Section 6.4 for details.

Task 3: Simplification

Once the primitive theory is built, usually the next task is to specify how
simplification should be performed in the theory. There are three mecha-
nisms for doing this that can be used separately or in combination:
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(1) Install a processor. For theories of an algebraic nature (e.g., rings,
fields, or modules over a ring), you may want to install an alge-
braic processor to perform rudimentary algebraic simplification. Pro-
cessors are created with def-algebraic-processor and def-order-
processor, and installed with def-theory-processors. The system
will check that the theory contains the right theorems before anything
is installed, so even if you build a weird processor (one that wants to
treat ring multiplication as ring addition) it cannot be installed.

(2) Install rewrite rules. An ordinary rewrite rule is created and installed
in the theory by installing a theorem with the usage rewrite. A
transportable rewrite rule is created by installing a theorem with the
usage transportable-rewrite, and is installed in the theory with
def-imported-rewrite-rules.

(3) Add information to the theory’s domain-range handler. Information
about the domain and range of function constants can be added to
a theory by installing theorems in the theory with the usages d-r-
convergence and d-r-value.

See Chapter 11 for more details.

Task 4: Theory Interpretations

It is a good idea, early in the development of a theory, to create the principal
theory interpretations involving the theory in either the role of source or
target. Symmetry interpretations of theory in itself are often quite useful if
they exist. Theory interpretations are created with def-translation. See
Chapter 7 for details.

Task 5: Definitions

Atomic sorts and constants can be defined throughout the course of de-
veloping a theory. They are usually defined with def-atomic-sort, def-
constant, and def-recursive-constant, but they can also be created by
transporting definitions to the theory from some other theory with def-
transported-symbols. An atomic sort with constants for representing
a cartesian product with a constructor and accessors is created with def-
cartesian-product. See Section 6.5 for details.
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Task 6: Macetes

Theorems are applied semi-automatically in the course of a proof by means
of procedures called macetes. A set of carefully crafted macetes is an es-
sential part of a well-developed theory. An elementary macete is created
whenever a theorem is installed, and a transportable macete is created by
installing a theorem with the usage transportable-macete. Other kinds
of macetes are created with def~compound-macete and def-schematic-
macete. See Chapter 12 for details.

Task 7: Induction Principles

If your theory has a theorem which you think can be treated like an induction
principle, then you can build an inductor with def-inductor. The name
of the inductor can be used as an argument to the induction command.
Note that most often you can get by with using integer-inductor which is
already supplied with the system.

Task 8: Theory Ensembles

Sometimes copies and unions of copies of the theory are needed.
These can be created and managed as an IMPS theory ensemble with
def-theory-ensemble, def-theory-ensemble-instances, def-theory-
ensemble-overloadings, and def-theory-ensemble-multiple. See
Chapter 9 for details.

Task 9: Theory Extensions

Ordinarily an extension of the theory is created with def-theory and def-
theory-instance, but the theory can also be extended by adding an ab-
stract data type with def-bnf or a record with def-record-theory.

Task 10: Quasi-constructors

Quasi-constructors are global constants that can be used across a large class
of theories. They are created with def-quasi-constructor. See Chapter 8
for details.
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Task 11: Renamers

Renaming functions are used with def-theory-instance and def-
transported-symbols to rename atomic sorts and constants. They are
created with def-renamer.

Task 12: Syntax

Special parse and print syntax for the vocabulary of the theory is created
independently from the development of the theory with def-parse-syntax,
def-print-syntax, and def-overloading. See Chapter 14 for details.

Task 13: Sections

Theory library sections containing the theory or a part of the theory are
created with def-section. See Section 6.6 for more information about sec-
tions.

6.3 Languages

An 1MPSs language is a representation of a LUTINS language. An IMPS lan-
guage is built with def-language from a (possibly empty) set of languages,
a set of base types, and a list of atomic sort declarations.

6.4 Theorems

Mathematically, a theorem of a theory is any logical consequence of the
theory’s axioms. One usually verifies that a formula A is a theorem of a
theory 7 by constructing a proof of A in 7 using the IMPS proof system (see
Chapter 10, particularly Section 10.3). A theorem is available to the user
when working in a theory 7 only if it has been “installed” in 7. There are
several ways a theorem can be installed:

e When a theory is built, all of its axioms are installed in it.

e One or two theorems are installed in a theory when a def-theorem
form is evaluated. See Section 6.4 for details.
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e When an atomic sort is defined in a theory, the new sort’s defining

axiom and a few special consequences of it are installed in the the-
ory. Something similar takes place when constants are defined (either
directly or recursively) in a theory.

e When a theorem A is transported from 71 to 75 via an interpretation

®, the translation of A, ®(A), is installed in 7.

When a theorem is installed in a theory 7, it is automatically installed in
every structural supertheory of 7.

A theorem is installed with a list of usages that tells IMPS how to use
the theorem. There are seven usages; they have the following effect when
they are in the usage list of a theorem installed in a theory 7:

(1)

elementary-macete. This causes an elementary macete to be created
from the theorem. For a theorem which is given a name, this usage is
always added by 1MPS to the theorem’s usage list, whether this usage
is explicitly included by the user or not.

transportable-macete. This causes a transportable macete to be
created from the theorem.

rewrite. This causes a rewrite rule to be created and installed in
the transform table of 7. Although the theorem can have any form,
usually this usage is used only with a theorem which is an equation, a
quasi-equation, or a biconditional.

transportable-rewrite. This causes a transportable rewrite rule to
be created (but not installed). Transportable rewrite rules are installed
(in 7 or other theories) with def-imported-rewrite-rules.

simplify-logically-first. If rewrite and transportable-rewrite
are in the usage list, this marks the generated rewrite and trans-
portable rewrite rules so that logical simplification is used just before
they are applied.

d-r-convergence. If the theorem has an appropriate form, a conver-
gence condition is created and installed in the domain-range handler
of 7.

d-r-value. If the theorem has an appropriate form, a value condition
is created and installed in the domain-range handler of 7.
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6.5 Definitions

IMPs supports four kinds of definitions: atomic sort definitions, constant
definitions, recursive function definitions, and recursive predicate definitions.
In the following let 7 be an arbitrary theory.

Atomic sort definitions are used to define new atomic sorts from
nonempty unary predicates. They are created with the def-atomic-sort
form. An atomic sort definition for T is a pair 6 = (n,U) where n is a sym-
bol intended to be the name of a new atomic sort of 7 and U is a nonempty
unary predicate in 7 intended to specify the extension of the new sort. §
can be installed in 7 only if the formula Jz.U(x) is known to be a theorem
of 7. As an example, the pair

(N, \@:Z.0<x)

defines IN to be an atomic sort which denotes the natural numbers.

Constant definitions are used to define new constants from defined ex-
pressions. They are created with the def-constant form. A constant def-
inition for 7 is a pair § = (n,e) where n is a symbol intended to be the
name of a new constant of 7 and e is a expression in 7 intended to specify
the value of the new constant. § can be installed in 7 only if the formula e]
is verified to be a theorem of 7. As an example, the pair

(floor, Az : R .1z:Z . z<zANx <1+ 2z)

defines the floor function on reals using the ¢ constructor.

Recursive function definitions are used to define one or more functions by
simultaneous recursion. They are created with the def-recursive-constant
form. The mechanism for recursive function definitions in IMPS is modeled
on the approach to recursive definitions presented by Y. Moschovakis in [22].
A recursive definition for T is a pair § = ([n1,...,ng], [F1,..., Fx]) where
k> 1, [n1,...,nk] is a list of distinct symbols intended to be the names
of k new constants, and [F1,..., Fy] is a list of functionals (i.e., functions
which map functions to functions) of kind ind in 7 intended to specify, as a
system, the values of the new constants. d can be installed in 7 only if the
functionals F7, ..., F} are verified to be monotone in 7 with respect to the
subfunction order C.! The names [n1,...,n;] then denote the simultaneous

LfC giff f(ar,...,am) = g(ai,...,an) for all m-tuples {ai,...,an) in the domain of

1.
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least fixed point of the functionals Fi, ..., Fr. As an example, the pair
(factorial, A\f : Z —~Z . n:Z .if(n=0,1,n* f(n —1)))

is a recursive definition of the factorial function in our standard theory of
the real numbers.

This approach to recursive definitions is very natural in IMPS because
expressions of kind ind are allowed to denote partial functions. Notice that
there is no requirement that the functions defined by a recursive definition
be total. In a logic in which functions must be total, a list of functionals
can be a legitimate recursive definition only if it has a solution composed
entirely of total functions. This is a difficult condition for a machine to check,
especially when k& > 1. Of course, in IMPS there is no need for a recursive
definition to satisfy this condition since a recursive definition is legitimate
as long as the defining functionals are monotone. IMPS has an automatic
syntactic check sufficient for monotonicity that succeeds for many common
recursive function definitions.

Recursive predicate definitions are used to define one or more predicates
by simultaneous recursion. They are also created with the def-recursive-
constant form. Recursive predicate definitions are implemented in essen-
tially the same way as recursive function definitions using the order C? on
predicates. The approach is based on the classic theory of positive inductive
definitions (see [21]). For an example, consider the pair

([even,odd], [Fy, F)),
where:
o 1 =Xe,o: N — prop . An: N .if(n = 0, truth, o(n — 1)).
e [h=MXe,0: N — prop. An: N .if(n = 0, falsehood, e(n — 1)).
It defines the predicates even and odd on the natural numbers by simultane-
ous recursion. As with recursive function definitions, there is an automatic

syntactic check sufficient for monotonicity that succeeds for many recursive
predicate definitions.

2p C q iff p(a1,...,am) D q(a1,...,an) for all m-tuples (ai,...,a,) in the common
domain of p and q.
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6.6 Theory Libraries

A theory library is a collection of theories, theory constituents (definitions,
theorems, proofs, etc.), and theory interpretations that serves as a database
of mathematics. A theory library is composed of sections; each section is
a particular body of knowledge that is stored in a set of files consisting of
def-forms. A section can be loaded as needed into a running IMPS process.
A section is built from a (possibly empty) set of subsections and files with
def-section. The forms load-section and include-files will load a section
and a list of files, respectively. These forms are useful for organizing sections.

Supplied with IMPS is an initial theory library which contains a variety
of basic mathematics. In no sense is the initial theory library intended to be
complete. We expect it to be extended by IMPS users. In the course of using
IMPS, you should build your own theory library on top of the IMPS initial
theory library. The initial theory library contains many examples that you
can imitate. An outline of the initial theory library is given in Chapter 18.

6.7 Hints and Cautions

(1) The mvmPs initial theory library contains no arithmetic theory weaker
than h-o-real-arithmetic; e.g., there is no theory of Peano arith-
metic. This is in accordance with our philosophy that there is rarely
any benefit in building a theory with an impoverished arithmetic. Fur-
thermore, since full-powered arithmetic is so useful and so basic, we
advise the IMPS user to include h-o-real-arithmetic in every theory
he or she builds.

(2) When building a theory, it is usually a good idea to minimize the
primitive constants and axioms of the theory. This will make it easier
to use the theory as a source of a theory interpretation.

(3) The best way to learn how to develop a theory is to study some of the
theory-building techniques and styles which are demonstrated in the
IMPS initial theory library.

(4) Since the sort of an expression gives immediate information about the
value of the expression, it is often very advantageous to define new
atomic sorts rather than work directly with unary predicates. Also,
a nonnormal translation (see Section 7.2) can be “normalized,” i.e.,
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transformed into a normal translation, by defining new atomic sorts
in the target theory of the translation.
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Chapter 7

Theory Interpretations

7.1 Introduction

Theory Interpretations are translations which map the expressions from one
theory to the expressions of another with the property that theorems are
mapped to theorems. They serve as conduits to pass results from one theory
to another. As such, they are an essential ingredient in the little theories
version of the axiomatic method which IMPS supports (see Section 2.7).
The IMPS notion of theory interpretation [5, 7] is modeled on the standard
approach to theory interpretation in first-order logic (e.g., see [2, 19, 24]).

Most of the various ways that interpretations are used in IMPS are de-
scribed in the penultimate section of this chapter.

7.2 Translations

Let 71 and 75 be LUTINS theories. A translation from T to T is a pair
® = (p,v), where p is a mapping from the atomic sorts of 71 to the sorts,
unary predicates (quasi-sorts), and indicators (sets) of 79 and v is a mapping
from the constants of 71 to the expressions of 7 5, satisfying certain syntactic
conditions. 71 and 75 are called the source theory and target theory of ®,
respectively. Given an expression e of 7 1, the translation of e via ®, written
®(e), is an expression of 75 defined from p and v in a manner that preserves
expression structure. In particular, ®(e) is a sentence when e is a sentence.

When g maps an atomic sort a to a unary predicate U, the variable
binding constructors—A\, V, 3, and (—are “relativized” when they bind a
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variable of sort a. For example,
O (Vziyp) = Va:B.U(x) D ®().

Something very similar happens when p maps an atomic sort to an indicator.
The constructor defined-in is also relativized when its second argument
is . A translation is normal if it maps each atomic sort of the source
theory to a sort of the target theory. Normal translations do not relativize
constructors.

Let @ be a translation from 71 to 75. ® is an interpretation of 71 in
T, if ®(¢p) is a theorem of 75 for each theorem ¢ of 7. In other words,
an interpretation is a translation that maps theorems to theorems. An
obligation of ® is a formula ®(¢) where ¢ is either:

(1) a primitive axiom of 77 (axiom obligation);
(2) a definition axiom of 7 (definition obligation);

(3) a formula asserting that a particular primitive atomic sort of 7 is
nonempty (sort nonemptiness obligation);

(4) aformula asserting that a particular primitive constant of 7; is defined
in its sort (constant sort obligation); or

(5) a formula asserting that a particular primitive atomic sort of 7 is a
subset of its enclosing sort (sort inclusion obligation).

The following theorem gives a sufficient condition for a translation to be
an interpretation:

Theorem 7.2.1 (Interpretation Theorem) A translation ® from T to
T4 is an interpretation if each of its obligations is a theorem of T.

See [5, 7], for a more detailed discussion of theory interpretations in
LUTINS.

7.3 Building Theory Interpretations

The most direct way for you to build an interpretation is with the def-
translation form. However, there are also several ways interpretations can
be built automatically by iMPS with little or no assistance from you.
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Building an interpretation with def-translation is generally a two-
step process. The first step is to build a translation by evaluating a def-
translation form which contains a specified name, source theory, target
theory, sort association list, and constant association list. These latter lists,
composed of pairs, specify respectively the two functions p and v discussed
in the previous section. Each pair in the sort association list consists of an
atomic sort of the source theory and a specification of a sort, unary predi-
cate, or indicator of the target theory. Each pair in the constant association
list consists of a constant of the source theory and a specification of an ex-
pression of the target theory. There does not need to be a pair in the sort
association list for each atomic sort in the source theory; missing primitive
atomic sorts are paired with themselves and missing defined atomic sorts
are handled in the special way described in the next section. A similar
statement is true about the constant association list.

When the def-translation form is evaluated, IMPS does a series of syn-
tactic checks to make sure that the form correctly specifies a translation. If
all the checks are successful, IMPS builds the translation (or simply retrieves
it if it had been built previously).

The second step is to verify that the translation is an interpretation.
IMPS first generates the obligations of the translation that are not trivially
theorems of the target theory. Next IMPS removes from this set those obli-
gations which are instances of installed theorems of the target theory. If the
line

(theory-interpretation-check using-simplification)

is part of the def-translation form, IMPS will also remove obligations which
are known to be theorems of the target theory by simplification. When 1MPS
is done working on the obligations, if there are none left the translation is
marked as a theory interpretation. Otherwise, an error message is made
that lists the outstanding obligations.

If there are outstanding obligations (and you believe that they are indeed
theorems of the target theory), you will usually want to prove them in the
target theory. Then, after installing them in the target theory, the def-
translation form can be re-evaluated.

The following is a simple example of an interpretation built from a def-
translation form:

(def-translation MONOID-THEORY-TO-ADDITIVE-RR
(source monoid-theory)
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(target h-o-real-arithmetic)

(fixed-theories h-o-real-arithmetic)

(sort-pairs

(uu rr))

(constant-pairs

(e 0)

Ckx +)

(theory-interpretation-check using-simplification))

The purpose of the line
(fixed-theories h-o-real-arithmetic)

is to speed up the construction of the interpretation by telling iMPS ahead
of time that the theory h-o-real-arithmetic, which is a subtheory of
monoid-theory, is fixed by the translation, i.e., each expression of h-o-
real-arithmetic is mapped to itself.

7.4 Translation of Defined Sorts and Constants

Let ® be a translation from 71 to 7. Translations have been implemented
in IMPS so that the defined sorts and constants of 7; are handled in an effec-
tive manner, even when they are defined after ® is constructed. There are
three possible ways that a defined sort or constant of 71 can be translated.

First, if the defined sort or constant is a member of one of the fixed
theories of @, it is translated to itself. Second, if the defined sort or constant
is mentioned (i.e., is the first component of a pair) in the sort or constant
association list of @, it is translated to the second component of the pair. In
practice, most defined sorts and constants are not mentioned in the sort and
constant association lists. And, third, if the defined sort or constant is not
mentioned in the sort and constant association lists and is not a member of
a fixed theory, it is translated on the basis of its definiens (unary predicate,
expression, or list of functionals). This last way of translation requires some
explanation.

Suppose « is a defined sort of 77 which is not mentioned in the sort
association list of ®. Let U be the unary predicate that was used to define
a. If there is a atomic sort 3 of 75 defined by a unary predicate U’ such
that U’ and ®(U) are alpha-equivalent, then « is translated as if the pair
(a, B) were in the sort association list of ®. Otherwise, it is translated as if
the pair (o, ®(U)) were in the sort association list of ®.

85



Suppose «a is a directly defined constant of 77 which is not mentioned
in the constant association list of ®. Let e be the expression that was used
to define a. If there is a constant b of 75 directly defined by an expression
e/ such that ¢ and ®(e) are alpha-equivalent, then a is translated to b.
Otherwise, a is translated to ®(e).

Suppose a; is constant which is not mentioned in the constant association
list of ®, but which is a member of a list ai,...,a, of constants of 7
defined by recursion. Let Fi, ..., F, be the list of functionals that was used
to define a1, ..., a,. If there is a list by, ..., b, of constants of 75 recursively
defined by the list of functionals Fj, ..., F}, such that I} and ®(F}) are alpha-
equivalent for each j with 1 < j < n, then a; is translated to b;. Otherwise,
a; is translated to an iota-expression which denotes the ith component of
the minimal fixed point of ®(Fy),..., P(F,).

7.5 Reasoning and Formalization Techniques

This section briefly describes most of the ways interpretations are used in
IMPS for formalizing mathematics and proving theorems.

7.5.1 Transporting Theorems

The most important use of theory interpretations is for transporting theo-
rems from one theory to another. There are several ways that a theorem
can be transported:

(1) The translation of a theorem of 71 via an interpretation of 71 in 7
can be installed in 79 using def-theorem with the modifier argument
translation.

(2) In the course of a proof, the translation of a theorem can be added
to the context of a sequent with the proof command assume-
transported-theorem. Similarly, an instantiation of a translation
of a theorem can be added with instantiate-transported-theorem.
Both of these commands ask for the theory interpretation to be
used. If no interpretation is given with the command instantiate-
transported-theorem, 1MPs will try to find or build an interpreta-
tion on its own using the information in the variable instances supplied
by the user.
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(3) When a transportable macete or transportable rewrite rule is applied,
a theorem is effectively transported to the current theory (but it is not
actually installed in the current theory).

Theorems are usually transported from an abstract theory to a more con-
crete theory.

7.5.2 Polymorphism

Constructors and quasi-constructors are polymorphic in the sense that they
can be applied to expressions of several different types. This sort of poly-
morphism is not very useful unless we have results about constructors and
quasi-constructors that could be used in proofs regardless of the actual types
that are involved. For constructors, most of these “generic” results are
coded in the form of the primitive inferences given in Chapter 17. Since
quasi-constructors, unlike constructors, can be introduced by you, it is
imperative that there is some way for you to prove generic results about
quasi-constructors. This can be done by proving theorems about quasi-
constructors in a theory of generic types, and then transporting these results
as needed to theories where the quasi-constructor is used.

For example, consider the quasi-constructor m-composition defined by

(def-quasi-constructor M-COMPOSITION
"lambda(f: [ind_2,ind_3],g: [ind_1,ind_2],
lambda(x:ind_1, £(g(x))))"
(language pure-generic-theory-3)
(fixed-theories the-kernel-theory))

The basic properties about m-composition, such as associativity, can be
proved in the theory pure-generic-theory-4, which has four base types
but no constants, axioms, or other atomic sorts.

7.5.3 Symmetry and Duality

Theory interpretations can be used to formalize certain kinds of arguments
involving symmetry and duality. For example, suppose we have proved a
theorem in some theory and have noticed that some other conjecture follows
from this theorem “by symmetry.” This notion of symmetry can frequently
be made precise by creating a theory interpretation from the theory to itself
which translates the theorem to the conjecture.

As an illustration, consider the theory interpretation defined by
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(def-translation MUL-REVERSE
(source groups)
(target groups)
(fixed-theories h-o-real-arithmetic)
(constant-pairs

(mul "lambda(x,y:gg, y mul x)"))

force-under-quick-load
(theory-interpretation-check using-simplification))

This translation, which reverses the argument order of * and holds every-
thing else fixed in groups, maps the left cancellation law

(def-theorem LEFT-CANCELLATION-LAW
"forall(x,y,z:gg, x mul y = x mul z iff y=z)"
(theory groups)

(usages transportable-macete)
(proof
C...0))

to the right cancellation law

(def-theorem RIGHT-CANCELLATION-LAW
;3 "forall(x,y,z:gg, y mul x=z mul x iff y=z)"
left-cancellation-law
(theory groups)
(usages transportable-macete)
(translation mul-reverse)
(proof existing-theorem))

Since this translation is in fact a theory interpretation, we need only prove
the left cancellation law to show that both cancellation laws are theorems
of groups.

7.5.4 Problem Transformation

Sometimes a problem is easier to solve if it is transformed into an equivalent,
but more convenient form. For example, often geometry problems are easier
to solve if they are transformed into algebra problems, and vice versa. Many
problem transformations can be formalized as theory interpretations. The
interpretation serves both as a means of transforming the problem and as a
verification that the transformation is valid.
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7.5.5 Definition Transportation

A list of definitions (atomic sort, directly defined constant or recursively
defined constant) can be transported from T} to T5 via an interpretation of
71 in 75 using def-transported-symbols.

For example, consider the following def-forms:

(def-translation ORDER-REVERSE
(source partial-order)
(target partial-order)
(fixed-theories h-o-real-arithmetic)
(constant-pairs
(prec revyprec)
(reviprec prec))
(theory-interpretation-check using-simplification))

(def-renamer FIRST-RENAMER
(pairs
(prec/majorizes prec/minorizes)
(precincreasing reviprec)increasing)
(prectsup preckinf)))

(def-transported-symbols
(precymajorizes preciincreasing precisup)
(translation order-reverse)
(renamer first-renamer))

The def-transported-symbols form installs three new definitions—
prec%minorizes, rev%prec%increasing, and prec%inf—in partial-
order. These new definitions are created by translating the definiens of
prec%majorizes, prec%increasing, and prec%sup, respectively, via
order-reverse.

7.5.6 Theory Instantiation

As argued by R. Burstall and J. Goguen (e.g., in [14, 15]), a flexible notion
of parametric theory can be obtained with the use of ordinary theories and
theory interpretations. The key idea is that the primitives of a subtheory
of a theory are a collection of parameters which can be instantiated as a
group via a theory interpretation. In IMPS theories are instantiated using
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def-theory-instance; each subtheory of a theory can serve as a parameter
of the theory.
For example, consider the following def-forms:

(def-translation FIELDS-TO-RR

(source fields)
(target h-o-real-arithmetic)
(fixed-theories h-o-real-arithmetic)
(sort-pairs

(kk rr))
(constant-pairs

(o_kk 0)

(i_kk 1)

(-_kk -)

(+_kk +)

(x_kk *)

(inv "lambda(x:rr,1/x)"))
(theory-interpretation-check using-simplification))

(def-theory-instance VECTOR-SPACES-OVER-RR
(source vector-spaces)
(target h-o-real-arithmetic)
(translation fields-to-rr)
(renamer vs-renamer))

The last def-form creates a theory of an abstract vector space over the field
of real numbers by instantiating a theory of an abstract vector space over
an abstract field. The parameter theory is fields, a subtheory of vector-
spaces and the source theory of fields-to-rr.

For a detailed description of this technique, see [3, 6].

7.5.7 Theory Extension

Let 7; = (£;,T;) be a LUTINS theory for i = 1,2. 79 is an extension of T
(and 71 is a subtheory of T9) if L1 is a sublanguage of £ and I'y C T's.
A very useful reasoning technique is to (1) add machinery to a theory by
means of a theory extension and (2) create one or more interpretations
from the theory extension to the original theory. This setup allows one to
prove results in a an enriched theory and then transport them back to the
unenriched theory.
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For example, many theorems about groups are more conveniently proved
about groups actions because several group theorems may be just different
instantiations of a particular group action theorem. The following def-forms
show how group-actions is an extension of groups:

(def-language GROUP-ACTION-LANGUAGE
(embedded-language groups-language)
(base-types uu)

(constants
(act "[uu,gg,uul")))

(def-theory GROUP-ACTIONS
(language group-action-language)
(component-theories groups)
(axioms
(act-id
"forall(alpha:uu,g:gg, act(alpha,e) = alpha)"
rewrite transportable-macete)
(act-associativity
"forall(alpha:uu,g,h:gg,
act(alpha,g mul h) = act(act(alpha,g),h))"
transportable-macete)))

There are many natural interpretations of group-actions in groups such
as:

(def-translation ACT->CONJUGATE
(source group-actions)
(target groups)
(fixed-theories h-o-real-arithmetic)
(sort-pairs
(uu "gg"))
(constant-pairs
(act "lambda(g,h:gg, (inv(h) mul g) mul h)"))
(theory-interpretation-check using-simplification))

Suppose 74 is an extension of 71 that is obtained by adding to 71 new
constants and axioms relating the new constants of 75 to the old constants of
T1. Then each theorem of 75 has a analogue in 71 obtained by generalizing
over the new constants of 7;. This notion of generalization is performed
automatically in IMPS with an appropriate interpretation of 75 in 7.
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For example, the def-forms

(def-language LCT-LANGUAGE
(embedded-language groups)
(constants

(a "sets[ggl")
(b "sets[ggl™)))

(def-theory LCT-THEORY
(language lct-language)
(component-theories groups)
(axioms
(a-is-a-subgroup "subgroup(a)")
(b-is-a-subgroup "subgroup(b)")))

(def-theorem LITTLE-COUNTING-THEOREM
"f_indic_q{ggksubgroup}
implies
f_card{a set¥mul b}*f_card{a inters b} =
f_card{a}*f_card{b}"
;; "forall(b,a:sets([ggl,
5 subgroup(a) and subgroup(b)
N implies
HH (f _indic_q{gglksubgroup}
M implies
5 f_card{a setmul b}*f_card{a inters b} =
s f_card{a}*f_card{b}))"
(theory groups)
(home-theory lct-theory)
(usages transportable-macete)
(proof (...)))

show that the “little counting theorem” is proved in an extension of groups,
but is installed in groups by generalizing over the constants a and b.

7.5.8 Model Conservative Theory Extension

Suppose 79 is an extension of 71. 7T is a model conservative extension of
T if every model of 71 “expands” to a model of 75. Model conservative
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extensions are safe extensions since they add new machinery without com-
promising the old machinery. For instance, a model conservative extension
preserves satisfiability. The most important model conservative extensions
are definitional extensions which introduce new symbols that are defined
in terms of old vocabulary. (Logically, IMPs definitions create definitional
extensions.) Many natural methods of extending theories correspond to a
class or type of model conservative extensions. For instance the theories
created with the def-bnf are always model conservative extensions of the
starting theory.

IMPS supports a general technique, based on theory interpretation and
theory instantiation, for building safe theory extension methods. The idea
is that a model conservative extension type can be formalized as an abstract
theory with a distinguished subtheory. The theory can be shown to be a
model conservative extension of the subtheory using

Theorem 7.5.1 (Model Conservative Verification Theorem)
Let To be an extension of T1. T is a model conservative extension of
T 1 if there is an interpretation of To in T1 which fizes T1.

Then instances of the model conservative extension type are obtained by
instantiating the theory. Each such instance is guaranteed to be a model
conservative extension by

Theorem 7.5.2 (Model Conservative Instantiation Theorem) Let
T be a model conservative extension of T1, and let T' be an instance of T}
under the an interpretation of T1 in To. Then Th is a model conservative
extension of T 5.

For a detailed description of this technique, see [6].

7.5.9 Theory Ensembles

A theory ensemble consists of a base theory, copies of the base theory called
replicas, and unions of copies of the base theory called theory multiples.
The constituents of a theory ensemble are related to each other by theory
interpretations. They allow you to make a definition or prove a theorem
in just one place, and then transport the definition or theorem to other
members of the theory ensemble as needed. They are used in a similar way
to relate a theory multiple to one of its “instances.” See Chapter 9 for a
detailed description of the IMPS theory ensemble mechanism.
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7.5.10 Relative Satisfiability

If there is a theory interpretation from a theory 71 to a theory 7o, then 77 is
satisfiable (in other words, semantically consistent) if 7 is satisfiable. Thus,
theory interpretations provide a mechanism for showing that one theory is
satisfiable relative to another. One consequence of this is that IMPS can be
used as a foundational system. In this approach, whenever one introduces a
theory, one shows it to be satisfiable relative to a chosen foundational theory
(such as, perhaps, h-o-real-arithmetic).

7.6
(1)

Hints and Cautions

The application of a nonnormal translation to an expression containing
quasi-constructors will often result in a devastating explosion of quasi-
constructors. One way of avoiding this problem is to “normalize” the
translation by defining new atomic sorts in the translation’s target
theory to replace the unary predicates used in the translation.

Suppose a defined atomic sort or constant a is transported to a new
atomic sort or constant b via a theory interpretation ®. From that
point on, ® will map a to b.

Translations must be updated to take advantage of new definitions (see
Section 7.4 above). The updating is called translation enrichment and
it performed periodically by iMPS. For example, enrichment is done
when a translation is evaluated and when the macete help mechanism
is called. In rare occasions, IMPS will not work as expected because
some interpretation has not been enriched. This may happen, for ex-
ample, when a transportable macete is applied directly without using
the macete help mechanism. In some cases, you can get around the
problem by re-evaluating a relevant def-translation form.
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Chapter 8

Quasi-Constructors

The purpose of this chapter is fourfold:
1

(
(2
(
(

To explain why quasi-constructors are desirable.
To describe how they are implemented.

3) To show how they are created and reasoned with.

)
)
)
)

4

To point out the pitfalls associated with their use.

8.1 Motivation

The constructors of LUTINS are fixed, but you can define quasi-constructors
which effectively serve as additional constructors. Quasi-constructors are
desirable for several reasons:

(1) Once a quasi-constructor is defined, it is available in every theory
whose language contains the quasi-constructor’s home language. That
is, a quasi-constructor is a kind of global constant that can be freely
used across a large class of theories. (A constructor, as a logical con-
stant, is available in every theory.)

(2) Quasi-constructors are polymorphic in the sense that they can be ap-
plied to expressions of several different types. (Several of the construc-
tors, such as = and if, are also polymorphic in this sense.)

(3) The definition of a translation (see Chapter 7) is not directly dependent
on the definition of any quasi-constructor. Consequently, translations
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can be applied to expressions involving quasi-constructors that were
defined after the translation itself was defined.

(4) Quasi-constructors can be defined without modifying the iMPs deduc-
tive machinery. (Note that the deductive machinery of a ordinary
constructor is “hard-wired” into IMPS.)

(5) Quasi-constructors can be used to represent operators in nonclassical
logics and operators on generic objects likes sets and sequences.

8.2 Implementation

Quasi-constructors are implemented as “macro/abbreviations.” For exam-
ple, the quasi-constructor quasi-equals! is defined by the following bicon-
ditional:

Fi~Fy= (Ell \/Egl) D FEi = Es.

Hence, two expressions are quasi-equal if, and only if, they are either both
undefined or both defined with the same value.

When the preparsed string representation of an expression (“preparsed
string” for short) of the form Fy ~ Es is parsed, ~ is treated as a macro with
the list of arguments F4, Fo: an internal representation of the expression
(“internal expression”) is built from the preparsed string as if it had the
form (E1] VEs|) D E1 = F3. When an internal expression of the form
(E1] VE3|) D Ey = Es is printed, ~ is used as an abbreviation: the printed
string representation of the expression (“printed string”) is generated from
the internal expression as if the latter had the form Fq ~ FEs. In other words,
in string representation of the expression looks like F; ~ FE5, an operator
applied to a list of two arguments, but it is actually represented internally
as (Ell \/EQJ,) D FEi = FEs.

Abstractly, a quasi-constructor definition consists of three components:
a name, a list of schema variables, and a schema. In our example above,
quasi-equals is the name, Fy, Es is the list of schema variables, and the
right-hand side of the biconditional above is the schema. A quasi-constructor
is defined by a user with the def-quasi-constructor form. The list of
schema variables and the schema are represented together by a lambda-
expression which is specified by a string and a name of a language or theory.

lquasi-equals is written as == in the string syntax and as ~ in the mathematics
syntax, infixed between its operands.
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The variables of the lambda-expression represent the list of schema variables,
and the body of the lambda-expression represents the schema.
For instance, quasi-equals could be defined by:

(def-quasi-constructor QEQUALS
"lambda(el,e2:ind, #(el) or #(e2) implies el = e2)"
(language the-kernel-theory))

The name of the quasi-constructor is gequals, and the lambda-expression is
the expression specified by the string in the-kernel-theory. After this form
has been evaluated, an expression of the form gequals (A, B) is well-formed
in any language containing the language of the-kernel-theory, provided
A and B are well-formed expressions of the same type of kind ¢. Separate
from the definition, special syntax may be defined for parsing and printing
gequals (e.g., as the infix symbol ~).

The quasi-constructor quasi-equals is not actually defined using a def-
quasi-constructor form in IMPS. It is one of a small number of “system
quasi-constructors” which have been directly defined by the IMPS implemen-
tors. A system quasi-constructor cannot be defined using the def-quasi-
constructor form because the schema of the quasi-constructor cannot be
fully represented as a LUTINS lambda-expression. This is usually because
one or more variables of the schema variables ranges over function expres-
sions of variable arity or over expressions of both kind ¢ and *. For ex-
ample, gequals (A, B) is not well-defined if A and B are of kind *, but
quasi-equals (A, B) is well-defined as long as A and B have the same type
(regardless of its kind). The major system quasi-constructors are listed in
Table 8.1.

8.3 Reasoning with Quasi-Constructors

There are two modes for reasoning with a quasi-constructor ). In the en-
abled mode the internal structure of @) is ignored. For example, in this mode,
when an expression Q(F1, .., E,,) is simplified, only the parts of the internal
expression corresponding to the arguments F1, .., E, are simplified, and the
part corresponding to @ is “skipped.” Similarly, when a macete is applied to
an expression Q(E1, .., E,), subexpressions located in the part of the internal
expression corresponding to @) are ignored. In this mode, quasi-constructors
are intended to behave as if they were ordinary constructors.

In the disabled mode, the internal structure of () has no special status.
That is, deduction is performed on internal expressions as if () was never
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H Quasi-constructor

‘ Schema

quasi-equals (E1, E») (E1l VE3]) D E1 = Es

falselike ([au1, . .., 1)) | Az, .. ., zion, falselike (qu,41)
domain (f) AT, . i, f(T1,, . 2n)]
total? (f, [B1,. .., Bnt1]) | YZ1:01, - s 2n:Bn, f(21,, .o 20)]
nonvacuous? (p) Jzr:an, .. T, P(T1,, .. X))

Notes:

e F; and F5 must have the same type.

The sort of f is a1, ..

[ ] T([Ozl,..

The sort of p is [a1, ..

Table 8.1:

. ,an+1]) = T([ﬂl,. .

i) O‘n-i—l]'
7/8n+1])-

. 7an7*]

System Quasi-Constructors
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defined. (However, in this mode expressions involving @ will still be printed
using @ as an abbreviation.) The mode is activated by “disabling @,” and
it inactivated by “enabling ).” The disabled mode is used for proving basic
properties about (). Once a good set of basic properties are proven and
formalized as theorems, there is usually little need for the disabled mode.
Most quasi-constructors are intended to be employed in multiple theories.
Hence, you will usually want to install a theorem about a quasi-constructor
with the usage transportable-macete.

For a few of the interactive proof commands, there is a dual command
with the word “insistent” put somewhere into the command’s name. For
example, the dual of simplify is the simplify-insistently. Calling the
dual of a command C' is equivalent to disabling all quasi-constructors and
then calling C' itself. In other words, the dual commands behave as if there
were no quasi-constructors at all. These “insistent” commands are intended
to be used sparingly because they can disturb the internal structure cor-
responding to a quasi-constructor, creating a new internal expression that
can no longer be abbreviated by the quasi-constructor. In visual terms, the
quasi-constructor “explodes.”

One of the advantages of working in a logic like LUTINS, with a rich
structure of functions, is that generic objects like sets and sequences can
be represented directly in the logic as certain kinds of functions. For in-
stance, sets are represented in IMPS as indicators, which are similar to
characteristic functions, except that = is a “member” of an indicator f iff
f(x) is defined. Operators on indicators and other functions representing
generic objects are formalized in IMPS as quasi-constructors, and theorems
about these operators are proved in “generic theories” that contain neither
constants nor axioms (except for possibly the axioms of the theory h-o-
real-arithmetic). Consequently, reasoning is performed in generic theories
using only the purely logical apparatus of LUTINS (and possibly h-o-real-
arithmetic). Moreover, theorems about generic objects are easy to apply
in other theories since the operators, as quasi-constructors, are polymorphic
and since the theory interpretations involved usually have no obligations to
check.

8.4 Hints and Cautions

(1) Reasoning with quasi-constructors can be tricky because the internal
representation of the quasi-constructor—the structure it abbreviates—
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is hidden from view. The view-expr form (see Chapter 15) can be
used to print an expression without quasi-constructor abbreviations.
For example, when

(view-expr
"1/0=="7zz"
(language-name h-o-real-arithmetic)
no-quasi-constructors)

is evaluated, the expression 1/0 ~ Ly is printed as

(#(1/0) or #(?zz)) implies 1/0=7zz.
It is often easy to confuse quasi-constructors with constants. For in-
stance, a common mistake is to try to unfold a quasi-constructor. To

help you avoid such confusion, curly brackets can be used to surround
the operands of a quasi-constructor instead of parentheses. That is,

a string q{el,...,en}, where q is a quasi-constructor, is parsed ex-
actly like q(el, ... ,en). In addition, the internal expression is always
printed like g{el, . .. ,en}, unless you have defined a special print syn-
tax for q.

It should always be remembered that the internal representation of an
expression containing quasi-constructors might be much larger than
what one might expect from the printed representation of the expres-
sion, especially if the quasi-constructors are defined in terms of other
quasi-constructors. Consequently, the processing speed of IMPS on ex-
pressions containing quasi-constructors sometimes seems unjustifiably
slow.

An expression may sometimes “implode” when parsed. That is, quasi-
constructors may appear in the printed string in places where they
did not occur in the preparsed string. This happens because the IMPS
printing routine will use quasi-constructors as abbreviations wherever
possible, regardless of whether these quasi-constructors were used in
the preparsed string. Expression implosion can be caused by simplifi-
cation and macete application.

Due to the implosion phenomenon, the preparsed and printed strings
may not parse into the same internal expressions (but the two internal

100



expressions will always be a-equivalent). For example, consider the
preparsed string S

with(f: [ind,ind], forall(x:ind, #(f(x))))

It parses into an internal expression F; which is printed as the string
Sa

with(f: [ind,ind] ,total_q{f, [ind,ind]})

with quasi-constructor abbreviations and is printed as S; without
quasi-constructor abbreviations. However, Sy parses into an internal
expression Es which is printed as So with quasi-constructor abbrevia-
tions and is printed as the string S3

with(f: [ind,ind],forall(x_0:ind,#(£f(x_0))))

without quasi-constructor abbreviations. That is, the two internal
expressions are the same except for the name of the single bound
variable.

One of the most devastating forms of quasi-constructor explosion
can occur when a nonnormal translation (which maps some atomic
sorts to unary predicates) is applied to an expression containing
quasi-constructors. The quasi-constructor explosion happens because
the binding expressions in the internal representation of a quasi-
constructor will be rewritten when the translation is applied if the
variables being bound involve a atomic sort which is mapped to a
unary predicate.

Often two different internal expressions containing quasi-constructors
will be printed in exactly the same way. Usually this is due to the
fact that some of the bound variables in the internal representation
of some of the quasi-constructors have different names (i.e., the two
expressions are a-equivalent). In this case, there is no problem; for
the most part, IMPS will treat the expressions as if they were identical.
However, the two expressions may differ in other ways, e.g., some of
the corresponding bound variables may have different sorts. Hence, in
rare occasions, it may happen that there are two internal expressions
printed the same which are not known by IMPS to be equal (or quasi-
equal). This situation can be very hard to deal with. It is often best to
backup and try a different path that will avoid this confusing situation.
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(8) A quasi-constructor can be disabled, and then later enabled, in the
midst of a deduction using the appropriate proof commands. However,
disabling a quasi-constructor in the midst of a proof can cause severe
confusion if one forgets to later enable it. As a general rule, you should
always try to find ways to avoid disabling quasi-constructors.

102



Chapter 9

Theory Ensembles

9.1 DMotivation

Much of mathematics deals with the study of structures such as monoids,
fields, metric spaces, or vector spaces, which consist of an underlying set S,
some distinguished constants in S, and one or more functions on S. In IMPS,
an individual structure of this kind can be easily formalized as a theory. For
example, the IMPS theory for monoids is specified by two def-forms:

(def-language MONOID-LANGUAGE
(embedded-languages h-o-real-arithmetic)
(base-types uu)

(constants
(e uu)
(+* (uu uu uwu))))

(def-theory MONOID-THEORY

(component-theories h-o-real-arithmetic)

(language monoid-language)

(axioms
(associative-law-for-multiplication-for-monoids
"forall(z,y,x:uu, x**(y**z)=(x*x*y)*xz)")
("forall(x:uu,x*x*xe=x)")
("forall(x:uu,ex*x=x)")))

In the mathematical syntax, the sort uu is written U and the constants e,
** are written e, e.
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Notice that the theory of a monoid as presented here is suitable for
concept formulation and proof in a single monoid. Here are some examples:

e One can prove uniqueness of the multiplicative identity:

Vo:U, (Vy:U,zey=yex=x)=x=c¢

e A sequential product operator for sequences can be defined as the least
solution of

I = A, n:Z, (2, U], if(m < n,Ti(m,n — 1, ) » f(n),c)

e One can easily prove II satisfies

VfZ,Ul,m,n:Z,n <m DI(n,m, f) ~(n,m—1, f) e f(m)

e An monoid endomorphism (i.e., a self homomorphism) can be defined
by the predicate

Ap:[U, U], p(e) = e AVa,y:U, p(z 0 y) = ¢(x) ® p(y)

However, there is no way to talk about monoid homomorphisms between
different monoids.

Nevertheless, it is possible to produce a suitable theory in IMPS in which
a general notion of monoid homomorphism can be defined. To do so requires
at the very least a theory with two possibly distinct monoids. In general,
multiple instances of structures can be dealt with in IMPS in two ways:

e In one approach, we first formalize set theory as an IMPS theory. This
can be done by treating Set as a primitive sort and the membership
relation € as a primitive function symbol. It is then possible to define
a structure of a particular kind by a predicate on Set. For instance, a
monoid is any object in Set of the form (U, e, e) where o is a binary
associative operation on U for which e is a right and left identity.

e The other approach is to create a new theory which is the union of
embedded replicas of a theory of a single structure. A replica of a
theory 7 is a theory 7', which differs from 7 only by an appropriate
renaming of sorts and constants. By an embedding we mean a theory
interpretation which maps distinct sorts and constants to distinct sorts
and constants.
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In this section we explain the theory ensemble mechanism, which implements
the second approach above. To illustrate how the machinery works in the
case of a monoid, let us define a new theory, monoid-theory-1 obtained
by renaming the sorts and constants of monoid-theory not in h-o-real-
arithmetic by affixing the characters “ _1.”

(def-language MONOID-LANGUAGE-1
(embedded-languages h-o-real-arithmetic)
(base-types uu_1)

(constants
(e_1 uu_1)
(*%_1 (uu_1l uu_1 uu_1))))

(def-theory MONOID-THEORY-1

(component-theories h-o-real-arithmetic)

(language monoid-language-1)

(axioms
(associative-law-for-multiplication-for-monoids
"forall(z,y,x:uu_1,

x *xk_1 (y *x_1 z)=(x **_1 y) **x_1 z)")

("forall(x:uu_1,x **_1 e_1=x)")
("forall(x:uu_1,e_1 **_1 x=x)")))

Now define monoid-pair as the union of monoid-theory and monoid-
theory-1:

(def-theory MONOID-PAIR
(component-theories monoid-theory monoid-theory-1))

The theory ensemble facility automates these steps and also provides several
bookkeeping devices for keeping track of theories and interpretations in the
ensemble.

9.2 Basic Concepts

A copy of a theory 7 is a new theory 7’ obtained from 7 by applying a
renaming function to the constant and sort symbols in 7. The only condition
on the renaming function is that it not identify distinct constant names or
distinct sort names. A typical renaming function is one which affixes an
underscore followed by a number to a name. For each n > 0, let R,,