
The IMPS 2.0 User’s Manual

First Edition

William M. Farmer
Joshua D. Guttman
F. Javier Thayer

The MITRE Corporation
Bedford, MA 01730 USA

617-271-2907

{farmer,guttman,jt}@mitre.org

12 January 1998

Contents

I Introductory Material 12

1 Introduction 13
1.1 Overview of the Manual . 13
1.2 Goals . 13

1.2.1 Support for the Axiomatic Method 14
1.2.2 Logic . 14
1.2.3 Computation and Proof 15

1.3 Components of the System 16
1.3.1 Core . 16
1.3.2 Supporting Machinery 17
1.3.3 User Interface . 17
1.3.4 Theory Library . 18

1.4 Acknowledgments . 18

2 A Brief Tutorial 20
2.1 Interacting with IMPS . 21
2.2 On-line Documentation . 21
2.3 Languages and Theories . 22
2.4 Syntax . 24
2.5 Proofs . 25
2.6 Extending IMPS . 30
2.7 The Little Theories Style . 31

3 Micro Exercises 33
3.1 A Combinatorial Identity . 33
3.2 A First Step . 35
3.3 Taking More Steps . 37
3.4 Taking Larger Steps . 38

1

3.5 Saving a Proof . 45
3.6 Induction, Taking a Single Step 46
3.7 The Induction Command . 47

4 Exercises 49
4.1 Introduction . 49

4.1.1 How to Use an Exercise 49
4.1.2 Paths Through the Exercises 50

4.2 Mathematical Exercises . 50
4.2.1 Primes . 51
4.2.2 A Very Little Theory of Differentiation 52
4.2.3 Monoids . 53
4.2.4 Some Theorems on Limits 54
4.2.5 Banach’s Fixed Point Theorem 54
4.2.6 Basics of Group Theory 55

4.3 Logical Exercises . 56
4.3.1 Indicators: A Representation of Sets 56
4.3.2 Temporal Logic . 57

4.4 Exercises related to Computer Science 58
4.4.1 The World’s Smallest Compiler 58
4.4.2 A Linearization Algorithm for a Compiler 58
4.4.3 The Bell-LaPadula Exercise 59

II User’s Guide 61

5 Logic Overview 62
5.1 Introduction . 62
5.2 Languages . 63

5.2.1 Sorts . 63
5.2.2 Expressions . 65
5.2.3 Alternate Notation . 66

5.3 Semantics . 67
5.4 Extensions of the Logic . 70
5.5 Hints and Cautions . 70

6 Theories 72
6.1 Introduction . 72
6.2 How to Develop a Theory . 73

2

6.3 Languages . 76
6.4 Theorems . 76
6.5 Definitions . 78
6.6 Theory Libraries . 80
6.7 Hints and Cautions . 80

7 Theory Interpretations 82
7.1 Introduction . 82
7.2 Translations . 82
7.3 Building Theory Interpretations 83
7.4 Translation of Defined Sorts and Constants 85
7.5 Reasoning and Formalization Techniques 86

7.5.1 Transporting Theorems 86
7.5.2 Polymorphism . 87
7.5.3 Symmetry and Duality 87
7.5.4 Problem Transformation 88
7.5.5 Definition Transportation 89
7.5.6 Theory Instantiation 89
7.5.7 Theory Extension . 90
7.5.8 Model Conservative Theory Extension 92
7.5.9 Theory Ensembles . 93
7.5.10 Relative Satisfiability 94

7.6 Hints and Cautions . 94

8 Quasi-Constructors 95
8.1 Motivation . 95
8.2 Implementation . 96
8.3 Reasoning with Quasi-Constructors 97
8.4 Hints and Cautions . 99

9 Theory Ensembles 103
9.1 Motivation . 103
9.2 Basic Concepts . 105
9.3 Usage . 106
9.4 Def-theory-ensemble . 107
9.5 Def-theory-multiple . 108
9.6 Def-theory-ensemble-instances 108
9.7 Def-theory-ensemble-overloadings 109
9.8 Hints and Cautions . 110

3

10 The Proof System 111
10.1 Proofs . 111
10.2 The IMPS Proof System . 112
10.3 Theorem Proving . 113

10.3.1 Checking Proofs in Batch 113
10.4 The Script Language . 116

10.4.1 Evaluation of Script Expressions 118
10.5 The Script Interpreter . 119
10.6 Hints and Cautions . 122

11 Simplification 124
11.1 Motivation . 124
11.2 Implementation . 125
11.3 Transforms . 126
11.4 Algebraic Processors . 127
11.5 Hints and Cautions . 128

12 Macetes 130
12.1 Classification . 130
12.2 Atomic Macetes . 131

12.2.1 Schematic Macetes . 131
12.2.2 Nondirectional Macetes 133

12.3 Compound Macetes . 134
12.4 Building Macetes . 135
12.5 Applicable Macetes . 137
12.6 Hints and Cautions . 137

13 The Iota Constructor 139
13.1 Motivation . 139
13.2 Reasoning with Iota . 140

13.2.1 eliminate-defined-iota-expression 140
13.2.2 eliminate-iota . 140
13.2.3 eliminate-iota-macete 140

13.3 Hints and Cautions . 141

14 Syntax: Parsing and Printing 144
14.1 Expressions . 144
14.2 Controlling Syntax . 145
14.3 String Syntax . 146

4

14.4 Parsing . 147
14.5 Modifying the String Syntax 150
14.6 Hints and Cautions . 151

III Reference Manual 153

15 The IMPS Special Forms 154
15.1 Creating Objects . 156

def-algebraic-processor . 156
def-atomic-sort . 158
def-bnf . 159
def-cartesian-product . 166
def-compound-macete . 167
def-constant . 168
def-imported-rewrite-rules . 169
def-inductor . 170
def-language . 172
def-order-processor . 174
def-primitive-recursive-constant 175
def-quasi-constructor . 176
def-record-theory . 177
def-recursive-constant . 178
def-renamer . 179
def-schematic-macete . 180
def-script . 181
def-section . 182
def-sublanguage . 183
def-theorem . 184
def-theory . 186
def-theory-ensemble . 188
def-theory-ensemble-instances 189
def-theory-ensemble-multiple 192
def-theory-ensemble-overloadings 192
def-theory-instance . 193
def-theory-processors . 194
def-translation . 195
def-transported-symbols . 198

15.2 Changing Syntax . 199

5

def-overloading . 199
def-parse-syntax . 199
def-print-syntax . 201

15.3 Loading Sections and Files . 202
load-section . 202
include-files . 202

15.4 Presenting Expressions . 203
view-expr . 203

16 The Proof Commands 204
antecedent-inference . 208
antecedent-inference-strategy . 209
apply-macete . 210
apply-macete-locally . 211
apply-macete-locally-with-minor-premises 211
apply-macete-with-minor-premises 212
assume-theorem . 213
assume-transported-theorem . 214
auto-instantiate-existential . 214
auto-instantiate-universal-antecedent 215
backchain . 215
backchain-backwards . 216
backchain-repeatedly . 216
backchain-through-formula . 217
beta-reduce . 218
beta-reduce-antecedent . 219
beta-reduce-insistently . 219
beta-reduce-repeatedly . 220
beta-reduce-with-minor-premises 220
case-split . 221
case-split-on-conditionals . 222
choice-principle . 222
contrapose . 223
cut-using-sequent . 224
cut-with-single-formula . 224
definedness . 225
direct-and-antecedent-inference-strategy 225
direct-and-antecedent-inference-strategy-with-simplification 226
direct-inference . 227

6

direct-inference-strategy . 228
disable-quasi-constructor . 228
edit-and-post-sequent-node . 229
eliminate-defined-iota-expression 229
eliminate-iota . 230
enable-quasi-constructor . 231
extensionality . 231
force-substitution . 233
generalize-using-sequent . 234
incorporate-antecedent . 234
induction . 235
insistent-direct-inference . 237
insistent-direct-inference-strategy 237
instantiate-existential . 238
instantiate-theorem . 238
instantiate-transported-theorem . 239
instantiate-universal-antecedent . 240
instantiate-universal-antecedent-multiply 241
prove-by-logic-and-simplification 242
raise-conditional . 243
simplify . 245
simplify-antecedent . 246
simplify-insistently . 247
simplify-with-minor-premises . 247
sort-definedness . 248
sort-definedness-and-conditionals 249
unfold-defined-constants . 249
unfold-defined-constants-repeatedly 249
unfold-directly-defined-constants 250
unfold-directly-defined-constants-repeatedly 251
unfold-recursively-defined-constants 251
unfold-recursively-defined-constants-repeatedly 252
unfold-single-defined-constant . 252
unfold-single-defined-constant-globally 253
unordered-direct-inference . 254
weaken . 254

7

17 The Primitive Inference Procedures 256
antecedent-inference . 256
backchain-inference . 257
backchain-backwards-inference . 258
backchain-through-formula-inference 258
choice . 259
contraposition . 259
cut . 259
definedness . 260
defined-constant-unfolding . 260
direct-inference . 260
disjunction-elimination . 261
eliminate-iota . 261
existential-generalization . 262
extensionality . 262
force-substitution . 263
incorporate-antecedent . 264
insistent-direct-inference . 264
insistent-simplification . 265
macete-application-at-paths . 265
macete-application-with-minor-premises-at-paths 265
raise-conditional-inference . 265
simplification . 266
simplification-with-minor-premises 267
sort-definedness . 267
theorem-assumption . 267
universal-instantiation . 267
unordered-conjunction-direct-inference 268
weakening . 268

18 The Initial Theory Library: An Overview 269
abstract-calculus . 269
banach-fixed-point-theorem . 270
basic-cardinality . 270
basic-fields . 270
basic-group-theory . 270
basic-monoids . 270
binary-relations . 271
binomial-theorem . 271

8

counting-theorems-for-groups . 271
foundation . 271
groups-as-monoids . 272
knaster-fixed-point-theorem . 272
metric-spaces . 272
metric-space-pairs . 273
metric-space-continuity . 273
number-theory . 274
pairs . 274
partial-orders . 274
pre-reals . 275
sequences . 278

Glossary . 279

Bibliography . 286

9

List of Tables

2.1 Domains of Arithmetic Operators. 23
2.2 Sorts for h-o-real-arithmetic 25
2.3 String Syntax for Constructors 26
2.4 Syntax for h-o-real-arithmetic 27

4.1 Exercise Files by “Tier” . 51

5.1 Table of Constructors . 64

8.1 System Quasi-Constructors 98

14.1 Description of String Syntax 1 148
14.2 Description of String Syntax 2 149
14.3 Description of Atoms . 149
14.4 Operator Binding Powers . 150

16.1 Search Order for prove-by-logic-and-simplification . . . 244

10

List of Figures

2.1 An Inference Node. 29

3.1 The Combinatorial Identity 34
3.2 The Combinatorial Identity, with One Occurrence Unfolded . 35
3.3 The left-denominator-removal-for-equalities Theorem . 35
3.4 Rewriting Done by Left Denominator Removal 36
3.5 Result of the Second Unfolding 38
3.6 All Occurrences have been Eliminated 39
3.7 The Form of fractional-expression-manipulation 40
3.8 The Result of fractional expression manipulation 41
3.9 The Simpler Definedness Subgoal 42
3.10 The factorial-reduction Macete 44
3.11 Commands to Delete . 45
3.12 The Sum of the First n Natural Numbers 46
3.13 Result of Applying the little-integer-induction Macete . . 47

4.1 Generalized Power Rule . 52
4.2 Telescoping Product Formula 53

10.1 An imps Proof Script . 117

15.1 Axioms for Nat, as Introduced by bnf 164
15.2 bnf Syntax for a Small Programming Language 164
15.3 imps def-bnf Form for Programming Language Syntax 165

11

Part I

Introductory Material

12

Chapter 1

Introduction

imps is an Interactive Mathematical Proof System developed at The mitre
Corporation by W. Farmer, J. Guttman, and J. Thayer. For a technical
overview of the system, see [11].

1.1 Overview of the Manual

The manual consists of three parts:

(1) Introductory Material. This part should definitely be read first. Chap-
ter 2, “A Brief Tutorial,” provides a quick way to start using imps.

(2) User’s Guide. This part describes how to use imps, particularly, how
to build theories.

(3) Reference Manual.

1.2 Goals

imps aims at computational support for traditional techniques of mathemat-
ics. It is based on three observations about rigorous mathematics:

• Mathematics emphasizes the axiomatic method. Characteristics of
mathematical structures are summarized in axioms. Theorems are
derived for all structures satisfying the axioms. Frequently, a clever
change of perspective shows that a structure is an instance of another
theory, thus also bringing its theorems to bear.

13

• Many branches of mathematics emphasize functions, including partial
functions. Moreover, the classes of objects studied may be nested,
as are the integers and the reals; or overlapping, as are the bounded
functions and the continuous functions.

• Proof proceeds by a blend of computation and formal inference.

1.2.1 Support for the Axiomatic Method

imps supports the “little theories” version of the axiomatic method, as op-
posed to the “big theory” version. In the big theory approach, all reasoning
is carried out within one theory—usually some highly expressive theory, such
as Zermelo-Fraenkel set theory. In the little theories approach, reasoning is
distributed over a network of theories. Results are typically proved in com-
pact, abstract theories, and then transported as needed to more concrete
theories, or indeed to other equally abstract theories. Theory interpreta-
tions provide the mechanism for transporting theorems. The little theories
style of the axiomatic method is employed extensively in mathematical prac-
tice; in [10], we discuss its benefits for mechanical theorem provers, and how
the approach is used in imps.

1.2.2 Logic

Standard mathematical reasoning in many areas focuses on functions and
their properties, together with operations on functions. For this reason, imps
is based on a version of simple type theory.1 However, we have adopted
a version, called lutins,2 containing partial functions, because they are
ubiquitous in both mathematics and computer science. Although terms,
such as 2/0, may be nondenoting, the logic is bivalent and formulas always
have a truth value. In particular, an atomic formula is false if any of its
constituents is nondenoting. This convention follows an approach common
in traditional rigorous mathematics, and it entails only small changes in the
axioms and rules of classical simple type theory [4].

1This version is many sorted, in that there may be several types of basic individuals.
Moreover, it is multivariate, in that a function may take more than one argument. Cur-
rying is not required. However, taking (possibly n-ary) functions is the only type-forming
operation.

2Pronounced as in French. See [4, 5, 7] for studies of logical issues associated with
lutins; see [16] for a detailed description of its syntax and semantics.

14

Moreover, lutins allows subtypes to be included within types. Thus,
for instance, the natural numbers form a subtype of the reals, and the con-
tinuous (real) functions a subtype of the functions from reals to reals. The
subtyping mechanism facilitates machine deduction, because the subtype
of an expression gives some immediate information about the expression’s
value, if it is defined at all. Moreover, many theorems have restrictions that
can be stated in terms of the subtype of a value, and the theorem prover
can be programmed to handle these assertions using special algorithms.

This subtyping mechanism interacts well with the type theory only be-
cause functions may be partial. If σ0 is a subtype of τ0, while σ1 is a subtype
of τ1, then σ0 → σ1 is a subtype of τ0 → τ1. In particular, it contains just
those partial functions that are never defined for arguments outside σ0, and
which never yield values outside σ1.

1.2.3 Computation and Proof

One problem in understanding and controlling the behavior of theorem
provers is that a derivation in predicate logic contains too much information.

The mathematician devotes considerable effort to proving lemmas that
justify computational procedures. Although these are frequently equations
or conditional equations, they are sometimes more complicated quantified
expressions, and sometimes they involve other relations, such as ordering
relations. Once the lemmas are available, they are used repeatedly to trans-
form expressions of interest. Algorithms justified by the lemmas may also
be used; the algorithm for differentiating polynomials, for example. The
mathematician has no interest in those parts of a formal derivation that
“implement” these processes within predicate logic.

On the other hand, to understand the structure of a proof (or especially,
a partial proof attempt), the mathematician wants to see the premises and
conclusions of the informative formal inferences.

Thus, the right sort of proof is broader than the logician’s notion of a for-
mal derivation in, say, a Gentzen-style formal system. In addition to purely
formal inferences, imps also allows inferences based on sound computations.
They are treated as atomic inferences, even though a pure formalization
might require hundreds of Gentzen-style formal inference steps. We believe
that this more inclusive conception makes imps proofs more informative to
its users.

15

1.3 Components of the System

The imps system consists of four components.

1.3.1 Core

All the basic logical and deductive machinery of imps on which the soundness
of the system depends is included in the core of imps. The core is the
specification and inference engine of imps. The other components of the
system provide the means for harnessing the power of the engine.

The organizing unit of the core is the imps theory . Mathematically, a
theory consists of a lutins language plus a set of axioms. A theory is im-
plemented, however, as a data structure to which a variety of information
is associated. Some of this information procedurally encodes logical con-
sequences of the theory that are especially relevant to low-level reasoning
within the theory. For example, the great majority of questions about the
definedness of expressions are answered automatically by imps using tabu-
lated information about the domain and range of the functions in a theory.
Theories may be enriched by the definition of new sorts and constants and
by the installation of theorems.

Proofs in a theory are constructed interactively using a natural style of
inference based on sequent calculus. imps builds a data structure which
records all the actions and results of a proof attempt. This object, called
a deduction graph, allows the user to survey the proof, and to choose the
order in which he works on different subgoals. Alternative approaches may
be tried on the same subgoal. Deduction graphs also are suitable for analysis
by software.

The user is only allowed to modify a deduction through the application
of primitive inferences, which are akin to rules of inference. Most primitive
inferences formalize basic laws of predicate logic and higher-order functions.
Others implement computational steps in proofs. For example, one class
of primitive inferences performs expression simplification, which uses the
logical structure of the expression [20], together with algebraic simplification,
deciding linear inequalities, and applying rewrite rules.

Another special class of primitive inferences “compute with theorems”
by applying extremely simple procedures called macetes.3 An elementary
macete, which is built by imps whenever a theorem is installed in a theory,

3Macete, in Portuguese, means a chisel, or in informal usage, a clever trick.

16

applies the theorem in a manner determined by its syntax (e.g., as a con-
ditional rewrite rule). Compound macetes are constructed from elementary
and other kinds of atomic macetes (including macetes that beta-reduce and
simplify expressions). They apply a collection of theorems in an organized
way.

In addition to the machinery for building theories and reasoning within
them, the core contains machinery for relating one theory to another via
theory interpretations. A theory interpretation can be used to “transport”
a theorem from the theory it is proved in to any number of other theories.
Theory interpretations are also used in imps to show relative consistency
of theorems, to formalize symmetry and duality arguments, and to prove
universal facts about polymorphic operators. The great majority of the
theory interpretations needed by the imps user are built by software without
user assistance. For example, when a theorem is applied outside of its home
theory via a transportable macete, imps automatically builds the required
theory interpretation if needed.

1.3.2 Supporting Machinery

We have built an extension of the core machinery with the following goals
in mind:

• To facilitate building and printing of expressions by providing various
parsing and printing procedures.

• To make the inference mechanism more flexible and more autonomous.
In particular, the set of commands available to users includes an ex-
tensible set of inference procedures called strategies. Strategies affect
the deduction graph only by using the primitive inference procedures
of the core machinery, but are otherwise unrestricted.

• To facilitate construction of theories and interpretations between
them.

1.3.3 User Interface

The user interface, which is a completely detachable component of imps, is
mainly designed to provide users with facilities to easily direct and moni-
tor proofs. Specifically, it controls three critical elements of an interactive
system:

17

• The display of the state of the proof. This includes graphical displays
of the deduction graph as a tree, TEX typesetting of the proof history,
and proof scripts composed of the commands used to build the proof.
The graphical display of the deduction graph permits the user to vi-
sually determine the set of unproven subgoals and to select a suitable
continuation point for the proof. The TEX typesetting facilities allow
the user to examine the proof in a mathematically more appealing no-
tation than is possible by raw textual presentation alone. And, with
proof scripts, the user can replay the proof, in whole or in part.

• The presentation of options for new proof steps. For any particular
subgoal, the interface presents the user with a well-pruned list of com-
mands and macetes to apply. This list is obtained by using syntactic
and semantic information which is made available to the interface by
the imps supporting machinery. For example, in situations where over
400 theorems are available to the user, there are rarely more than ten
macetes presented to the user as options.

• The processing of user commands. The commands are then submitted
to the inference software, while any additional arguments required to
execute the command are requested from the user.

1.3.4 Theory Library

imps is equipped with a library of basic theories, which can be augmented as
desired by the user. The theory of the reals, the central theory in the library
specifies the real numbers as a complete ordered field. (The completeness
principle is formalized as a second-order axiom, and the rationals and inte-
gers are specified as the usual substructures of the reals.) The library also
contains various “generic” theories that contain no nonlogical axioms (ex-
cept possibly the axioms of the theory of the reals). These theories are used
for reasoning about objects such as sets, unary functions, and sequences.

1.4 Acknowledgments

imps was designed and implemented at The MITRE Corporation under the
MITRE-Sponsored Research program. Ronald D. Haggarty, Vice President
of Research and Technology, deserves special thanks for his strong, unwa-
vering support of the imps project.

18

Several of the key ideas behind imps were originally developed by
Dr. Leonard Monk on the Heuristics Research Project, also funded by
MITRE-Sponsored Research, during 1984–1987. Some of these ideas are
described in [20].

The imps core and support machinery were originally written in the
T programming language, developed at Yale by N. Adams, R. Kelsey, D.
Kranz, J. Philbin, and J. Rees [18, 23]. imps 2.0 was created by F. J.
Thayer by producing a macro/emulation of the T programming language
in Common Lisp. The imps user interface is written in the GNU Emacs
programming language, developed by R. Stallman.

We are grateful to the Harvard Mathematics Department for providing
an ftp site for imps.

19

Chapter 2

A Brief Tutorial

In this tutorial, we will assume that you have a PC running Linux under
the X Window System. We will also assume that you have the shell variable
IMPS correctly set.

To start imps enter this command at the shell prompt:

$IMPS/../bin/start_imps

Executing this command will do the following:

• Start an Emacs session.

• Start imps (which is actually a “Common Lisp” process) subordinate
to Emacs.

• Make two new directories in your home directory:

$HOME/imps and $HOME/imps/theories

needed for the imps exercises.

• Add some files to your /tmp directory.

• Start one or more iconified TEX preview windows.

To quit imps type C-x C-c. This will kill Tea and the Emacs process.
If you are trying to learn to use imps, it would be a good idea to work

through the exercises described in Chapters 3 and 4, after reading this tu-
torial.

20

2.1 Interacting with IMPS

Most of your interaction with imps can be initiated by selecting of one
of a number of menu options. The menu format depends on the version
of Emacs you are using. In this manual, we will assume you are running
Xemacs, version 19.15 or above. The menus are invoked by clicking on the
menubar. The resulting menu has a number of options. Some of the options
open up to new submenus.

You select an option within a menu or pane by pointing with the mouse
(notice the selected option is enclosed in a box) and clicking the right mouse
button. If you do not want to select anything after the menu appears, click
right on the option CANCEL (or just click right when the mouse points
to somewhere off the menu.) This will cause the menu to disappear.

Notice that some of the options are followed by a sequence of keystrokes
enclosed in parentheses. This means that these options can also be invoked
directly using these keystrokes. As you become more familiar with imps,
you will probably want to use these more direct invocations. Note that you
can use the menus to change buffers or modify the number of windows on
the screen.

You should also be aware that the panes which appear on the menu, and
the options within each pane, usually depend on the window you clicked on
to bring up the menu.

2.2 On-line Documentation

The following documentation is available on-line:

• The User’s Manual . If you have a TEX previewer, the imps manual 1

is available on-line. You can locate specific items in the manual by
clicking right on the option IMPS manual entry in the pane Help.

• Def-forms. A def-form is essentially a specification of an imps entity.
In the course of your interaction with imps you may want to exam-
ine the definition of some object. You can locate the def-form which
specifies it by clicking right on the option Find def-form (C- .) in
the pane Help.

For more details on on-line documentation, see Chapter ??.

1The imps manual is the document you are looking at.

21

2.3 Languages and Theories

For now, you can think of a theory as a mathematical object consisting of
a language and a set of closed formulas in that language called axioms. For
example, one of the last things that was printed out in the startup procedure
was the line

Current theory: #{imps-theory 3: H-O-REAL-ARITHMETIC}

h-o-real-arithmetic is a basic imps theory which contains an axiomatic
theory of the real numbers, characterized as a complete ordered field with
the integers and rationals as imbedded structures. This is a fairly extensive
theory, so we only describe it informally here. The atomic sorts of the
language are N, Z, Q, R denoting the natural numbers, integers, rationals,
and reals. The language constants of this theory are of three kinds:

• The primitive function and relation constants +, ∗, /, ˆ, sub , −, <, ≤
that denote the arithmetic operations of addition, multiplication, divi-
sion, exponentiation, subtraction, negation, and the binary predicates
less than, and less than or equal to, respectively.

• An infinite set of individual constants, one for each rational number.

• Various defined constants such as the operator
∑
.

The domains of the primitive constants and some of the defined constants
are given in Table 2.1.

The axioms of this theory are the usual field and order axioms as well as
the completeness axiom which states that any predicate which is nonvacuous
and bounded above has a least upper bound. This theory also contains the
full second-order induction principle for the integers as an axiom.

At any given time there is a theory that imps regards as the current
theory. For example, as we mentioned above, the current theory is h-o-
real-arithmetic when imps finishes loading. The current theory affects
the behavior of imps in two very significant ways:

• Any expression that is read in by imps belongs to the language of the
current theory (unless another language is explicitly specified).

• In any proof that you begin, you may avail yourself of all the axioms of
the current theory and all the theorems previously proved and entered
in the current theory.

22

Operator Domain
+ R×R
* R×R
- R
sub R×R
^ E
/ R× (R \ {0})
sum S
prod S
! N
< R×R
<= R×R
> R×R
>= R×R

where:

• E = ((R \ {0})× Z) ∪ ({0} × {z ∈ Z : 0 < z})

• S = {(m,n, f) ∈ Z× Z× (Z→ R) : ∀k ∈ Z,m ≤ k ≤ n ⊃ f(k) ↓}

Table 2.1: Domains of Arithmetic Operators.

23

You can change the current theory by selecting the Set current theory
option of the pane General. When you are finished playing around with
changing theories, set the current theory back to h-o-real-arithmetic,
which is needed for the tutorial.

2.4 Syntax

Mathematicians and logicians usually think of a formula as a syntactic object
represented by some text such as x+y = y+x. For imps, on the other hand,
a formula is a complex data structure, essentially a record, with numerous
fields. To build a formula in a convenient way, you need to have a parser .
A parser takes a formula represented as a string and produces a formula
represented as a data structure that imps can deal with. You will probably
want to use a parser which supports infix and prefix operators, and settable
precedence relations between different operators. You can also use a Lisp-like
syntax if you prefer. The syntax we will use by way of illustration is quite
straightforward and you should have no difficulty in building expressions
after seeing a few examples.

We now describe the string syntax for imps. First, some preliminary
considerations. A language in imps has two kinds of objects: sorts and
expressions. Sorts are intended to denote classes of elements; they are used
to help specify the value of an expression and to restrict quantification. They
are especially useful for reasoning with respect to overlapping domains. For
example, suppose zz and rr are sorts denoting the integers and the real
numbers, respectively. Then the Archimedean principle for the real numbers
can be expressed quite naturally as

forall(a:rr,forsome(n:zz,a<n)).

Sorts are of two kinds: atomic sorts and compound sorts. An atomic sort
is just a name. A compound sort is a list [s0,...,sn] where each si is itself
a compound sort or an atomic sort. Compound sorts are intended to denote
the set of all n-ary partial functions from the “domain” sorts s0, . . . , s(n-1)
into the “range” sort sn (an exception to this rule about intended meanings
of sorts is discussed in the Chapter 5). A language distinguishes certain
sorts as types and assigns a type to every sort. Distinct types are intended
to denote sets of elements which need not be related. prop is a “base” type
which belongs to every language and which is intended to denote the set of
truth values. The sorts for h-o-real-arithmetic are given in Table 2.2.

24

Sort Type of Sort Expressions of given sort
nn ind iota(k:nn,k^2=9)
zz ind [-1],0,1
qq ind [3/2]
rr ind iota(x:rr,x^2=2)
ind ind with(x:ind,x)
prop prop truth, falsehood

Table 2.2: Sorts for h-o-real-arithmetic

The expressions of a language are built from language constants and
variables as specified by Table 2.3 below. A constant is a character string
specified as such by the def-language form. A variable is also character
string. Variables however, must begin with a text character (that is, an
alphabetic character or one of the symbols _ % $ &) and contain only text
characters or digits. Moreover, the sorting of a variable within an expression
must be specified either by an enclosing binder or by an enclosing “with”
declaration.

In the theory h-o-real-arithmetic there is additional syntax for arith-
metic operators, described in Table 2.4. For example, - is used for both
sign negation and the binary subtraction operator. The binary operators
are all infix with different binding powers to reduce parentheses on input
and output: In order of increasing binding power, the arithmetic operators
are + * / ^ -.

To check the syntax of an expression (enclosed in double quotes), select
the entry Check expression syntax in the pane IMPS help. imps will
request an expression, which you can supply by clicking the right mouse but-
ton on the formula. You can also type the formula directly in the minibuffer.
As an exercise, build the formula which asserts that for every nonnegative
integer n the sum of squares of the first n integers is n(n+ 1)(2n+ 1)/6.

2.5 Proofs

A formula in a theory is valid if it is true in every “legitimate” model of
the theory; if the formula has free variables, we have to add: “with every
legitimate assignment of values to its free variables.” To prove a formula

25

Expression Category Syntax Sort
Truth truth prop
Falsehood falsehood prop
Negation not(p) prop
Conjunction p1 and ... and pn prop
Disjunction p1 or ... or pn prop
Implication p1 implies p2 prop
Biconditional p1 iff p2 prop
If-then-else formula if_form(p1,p2,p3) prop
Universal forall(v1:s1,...,vn:sn,p) prop
Existential forsome(v1:s1,...,vn:sn,p) prop
Equality t1=t2 prop
Application f(t1,...,tn) r
Abstraction lambda(v1:s1,...,vn:sn,t) [s1,...,sn,s]
Definite description iota(v:s,p) s
If-then-else term if(p,t1,t2) s1 t s2
Definedness #(t) prop
Sort-definedness #(t,s) prop
Undefined expression ?s s

With with(v1:s1,...,vn:sn,t) s

Notes:

(1) p, p1 . . . pn are syntactic variables which denote formulas, that is,
expressions of sort prop. t, t1 . . . tn denote arbitrary expressions of
sort s, s1 . . . sn.

(2) s1 t s2 is the smallest sort which syntactically includes s1 and s2.

(3) For equality and if-then-else term, t1, t2 must be of the same type.

(4) For application, f is an arbitrary expression of sort [r1,...,rn,r],
and the sorts ri and si must have the same enclosing type.

(5) With is not a constructor; it is merely a device to specify the sorts of
free variables.

Table 2.3: String Syntax for Constructors

26

Term Category Syntax Sort
Sum t1+ ... +tn rr
Product t1* ... *tn rr
Sign negation -t rr
Subtraction t1-t2 rr
Exponentiation t1^t2 rr
Division t1/t2 rr
Sequential sum sum(t1,t2,t3) rr
Sequential product prod(t1,t2,t3) rr
Factorial t! rr
Less than t1<t2 prop
Less than or equals t1<=t2 prop
Greater than t1>t2 prop
Greater than or equals t1>=t2 prop

Notes:

(1) The terms t1 . . . tn must be of type ind. Do not confuse this syn-
tactic requirement for well-formedness with semantic conditions for
well-definedness.

(2) For sequential sum and product, the term t3 must be of type
[ind,ind].

(3) All operators associate on the left except exponentiation which asso-
ciates on the right.

Table 2.4: Syntax for h-o-real-arithmetic

27

means to offer conclusive mathematical evidence of its validity. The rules
for admissible evidence are given by something called a proof system. In this
section we will describe the imps proof system.

To begin an interactive proof in imps, select the start dg option in
the Deduction Graphs pane of the menu. For version 19, click on the
menubar on DG and then select Start dg. imps will then prompt you in
the minibuffer with the text

Formula or reference number:

This is an imps request for some formula to prove. You can supply this
formula by typing its reference number in the minibuffer. Alternatively, you
can click the right mouse button on the formula (provided that it is enclosed
between double quotes), and then press <RET>. You are then ready to begin
proving the formula.

After telling Emacs to start the deduction, two new buffers will be cre-
ated. One buffer, labelled *Deduction-graph* displays a graphical repre-
sentation of a data structure called a deduction graph. The other Emacs
buffer labeled *Sequent-nodes* displays a textual representation of a data
structure called a sequent node. Notice that the mode-line for the sequent
node buffer also contains the text

h-o-real-arithmetic: Sqn 1 of 1.

This gives you the following information:

(1) h-o-real-arithmetic is the theory in which the proof is being carried
out.

(2) You are currently looking at the first sequent node of the deduction
graph.

(3) There is only one sequent node in the deduction graph.

To understand the significance of the new buffer, note that a deduction
graph provides a snapshot of the current status of the proof. A deduction
graph is a directed graph with nodes of two kinds, called sequent nodes
and inference nodes. An interactive proof in imps is carried out by adding
inference nodes and sequent nodes to the deduction graph.

A sequent node consists of the following:

• A theory.

28

c t�

hn

h1

��
��
�

...PPPPP

Figure 2.1: An Inference Node.

• A single formula B called the sequent node assertion.

• A set of formulas A1, · · · , An called the sequent node assumptions.

Logically, a sequent node just represents the formula

A1 ∧ · · · ∧An ⊃ B.

In the *Sequent-nodes* buffer, a sequent node is represented as a list

A1 · · ·An =>B.

Inference nodes are to be understood in part by their relationship to
sequent nodes: Every inference node i has a unique conclusion node c and
a (possibly empty) set of hypothesis nodes {h1, · · · , hn}. An inference node
represents the following mathematical relationship between c and h1, · · · , hn:
if every one of the sequent nodes h1, · · · , hn is valid, then the sequent node
c is valid. Alternatively, we can view this as asserting that the validity
of the sequent node c can be reduced to the validity of h1, · · · , hn. An
inference node also contains other information, providing the mathematical
justification for asserting the relationship between c and h1, · · · , hn. This
justification is called an inference rule.

Note that if the inference node i has no hypotheses, then c is obviously
valid. When this is the case, c is said to be immediately grounded. More gen-
erally, c is valid if all the hypotheses h1, · · · , hn of i are valid. Thus validity
propagates from hypotheses to conclusion. A sequent node which is recog-
nized as valid in this way is said to be grounded. The system indicates that
it has recognized validity of a sequent node when it marks it as grounded.

29

A proof is complete when the original sequent node of the deduction graph
(i.e., the deduction graph’s goal node) is marked as grounded.

Sequent nodes and inference nodes are added to a deduction graph using
deduction graph commands. Some commands correspond to the use of one
inference rule; for example extensionality or force-substitution fall into
this category. Applying such a command either does nothing or adds exactly
one inference node to the deduction graph. Moreover, this one inference
node corresponds quite closely to the application of one mathematical fact.
Other commands such as simplify have similar behavior in that they either
do nothing or add exactly one inference node. Yet they are fundamentally
different because behind the scene they are often carrying out thousands
of very low-level inferences, such as logical and algebraic simplification and
rewrite-rule application. Finally a third class of commands are essentially
strategies developed to systematically apply primitive commands in search
of a proof.

2.6 Extending IMPS

imps can be extended in the following ways:

• By adding definitions to an existing theory.

• By building a new theory altogether, with new primitive constants,
sorts, and axioms.

For example, in the theory of h-o-real-arithmetic, evaluation of the fol-
lowing s-expression adds the definition of convergence to ∞ of a real-valued
sequence:

(def-constant CONVERGENT%TO%INFINITY
"lambda(s:[zz,rr],

forall(m:rr, forsome(x:zz, forall(j:zz,
x<=j implies m<=s(j)))))"

(theory h-o-real-arithmetic))

As an exercise, try defining the concept of limit of real-valued sequences.
Next, we illustrate how new theories are built by building a theory of
monoids. Building a theory is a two-step process. First, we build a lan-
guage with the required sorts and constants:

30

(def-language MONOID-LANGUAGE
(embedded-languages h-o-real-arithmetic)
(base-types uu)
(constants
(e "uu")
(** "[uu,uu,uu]")))

The next step builds the theory itself by listing the axioms:

(def-theory MONOID-THEORY
(component-theories h-o-real-arithmetic)
(language monoid-language)
(axioms
(associative-law-for-multiplication-for-monoids
"forall(z,y,x:uu, x**(y**z)=(x**y)**z)" rewrite)
(right-multiplicative-identity-for-monoids
"forall(x:uu,x**e=x)" rewrite)
(left-multiplicative-identity-for-monoids
"forall(x:uu,e**x=x)" rewrite)
("total_q(**,[uu,uu,uu])" d-r-convergence)))

There are numerous other ways imps can be extended. These are dis-
cussed in detail in Chapter 15. In addition, there are a number of annotated
files which show you how theories are built and theorems proved in them.
These are described in the chapters of this manual (3 and 4) on the micro
exercises and the exercises.

2.7 The Little Theories Style

The imps methodology for formalizing mathematics is based on a particular
version of the axiomatic method. The axiomatic method is commonly used
both for encoding existing mathematics and for creating new mathematics.
A chunk of mathematics is represented as an axiomatic theory consisting
of a formal language plus a set of sentences in the language called axioms.
The axioms specify the mathematical objects to be studied, and facts about
the objects are obtained by reasoning logically from the axioms, that is, by
proving theorems.

The axiomatic method comes in two styles, both well established in
modern mathematical practice. We refer to them as the “big theory” version
and the “little theories” version. In the “big theory” version all reasoning is

31

performed within a single powerful and highly expressive axiomatic theory,
such as Zermelo-Fraenkel set theory. The basic idea is that the theory we
work in is expressive enough so that any model of it contains all the objects
that will be of interest to us, and powerful enough so that theorems about
these objects can be proved entirely within this single theory.

In the little theories version, a number of theories are used in the course
of developing a portion of mathematics. Different theorems are proved in
different theories, depending on the amount and kind of mathematics that is
required. Theories are logically linked together by translations called theory
interpretations which serve as conduits to pass results from one theory to
another. We argue in [10] that this way of organizing mathematics across
a network of linked theories is advantageous for managing complex mathe-
matics by means of abstraction and reuse.

imps supports both the big theory and little theories versions of the ax-
iomatic method. However, the imps little theories machinery of multiple
theories and theory interpretations offers the user a rich collection of for-
malization techniques (described in Chapter 7) that are not easy to imitate
in a strict big theory approach.

32

Chapter 3

Micro Exercises

The purpose of these micro exercises is to familiarize you with the basic
techniques used in imps. Hence we will want to illustrate aspects of the
interface as well as several of the basic deductive methods. To describe
the micro-exercises, we will assume that you are using the Free Software
Foundation Emacs version 19 menu system.

If you have not already done so, start imps by issuing the command
start imps to a Unix shell, from within the X Window System. When
imps is ready and has informed you of the current theory (the theory of real
arithmetic), pull down the IMPS-Help menu on the menubar by depressing
and holding any mouse button while pointing to it. Point to the entry Next
micro exercise and then release the mouse button. At any point in this
sequence of exercises, you can always restart the exercise you are working
on, advance to the next exercise, or return to the previous one by selecting
the appropriate entry under IMPS-Help.

3.1 A Combinatorial Identity

The first four micro exercises use variants of a single formula, which imps
prints (through TEX) in the form shown in Figure 3.1. The word “implica-
tion” here asserts that the implication that follows holds between the bul-
leted items. Similarly, the word “conjunction” on the next line refers to the
conjunction of the following (subbulleted) items. The symbol ⇐⇒, which
we will encounter later, asserts that the the following items are equivalent.

This formula asserts that the comb function
(m
k

)
(often read m choose

k) may be computed by Pascal’s triangle, in which each entry is the sum of

33

the two entries above it. In our development,
(m
k

)
is defined to be equal to

m!/(k! · (m− k)!) for any integers m and k. The proof of our combinatorial
identity will involve unfolding the definition of comb and using a number
of algebraic laws (including the recursive properties of factorial). Because of
the role of division here, and the fact that we must avoid division by zero,
we will also need to reason about the well-definedness of several expressions.

The exercises will involve carrying out portions of the proof several times.
At first, for didactic reasons only, we will do the proofs in the slowest, most
explicit way imaginable.

A Word about the IMPS Interface. In the course of these micro-
exercises, several X windows will be used:

(1) One or more Emacs windows. This is the primary way of interacting
with imps, which is implemented by a process running a Lisp-like
language under Emacs’s control.

(2) A TEX previewer. This window displays typeset output created by
imps. When imps creates new output, raising the window will suffice
to have it refresh its contents with the new output. If the window is
already raised, a capital R (for “Redisplay”) will cause it to do the
same. The lower case letters n and p can be used to display the next
and previous pages, when more than one page is available.1

To raise a partly obscured window, click with the left button on its
header stripe.

1We also refer to this as the “xview” window, and the process of displaying something
in this form as “xviewing” it.

for every k,m : Z implication
• conjunction
◦ 1 ≤ k
◦ k ≤ m
•
(1+m

k

)
=
(m
k−1

)
+
(m
k

)
.

Figure 3.1: The Combinatorial Identity

34

Sequent 1.

for every k,m : Z implication
• conjunction
◦ 1 ≤ k
◦ k ≤ m
• (1+m)!/(k! · (1+m−k)!) =

(m
k−1

)
+
(m
k

)
.

Figure 3.2: The Combinatorial Identity, with One Occurrence Unfolded

for every x, y, z : R ⇐⇒
• y/z = x
• conjunction
◦ z−1 ↓
◦ x · z = y.

Figure 3.3: The left-denominator-removal-for-equalities Theorem

3.2 A First Step

If you have not started the first micro exercise by means of the Next micro
exercise item on the IMPS-Help menu, do so now.

You will find that imps starts a derivation with the formula shown in
Figure 3.2. This is simply the identity with the left-most occurrence of comb
unfolded using its definition. To proceed, you would like to eliminate the
denominator on the left side of the equality by multiplying both sides. This
manipulation is justified by the theorem shown in Figure 3.3 (be sure to read
the ⇐⇒ as “the following are equivalent”). The downward arrow in z−1↓
asserts that z−1 is well defined; in effect, it requires that the denominator
was nonzero. In the ASCII display used in Emacs buffers, this is written
in the form #(z^[-1]). This theorem has been proved from the axioms of
real arithmetic, and it has been made available for a kind of rewriting in the
form of a macete.2 Its behavior as a rewrite is to replace the equation by a

2A macete, meaning a clever trick in Portuguese slang, is a lemma or group of lemmas

35

Replace: with x, z, y : R y/z = x.

By: with y, x, z : R z−1 ↓ ∧ x · z = y.

Figure 3.4: Rewriting Done by Left Denominator Removal

conjunction, as indicated in Figure 3.4.

Step 1. You want to extend the deduction graph (i.e., the partial proof)
that you have just begun. Thus, hold down a mouse button while pointing to
the Extend-DG menubar item and select the option Macete description.
This will cause imps to compute all the macetes that can in fact alter the
current goal. In the case at hand, there are 11 macetes that are potentially
applicable to our goal, out of 362 currently loaded. A description of each
applicable macete is sent to TEX, and will be available after 10–15 seconds
on the “xdvi” window.

When you have inspected the possibilities, and have noted the number of
left denominator removal on the list, return to the Emacs window. Type the
number, followed by a carriage return, to cause imps to apply that macete.

Result. You will now see a new subgoal on the Emacs display. It is the
result of the rewriting carried out by the selected macete. The letters p and
n will carry you to the previous display and then back to the next one. To
inspect both sequents using TEX, pull down the TeX menu and select the
Xview sqns item. Emacs will prompt you (at the bottom of the screen)
for the numbers. Enter 1 and 2 separated by a space and terminated by a
carriage return. After 10–15 seconds you will be able to compare the two
formulas on the “xdvi” screen.

Please also observe in the “xdg” window that Sequent 1 has been reduced
to Sequent 2 by the inference left-denominator-removal-for-equalities.
If one later carries out inferences that complete the proof of Sequent 2, then
they will also suffice to establish (or “ground”) Sequent 1.

made available to the user for various kinds of rewriting depending on syntactic form.

36

3.3 Taking More Steps

Under the IMPS-Help menu, please select the next micro exercise. You will
now see the combinatorial identity displayed as the goal of a new deduction.

Step 1. Under the Extend-DG menu, please select the item Commands
(this function may also be invoked without menus by typing a ?). This will
cause imps to examine which proof steps (other than macetes) are applicable
to the current sequent. Of the 70 commands currently loaded, only 16 are
possible, given the syntactic form of the goal. They will be displayed on
a menu. Move your mouse to the item unfold-single-defined-constant,
and click on it (this function may also be invoked without menus by typing a
lower case u). imps will prompt at the bottom of the screen for the numerical
index of the occurrence to unfold. This is a zero-based index. Please unfold
the leftmost occurrence by typing 0, followed by a carriage return.

Result. imps will post a new sequent with the leftmost occurrence re-
placed by its definition. This is identical to the formula you started the first
micro exercise with.

Step 2. Invoke the macete left denominator removal again. This may be
done as before by using the macete description item. Alternatively, it is less
cumbrous to find Macetes (with minor premises) entry under Extend-
DG. Clicking on this will put up a menu of names of the currently applicable
macetes. Click on left-denominator-removal-for-equalities.

Result. imps will post an additional sequent with the result of the rewrit-
ing. This is identical to the formula you obtained in the first micro exercise.

Step 3. Again unfold the leftmost occurrence of comb. As this formula
has more than one defined constant in it (factorial is also introduced by def-
inition), imps will prompt with a menu displaying the syntactically available
constants which may be chosen. You will again need to type 0 to the prompt
at the bottom of the Emacs screen to indicate the leftmost occurrence.

Result. imps will post another sequent with the subgoal shown in Fig-
ure 3.5. Since this has a subexpression of the form (a/b) + c, you will want
to rewrite it to the form (a+ b · c)/b.

37

for every k,m : Z implication
• conjunction
◦ 1 ≤ k
◦ k ≤ m
• conjunction
◦ (k! · (1 +m− k)!)−1 ↓
◦ (m!/((k − 1)! · (m− (k − 1))!) +

(m
k

)
) · k! · (1 +m− k)! = (1 +m)!.

Figure 3.5: Result of the Second Unfolding

Step 4. Use the macete description menu item under Extend-DG to find
a macete to carry out this transformation.

Result. The resulting sequent has a subexpression of the form a/b ·c. You
will want to bring this to the form (a · c)/b.

Step 5. Use the macete description menu item under Extend-DG to find
a macete to carry out this transformation.

Clearly, invoking individual macetes in this way can become unbearably
tedious. You can now see the importance of being able to group together a
collection of lemmas into a “compound macete.” They can thus all be used
in one step, wherever they apply syntactically. A compound macete may be
constructed so as to apply the lemmas repeatedly until there are no more
opportunities for applying any of them.

3.4 Taking Larger Steps

Under the IMPS-Help menu, please select the next micro exercise. You
will again see the combinatorial identity displayed as the goal of a new
deduction. This time we will start by eliminating all the occurrences of
comb in favor of the defining expression.

Step 1. Under the Extend-DG menu, please again select the item Com-
mands. Move your mouse to the item unfold-single-defined-constant-
globally, and click on it (this function may also be invoked without menus

38

Sequent 3.

for every k,m : Z implication
• conjunction
◦ 1 ≤ k
◦ k ≤ m
• (1 +m)!/(k! · (1 +m− k)!)

= m!/((k − 1)! · (m− (k − 1))!) +m!/(k! · (m− k)!).

Figure 3.6: All Occurrences have been Eliminated

by typing U. imps does not need to prompt for a numerical index of the
occurrence to unfold, as it will operate on all of the occurrences.

Result. The resulting sequent, shown in Figure 3.6, will need a good deal
of algebraic manipulation. A large part of it can be carried out by a single
compound macete, named fractional-expression-manipulation.

Step 2. Under the TeX menubar item, click on Xview Macete. imps
will prompt you at the bottom of the screen for a name. Type the first few
letters of fractional-expression-manipulation followed by a few spaces, and
Emacs will complete the name by comparing against the possible macete
names.

In 10–15 seconds you will see the description of this bulky compound
macete. It first applies beta-reduction, to plug in the arguments of any
functions expressed using the λ variable-binding constructor. After that, it
repeatedly applies a sequence of elementary macetes until none of them can
be applied any more. It then moves on to a second sequence of elementary
macetes, and applies them repeatedly until no further progress is made.

It is possible to write nonterminating macetes using the “repeat” oper-
ator. imps is designed so that it can be interrupted easily and safely. To do
so, type ESC x interrupt-tea-process. If you decide that you should not
have interrupted it, you can cause it to return to the computation at which
it was interrupted. To do so, put your cursor at the end of the *tea* buffer
and type (ret) followed by a carriage return.

To execute the macete fractional-expression-manipulation on your
current goal, use the item Macetes (with minor premises) under

39

(SERIES BETA-REDUCE

(REPEAT INVERSE-REPLACEMENT

SUBTRACTION-REPLACEMENT

NEGATIVE-REPLACEMENT

ADDITION-OF-FRACTIONS-LEFT

ADDITION-OF-FRACTIONS-RIGHT

MULTIPLICATION-OF-FRACTIONS-LEFT

MULTIPLICATION-OF-FRACTIONS-RIGHT

DIVISION-OF-FRACTIONS

DIVISION-OF-FRACTIONS-2

EXPONENTS-OF-FRACTIONS

NEGATIVE-EXPONENT-REPLACEMENT)

(REPEAT LEFT-DENOMINATOR-REMOVAL-FOR-EQUALITIES

RIGHT-DENOMINATOR-REMOVAL-FOR-EQUALITIES

RIGHT-DENOMINATOR-REMOVAL-FOR-STRICT-INEQUALITIES

LEFT-DENOMINATOR-REMOVAL-FOR-STRICT-INEQUALITIES

RIGHT-DENOMINATOR-REMOVAL-FOR-INEQUALITIES

LEFT-DENOMINATOR-REMOVAL-FOR-INEQUALITIES

MULTIPLICATION-OF-FRACTIONS-LEFT

MULTIPLICATION-OF-FRACTIONS-RIGHT))

Figure 3.7: The Form of fractional-expression-manipulation

40

Sequent 4.

for every k,m : Z implication
• conjunction
◦ 1 ≤ k
◦ k ≤ m
• conjunction
◦ (k! · (1 +m+−1 · k)!)−1 ↓
◦ conjunction
� (k! · (m+−1 · k)! · (k +−1 · 1)! · (m+−1 · (k +−1 · 1))!)−1 ↓
� (1 +m)! · k! · (m+−1 · k)! · (k +−1 · 1)! · (m+−1 · (k +−1 · 1))!

= ((k +−1 · 1)! · (m+−1 · (k +−1 · 1))! ·m! +
k! · (m+−1 · k)! ·m!) · k! · (1 +m+−1 · k)!.

Figure 3.8: The Result of fractional expression manipulation

the Extend-DG menubar item. You will find fractional-expression-
manipulation among the list of potentially useful macetes. It will execute
for about 20 seconds.

Result. The macete will cause imps to carry out all the algebraic op-
erations involved in adding and multiplying fractions, and will cause it to
cross-multiply (eliminate denominators) for equations such as a/b = c. Since
this is permissible only when b−1↓, we obtain a conjunction of assertions.
The first two conjuncts assert that two denominators were nonzero, and the
third is a bulky algebraic equation which—assuming the denominators were
nonzero—suffices for our previous subgoal to be true.

We want next to break up the logical structure of this subgoal. To
dispense with the leading “for all,” we will consider an arbitrary k and m.
To break up the implication, we will pull the antecedent into the left hand
side of the sequent. We refer to this as its context. That is, we shall try to
prove the consequent of the conditional in a context where the antecedent
is assumed true. Finally, we will break up the conjunction so that we can
prove each conjunct separately.

Step 3. To break up the sequent in this way, look for direct-and-
antecedent-inference-strategy under the command menu. The com-

41

Sequent 9.

Let m, k : Z.

Assume:

(0) k ≤ m.

(1) 1 ≤ k.

Then:

(k! · (1 +m+−1 · k)!)−1 ↓ .

Figure 3.9: The Simpler Definedness Subgoal

mand menu may be invoked from Extend-DG.

Result. As a consequence nine new sequent nodes will be added to the
deduction graph. Of these, three are “leaf nodes” and will need to be proved
separately. They correspond to the three conjuncts of the previous subgoal.
We will prove one of them in a slightly tedious step-by-step process, and the
other two by applying compound macetes. The first subgoal (Sequent 9) is
shown in Figure 3.9. To prove this in a step-by-step process, we will need
to use the the following facts:

(1) the domain of inverse is R\{0};

(2) a product x · y is nonzero just in case both x and y are;

(3) a factorial j! is always nonzero.

We will then use the imps simplifier to complete the proof of this subgoal.

Step 4. Find the macete domain-of-inverse using either Macete de-
scription or the macete menu.

Step 5. Find the macete non-zero-product using either Macete de-
scription or the macete menu.

42

Step 5. Find the macete factorial-non-zero using either Macete de-
scription or the macete menu.

Step 6. Under the Command menu item, find simplify (usually about
half-way down the list).

Result. You will see that imps has marked this subgoal as “Grounded”
in the black stripe under the sequent node buffer. This means that imps
has now ascertained that it is true. In the xdg window you will see that
Sequent 7 is marked as grounded and the sequents supporting it are no
longer displayed.

To move to the next subgoal, either click (left) on it in the xdg window,
or else look under the Nodes menubar item for the First unsupported
relative. The resulting sequent is a more complicated definedness assertion.

Step 7. Rather than using the individual lemmas, we will use the com-
pound macete definedness-manipulations. To see how the macete is
built, use the Xview macete item under the TeX menubar item. Invoke
it via the macete menu or through the Macete description item. It will
ground the subgoal after about 30 seconds of computation.

Step 8. To move to the last remaining subgoal, either click (left) on it
in the xdg window, or else look under the Nodes menubar item for the
First unsupported relative. Apply the compound macete factorial-
reduction (Figure 3.10), which will complete the proof after another 30
seconds of computation.

You will note that it uses a macete constructor without minor
premises. This (as well as the phrase “with minor premises” appearing
on the Extend-DG menu) may be explained with reference to the macete
factorial-out. The substitution of (m− 1)! ·m in place of m! is permissible
only when 1 ≤ m. (! is defined by a syntactic recursion, rather than by
reference to the Γ function; thus in particular 0! = 1 6= (−1)! · 0 = 0.)

There are two ways then to use the macete, both of them perfectly sound
from a logical point of view. The first is conservative: do the substitution
only when we can immediately see that the condition is satisfied for the
instance at hand. The second approach is more speculative: do the sub-
stitution, but post an additional subgoal for the user to prove later. The

43

(REPEAT

(WITHOUT-MINOR-PREMISES

(REPEAT FACTORIAL-OUT FACTORIAL-OF-NONPOSITIVE))

SIMPLIFY)

Where:

(1) factorial-out:

Replace: with m : Z m!.
By: with m : Z (m− 1)! ·m.
Subject to: with m : Z 1 ≤ m.

(2) factorial-of-nonpositive:

Replace: with j : Z j!.
By: 1.
Subject to: with j : Z j ≤ 0.

Figure 3.10: The factorial-reduction Macete

44

(apply-macete-with-minor-premises domain-of-inverse)
(apply-macete-with-minor-premises nonzero-product)
(apply-macete-with-minor-premises factorial-nonzero)
simplify

Figure 3.11: Commands to Delete

additional subgoal states that the condition is satisfied, and the user can
use whatever ingenuity is needed in order to prove it.

We refer to such an additional subgoal as a minor premise. Experience
shows that in the great majority of cases, it is more useful to make the sub-
stitution and to post any conditions that cannot be discharged immediately
as future obligations.

However, in the case of a computational macete such as this one, the
opposite is the case. We want to “compute out” as many of the occurrences
of factorial as we can in the expression at hand. But we can reduce a
particular instance of t!, only if we know which rule to use. In particular,
if whether t is positive depends on the particular choice of values for free
variables in t, then no expansion can be correct in general. The macete
constructor without minor premises ensures that the macetes within its
scope will be used without minor premises no matter how the macete is
called by the user.

3.5 Saving a Proof

Do not start another micro exercise. Instead, open a new file. You may use
the File menubar item, clicking on the Open file item, supplying an unused
filename. With your cursor in the buffer for the new file, open the Scripts
menubar item, and click on Insert proof script. You will see a textual
summary of the interactive proof that you have constructed. This textual
summary can be executed again, or edited as text and then re-executed.

Now click on the Next micro exercise item within IMPS-Help. imps
will start yet another derivation of the combinatorial identity.

If you are unfamiliar with Emacs, drag the mouse (left), and use the
Edit menubar entries to remove the text describing four steps shown in
Figure 3.11. These were the detailed steps used to prove the first definedness

45

Sequent 1.

for every m : Z implication
• 0 ≤ m
•
∑m
j=0 j = m · (m+ 1)/2.

Figure 3.12: The Sum of the First n Natural Numbers

assertion. In their place it would suffice to use definedness manipulations.
Mark the following step by dragging the mouse (left), and then use the
Copy and Paste entries in the Edit menu to duplicate the line. (Add a
carriage return if appropriate.)

Starting with your cursor on the first line of the new sequence of com-
mands, click on the menu item Execute proof line under Scripts. When
imps updates the sequent nodes buffer with the new subgoal, repeat the
process. At each step, wait until the previous step has completed. Six steps
complete the proof.

3.6 Induction, Taking a Single Step

Axioms or theorems that we may regard as induction principles play a crucial
role in many theories. imps provides good support for inductive reasoning
in a form that is independent of particular theories. That is, when an axiom
or theorem of the right form is available in any theory, then it can be applied
with the full power of the imps induction command.

We will illustrate imps’s treatment of induction first in a manual way
that shows only the single most crucial step.

If you again click the menu item for the next micro exercise, you will be
relieved to see a new goal, also shown in Figure 3.12.

Step 1. Invoke the macete little-integer-induction on the macete menu.

Result. The macete will identify the predicate of induction, and apply
the induction principle on the integers, resulting in the subgoal shown in
Figure fig:inductdone. The first conjunct here is the base case, and the
second conjunct is the induction step. Within the induction step, we see the

46

Sequent 2.

conjunction
•
∑0
j=0 j = 0 · (0 + 1)/2

• for every t : Z implication
◦ 0 ≤ t
◦ implication
�
∑t
j=0 j = t · (t+ 1)/2

�
∑t+1
j=0 j = (t+ 1) · (t+ 1 + 1)/2.

Figure 3.13: Result of Applying the little-integer-induction Macete

hypothesis 0 ≤ t which is needed because we are working with Z rather
than N . Subject to this assumption, the induction step asserts that the
predicate remains true of t+ 1, assuming that it held true of t.

3.7 The Induction Command

There are many heuristics that pay off with induction principles. For in-
stance, recursively defined operators applied to the inductive term should
be expanded in the induction step.

For this reason, imps contains a command for induction which will ap-
ply an induction principle as in the previous micro exercise, after which
it separates the base case from the induction step and applies appropriate
heuristics to each.

imps offers some flexibility to the developer of a theory to control what
heuristics will be used in induction. This is encoded in an object called an
inductor. An inductor contains the induction principle to be used, in the
form of a macete similar to the little integer induction macete used above.
In addition, it may contain additional macetes or commands to be used in
the base case or induction step. It may also control whether definitions are
expanded, and if so which ones.

Clicking on the next micro exercise will restart a derivation for the sum
of the first n natural numbers.

47

Step 1. Within the Extend-DG menubar item, click on the Commands
entry. Near the top of the resulting menu will be the induction com-
mand. Click on it. imps will respond with another menu prompting for the
name of an inductor. integer inductor is the most frequent choice, which
expands recursive and nonrecursive definitions in syntactically appropriate
contexts. The nonrecursive-integer-inductor expands only nonrecursive
definitions, and the trivial-integer-inductor expands none. In the case
we are currently considering, select the option integer-inductor.

Result. After about 10–15 seconds imps will post 11 new subgoals, all of
which are grounded, thus completing the proof.

To inspect the proof in detail, under the DG menubar item, click on
Verbosely update dg display. This will show the structure of the deriva-
tion. To view all of the individual nodes, under TeX, click on Xview sqns.
Enter all of the numbers from 1 to 12 separated by spaces.

You are now ready for the more interesting exercises which are intended
to illustrate how interesting portions of mathematics and computer science
can be developed using imps. This is the topic of the next chapter of this
manual.

48

Chapter 4

Exercises

4.1 Introduction

This chapter describes about a dozen self-guided, content-based exercises to
illustrate the use of imps. Each exercise uses a fairly self-contained piece
of mathematics, logic, or computer science to show how to organize and
develop a theory in imps, and how to carry out the proofs needed for the
process. We will try to describe in each case the main content of the exercise,
as well as the specific techniques that it is intended to illustrate.

We assume in this chapter that you are using the Lucid 19 menu system.

4.1.1 How to Use an Exercise

In order to start an exercise, press down any mouse button while pointing
to the IMPS-Help menubar item. Release the button while pointing to
the entry Exercises. imps will present a pop-up menu listing the file names
of the available exercises. Clicking on a file name will cause the following
actions:

• The system will create a new copy of the file under your own directory,
in the subdirectory ∼/imps/theories. Since this is a new file, you
can safely edit it or delete it. If a file of the expected name already
exists, imps will prompt whether to overwrite the file, thus destroying
the previous copy.

• imps will create a new Emacs buffer displaying the copy. You will use
this buffer to view and edit the file.

49

• imps will search for the first item in the file meriting your attention.
Each such item will be marked by the string (!). These items may
be candidate theorems to prove, theory declarations or definitions to
read, or macetes or scripts to create.

• Anything above the first (!) will be sent as input to the underlying
T process. Thus, imps will define any notions mentioned at the top of
the file.

At any point in the exercise, to proceed to the next item of interest, select—
from the IMPS-Help menubar item—the Current Exercise: Next En-
try request.

• imps will search for the next item in the file marked by the string (!).

• Anything beyond the first (!), up to the current occurrence, will be
sent as input to the underlying T process. Thus, imps will install the
definitions, theorems, and so forth described in that portion of the file.

If you want to restart an exercise in a clean way, click on Exit IMPS
under General, and then on Run IMPS. The system will prompt you
to confirm the desired amount of virtual memory; the default is plenty for
current purposes. Having started a fresh invocation of imps, put your cursor
in the buffer that you want to work on. Click on the item Restart Exercise
in Current Buffer under IMPS-Help.

4.1.2 Paths Through the Exercises

The exercises divide roughly into four tiers of difficulty, which are summa-
rized in Table 4.1. We recommend that you do one or more exercises in a
tier before moving on to those in the next tier.

4.2 Mathematical Exercises

One of the main goals of the imps system is to support the rigorous develop-
ment of mathematics. We hope that it will come to serve as a mathematical
data base, storing mathematical concepts, theories, theorems, and proof
techniques in a form that makes them available when they are relevant to
new work. We believe that as a consequence imps will develop into a system
that can serve students as a general mathematics laboratory. In addition,
we hope it will eventually serve as a useful adjunct in mathematics research.

50

Tier Exercise file name Section
1. primes-exercise.t 4.2.1

calculus-exercise.t 4.2.2
2. indicators-exercise.t 4.3.1

monoid-exercise.t 4.2.3
3. compiler.t 4.4.1

limits.t 4.2.4
contraction.t 4.2.5
groups-exercise.t 4.2.6

4. flatten.t 4.4.2
temporal.t 4.3.2

Table 4.1: Exercise Files by “Tier”

4.2.1 Primes

Contents. This exercise introduces two main definitions into the theory
of real arithmetic, namely divisibility and primality. It then includes a few
lemmas, which lead to a “computational” macete1 to determine whether a
positive integer is prime. After introducing the notion of twin primes, the
exercise develops two proof scripts that can be used to find a twin prime
pair in a given interval, if one exists.

A more extensive treatment of primes, including the material of this
exercise, is included in the imps theory library in the file

$IMPS/theories/reals/primes.t.

That file also contains statements and proofs of the following:

• the infinity of primes;

• the main properties of gcd;

• the existence and uniqueness of prime factorizations (the Fundamental
Theorem of Arithmetic).

1A macete, meaning a clever trick in Portuguese slang, is a lemma or group of lemmas
made available to the user for various kinds of rewriting depending on syntactic form.

51

Purpose. This exercise illustrates basic definitions, and it illustrates how
to carry out several simple proofs. Its main interest however is to illustrate
the mix of computation and proof in imps. This balance is reflected in the
macete mechanism, and in the script that searches for a pair of twin primes.

4.2.2 A Very Little Theory of Differentiation

Contents. This file develops a little axiomatic theory of the derivative
operator on real functions. Its axioms include the rules for:

• sum;

• product;

• constant functions;

• the identity function;

as well as the principle that the derivative of f is defined at a value x only
if f is. Naturally, these properties hold true of the derivative as explicitly
defined in the usual way.

The exercise then develops a succession of consequences of these prop-
erties, such as the power rule shown in Figure 4.1. The properties and their
consequences are then grouped together into a macete that allows expres-
sions involving derivatives to be evaluated.

Purpose. This exercise is intended to illustrate, in addition to inductive
reasoning, the manipulation of higher-order objects (functions represented
using λ), and the power of macetes to encode symbolic computations.

for every n : Z, f : R ⇀ R, x : R implication
• D(f)(x) ↓ ∧ 2 ≤ n
• D(λ{x : R | f(x)n})(x) = n · f(x)n−1 · D(f)(x).

Figure 4.1: Generalized Power Rule

52

for every f : Z ⇀ U,m, n : Z implication
• conjunction
◦ m ≤ n
◦ ∀j : Z (m ≤ j ∧ j ≤ n+ 1) ⊃ f(j) ↓
•
∏n
m δ(f) = minus(f(n+ 1), f(m)).

Figure 4.2: Telescoping Product Formula

4.2.3 Monoids

Contents. This exercises introduces a theory of monoids, a monoid being
a domain U equipped with an associative operator · and an identity element
e. A recursive definition introduces an iterated monoid product operator

∏
,

such that, when i, j : Z and f : Z ⇀ U, then
∏

(i, j, f) satisfies:

•
∏j
i f = e when j < i;

•
∏j
i f = (

∏j−1
i f) · f(j) when i ≤ j.

By adding an inverse operator and axioms on it, the monoid theory
is extended to a theory of groups (defined independently of the theory in
Exercise 4.2.6). The file then defines (slightly incongruously) minus to mean:

λx, y : U . x · y−1,

and δ to mean:

λf : Z ⇀ U . λj : Z . minus(f(j + 1), f(j)).

That is, if f is a function of sort Z ⇀ U, then δ(f) is another function of
the same sort, and its value for an integer j is the difference (in the sense of
“minus”) between f(j + 1) and f(j).

We can then prove the telescoping product formula shown in Figure 4.2.
This in turn can serve as the basis of an alternative proof for formulas such
as the ones for the sum of the first n natural numbers or of their squares. To
do so, we introduce an interpretation mapping U to R and the monoid
operator · to real addition. As a consequence, the operator

∏
within the

monoid is carried to the (real-valued) finite summation operator
∑

.

53

Purpose. This exercise illustrates how to develop little theories and how
to apply them via interpretation. It also illustrates a simple recursive defi-
nition.

4.2.4 Some Theorems on Limits

Contents. This exercise defines the limit of a sequence of real numbers.
A sequence of reals is represented in imps as a partial function mapping
integers to real numbers. The limit is defined using the iota constructor
ι, where ιx:σ . ϕ(x) has as its value the unique value of x such that ϕ(x)
holds true. The iota-expression is undefined if ϕ is satisfied by more than
one value or if it is not satisfied for any value. In this case, the instance of
ϕ is the familiar property that, for every positive real ε, there is an integer
n, such that for indices p greater than n, |x− s(p)| ≤ ε.

Theorems include a variant of the definition in which iota does not
occur, as well as the familiar condition for the existence of the limit. The
homogeneity of limit is also proved.

Purpose. The main purpose of this exercise is to illustrate how to reason
with iota. In particular, it illustrates the importance of deriving an “iota-
free” characterization for a notion defined in terms of iota.

4.2.5 Banach’s Fixed Point Theorem

Contents. This extensive file, contraction.t, contains a complete proof
of Banach’s contractive mapping fixed point theorem. An alternative proof
using a little more general machinery is contained in the theory library in
file

$IMPS/theories/metric-spaces/fixed-point-theorem.t

The theorem states that in a complete metric space 〈P, d〉, any contrac-
tive function has a unique fixed point. A function f is contractive if, there
exists a real value k < 1 such that for all points x and y in P,

d(f(x), f(y)) ≤ k · d(x, y).

The heart of the proof is to show that under this condition the sequence s
of iterates of f starting from an arbitrary point x,

s = 〈x, f(x), f(f(x)), . . . , fn(x), . . .〉

54

will converge. It is then easy to show that the limit of s is a fixed point.
Finally, if any two distinct points x and y were both fixed, then we would
have

d(x, y) = d(f(x), f(y)) ≤ k · d(x, y) < d(x, y).

This theorem serves as a very good illustration of imps’s “little theories”
approach. It combines:

• Concrete theorems about the reals, such as the geometric series for-
mula, which are needed to bound the differences between points in
s;

• A few abstract facts about the sequence of iterates of a function, which
are perfectly generic and independent of the fact that we will eventu-
ally apply them to functions f : P→ P;

• A third group of theorems proved in the theory of a metric space,
applying the previous theorems.

Purpose. The exercise has three purposes:

• To illustrate the little theories approach and how natural it is in math-
ematics;

• To illustrate inductive proof (in combination with some other tech-
niques) in real arithmetic and also in the generic theory covering iter-
ation;

• To provide a richer, more extended example of how to develop a sub-
stantial proof using imps.

4.2.6 Basics of Group Theory

Contents. This file develops the very rudiments of group theory, only up
to a definition of subgroup and a proof that subgroups are groups. Most of
the content is devoted to building up computational lemmas. This exercise
covers only a very small part of the portion of group theory that is developed
in the imps theory library, in the files contained in the directory:

$IMPS/theories/groups/

55

Purpose. The purpose of this exercise is to illustrate how to handcraft the
simplification mechanism by proving rewrite rules. In addition, a compound
macete is introduced to carry out computations not suited to the simplifier.
The file also illustrates the use of a symmetry translation mapping the theory
to itself. This translation maps the multiplication operator · to

λx, y . y · x.

Thus, for instance, right cancellation follows by symmetry from left cancel-
lation.

4.3 Logical Exercises

4.3.1 Indicators: A Representation of Sets

Contents. An indicator is a function used to represent a set. It has a sort
of the form [α,unit%sort], where α is an arbitrary sort. (In the string syntax,
the sort [α,unit%sort] is printed as sets[α].) unit%sort is a type in the-
kernel-theory that contains exactly one element named an%individual.
The type is of kind ι, so indicators may be partial functions. Since the-
kernel-theory is a component theory of every imps theory, unit%sort is
available in every theory.

Indicators are convenient for representing sets. The basic idea is that
a set s containing objects of sort α can be represented by an indicator of
sort [α,unit%sort], namely the one whose domain is s itself. Simplifying
expressions involving indicators is to a large extent a matter of checking
definedness—for which the simplifier is equipped with special-purpose al-
gorithms. The theory indicators consists of just a single base sort U, for
the “universe” of some unspecified domain. Since the theory indicators
contains no constants nor axioms, theory interpretations of indicators are
trivial to construct, and thus theorems of indicators are easy to use as
transportable macetes.

The logical operators in imps are fixed, but quasi-constructors can
in some respects effectively serve as additional logical operators. Quasi-
constructors are desirable for several reasons:

• Once a quasi-constructor is defined, it is available in every theory
whose language contains the quasi-constructor’s home language. That
is, a quasi-constructor is a kind of global constant that can be freely

56

used across a large class of theories. (A constructor, which we also call
a logical constant, is available in every theory.)

• Quasi-constructors are polymorphic in the sense that they can be ap-
plied to expressions of several different types. (Several of the construc-
tors, such as = and if, are also polymorphic in this sense.)

• Quasi-constructors are preserved under translation. Hence, to reason
about expressions involving a quasi-constructor, we may prove laws
involving the quasi-constructor in a single generic theory. The transla-
tion mechanism can then be used to apply the theorems to expressions
in any theory that involve the same quasi-constructor.

• Quasi-constructors can be used to represent operators in nonclassical
logics, such as modal or temporal logics (see Section 4.3.2), and op-
erators on generic objects such as sets (as represented by indicators)
and sequences.

Quasi-constructors are implemented as “macro/abbreviations.” The imps
reader treats them as macros which cause the creation of a particular syntac-
tic pattern in the expression, while the imps printer is responsible for print-
ing them in abbreviated form (wherever those patterns may have arisen).

The exercise derives a few facts about sets, their unions, and the inclusion
relation. It applies them to intervals of integers.

Purpose. The purpose of this exercise is to provide experience reasoning
with quasi-constructors.

4.3.2 Temporal Logic

Contents. Temporal logic is a kind of modal logic for reasoning about
dynamic phenomenon. In recent years temporal logic has won favor as a
logic for reasoning about programs, particularly concurrent programs. The
following is an exercise to develop a version of propositional temporal logic
(ptl) in imps.

In this exercise we view time as discrete and linear; that is, we identify
time with the integers. The goal of the exercise is to build machinery for
reasoning about “time predicates,” which are simply expressions of sort Z→
prop. In traditional ptl, the time argument is suppressed and objects which

57

are syntactically formulas are manipulated instead of syntactic predicates.
In imps we will deal directly with the predicates.

This is a very open-ended exercise, which should be done after the user
is fairly familiar with imps and its modus operandi.

4.4 Exercises related to Computer Science

imps also provides some facilities for reasoning about computing applica-
tions, although these are still less extensive than those for mathematics.
The exercises illustrate a facility for defining recursive data types, as well as
an application of a theory of state machines.

4.4.1 The World’s Smallest Compiler

Contents. This exercise introduces two syntaxes as abstract data types.
Each syntax is given a semantics as a simple programming language. A
function defined by primitive recursion on one language (the “source lan-
guage”) maps its expressions to values in the other (the “target language”).
This function is the compiler. We prove that the semantics of its output
code matches the semantics of its input.

Purpose. The primary purpose of this exercise is to illustrate the bnf
mechanism for introducing a recursive abstract data type. Connected with
a bnf is a schema for recursion on the data type. This is a form of primitive
recursion, as distinguished from imps’s more general facility for monotone
inductive definitions. The primitive recursion schema is preferable when
it applies because it automatically creates rewrite rules for the separate
syntactic cases.

A secondary purpose is to illustrate in a very simple case an approach
to compiler verification.

4.4.2 A Linearization Algorithm for a Compiler

Contents. A linearizer is a compiler component responsible for trans-
forming a tree-like intermediate code into a linear structure. Its purpose
is typically to transform (potentially nested) conditional statements into
the representation using branch and conditional branch instructions that
take numerical arguments. The exercise is contained in the file flatten.t.

58

It also depends on the bnf and primitive recursion mechanisms. How-
ever, the proofs have more interesting induction hypotheses than in the
world’s smallest compiler, and the development calls for an auxiliary notion
of “regular” instruction sequences.

Purpose. This exercise can be used as a more realistic and open-ended
example of a computer science verification.

4.4.3 The Bell-LaPadula Exercise

Contents. This exercise consists of two files, namely:

• $IMPS/theories/exercises/fun-thm-security.t

• $IMPS/theories/exercises/bell-lapadula.t

The first file proves the Bell-LaPadula “Fundamental Theorem of Security”
in the context of the theory of an arbitrary deterministic state machine
with a start state, augmented by an unspecified notion of “secure state.” (A
similar theorem also holds for nondeterministic state machines.) The proof
is by induction on the accessible states of the machine.

The second file instantiates this theory in the case of a simple access
control device (reference monitor). The states are functions, which, given a
subject and an object returns a pair; one component of the pair represents
whether the subject has current read access to the object, while the other
represents current write access. The operations of the machine correspond
to four requests by a subject concerning an object; the request may be to add
or delete and access, which may in turn be either read or write access. The
subjects and objects have security levels, and the requests are adjudicated
based on their levels.

The theory exploits the fact that read and write are duals, when the
sense of the partial ordering on levels is inverted. This duality is expressed
by means of a theory interpretation mapping the theory to itself. It is used
to manufacture definitions; for instance, the ∗-property is defined to be the
dual of the simple security property. It is also used to create new theorems.
For instance, the theorem that the ∗-property is preserved under get-write
is the dual of the theorem that the simple security property is preserved
under get-read; hence, it suffices to prove the latter, and the former follows
automatically.

59

Purpose. This exercise has three main purposes:

• To illustrate how to extend and to apply the state machine theory,
and how to prove theorems using state machine induction;

• To illustrate the use of an interpretation from a theory to itself to
encode a “symmetry” or “duality;”

• To provide a model for a familiar kind of security verification.

60

Part II

User’s Guide

61

Chapter 5

Logic Overview

5.1 Introduction

The logic of imps is called lutins1, a Logic of Undefined Terms for Inference
in a Natural Style. lutins is a kind of predicate logic that is intended to
support standard mathematical reasoning. It is classical in the sense that
it allows nonconstructive reasoning, but it is nonclassical in the sense that
terms may be nondenoting. The logic, however, is bivalent; formulas are
always defined.

Unlike first-order predicate logic, lutins provides strong support for
specifying and reasoning about partial functions (i.e., functions which are
not necessarily defined on all arguments), including the following mecha-
nisms:

• λ-notation for specifying functions;

• an infinite hierarchy of function types for organizing higher-order func-
tions, i.e., functions which take other functions as arguments;

• full quantification (universal and existential) over all function types.

In addition to these mechanisms, lutins possesses a definite description
operator and a system of subtypes, both of which are extremely useful for
reasoning about functions as well as other objects.

The treatment of partial functions in lutins is studied in [4], while the
treatment of subtypes is the subject of [5]. In this chapter we give a brief

1Pronounced as the word in French.

62

overview of lutins. For a detailed presentation of lutins, see [16]2.

5.2 Languages

A lutins language contains two kinds of objects: sorts and expressions.
Sorts denote nonempty domains of elements (mathematical objects), while
expressions denote members of these domains. Expressions are used for both
referring to elements and making statements about them.

In this section we give a brief description of a hypothetical language
L. This language will be presented using the “mathematical syntax” which
will be used throughout the rest of the manual. There are other syntaxes
for lutins, including the “string syntax” introduced in Chapter 2 and the
“s-expression syntax” presented in [16].

Expressions are formed by applying constructors to variables, constants,
and compound expressions. The constructors are given in Table 5.1; they
serve as “logical constants” that are available in every language. Variables
and constants belong to specific languages.

In the mathematical syntax, the symbols for the constructors, the com-
mon punctuation symbols, and the symbol with are reserved. By a name,
we mean any unreserved symbol.

5.2.1 Sorts

The sorts of L are generated from a finite set A of names called atomic sorts.
More precisely, a sort of L is a sequence of symbols defined inductively by:

(1) Each α ∈ A is a sort of L.

(2) If α1, . . . , αn+1 are sorts of L with n ≥ 1, then [α1, . . . , αn+1] is a sort
of L.

Sorts of the form [α1, . . . , αn+1] are called compound sorts. In the next
section we shall show that a compound sort denotes a domain of functions.
Let S denote the set of sorts of L.
L assigns each α ∈ A a member of S called the enclosing sort of α. The

atomic/enclosing sort relation determines a partial order � on S with the
following properties:

(1) If α ∈ A and β is the enclosing sort of α, then α � β.
2In [16], lutins is called PF.

63

Constructor String syntax Mathematical syntax
the-true truth T

the-false falsehood F

not not(p) ¬ϕ
and p1 and ... and pn ϕ1 ∧ . . . ∧ ϕn
or p1 or ... or pn ϕ1 ∨ . . . ∨ ϕn
implies p1 implies p2 ϕ ⊃ ψ
iff p1 iff p2 ϕ ≡ ψ
if-form if_form(p1,p2,p3) if-form(ϕ1, ϕ2, ϕ3)
forall forall(v1:s1,...,vn:sn,p) ∀v1:α1, . . . , vn:αn, ϕ
forsome forsome(v1:s1,...,vn:sn,p) ∃v1:α1, . . . , vn:αn, ϕ
equals t1=t2 t1 = t2
apply f(t1,...,tn) f(t1, . . . , tn)
lambda lambda(v1:s1,...,vn:sn,t) λv1:α1, . . . , vn:αn, t
iota iota(v1:s1,p) ιv:α,ϕ
iota-p iota_p(v1:s1,p) ιpv:α,ϕ
if if(p,t1,t2) if(ϕ, t1, t2)
is-defined #(t) t↓
defined-in #(t,s) t ↓ α
undefined ?s ⊥α

Table 5.1: Table of Constructors

64

(2) α1 � β1, . . . , αn � βn, αn+1 � βn+1 iff
[α1, . . . , αn, αn+1] � [β1, . . . , βn, βn+1].

(3) If α, β ∈ S with α � β and α is compound, then β is compound and
has the same length as α.

(4) For every α ∈ S, there is a unique β ∈ S such that α � β and β is
maximal with respect to �.

� is intended to denote set inclusion.
The members of S which are maximal with respect to � are called types.

A base type is a type which is atomic. Every language has the base type ∗
which denotes the set {t, f} of standard truth values. The type of a sort α,
written τ(α), is the unique type β such that α � β. The least upper bound
of α and β, written αtβ, is the least upper bound of α and β in the partial
order �. (The least upper bound of two sorts with the same type is always
defined).

A function sort is a sort α such that τ(α) has the form [α1, . . . , αn, αn+1].
The range sort of a function sort α, written ran(α), is defined as follows:
if α = [α1, . . . , αn, αn+1], then ran(α) = αn+1; otherwise, ran(α) = ran(β))
where β is the enclosing sort of α.

Sorts are divided into two kinds as follows: A sort is of kind ∗ if either it
is ∗ or it is a compound sort [α1, . . . , αn+1] where αn+1 is of kind ∗; otherwise
it is of kind ι. We shall see later the purpose behind this division. All atomic
sorts except ∗ are of kind ι.

5.2.2 Expressions

L contains a set C of names called constants. Each constant is assigned a
sort in S. An expression of L of sort α is a sequence of symbols defined
inductively by:

(1) If x is a name and α ∈ S, then x:α is an expression of sort α.

(2) If A ∈ C is of sort α, then A is an expression of sort α.

(3) If A,B,C,A1, . . . , An are expressions of sort ∗ with n ≥ 0, then T,
F, ¬(A), (A ⊃ B), (A ≡ B), if-form(A,B,C), (A1 ∧ · · · ∧ An), and
(A1 ∨ · · · ∨An) are expressions of sort ∗

(4) If x1, . . . , xn are distinct names; α1, . . . , αn ∈ S; A is an expression of
sort β; and n ≥ 1, then (∀ x1:α1, . . . , xn:αn, A) and
(∃ x1:α1, . . . , xn:αn, A) are expressions of sort ∗.

65

(5) If A and B are expressions of sort α and β, respectively, with τ(α) =
τ(β), then (A = B) is an expression of sort ∗.

(6) If F is an expression of sort α and type [α1, . . . , αn, αn+1]; A1, . . . , An
are expressions of sort α′1, . . . , α

′
n; and α1 = τ(α′1), . . . , αn = τ(α′n),

then F (A1, . . . , An) is an expression of sort ran(α).

(7) If x1, . . . , xn are distinct names; α1, . . . , αn ∈ S; A is an expression
of sort ∗; and n ≥ 1, then (λ x1:α1, . . . , xn:αn, A) is an expression of
sort [α1, . . . , αn, β].

(8) If x and y are names; α and β are sorts are of kind ι and ∗, respectively;
and A is an expression of sort ∗, then (ι x:α,A) and (ιp y:β,A) are
expressions of sort α and β, respectively.

(9) If A,B,C are expressions of sort ∗, β, γ, respectively, with τ(β) = τ(γ),
then if(A,B,C) is an expression of sort β t γ.

(10) If A is an expression and α ∈ S, then (A↓) and (A ↓ α) are expressions
of sort ∗.

(11) If α is a sort of kind ι, then ⊥α is an expression of sort α.

A variable is an expression of the form x:α. A formula is an expression
of sort ∗. A sentence is a closed formula. A predicate is an expression with
a sort of the form [α1, . . . , αn, ∗].

An expression is said to be of type α if the type of its sort is α, and it is
said to be of kind ι [respectively, ∗] if its type is of kind ι [respectively, ∗].
Notice that the well-formedness of an expression depends only on the types,
and not directly on the sorts, of its components. Expressions of kind ι are
used to refer to mathematical objects; they may be nondenoting. Expres-
sions of kind ∗ are primarily used in making assertions about mathematical
objects; they always have a denotation.

5.2.3 Alternate Notation

Expressions will usually be written in an abbreviated form as follows. Sup-
pose A is an expression whose free variables are x1:α1, . . . , xn:αn. Then A
is abbreviated as

(with x1:α1, . . . , xn:αn, A′),

where A′ is the result of replacing each (free or bound) occurrence of a
variable xi:αi in A with xi. This mode of abbreviation preserves meaning as

66

long as there are not two variables x:α and x:β with α 6= β which are either
both free in A or both in the scope of the same binder in A.

Parentheses in expressions may be suppressed when meaning is not lost.
In addition, the following alternate notation may be used in the imps math-
ematical syntax:

(1) prop and ind in place of the base sorts ∗ and ι, respectively.

(2) α1 × · · · × αn → β in place of a compound sort [α1, . . . , αn, β], and
α1 × · · · × αn ⇀ β in place of a compound sort [α1, . . . , αn, β] with β
of kind ι.

(3) The symbol “.” in place of “,” at the end of variable-sort sequence;
e.g., ∃x:α.x = x instead of ∃x:α, x = x.

(4) ⇔ in place of the biconditional ≡.

(5) ∃!x:α,ϕ(x) in place of ∃x:α, (ϕ(x) ∧ ∀y:α, (ϕ(y) ⊃ x = y)).

(6) A 6= B in place of ¬(A = B).

5.3 Semantics

The semantics for a lutins language is defined in terms of models that
are similar to models of many-sorted first-order logic. Let L be a lutins
language, and let S denote the set of sorts of L.

A frame for S is a set {Dα : α ∈ S} of nonempty domains (sets) such
that:

(1) D∗ = {t, f} (t 6= f).

(2) If α � β, then Dα ⊆ Dβ.

(3) If α = [α1, . . . , αn, αn+1] is of kind ι, then Dα is the set of all partial
functions f : Dα1 × · · · × Dαn → Dαn+1 .

(4) If α = [α1, . . . , αn, αn+1] is of kind ∗, then Dα is the set of all to-
tal functions f : Dτ(α1) × · · · × Dτ(αn) → Dαn+1 such that, for all
〈b1, . . . , bn〉 ∈ Dτ(α1) × · · · × Dτ(αn), f(b1, . . . , bn) = fτ(αn+1) whenever
bi 6∈ Dαi for at least one i with 1 ≤ i ≤ n.

For a type α ∈ S of kind ∗, fα is defined inductively by:

67

(1) f∗ = f.

(2) If α = [α1, . . . , αn+1], then fα is the function which maps every n-tuple
〈a1, . . . , an〉 ∈ Dα1 × · · · × Dαn to fαn+1 .

A model for L is a pair ({Dα : α ∈ S}, I) where {Dα : α ∈ S} is a frame
for S and I is a function which maps each constant of L of sort α to an
element of Dα.

Let M = ({Dα : α ∈ S}, I) be a model for L. A variable assign-
ment into M is a function which maps each variable x:α of L to an el-
ement of Dα. Given a variable assignment ϕ into M; distinct variables
x1:α1, . . . , xn:αn (n ≥ 1); and a1 ∈ Dα1 , . . . an ∈ Dαn , let

ϕ[x1:α1 7→ a1, . . . , xn:αn 7→ an]

be the variable assignment ψ such that

ψ(A) =

{
ai if A = xi:αi for some i with 1 ≤ i ≤ n
ϕ(A) otherwise

V = VM is the partial binary function on variable assignments into M
and expressions of L defined by the following statements:

(1) Vϕ(x:α) = ϕ(x:α)

(2) If A is a constant, Vϕ(A) = I(A).

(3) Vϕ(T) = t.

(4) Vϕ(F) = f.

(5) Vϕ(¬(A)) =

{
t if Vϕ(A) = f
f otherwise

(6) Vϕ(A ⊃ B) =

{
t if Vϕ(A) = f or Vϕ(B) = t
f otherwise

(7) Vϕ(A ≡ B) =

{
t if Vϕ(A) = Vϕ(B)
f otherwise

(8) If 2 is if-form or if, Vϕ(2(A,B,C)) =

{
Vϕ(B) if Vϕ(A) = t
Vϕ(C) otherwise

68

(9) Vϕ(A1 ∧ · · · ∧An) =

{
t if Vϕ(A1) = · · · = Vϕ(An) = t
f otherwise

(10) Vϕ(A1 ∨ · · · ∨An) =

{
t if Vϕ(Ai) = t for some i with 1 ≤ i ≤ n
f otherwise

(11) Vϕ(∀ x1:α1, . . . , xn:αn, A) =


t if Vϕ[x1:α1 7→a1,...,xn:αn 7→an](A) = t

for all 〈a1, . . . , an〉 ∈
Dα1 × · · · × Dαn

f otherwise

(12) Vϕ(∃ x1:α1, . . . , xn:αn, A) =


t if Vϕ[x1:α1 7→a1,...,xn:αn 7→an](A) = t

for some 〈a1, . . . , an〉 ∈
Dα1 × · · · × Dαn

f otherwise

(13) Vϕ(A = B) =

{
t if Vϕ(A) = Vϕ(B)
f otherwise

(14) Assume F is of kind ι. Then

Vϕ(F (A1, . . . , An)) = Vϕ(F)(Vϕ(A1), . . . , Vϕ(An))

if Vϕ(F), Vϕ(A1), . . . , Vϕ(An) are each defined; otherwise
Vϕ(F (A1, . . . , An)) is undefined.

(15) Assume F is of sort [α1, . . . , αn+1] of kind ∗. Then

Vϕ(F (A1, . . . , An)) = Vϕ(F)(Vϕ(A1), . . . , Vϕ(An))

if Vϕ(A1), . . . , Vϕ(An) are each defined; otherwise
Vϕ(F (A1, . . . , An)) = fτ(αn+1).

(16) Assume A is of sort αn+1 of kind ι. Then Vϕ(λ x1:α1, . . . , xn:αn, A)
is the partial function f : Dα1 × · · · × Dαn → Dαn+1 such that

f(a1, . . . , an) = Vϕ[x1:α1 7→a1,...,xn:αn 7→an](A)

if Vϕ[x1:α1 7→a1,...,xn:αn 7→an](A) is defined; otherwise f(a1, . . . , an) is un-
defined.

69

(17) Assume A is of sort αn+1 of kind ∗. Then Vϕ(λ x1:α1, . . . , xn:αn, A)
is the total function f : Dτ(α1) × · · · × Dτ(αn) → Dαn+1 such that

f(a1, . . . , an) = Vϕ[x1:α1 7→a1,...,xn:αn 7→an](A)

if 〈a1, . . . , an〉 ∈ Dα1 × · · · × Dαn ; otherwise f(a1, . . . , an) = fτ(αn+1).

(18) Vϕ(ιx:α,A) is the unique element a ∈ Dα such that Vϕ[x:α 7→a](A) = t;
otherwise Vϕ(ιx:α,A) is undefined.

(19) Vϕ(ιpx:α,A) is the unique element a ∈ Dα such that Vϕ[x:α 7→a](A) = t;
otherwise Vϕ(ιpx:α,A) = fτ(α).

(20) Vϕ(A↓) =

{
t if Vϕ(A) is defined
f otherwise

(21) Vϕ(A ↓ α) =

{
t if Vϕ(A) is defined and Vϕ(A) ∈ Dα
f otherwise

(22) Vϕ(⊥α) is undefined.

Clearly, for each variable assignment ϕ into M and each expression A
of L,

(1) Vϕ(A) ∈ Dα if Vϕ(A) is defined, and

(2) Vϕ(A) is defined if A is of kind ∗.

Vϕ(A) is called the value or denotation of A inM with respect to ϕ, provided
it is defined. When Vϕ(A) is not defined, A is said to be nondenoting inM
with respect to ϕ.

5.4 Extensions of the Logic

The logic can be effectively extended by introducing “quasi-constructors.”
They are the subject of Chapter 8.

5.5 Hints and Cautions

(1) In most cases, the novice imps user is better off relying on his intuition
instead of trying to fully comprehend the formal semantics of lutins.

70

(2) Although imps can handle expressions containing two variables with
the same name (such as, x:α and x:β with α 6= β), they tend to be
confusing and should be avoided if possible.

(3) lutins is a logic of two worlds: the ι world and the ∗ world. Expres-
sions of kind ι are part of the ι world, and expressions of kind ∗ are part
of the ∗ world. Although both worlds can be used for encoding math-
ematics, the ι world is much preferred for this purpose. As a general
rule, expressions of kind ∗ should not be used to denote mathematical
objects. Normally, formulas or predicates (i.e., expressions having a
sort of the form [α1, . . . , αn, ∗]) are the only useful expressions of kind
∗. Consequently, there is little support in imps for the constructor ιp,
the definite description operator for the ∗ world.

(4) The character % is often used in the names of variables and constants
in the string syntax to denote a space (the character _ is used to denote
the start of a subscript). This character is printed in the mathematics
syntax as either % or _.

71

Chapter 6

Theories

6.1 Introduction

As a mathematical object, an imps theory consists of a lutins language
L and a set of sentences in L called axioms. The theory is the basic unit
of mathematical knowledge in imps. In fact, imps can be described as a
system for developing, exploring, and relating theories. How a theory is
developed is the subject of several chapters; an overview is given in the next
section. The principal technique for exploring a theory is to discover the
logical implications of its axioms by stating and trying to prove conjectures;
the imps proof system is described in Chapter 10. Two theories are related
by creating an interpretation of one in the other; theory interpretations are
discussed in Chapter 7.

We define a theorem of an imps theory T to be a formula of T which is
valid in each model for T . That is, a theorem of T is a semantic consequence
of T . The reader should note that our definition of a theorem does not
depend on the imps proof system or any other proof system for lutins.

In the implementation, a theory is represented by a data structure which
encodes the language and axioms of the theory. The data structure also en-
codes in procedural or tabular form certain consequences of the theory’s
axioms. This additional information facilitates various kinds of low-level
reasoning within theories that are encapsulated in the imps expression sim-
plifier, the subject of Chapter 11.

Let T 1 and T 2 be imps theories. T 1 is subtheory of T 2 (and T 1 is a
supertheory of T 2) if the language of T 1 is a sublanguage of the language
of T 2 and each axiom of T 1 is a theorem of T 2. Each imps theory T is

72

assigned a set of component theories, each of which is a subtheory of T . T 1

is structural subtheory of T 2 (and T 1 is a structural supertheory of T 2) if T 1

is either a component theory of T 2 or a structural subtheory of a component
theory of T 2.

6.2 How to Develop a Theory

The user creates a theory and the imps objects associated with it by evalu-
ating expressions called definition forms (or def-forms for short). There are
approximately 30 kinds of def-forms, each described in detail in Chapter 15.
The user interface provides templates to you for writing def-forms. The def-
forms supplied by the system and created by you are stored in files which
can be loaded as needed into a running imps process. In this section, we
give an overview of the tasks that are involved in creating a well-developed
theory. Along the way, we list the def-forms that are relevant to each task.

Task 1: The Primitive Theory

The first task in developing a theory is to build a primitive, bare bones theory
T from a (possibly empty) set of theories, a language, and a set of axioms.
This is done with the def-theory form; T is the smallest theory which
contains the theories, the language, and the set of axioms. The theories
are made the component theories of T . A language is created with def-
language or def-sublanguage. A primitive theory can also be created by
instantiating an existing theory with def-theory-instance.

Task 2: Theorems

The information held in the axioms of the primitive theory is unlocked by
proving theorems using the imps proof system (see Chapter 10). Theorem
proving is crucial to developing a theory and is involved in most of the tasks
below. Proven theorems are installed in the theory with def-theorem using
various “usages.” See Section 6.4 for details.

Task 3: Simplification

Once the primitive theory is built, usually the next task is to specify how
simplification should be performed in the theory. There are three mecha-
nisms for doing this that can be used separately or in combination:

73

(1) Install a processor. For theories of an algebraic nature (e.g., rings,
fields, or modules over a ring), you may want to install an alge-
braic processor to perform rudimentary algebraic simplification. Pro-
cessors are created with def-algebraic-processor and def-order-
processor, and installed with def-theory-processors. The system
will check that the theory contains the right theorems before anything
is installed, so even if you build a weird processor (one that wants to
treat ring multiplication as ring addition) it cannot be installed.

(2) Install rewrite rules. An ordinary rewrite rule is created and installed
in the theory by installing a theorem with the usage rewrite. A
transportable rewrite rule is created by installing a theorem with the
usage transportable-rewrite, and is installed in the theory with
def-imported-rewrite-rules.

(3) Add information to the theory’s domain-range handler. Information
about the domain and range of function constants can be added to
a theory by installing theorems in the theory with the usages d-r-
convergence and d-r-value.

See Chapter 11 for more details.

Task 4: Theory Interpretations

It is a good idea, early in the development of a theory, to create the principal
theory interpretations involving the theory in either the role of source or
target. Symmetry interpretations of theory in itself are often quite useful if
they exist. Theory interpretations are created with def-translation. See
Chapter 7 for details.

Task 5: Definitions

Atomic sorts and constants can be defined throughout the course of de-
veloping a theory. They are usually defined with def-atomic-sort, def-
constant, and def-recursive-constant, but they can also be created by
transporting definitions to the theory from some other theory with def-
transported-symbols. An atomic sort with constants for representing
a cartesian product with a constructor and accessors is created with def-
cartesian-product. See Section 6.5 for details.

74

Task 6: Macetes

Theorems are applied semi-automatically in the course of a proof by means
of procedures called macetes. A set of carefully crafted macetes is an es-
sential part of a well-developed theory. An elementary macete is created
whenever a theorem is installed, and a transportable macete is created by
installing a theorem with the usage transportable-macete. Other kinds
of macetes are created with def-compound-macete and def-schematic-
macete. See Chapter 12 for details.

Task 7: Induction Principles

If your theory has a theorem which you think can be treated like an induction
principle, then you can build an inductor with def-inductor. The name
of the inductor can be used as an argument to the induction command.
Note that most often you can get by with using integer-inductor which is
already supplied with the system.

Task 8: Theory Ensembles

Sometimes copies and unions of copies of the theory are needed.
These can be created and managed as an imps theory ensemble with
def-theory-ensemble, def-theory-ensemble-instances, def-theory-
ensemble-overloadings, and def-theory-ensemble-multiple. See
Chapter 9 for details.

Task 9: Theory Extensions

Ordinarily an extension of the theory is created with def-theory and def-
theory-instance, but the theory can also be extended by adding an ab-
stract data type with def-bnf or a record with def-record-theory.

Task 10: Quasi-constructors

Quasi-constructors are global constants that can be used across a large class
of theories. They are created with def-quasi-constructor. See Chapter 8
for details.

75

Task 11: Renamers

Renaming functions are used with def-theory-instance and def-
transported-symbols to rename atomic sorts and constants. They are
created with def-renamer.

Task 12: Syntax

Special parse and print syntax for the vocabulary of the theory is created
independently from the development of the theory with def-parse-syntax,
def-print-syntax, and def-overloading. See Chapter 14 for details.

Task 13: Sections

Theory library sections containing the theory or a part of the theory are
created with def-section. See Section 6.6 for more information about sec-
tions.

6.3 Languages

An imps language is a representation of a lutins language. An imps lan-
guage is built with def-language from a (possibly empty) set of languages,
a set of base types, and a list of atomic sort declarations.

6.4 Theorems

Mathematically, a theorem of a theory is any logical consequence of the
theory’s axioms. One usually verifies that a formula A is a theorem of a
theory T by constructing a proof of A in T using the imps proof system (see
Chapter 10, particularly Section 10.3). A theorem is available to the user
when working in a theory T only if it has been “installed” in T . There are
several ways a theorem can be installed:

• When a theory is built, all of its axioms are installed in it.

• One or two theorems are installed in a theory when a def-theorem
form is evaluated. See Section 6.4 for details.

76

• When an atomic sort is defined in a theory, the new sort’s defining
axiom and a few special consequences of it are installed in the the-
ory. Something similar takes place when constants are defined (either
directly or recursively) in a theory.

• When a theorem A is transported from T 1 to T 2 via an interpretation
Φ, the translation of A, Φ(A), is installed in T 2.

When a theorem is installed in a theory T , it is automatically installed in
every structural supertheory of T .

A theorem is installed with a list of usages that tells imps how to use
the theorem. There are seven usages; they have the following effect when
they are in the usage list of a theorem installed in a theory T :

(1) elementary-macete. This causes an elementary macete to be created
from the theorem. For a theorem which is given a name, this usage is
always added by imps to the theorem’s usage list, whether this usage
is explicitly included by the user or not.

(2) transportable-macete. This causes a transportable macete to be
created from the theorem.

(3) rewrite. This causes a rewrite rule to be created and installed in
the transform table of T . Although the theorem can have any form,
usually this usage is used only with a theorem which is an equation, a
quasi-equation, or a biconditional.

(4) transportable-rewrite. This causes a transportable rewrite rule to
be created (but not installed). Transportable rewrite rules are installed
(in T or other theories) with def-imported-rewrite-rules.

(5) simplify-logically-first. If rewrite and transportable-rewrite
are in the usage list, this marks the generated rewrite and trans-
portable rewrite rules so that logical simplification is used just before
they are applied.

(6) d-r-convergence. If the theorem has an appropriate form, a conver-
gence condition is created and installed in the domain-range handler
of T .

(7) d-r-value. If the theorem has an appropriate form, a value condition
is created and installed in the domain-range handler of T .

77

6.5 Definitions

imps supports four kinds of definitions: atomic sort definitions, constant
definitions, recursive function definitions, and recursive predicate definitions.
In the following let T be an arbitrary theory.

Atomic sort definitions are used to define new atomic sorts from
nonempty unary predicates. They are created with the def-atomic-sort
form. An atomic sort definition for T is a pair δ = (n,U) where n is a sym-
bol intended to be the name of a new atomic sort of T and U is a nonempty
unary predicate in T intended to specify the extension of the new sort. δ
can be installed in T only if the formula ∃x.U(x) is known to be a theorem
of T . As an example, the pair

(N, λx : Z . 0 ≤ x)

defines N to be an atomic sort which denotes the natural numbers.
Constant definitions are used to define new constants from defined ex-

pressions. They are created with the def-constant form. A constant def-
inition for T is a pair δ = (n, e) where n is a symbol intended to be the
name of a new constant of T and e is a expression in T intended to specify
the value of the new constant. δ can be installed in T only if the formula e↓
is verified to be a theorem of T . As an example, the pair

(floor, λx : R . ιz : Z . z ≤ x ∧ x < 1 + z)

defines the floor function on reals using the ι constructor.
Recursive function definitions are used to define one or more functions by

simultaneous recursion. They are created with the def-recursive-constant
form. The mechanism for recursive function definitions in imps is modeled
on the approach to recursive definitions presented by Y. Moschovakis in [22].
A recursive definition for T is a pair δ = ([n1, . . . , nk], [F1, . . . , Fk]) where
k ≥ 1, [n1, . . . , nk] is a list of distinct symbols intended to be the names
of k new constants, and [F1, . . . , Fk] is a list of functionals (i.e., functions
which map functions to functions) of kind ind in T intended to specify, as a
system, the values of the new constants. δ can be installed in T only if the
functionals F1, . . . , Fk are verified to be monotone in T with respect to the
subfunction order v.1 The names [n1, . . . , nk] then denote the simultaneous

1f v g iff f(a1, . . . , am) = g(a1, . . . , am) for all m-tuples 〈a1, . . . , am〉 in the domain of
f .

78

least fixed point of the functionals F1, . . . , Fk. As an example, the pair

(factorial, λf : Z ⇀ Z . λn : Z . if(n = 0, 1, n ∗ f(n− 1)))

is a recursive definition of the factorial function in our standard theory of
the real numbers.

This approach to recursive definitions is very natural in imps because
expressions of kind ind are allowed to denote partial functions. Notice that
there is no requirement that the functions defined by a recursive definition
be total. In a logic in which functions must be total, a list of functionals
can be a legitimate recursive definition only if it has a solution composed
entirely of total functions. This is a difficult condition for a machine to check,
especially when k > 1. Of course, in imps there is no need for a recursive
definition to satisfy this condition since a recursive definition is legitimate
as long as the defining functionals are monotone. imps has an automatic
syntactic check sufficient for monotonicity that succeeds for many common
recursive function definitions.

Recursive predicate definitions are used to define one or more predicates
by simultaneous recursion. They are also created with the def-recursive-
constant form. Recursive predicate definitions are implemented in essen-
tially the same way as recursive function definitions using the order ⊆2 on
predicates. The approach is based on the classic theory of positive inductive
definitions (see [21]). For an example, consider the pair

([even, odd], [F1, F2]),

where:

• F1 = λe, o : N→ prop . λn : N . if(n = 0, truth, o(n− 1)).

• F2 = λe, o : N→ prop . λn : N . if(n = 0, falsehood, e(n− 1)).

It defines the predicates even and odd on the natural numbers by simultane-
ous recursion. As with recursive function definitions, there is an automatic
syntactic check sufficient for monotonicity that succeeds for many recursive
predicate definitions.

2p ⊆ q iff p(a1, . . . , am) ⊃ q(a1, . . . , am) for all m-tuples 〈a1, . . . , am〉 in the common
domain of p and q.

79

6.6 Theory Libraries

A theory library is a collection of theories, theory constituents (definitions,
theorems, proofs, etc.), and theory interpretations that serves as a database
of mathematics. A theory library is composed of sections; each section is
a particular body of knowledge that is stored in a set of files consisting of
def-forms. A section can be loaded as needed into a running imps process.
A section is built from a (possibly empty) set of subsections and files with
def-section. The forms load-section and include-files will load a section
and a list of files, respectively. These forms are useful for organizing sections.

Supplied with imps is an initial theory library which contains a variety
of basic mathematics. In no sense is the initial theory library intended to be
complete. We expect it to be extended by imps users. In the course of using
imps, you should build your own theory library on top of the imps initial
theory library. The initial theory library contains many examples that you
can imitate. An outline of the initial theory library is given in Chapter 18.

6.7 Hints and Cautions

(1) The imps initial theory library contains no arithmetic theory weaker
than h-o-real-arithmetic; e.g., there is no theory of Peano arith-
metic. This is in accordance with our philosophy that there is rarely
any benefit in building a theory with an impoverished arithmetic. Fur-
thermore, since full-powered arithmetic is so useful and so basic, we
advise the imps user to include h-o-real-arithmetic in every theory
he or she builds.

(2) When building a theory, it is usually a good idea to minimize the
primitive constants and axioms of the theory. This will make it easier
to use the theory as a source of a theory interpretation.

(3) The best way to learn how to develop a theory is to study some of the
theory-building techniques and styles which are demonstrated in the
imps initial theory library.

(4) Since the sort of an expression gives immediate information about the
value of the expression, it is often very advantageous to define new
atomic sorts rather than work directly with unary predicates. Also,
a nonnormal translation (see Section 7.2) can be “normalized,” i.e.,

80

transformed into a normal translation, by defining new atomic sorts
in the target theory of the translation.

81

Chapter 7

Theory Interpretations

7.1 Introduction

Theory Interpretations are translations which map the expressions from one
theory to the expressions of another with the property that theorems are
mapped to theorems. They serve as conduits to pass results from one theory
to another. As such, they are an essential ingredient in the little theories
version of the axiomatic method which imps supports (see Section 2.7).
The imps notion of theory interpretation [5, 7] is modeled on the standard
approach to theory interpretation in first-order logic (e.g., see [2, 19, 24]).

Most of the various ways that interpretations are used in imps are de-
scribed in the penultimate section of this chapter.

7.2 Translations

Let T 1 and T 2 be lutins theories. A translation from T 1 to T 2 is a pair
Φ = (µ, ν), where µ is a mapping from the atomic sorts of T 1 to the sorts,
unary predicates (quasi-sorts), and indicators (sets) of T 2 and ν is a mapping
from the constants of T 1 to the expressions of T 2, satisfying certain syntactic
conditions. T 1 and T 2 are called the source theory and target theory of Φ,
respectively. Given an expression e of T 1, the translation of e via Φ, written
Φ(e), is an expression of T 2 defined from µ and ν in a manner that preserves
expression structure. In particular, Φ(e) is a sentence when e is a sentence.

When µ maps an atomic sort α to a unary predicate U , the variable
binding constructors—λ, ∀, ∃, and ι—are “relativized” when they bind a

82

variable of sort α. For example,

Φ(∀x:α.ψ) = ∀x:β.U(x) ⊃ Φ(ψ).

Something very similar happens when µ maps an atomic sort to an indicator.
The constructor defined-in is also relativized when its second argument
is α. A translation is normal if it maps each atomic sort of the source
theory to a sort of the target theory. Normal translations do not relativize
constructors.

Let Φ be a translation from T 1 to T 2. Φ is an interpretation of T 1 in
T 2 if Φ(ϕ) is a theorem of T 2 for each theorem ϕ of T 1. In other words,
an interpretation is a translation that maps theorems to theorems. An
obligation of Φ is a formula Φ(ϕ) where ϕ is either:

(1) a primitive axiom of T 1 (axiom obligation);

(2) a definition axiom of T 1 (definition obligation);

(3) a formula asserting that a particular primitive atomic sort of T 1 is
nonempty (sort nonemptiness obligation);

(4) a formula asserting that a particular primitive constant of T 1 is defined
in its sort (constant sort obligation); or

(5) a formula asserting that a particular primitive atomic sort of T 1 is a
subset of its enclosing sort (sort inclusion obligation).

The following theorem gives a sufficient condition for a translation to be
an interpretation:

Theorem 7.2.1 (Interpretation Theorem) A translation Φ from T 1 to
T 2 is an interpretation if each of its obligations is a theorem of T2.

See [5, 7], for a more detailed discussion of theory interpretations in
lutins.

7.3 Building Theory Interpretations

The most direct way for you to build an interpretation is with the def-
translation form. However, there are also several ways interpretations can
be built automatically by imps with little or no assistance from you.

83

Building an interpretation with def-translation is generally a two-
step process. The first step is to build a translation by evaluating a def-
translation form which contains a specified name, source theory, target
theory, sort association list, and constant association list. These latter lists,
composed of pairs, specify respectively the two functions µ and ν discussed
in the previous section. Each pair in the sort association list consists of an
atomic sort of the source theory and a specification of a sort, unary predi-
cate, or indicator of the target theory. Each pair in the constant association
list consists of a constant of the source theory and a specification of an ex-
pression of the target theory. There does not need to be a pair in the sort
association list for each atomic sort in the source theory; missing primitive
atomic sorts are paired with themselves and missing defined atomic sorts
are handled in the special way described in the next section. A similar
statement is true about the constant association list.

When the def-translation form is evaluated, imps does a series of syn-
tactic checks to make sure that the form correctly specifies a translation. If
all the checks are successful, imps builds the translation (or simply retrieves
it if it had been built previously).

The second step is to verify that the translation is an interpretation.
imps first generates the obligations of the translation that are not trivially
theorems of the target theory. Next imps removes from this set those obli-
gations which are instances of installed theorems of the target theory. If the
line

(theory-interpretation-check using-simplification)

is part of the def-translation form, imps will also remove obligations which
are known to be theorems of the target theory by simplification. When imps
is done working on the obligations, if there are none left the translation is
marked as a theory interpretation. Otherwise, an error message is made
that lists the outstanding obligations.

If there are outstanding obligations (and you believe that they are indeed
theorems of the target theory), you will usually want to prove them in the
target theory. Then, after installing them in the target theory, the def-
translation form can be re-evaluated.

The following is a simple example of an interpretation built from a def-
translation form:

(def-translation MONOID-THEORY-TO-ADDITIVE-RR
(source monoid-theory)

84

(target h-o-real-arithmetic)
(fixed-theories h-o-real-arithmetic)
(sort-pairs
(uu rr))
(constant-pairs
(e 0)
(** +)
(theory-interpretation-check using-simplification))

The purpose of the line

(fixed-theories h-o-real-arithmetic)

is to speed up the construction of the interpretation by telling imps ahead
of time that the theory h-o-real-arithmetic, which is a subtheory of
monoid-theory, is fixed by the translation, i.e., each expression of h-o-
real-arithmetic is mapped to itself.

7.4 Translation of Defined Sorts and Constants

Let Φ be a translation from T 1 to T 2. Translations have been implemented
in imps so that the defined sorts and constants of T 1 are handled in an effec-
tive manner, even when they are defined after Φ is constructed. There are
three possible ways that a defined sort or constant of T 1 can be translated.

First, if the defined sort or constant is a member of one of the fixed
theories of Φ, it is translated to itself. Second, if the defined sort or constant
is mentioned (i.e., is the first component of a pair) in the sort or constant
association list of Φ, it is translated to the second component of the pair. In
practice, most defined sorts and constants are not mentioned in the sort and
constant association lists. And, third, if the defined sort or constant is not
mentioned in the sort and constant association lists and is not a member of
a fixed theory, it is translated on the basis of its definiens (unary predicate,
expression, or list of functionals). This last way of translation requires some
explanation.

Suppose α is a defined sort of T 1 which is not mentioned in the sort
association list of Φ. Let U be the unary predicate that was used to define
α. If there is a atomic sort β of T 2 defined by a unary predicate U ′ such
that U ′ and Φ(U) are alpha-equivalent, then α is translated as if the pair
(α, β) were in the sort association list of Φ. Otherwise, it is translated as if
the pair (α,Φ(U)) were in the sort association list of Φ.

85

Suppose a is a directly defined constant of T 1 which is not mentioned
in the constant association list of Φ. Let e be the expression that was used
to define a. If there is a constant b of T 2 directly defined by an expression
e′ such that e′ and Φ(e) are alpha-equivalent, then a is translated to b.
Otherwise, a is translated to Φ(e).

Suppose ai is constant which is not mentioned in the constant association
list of Φ, but which is a member of a list a1, . . . , an of constants of T 1

defined by recursion. Let F1, . . . , Fn be the list of functionals that was used
to define a1, . . . , an. If there is a list b1, . . . , bn of constants of T 2 recursively
defined by the list of functionals F ′1, . . . , F

′
n such that F ′j and Φ(Fj) are alpha-

equivalent for each j with 1 ≤ j ≤ n, then ai is translated to bi. Otherwise,
ai is translated to an iota-expression which denotes the ith component of
the minimal fixed point of Φ(F1), . . . ,Φ(Fn).

7.5 Reasoning and Formalization Techniques

This section briefly describes most of the ways interpretations are used in
imps for formalizing mathematics and proving theorems.

7.5.1 Transporting Theorems

The most important use of theory interpretations is for transporting theo-
rems from one theory to another. There are several ways that a theorem
can be transported:

(1) The translation of a theorem of T 1 via an interpretation of T 1 in T 2

can be installed in T 2 using def-theorem with the modifier argument
translation.

(2) In the course of a proof, the translation of a theorem can be added
to the context of a sequent with the proof command assume-
transported-theorem. Similarly, an instantiation of a translation
of a theorem can be added with instantiate-transported-theorem.
Both of these commands ask for the theory interpretation to be
used. If no interpretation is given with the command instantiate-
transported-theorem, imps will try to find or build an interpreta-
tion on its own using the information in the variable instances supplied
by the user.

86

(3) When a transportable macete or transportable rewrite rule is applied,
a theorem is effectively transported to the current theory (but it is not
actually installed in the current theory).

Theorems are usually transported from an abstract theory to a more con-
crete theory.

7.5.2 Polymorphism

Constructors and quasi-constructors are polymorphic in the sense that they
can be applied to expressions of several different types. This sort of poly-
morphism is not very useful unless we have results about constructors and
quasi-constructors that could be used in proofs regardless of the actual types
that are involved. For constructors, most of these “generic” results are
coded in the form of the primitive inferences given in Chapter 17. Since
quasi-constructors, unlike constructors, can be introduced by you, it is
imperative that there is some way for you to prove generic results about
quasi-constructors. This can be done by proving theorems about quasi-
constructors in a theory of generic types, and then transporting these results
as needed to theories where the quasi-constructor is used.

For example, consider the quasi-constructor m-composition defined by

(def-quasi-constructor M-COMPOSITION
"lambda(f:[ind_2,ind_3],g:[ind_1,ind_2],

lambda(x:ind_1, f(g(x))))"
(language pure-generic-theory-3)
(fixed-theories the-kernel-theory))

The basic properties about m-composition, such as associativity, can be
proved in the theory pure-generic-theory-4, which has four base types
but no constants, axioms, or other atomic sorts.

7.5.3 Symmetry and Duality

Theory interpretations can be used to formalize certain kinds of arguments
involving symmetry and duality. For example, suppose we have proved a
theorem in some theory and have noticed that some other conjecture follows
from this theorem “by symmetry.” This notion of symmetry can frequently
be made precise by creating a theory interpretation from the theory to itself
which translates the theorem to the conjecture.

As an illustration, consider the theory interpretation defined by

87

(def-translation MUL-REVERSE
(source groups)
(target groups)
(fixed-theories h-o-real-arithmetic)
(constant-pairs
(mul "lambda(x,y:gg, y mul x)"))
force-under-quick-load
(theory-interpretation-check using-simplification))

This translation, which reverses the argument order of ∗ and holds every-
thing else fixed in groups, maps the left cancellation law

(def-theorem LEFT-CANCELLATION-LAW
"forall(x,y,z:gg, x mul y = x mul z iff y=z)"
(theory groups)
(usages transportable-macete)
(proof
(...)))

to the right cancellation law

(def-theorem RIGHT-CANCELLATION-LAW
;; "forall(x,y,z:gg, y mul x=z mul x iff y=z)"
left-cancellation-law
(theory groups)
(usages transportable-macete)
(translation mul-reverse)
(proof existing-theorem))

Since this translation is in fact a theory interpretation, we need only prove
the left cancellation law to show that both cancellation laws are theorems
of groups.

7.5.4 Problem Transformation

Sometimes a problem is easier to solve if it is transformed into an equivalent,
but more convenient form. For example, often geometry problems are easier
to solve if they are transformed into algebra problems, and vice versa. Many
problem transformations can be formalized as theory interpretations. The
interpretation serves both as a means of transforming the problem and as a
verification that the transformation is valid.

88

7.5.5 Definition Transportation

A list of definitions (atomic sort, directly defined constant or recursively
defined constant) can be transported from T1 to T2 via an interpretation of
T 1 in T 2 using def-transported-symbols.

For example, consider the following def-forms:

(def-translation ORDER-REVERSE
(source partial-order)
(target partial-order)
(fixed-theories h-o-real-arithmetic)
(constant-pairs
(prec rev%prec)
(rev%prec prec))

(theory-interpretation-check using-simplification))

(def-renamer FIRST-RENAMER
(pairs
(prec%majorizes prec%minorizes)
(prec%increasing rev%prec%increasing)
(prec%sup prec%inf)))

(def-transported-symbols
(prec%majorizes prec%increasing prec%sup)
(translation order-reverse)
(renamer first-renamer))

The def-transported-symbols form installs three new definitions—
prec%minorizes, rev%prec%increasing, and prec%inf—in partial-
order. These new definitions are created by translating the definiens of
prec%majorizes, prec%increasing, and prec%sup, respectively, via
order-reverse.

7.5.6 Theory Instantiation

As argued by R. Burstall and J. Goguen (e.g., in [14, 15]), a flexible notion
of parametric theory can be obtained with the use of ordinary theories and
theory interpretations. The key idea is that the primitives of a subtheory
of a theory are a collection of parameters which can be instantiated as a
group via a theory interpretation. In imps theories are instantiated using

89

def-theory-instance; each subtheory of a theory can serve as a parameter
of the theory.

For example, consider the following def-forms:

(def-translation FIELDS-TO-RR
(source fields)
(target h-o-real-arithmetic)
(fixed-theories h-o-real-arithmetic)
(sort-pairs
(kk rr))
(constant-pairs
(o_kk 0)
(i_kk 1)
(-_kk -)
(+_kk +)
(*_kk *)
(inv "lambda(x:rr,1/x)"))

(theory-interpretation-check using-simplification))

(def-theory-instance VECTOR-SPACES-OVER-RR
(source vector-spaces)
(target h-o-real-arithmetic)
(translation fields-to-rr)
(renamer vs-renamer))

The last def-form creates a theory of an abstract vector space over the field
of real numbers by instantiating a theory of an abstract vector space over
an abstract field. The parameter theory is fields, a subtheory of vector-
spaces and the source theory of fields-to-rr.

For a detailed description of this technique, see [3, 6].

7.5.7 Theory Extension

Let T i = (Li,Γi) be a lutins theory for i = 1, 2. T 2 is an extension of T 1

(and T 1 is a subtheory of T 2) if L1 is a sublanguage of L2 and Γ1 ⊆ Γ2.
A very useful reasoning technique is to (1) add machinery to a theory by
means of a theory extension and (2) create one or more interpretations
from the theory extension to the original theory. This setup allows one to
prove results in a an enriched theory and then transport them back to the
unenriched theory.

90

For example, many theorems about groups are more conveniently proved
about groups actions because several group theorems may be just different
instantiations of a particular group action theorem. The following def-forms
show how group-actions is an extension of groups:

(def-language GROUP-ACTION-LANGUAGE
(embedded-language groups-language)
(base-types uu)
(constants
(act "[uu,gg,uu]")))

(def-theory GROUP-ACTIONS
(language group-action-language)
(component-theories groups)
(axioms
(act-id
"forall(alpha:uu,g:gg, act(alpha,e) = alpha)"
rewrite transportable-macete)
(act-associativity
"forall(alpha:uu,g,h:gg,

act(alpha,g mul h) = act(act(alpha,g),h))"
transportable-macete)))

There are many natural interpretations of group-actions in groups such
as:

(def-translation ACT->CONJUGATE
(source group-actions)
(target groups)
(fixed-theories h-o-real-arithmetic)
(sort-pairs
(uu "gg"))
(constant-pairs
(act "lambda(g,h:gg, (inv(h) mul g) mul h)"))
(theory-interpretation-check using-simplification))

Suppose T 2 is an extension of T 1 that is obtained by adding to T 1 new
constants and axioms relating the new constants of T 2 to the old constants of
T 1. Then each theorem of T 2 has a analogue in T 1 obtained by generalizing
over the new constants of T 1. This notion of generalization is performed
automatically in imps with an appropriate interpretation of T 2 in T 1.

91

For example, the def-forms

(def-language LCT-LANGUAGE
(embedded-language groups)
(constants
(a "sets[gg]")
(b "sets[gg]")))

(def-theory LCT-THEORY
(language lct-language)
(component-theories groups)
(axioms
(a-is-a-subgroup "subgroup(a)")
(b-is-a-subgroup "subgroup(b)")))

(def-theorem LITTLE-COUNTING-THEOREM
"f_indic_q{gg%subgroup}

implies
f_card{a set%mul b}*f_card{a inters b} =
f_card{a}*f_card{b}"
;; "forall(b,a:sets[gg],
;; subgroup(a) and subgroup(b)
;; implies
;; (f_indic_q{gg%subgroup}
;; implies
;; f_card{a set%mul b}*f_card{a inters b} =
;; f_card{a}*f_card{b}))"
(theory groups)
(home-theory lct-theory)
(usages transportable-macete)
(proof (...)))

show that the “little counting theorem” is proved in an extension of groups,
but is installed in groups by generalizing over the constants a and b.

7.5.8 Model Conservative Theory Extension

Suppose T 2 is an extension of T 1. T 2 is a model conservative extension of
T 1 if every model of T 1 “expands” to a model of T 2. Model conservative

92

extensions are safe extensions since they add new machinery without com-
promising the old machinery. For instance, a model conservative extension
preserves satisfiability. The most important model conservative extensions
are definitional extensions which introduce new symbols that are defined
in terms of old vocabulary. (Logically, imps definitions create definitional
extensions.) Many natural methods of extending theories correspond to a
class or type of model conservative extensions. For instance the theories
created with the def-bnf are always model conservative extensions of the
starting theory.

imps supports a general technique, based on theory interpretation and
theory instantiation, for building safe theory extension methods. The idea
is that a model conservative extension type can be formalized as an abstract
theory with a distinguished subtheory. The theory can be shown to be a
model conservative extension of the subtheory using

Theorem 7.5.1 (Model Conservative Verification Theorem)
Let T 2 be an extension of T 1. T 2 is a model conservative extension of
T 1 if there is an interpretation of T 2 in T 1 which fixes T 1.

Then instances of the model conservative extension type are obtained by
instantiating the theory. Each such instance is guaranteed to be a model
conservative extension by

Theorem 7.5.2 (Model Conservative Instantiation Theorem) Let
T ′1 be a model conservative extension of T 1, and let T ′2 be an instance of T ′1
under the an interpretation of T 1 in T 2. Then T ′2 is a model conservative
extension of T 2.

For a detailed description of this technique, see [6].

7.5.9 Theory Ensembles

A theory ensemble consists of a base theory, copies of the base theory called
replicas, and unions of copies of the base theory called theory multiples.
The constituents of a theory ensemble are related to each other by theory
interpretations. They allow you to make a definition or prove a theorem
in just one place, and then transport the definition or theorem to other
members of the theory ensemble as needed. They are used in a similar way
to relate a theory multiple to one of its “instances.” See Chapter 9 for a
detailed description of the imps theory ensemble mechanism.

93

7.5.10 Relative Satisfiability

If there is a theory interpretation from a theory T 1 to a theory T 2, then T 1 is
satisfiable (in other words, semantically consistent) if T 2 is satisfiable. Thus,
theory interpretations provide a mechanism for showing that one theory is
satisfiable relative to another. One consequence of this is that imps can be
used as a foundational system. In this approach, whenever one introduces a
theory, one shows it to be satisfiable relative to a chosen foundational theory
(such as, perhaps, h-o-real-arithmetic).

7.6 Hints and Cautions

(1) The application of a nonnormal translation to an expression containing
quasi-constructors will often result in a devastating explosion of quasi-
constructors. One way of avoiding this problem is to “normalize” the
translation by defining new atomic sorts in the translation’s target
theory to replace the unary predicates used in the translation.

(2) Suppose a defined atomic sort or constant a is transported to a new
atomic sort or constant b via a theory interpretation Φ. From that
point on, Φ will map a to b.

(3) Translations must be updated to take advantage of new definitions (see
Section 7.4 above). The updating is called translation enrichment and
it performed periodically by imps. For example, enrichment is done
when a translation is evaluated and when the macete help mechanism
is called. In rare occasions, imps will not work as expected because
some interpretation has not been enriched. This may happen, for ex-
ample, when a transportable macete is applied directly without using
the macete help mechanism. In some cases, you can get around the
problem by re-evaluating a relevant def-translation form.

94

Chapter 8

Quasi-Constructors

The purpose of this chapter is fourfold:

(1) To explain why quasi-constructors are desirable.

(2) To describe how they are implemented.

(3) To show how they are created and reasoned with.

(4) To point out the pitfalls associated with their use.

8.1 Motivation

The constructors of lutins are fixed, but you can define quasi-constructors
which effectively serve as additional constructors. Quasi-constructors are
desirable for several reasons:

(1) Once a quasi-constructor is defined, it is available in every theory
whose language contains the quasi-constructor’s home language. That
is, a quasi-constructor is a kind of global constant that can be freely
used across a large class of theories. (A constructor, as a logical con-
stant , is available in every theory.)

(2) Quasi-constructors are polymorphic in the sense that they can be ap-
plied to expressions of several different types. (Several of the construc-
tors, such as = and if, are also polymorphic in this sense.)

(3) The definition of a translation (see Chapter 7) is not directly dependent
on the definition of any quasi-constructor. Consequently, translations

95

can be applied to expressions involving quasi-constructors that were
defined after the translation itself was defined.

(4) Quasi-constructors can be defined without modifying the imps deduc-
tive machinery. (Note that the deductive machinery of a ordinary
constructor is “hard-wired” into imps.)

(5) Quasi-constructors can be used to represent operators in nonclassical
logics and operators on generic objects likes sets and sequences.

8.2 Implementation

Quasi-constructors are implemented as “macro/abbreviations.” For exam-
ple, the quasi-constructor quasi-equals1 is defined by the following bicon-
ditional:

E1 ' E2 ≡ (E1↓ ∨E2↓) ⊃ E1 = E2.

Hence, two expressions are quasi-equal if, and only if, they are either both
undefined or both defined with the same value.

When the preparsed string representation of an expression (“preparsed
string” for short) of the form E1 ' E2 is parsed, ' is treated as a macro with
the list of arguments E1, E2: an internal representation of the expression
(“internal expression”) is built from the preparsed string as if it had the
form (E1 ↓ ∨E2 ↓) ⊃ E1 = E2. When an internal expression of the form
(E1↓ ∨E2↓) ⊃ E1 = E2 is printed, ' is used as an abbreviation: the printed
string representation of the expression (“printed string”) is generated from
the internal expression as if the latter had the form E1 ' E2. In other words,
in string representation of the expression looks like E1 ' E2, an operator
applied to a list of two arguments, but it is actually represented internally
as (E1↓ ∨E2↓) ⊃ E1 = E2.

Abstractly, a quasi-constructor definition consists of three components:
a name, a list of schema variables, and a schema. In our example above,
quasi-equals is the name, E1, E2 is the list of schema variables, and the
right-hand side of the biconditional above is the schema. A quasi-constructor
is defined by a user with the def-quasi-constructor form. The list of
schema variables and the schema are represented together by a lambda-
expression which is specified by a string and a name of a language or theory.

1quasi-equals is written as == in the string syntax and as ' in the mathematics
syntax, infixed between its operands.

96

The variables of the lambda-expression represent the list of schema variables,
and the body of the lambda-expression represents the schema.

For instance, quasi-equals could be defined by:

(def-quasi-constructor QEQUALS
"lambda(e1,e2:ind, #(e1) or #(e2) implies e1 = e2)"
(language the-kernel-theory))

The name of the quasi-constructor is qequals, and the lambda-expression is
the expression specified by the string in the-kernel-theory. After this form
has been evaluated, an expression of the form qequals (A,B) is well-formed
in any language containing the language of the-kernel-theory, provided
A and B are well-formed expressions of the same type of kind ι. Separate
from the definition, special syntax may be defined for parsing and printing
qequals (e.g., as the infix symbol ').

The quasi-constructor quasi-equals is not actually defined using a def-
quasi-constructor form in imps. It is one of a small number of “system
quasi-constructors” which have been directly defined by the imps implemen-
tors. A system quasi-constructor cannot be defined using the def-quasi-
constructor form because the schema of the quasi-constructor cannot be
fully represented as a lutins lambda-expression. This is usually because
one or more variables of the schema variables ranges over function expres-
sions of variable arity or over expressions of both kind ι and ∗. For ex-
ample, qequals (A,B) is not well-defined if A and B are of kind ∗, but
quasi-equals (A,B) is well-defined as long as A and B have the same type
(regardless of its kind). The major system quasi-constructors are listed in
Table 8.1.

8.3 Reasoning with Quasi-Constructors

There are two modes for reasoning with a quasi-constructor Q. In the en-
abled mode the internal structure of Q is ignored. For example, in this mode,
when an expression Q(E1, .., En) is simplified, only the parts of the internal
expression corresponding to the arguments E1, .., En are simplified, and the
part corresponding to Q is “skipped.” Similarly, when a macete is applied to
an expression Q(E1, .., En), subexpressions located in the part of the internal
expression corresponding to Q are ignored. In this mode, quasi-constructors
are intended to behave as if they were ordinary constructors.

In the disabled mode, the internal structure of Q has no special status.
That is, deduction is performed on internal expressions as if Q was never

97

Quasi-constructor Schema
quasi-equals (E1, E2) (E1↓ ∨E2↓) ⊃ E1 = E2

falselike ([α1, . . . , αn+1]) λx:α1, . . . , x:αn, falselike (αn+1)
domain (f) λx1:α1, . . . , xn:αn, f(x1, , . . . , xn)↓
total? (f, [β1, . . . , βn+1]) ∀x1:β1, . . . , xn:βn, f(x1, , . . . , xn)↓
nonvacuous? (p) ∃x1:α1, . . . , xn:αn, p(x1, , . . . , xn)

Notes:

• E1 and E2 must have the same type.

• falselike (∗) represents the same internal expression as F.

• The sort of f is [α1, . . . , αn+1].

• τ([α1, . . . , αn+1]) = τ([β1, . . . , βn+1]).

• The sort of p is [α1, . . . , αn, ∗]

Table 8.1: System Quasi-Constructors

98

defined. (However, in this mode expressions involving Q will still be printed
using Q as an abbreviation.) The mode is activated by “disabling Q,” and
it inactivated by “enabling Q.” The disabled mode is used for proving basic
properties about Q. Once a good set of basic properties are proven and
formalized as theorems, there is usually little need for the disabled mode.
Most quasi-constructors are intended to be employed in multiple theories.
Hence, you will usually want to install a theorem about a quasi-constructor
with the usage transportable-macete.

For a few of the interactive proof commands, there is a dual command
with the word “insistent” put somewhere into the command’s name. For
example, the dual of simplify is the simplify-insistently. Calling the
dual of a command C is equivalent to disabling all quasi-constructors and
then calling C itself. In other words, the dual commands behave as if there
were no quasi-constructors at all. These “insistent” commands are intended
to be used sparingly because they can disturb the internal structure cor-
responding to a quasi-constructor, creating a new internal expression that
can no longer be abbreviated by the quasi-constructor. In visual terms, the
quasi-constructor “explodes.”

One of the advantages of working in a logic like lutins, with a rich
structure of functions, is that generic objects like sets and sequences can
be represented directly in the logic as certain kinds of functions. For in-
stance, sets are represented in imps as indicators, which are similar to
characteristic functions, except that x is a “member” of an indicator f iff
f(x) is defined. Operators on indicators and other functions representing
generic objects are formalized in imps as quasi-constructors, and theorems
about these operators are proved in “generic theories” that contain neither
constants nor axioms (except for possibly the axioms of the theory h-o-
real-arithmetic). Consequently, reasoning is performed in generic theories
using only the purely logical apparatus of lutins (and possibly h-o-real-
arithmetic). Moreover, theorems about generic objects are easy to apply
in other theories since the operators, as quasi-constructors, are polymorphic
and since the theory interpretations involved usually have no obligations to
check.

8.4 Hints and Cautions

(1) Reasoning with quasi-constructors can be tricky because the internal
representation of the quasi-constructor—the structure it abbreviates—

99

is hidden from view. The view-expr form (see Chapter 15) can be
used to print an expression without quasi-constructor abbreviations.
For example, when

(view-expr
"1/0==?zz"
(language-name h-o-real-arithmetic)
no-quasi-constructors)

is evaluated, the expression 1/0 ' ⊥Z is printed as

(#(1/0) or #(?zz)) implies 1/0=?zz.

(2) It is often easy to confuse quasi-constructors with constants. For in-
stance, a common mistake is to try to unfold a quasi-constructor. To
help you avoid such confusion, curly brackets can be used to surround
the operands of a quasi-constructor instead of parentheses. That is,
a string q{e1,...,en}, where q is a quasi-constructor, is parsed ex-
actly like q(e1,...,en). In addition, the internal expression is always
printed like q{e1,...,en}, unless you have defined a special print syn-
tax for q.

(3) It should always be remembered that the internal representation of an
expression containing quasi-constructors might be much larger than
what one might expect from the printed representation of the expres-
sion, especially if the quasi-constructors are defined in terms of other
quasi-constructors. Consequently, the processing speed of imps on ex-
pressions containing quasi-constructors sometimes seems unjustifiably
slow.

(4) An expression may sometimes “implode” when parsed. That is, quasi-
constructors may appear in the printed string in places where they
did not occur in the preparsed string. This happens because the imps
printing routine will use quasi-constructors as abbreviations wherever
possible, regardless of whether these quasi-constructors were used in
the preparsed string. Expression implosion can be caused by simplifi-
cation and macete application.

(5) Due to the implosion phenomenon, the preparsed and printed strings
may not parse into the same internal expressions (but the two internal

100

expressions will always be α-equivalent). For example, consider the
preparsed string S1

with(f:[ind,ind], forall(x:ind, #(f(x))))

It parses into an internal expression E1 which is printed as the string
S2

with(f:[ind,ind],total_q{f,[ind,ind]})

with quasi-constructor abbreviations and is printed as S1 without
quasi-constructor abbreviations. However, S2 parses into an internal
expression E2 which is printed as S2 with quasi-constructor abbrevia-
tions and is printed as the string S3

with(f:[ind,ind],forall(x_0:ind,#(f(x_0))))

without quasi-constructor abbreviations. That is, the two internal
expressions are the same except for the name of the single bound
variable.

(6) One of the most devastating forms of quasi-constructor explosion
can occur when a nonnormal translation (which maps some atomic
sorts to unary predicates) is applied to an expression containing
quasi-constructors. The quasi-constructor explosion happens because
the binding expressions in the internal representation of a quasi-
constructor will be rewritten when the translation is applied if the
variables being bound involve a atomic sort which is mapped to a
unary predicate.

(7) Often two different internal expressions containing quasi-constructors
will be printed in exactly the same way. Usually this is due to the
fact that some of the bound variables in the internal representation
of some of the quasi-constructors have different names (i.e., the two
expressions are α-equivalent). In this case, there is no problem; for
the most part, imps will treat the expressions as if they were identical.
However, the two expressions may differ in other ways, e.g., some of
the corresponding bound variables may have different sorts. Hence, in
rare occasions, it may happen that there are two internal expressions
printed the same which are not known by imps to be equal (or quasi-
equal). This situation can be very hard to deal with. It is often best to
backup and try a different path that will avoid this confusing situation.

101

(8) A quasi-constructor can be disabled, and then later enabled, in the
midst of a deduction using the appropriate proof commands. However,
disabling a quasi-constructor in the midst of a proof can cause severe
confusion if one forgets to later enable it. As a general rule, you should
always try to find ways to avoid disabling quasi-constructors.

102

Chapter 9

Theory Ensembles

9.1 Motivation

Much of mathematics deals with the study of structures such as monoids,
fields, metric spaces, or vector spaces, which consist of an underlying set S,
some distinguished constants in S, and one or more functions on S. In imps,
an individual structure of this kind can be easily formalized as a theory. For
example, the imps theory for monoids is specified by two def-forms:

(def-language MONOID-LANGUAGE
(embedded-languages h-o-real-arithmetic)
(base-types uu)
(constants
(e uu)
(** (uu uu uu))))

(def-theory MONOID-THEORY
(component-theories h-o-real-arithmetic)
(language monoid-language)
(axioms
(associative-law-for-multiplication-for-monoids
"forall(z,y,x:uu, x**(y**z)=(x**y)**z)")
("forall(x:uu,x**e=x)")
("forall(x:uu,e**x=x)")))

In the mathematical syntax, the sort uu is written U and the constants e,
** are written e, •.

103

Notice that the theory of a monoid as presented here is suitable for
concept formulation and proof in a single monoid. Here are some examples:

• One can prove uniqueness of the multiplicative identity:

∀x:U, (∀y:U, x • y = y • x = x) ≡ x = e

• A sequential product operator for sequences can be defined as the least
solution of

Π = λm, n:Z, f :[Z,U], if(m ≤ n,Π(m,n− 1, f) • f(n), e)

• One can easily prove Π satisfies

∀f :[Z,U],m, n:Z, n ≤ m ⊃ Π(n,m, f) ' Π(n,m− 1, f) • f(m)

• An monoid endomorphism (i.e., a self homomorphism) can be defined
by the predicate

λϕ:[U,U], ϕ(e) = e ∧ ∀x, y:U, ϕ(x • y) = ϕ(x) • ϕ(y)

However, there is no way to talk about monoid homomorphisms between
different monoids.

Nevertheless, it is possible to produce a suitable theory in imps in which
a general notion of monoid homomorphism can be defined. To do so requires
at the very least a theory with two possibly distinct monoids. In general,
multiple instances of structures can be dealt with in imps in two ways:

• In one approach, we first formalize set theory as an imps theory. This
can be done by treating Set as a primitive sort and the membership
relation ε as a primitive function symbol. It is then possible to define
a structure of a particular kind by a predicate on Set. For instance, a
monoid is any object in Set of the form (U, •, e) where • is a binary
associative operation on U for which e is a right and left identity.

• The other approach is to create a new theory which is the union of
embedded replicas of a theory of a single structure. A replica of a
theory T is a theory T ′, which differs from T only by an appropriate
renaming of sorts and constants. By an embedding we mean a theory
interpretation which maps distinct sorts and constants to distinct sorts
and constants.

104

In this section we explain the theory ensemble mechanism, which implements
the second approach above. To illustrate how the machinery works in the
case of a monoid, let us define a new theory, monoid-theory-1 obtained
by renaming the sorts and constants of monoid-theory not in h-o-real-
arithmetic by affixing the characters “ _1.”

(def-language MONOID-LANGUAGE-1
(embedded-languages h-o-real-arithmetic)
(base-types uu_1)
(constants
(e_1 uu_1)
(**_1 (uu_1 uu_1 uu_1))))

(def-theory MONOID-THEORY-1
(component-theories h-o-real-arithmetic)
(language monoid-language-1)
(axioms
(associative-law-for-multiplication-for-monoids
"forall(z,y,x:uu_1,

x **_1 (y **_1 z)=(x **_1 y) **_1 z)")
("forall(x:uu_1,x **_1 e_1=x)")
("forall(x:uu_1,e_1 **_1 x=x)")))

Now define monoid-pair as the union of monoid-theory and monoid-
theory-1:

(def-theory MONOID-PAIR
(component-theories monoid-theory monoid-theory-1))

The theory ensemble facility automates these steps and also provides several
bookkeeping devices for keeping track of theories and interpretations in the
ensemble.

9.2 Basic Concepts

A copy of a theory T is a new theory T ′ obtained from T by applying a
renaming function to the constant and sort symbols in T . The only condition
on the renaming function is that it not identify distinct constant names or
distinct sort names. A typical renaming function is one which affixes an
underscore followed by a number to a name. For each n ≥ 0, let Rn be a
renaming function.

105

• For each n ≥ 0, let T n be a copy of T obtained by applying the
renamer Rn. T n is called the n-th theory replica of T .

• Let Un be the union of the theories T 0, . . . , T n−1. Un is called the
n-th theory multiple of T .

• For each i ∈ {0, . . . n − 1} there is a theory interpretation Ψi of T in
the replica T i. Ψi is called i-th replicating translation from the base
theory. These translations are actually constructed by the system
when a multiple is built. Note that Ψi composed with the inverse of
Ψj is also an interpretation of T j in T i; however, this translation is
not constructed by the system automatically.

• Let m < n, and

f : {0, . . . ,m− 1} → {0, . . . , n− 1}

be an injective function. In our documentation we refer to f as a per-
mutation. Then there is a unique interpretation Φf : Um → Un with
the property that, for each i ∈ {0, . . . ,m−1}, Φf extends the canonical
interpretation of T i in T f(i). Φf is called the canonical interpretation
associated to f .

• A defined constant is natively defined in Um if and only if the following
two conditions hold:

– The constant is not the translation of a defined constant from a
lower multiple by a canonical translation.

– The constant is not the translation of a defined constant from a
higher multiple by an existing interpretation.

9.3 Usage

There are four def-forms for building and manipulating theory ensembles.

• def-theory-ensemble. This form is used to build a theory ensemble
from a given theory T . The theory T is called the base theory of the
ensemble.

• def-theory-ensemble-multiple. This form is used to build a theory
Tn which is the union of n copies of T .

106

• def-theory-ensemble-instances. This form is used to build a the-
ory interpretation from a theory multiple Tn to a given theory.

• def-theory-ensemble-overloadings. This form establishes over-
loadings for the constants defined in T and all the multiples Tn.

9.4 Def-theory-ensemble

This is the def-form for building a theory ensemble from an imps theory. In
the simplest version, the form requires only one argument, the name of the
theory ensemble which is then identical to the name of the base theory. For
example:

(def-theory-ensemble METRIC-SPACES)

Evaluating the def-form builds a theory ensemble also named METRIC-SPACES.
In general, three additional keyword arguments are allowed:

• (base-theory theory-name). theory-name is the name of the base
theory of the ensemble. This keyword arguiment is used when the
name of the ensemble is different from that of the base theory.

• (fixed-theories theory1 . . . theoryn). The presence of this argu-
ment causes imps to rename only those sorts and constants which
do not belong to any of the theories theory1 . . . theoryn when building
replicas. The default value of this argument is the fixed-theories set
at the time the form is evaluated.

• (replica-renamer proc-name). proc-name is the name of a proce-
dure of one integer argument, used to name sorts and constants of
theory replicas. The default procedure is to affix an underscore fol-
lowed by a nonnegative integer to a name. Most users should be
content to use the default.

Another example which utilizes the fixed-theories option is the theory en-
semble of vector spaces over a field:

(def-theory-ensemble VECTOR-SPACES
(fixed-theories fields))

When a theory ensemble def-form is evaluated, imps builds a number of
tables, all of which are initially empty. The table will be filled as multiples
are built. The tables are:

107

• A table of the theory replicas. The key is an integer k ≥ 1 and the
entry is the k-th replica of the base theory.

• A table of the theory multiples. The key is an integer k ≥ 1 and the
entry is the k-th multiple of the base theory.

• A table of canonical interpretations between multiples. The key is a
pair of integers (m,n) with 1 ≤ m < n and the corresponding entry is
a list of interpretations from the m-multiple to the n-multiple.

9.5 Def-theory-multiple

This form requires two arguments, the name of a theory ensemble and an
integer n. For example,

(def-theory-ensemble-multiple metric-spaces 2)

When this form is evaluated, imps builds a 2-multiple of the theory metric-
spaces. imps automatically names this theory metric-spaces-2-tuples.

Once the theory metric-spaces-2-tuples is available several important
concepts can be defined. For instance,

(def-constant CONTINUOUS
"lambda(f:[pp_0,pp_1],forall(v:sets[pp_1],

open(v) implies open(inv_image(f,v))))"
(theory metric-spaces-2-tuples))

9.6 Def-theory-ensemble-instances

This form is used to build interpretations from selected theory multiples and
to transport natively defined constants and sorts from these multiples using
these interpretations. The syntax for this def-form is very elaborate, so we
refer you to Chapter 15 for its general use.

As an example, suppose we wanted to consider the pair consisting of
a normed linear space and the real numbers as a special case of the the-
ory metric-spaces-2-tuples. One reason for doing this is to make all the
mathematical machinery developed in the abstract theory metric-spaces-
2-tuples available in the particular case. This machinery includes defini-
tions (such as the definition of continuity for mappings) and theorems (such
as the various characterizations of continuity.)

108

We would like to build a theory interpretation from metric-spaces-2-
tuples to the union of normed-linear-spaces and h-o-real-arithmetic
which is normed-linear-spaces itself, since normed-linear-spaces is a
super-theory of h-o-real-arithmetic. Moreover, we would like imps to
translate all the defined sorts and constants in metric-spaces-2-tuples to
normed-linear-spaces.

This can be accomplished by evaluating the form

(def-theory-ensemble-instances METRIC-SPACES
(target-theories

normed-linear-spaces
h-o-real-arithmetic)

(multiples 1 2)
(sorts (pp uu rr))
(constants

(dist "lambda(x,y:uu, norm(x-y))"
"lambda(x,y:rr, abs(x-y))")))

This does two things: First it builds an interpretation from metric-spaces-
2-tuples into normed-linear-spaces in which

• pp_0 goes to uu.

• pp_1 goes to rr.

• dist_0 goes to lambda(x,y:uu, norm(x-y).

• dist_1 goes to lambda(x,y:rr, abs(x-y)).

Secondly, it translates all the natively defined constants in metric-spaces
and metric-spaces-2-tuples into normed-linear-spaces.

9.7 Def-theory-ensemble-overloadings

This form takes the following arguments:

• The name of the theory ensemble.

• Any number of integers (N1 . . .Nk)

Evaluation of the def-form causes imps to overload those constants natively
defined in the theory multiples N1 . . .Nk. For example:

109

(def-theory-ensemble-overloadings metric-spaces 1 2)

This form makes the theory ensemble mechanism manageable to the
user. When the system transports a natively defined constant c from a
theory multiple, it will often give the new constant an unappealing name.
For instance, the name might be very long with several indices as suffixes.
Ideally, one would like to use the same name for all instances of c, and this
is usually possible if the constant is a function symbol which occurs as an
operator of an application. In this case, the appropriate function symbol
may be unambiguously determined from the sorts of the arguments.

9.8 Hints and Cautions

(1) In principle, any theory can be used to build a theory ensemble. How-
ever, the theory ensemble facility is useful only if the following two
conditions on the base theory are met:

• The base theory is fairly general so that there are likely to be
numerous instances of the base theory. Thus it would make little
sense to make a theory with essentially only one model into a
theory ensemble.

• There is a need for dealing with at least two distinct instances of
the base theory.

(2) There is a certain amount of overhead in building theory multiples.
This overhead includes building and tabulating theory replicas and
building canonical theory interpretations from the m-multiples to n-
multiples, where m < n. Recall, that there is a canonical interpretation
Φf : Um → Un for each injective map

{0, . . . ,m− 1} → {0, . . . , n− 1}.

There are n(n− 1) · · · (n−m+ 1) such mappings. This overhead can
become forbidding when the multiples get too large. As a general rule,
multiples of order greater than 4 should be avoided.

(3) Before the system builds an n-multiple it checks whether all j-multiples
for j < n already exist, building the missing multiples as needed.

110

Chapter 10

The Proof System

In purpose of this chapter is to explain:

• The imps proof system.

• A description of how you prove theorems in imps, in interactive mode
and in script mode.

• A description of the proof-script language.

10.1 Proofs

A proof of a statement ψ is conclusive mathematical evidence of why ψ is
true. A proof is usually thought of as a sequence of formulas ϕ1, · · · , ϕn such
that ϕn = ψ and every ϕi is either:

(1) An axiom, that is, a formula which is assumed true to begin with;

(2) A theorem, that is, a formula whose truth has already been established
by some other proof; or

(3) A consequence of one or more previous formulas in the sequence. This
means that ϕi is related to these formulas by a relation called an
inference.

The criterion for determining what constitutes an acceptable inference de-
pends on the purpose of the proof. If the proof is for mechanical verification
only (whether by a digital computer or a human being acting like one), then
the criteria of acceptability can be specified unambiguously as a set of rules

111

for determining which sequences of symbols constitute proofs. This set of
rules is called a proof system. For a human audience, on the other hand, it is
usually a good idea to stress the essential or innovative steps in a proof and
avoid routine computations. Moreover, for an expository article, a textbook,
or a classroom lecture, it is acceptable, even desirable, that inference steps
appeal to intuition.

10.2 The IMPS Proof System

In the traditional presentation of proofs in textbooks and journals, the de-
ductive process appears as an inexorable progression from known facts to
unknown ones. In contrast, the deductive process in imps begins with a
conjecture and usually proceeds with a large amount of trial and error. This
view of the deductive process leads naturally to the idea of a proof as a
graph.

Proofs in imps are represented by a data structure called a deduction
graph, which is a directed graph with two kinds of nodes: inference nodes and
sequent nodes. A sequent node consists of a single formula called the asser-
tion together with a context. The context is logically a set of assumptions,
although the implementation caches various kinds of derived information
with a context. An inference node i consists of a unique conclusion node
c, a (possibly empty) set of hypothesis nodes {h1, · · · , hn}, and the mathe-
matical justification for asserting the relationship between c and h1, · · · , hn.
This justification is called an inference rule.

As an interactive process, a proof consists of a series of reductions of
unproven sequent nodes of the graph (which we think of as goals) to new
subgoals. Each reduction is created by a procedure called a primitive infer-
ence procedure, which takes a sequent node and possibly other arguments,
returns an inference node inf and, as a side-effect, changes the deduction
graph. These changes include:

• The addition of inf to the set of inference nodes of the deduction
graph.

• The addition of the hypotheses of inf to the set of sequent nodes.

There are about 25 primitive inference procedures. Primitive inference
procedures are the only means by which inference nodes can be added to a
deduction graph. As a user of imps, however, you will never apply primitive

112

inference procedures directly; you will only apply them indirectly by apply-
ing proof commands—convenient procedures which add sequent nodes and
inference nodes to a deduction graph by calling primitive inferences. Proof
commands are documented in Chapter 16.

10.3 Theorem Proving

There are two modes of proving theorems in imps: interactive mode and
script mode. Interactive mode is used for proof discovery and interactive
experimentation with new proof techniques. Script mode is used primarily
for proving theorems whose proofs are similar to previously constructed
proofs or for checking a large number of proofs.

To begin an interactive proof, select the Start dg option in the
menu or use the Emacs command M-x imps-start-deduction. imps will
then prompt you in the minibuffer with the text Formula or reference
number: which you can supply by clicking the right mouse button on the
formula you want to prove (provided it is enclosed between double quotes)
or by typing the reference number of the formula (provided it has already
been built). All the proof commands and node-movement commands given
during the course of a single proof are recorded as a component of the deduc-
tion graph. These commands can be inserted as text into a buffer (provided
the major mode of the buffer is scheme mode) by selecting the option
Insert proof script or by entering C-c i. The text that is inserted in the
buffer is a script of proof commands which can be edited and used in other
proofs. To run a command script, select the option Execute region or
enter C-c r. This will run the commands in the current region. Note that
an interactive proof can be combined with one or more proof segments run
in script mode. This is especially useful for redoing similar arguments.

10.3.1 Checking Proofs in Batch

To check a large number of proofs, (for example, to check an addition to the
theory library) proof scripts can be run in batch by using the shell command

$IMPS/../bin/run_test testfile logfile

where testfile is a text file which may contain any def-form. Typically,
it will consist of a series of include-files and load-section forms. The file
logfile will contain the output of the process.

For example, entering on a machine called veraguas the shell command

113

$IMPS/../bin/run_test testy loggy

where testy contains

(load-section abstract-calculus)

will produce a logfile loggy which will look something like:

HOST veraguas starting IMPS test.
File tested = testy
Executable = /imps/sys/executables/foundation
Mon May 3 18:21:56 EDT 1993

INITIAL THEORY NETWORK INFORMATION:

THEORIES = 12

THEORY-INTERPRETATIONS = 1

THEOREMS = 277

MACETES = 360

EXPRESSIONS = 3428

1. THEOREM-NAME: ANONYMOUS

forall(a,c:uu,
forsome(b:uu,b prec a and c prec b) implies c prec a);

THEORY: PARTIAL-ORDER
SEQUENT NODES: 10
PROOF STEPS: 3
GROUNDED?: YES
CONTEXTS=4
ASSUMPTIONS/CONTEXT=1.0
virtual time = 0.16 seconds

.

.

114

.

219. THEOREM-NAME: LOCALITY-OF-INTEGRALS

forall(phi,psi:[ii,uu],a,b:ii,
a<b
and
integrable(phi)
and
integrable(psi)
and
forall(x:ii,a<=x and x<b implies phi(x)=psi(x))
implies
forall(x:ii,
a<=x and x<b implies
integral(a,x,phi)=integral(a,x,psi)));

THEORY: MAPPINGS-FROM-AN-INTERVAL-TO-A-NORMED-SPACE
SEQUENT NODES: 54
PROOF STEPS: 33
GROUNDED?: YES
CONTEXTS=29
ASSUMPTIONS/CONTEXT=5.551724137931035
virtual time = 25.05 seconds

0 errors during test.

0 failed proofs during test.

FINAL THEORY NETWORK INFORMATION:

THEORIES = 32

THEORY-INTERPRETATIONS = 110

THEOREMS = 915

MACETES = 1108

115

EXPRESSIONS = 89274

Mon May 3 21:06:38 EDT 1993
IMPS test completed.

10.4 The Script Language

Informally, a script is a sequence of proof commands and control statements.
Essentially, the script facility in imps allows users to build programs to prove
theorems. Scripts are a useful way to package and reuse common patterns
of reasoning. The paper [8] presents some practical methods for exploiting
the imps proof script mechanism.

A script is a kind of s-expression, that is, a symbol, a string, an integer,
or a nested-list of such objects. To describe how imps interprets scripts to
modify the state of the deduction graph, we first establish some terminology
to designate certain classes of script components. Each script component is
itself an s-expression.

• A script form expression (expression for short) is a string, a symbol,
a number, or a list of expressions.

• An expression operator is one of the symbols %, *, ~*.

• A script variable is a symbol beginning with $.

• A keyword form is a list whose first element is one of the follow-
ing symbols (which we refer to as keywords): move-to-sibling,
move-to-ancestor, move-to-descendent, block, if, for-nodes,
while, let-script, let-macete, let-val, script-comment,
label-node, jump-to-node, skip.

• A command form is an expression which is either a command name or
a list whose first element is a command name.

• A script is a list of script form expressions.

In Figure 10.1 we provide an example of a script. This script can be used
to prove the combinatorial identity discussed in Chapter 3 on the imps
micro exercises. The script consists of a number of forms, each of which is
applied to a unique node of the deduction graph called the current node.

116

(
(unfold-single-defined-constant-globally comb)
(apply-macete-with-minor-premises
fractional-expression-manipulation)

(label-node compound)
direct-and-antecedent-inference-strategy
(jump-to-node compound)
(for-nodes
(unsupported-descendents)
(if (matches? "with(t:rr, #(t^[-1]))")

(apply-macete-with-minor-premises
definedness-manipulations)

(block
(apply-macete-with-minor-premises
factorial-reduction)

simplify)))
)

Figure 10.1: An imps Proof Script

In interactive mode, the current node is the one which is displayed in the
sequent node buffer.

(1) Expand the definition of comb, which in imps is given in terms of
the factorial function. The resulting sequent consists of a context
containing the formulas k ≤ m and 1 ≤ k and the assertion

(1 +m)!
k! · (1 +m− k)!

=
m!

(k − 1)! (m− (k − 1))!
+

m!
k! (m− k)!

.

(2) Apply the macete fractional-expression-manipulation to the sequent
above. Moreover, attach to the label compound, to the resulting
node, but otherwise leave the deduction graph intact. This will allow
us to subsequently return to this node.

(3) Apply the command direct-and-antecedent-inference-strategy to the
result of the previous step. This adds three new sequents to the de-
duction graphs: two concerning definedness and one whose assertion
is an equation.

117

(4) We will process these nodes in step by iterating through them with
the (for-nodes) keyword form as follows:

(a) For the sequents concerning definedness, use the macete
definedness-manipulations. This combines a number of facts
about the definedness of the arithmetic operations and the facto-
rial function.

(b) For the remaining sequent, use the macete factorial-reduction.

10.4.1 Evaluation of Script Expressions

Scripts are executed in an environment. This environment is an association
of symbols to values. Every script expression has a value in the script’s
execution environment. The value of a script expression is determined as
follows:

• If the expression is a script variable $n where n is an integer, then the
value is the n-th argument in the script call.

• If the expression is a script variable $name where name is a symbol,
its value is determined by the last assignment of that variable. If there
is no assignment preceding the call, an error is raised.

• If the expression is a string, an integer, or a symbol which is not a
variable, then the value of the expression is itself.

• If the expression is a list whose first element is an expression operator,
(that is, one of the symbols %, *, ~*) then that operator is applied to
the values of the arguments as follows:

– (% format-string arg1 · · · argn). The first argument must be a
string with exactly n occurrences of the characters ~A. The re-
maining arguments argi are plugged in succession for each occur-
rence of ~A.

– (%sym format-string arg1 · · · argn). The first argument must be
a string with exactly n occurrences of the characters ~A. The
remaining arguments argi are plugged in succession for each oc-
currence of ~A and the resulting string is read in as a symbol.

– (* arg1 · · · argn). The set of assumptions (regarded as strings)
of the current sequent node which match any argument.

118

– (~* arg1 · · · argn). The set of assumptions (regarded as strings)
of the current sequent node which match no argument.

• If the expression is a list whose first element is not an expression
operator, its value is the list of values of the arguments.

10.5 The Script Interpreter

A script is a list (form1 . . . formn) of script expressions. The interpreter
executes each form in the script in left-to-right order1. Once a form is
executed by the script interpreter at a sequent node S, execution of the
script continues at a new sequent node S1 called the natural continuation
node of the script. This node is usually the first ungrounded relative of S
after the form is executed. The only exception is when the form is a node
motion keyword form.

The rules for script interpreter execution are given below. Interpreting a
script expression formi usually causes side effects on the current deduction
graph and other structures associated to the current proof. The side-effects
depend on the kind of form being handled by the interpreter.

Keyword Forms

Recall that a keyword form is a script expression which is a list whose first
element is a keyword. The execution of keyword forms depends on the
keyword:

• Node motion forms. These forms cause script execution to continue at
a node other than the natural continuation node. The following are
the node motion keyword forms:

– (move-to-sibling n). This causes execution to proceed at the
n-th sibling node.

– (move-to-ancestor n). This causes execution to proceed at the
n-th ancestor node.

– (move-to-descendent (l1 · · · ln)). This causes execution to
proceed at the specified descendent node. Each li is an integer or
a dotted pair (a . b) of integers.

1Given the way scripts are usually presented on a page this really means from top to
bottom.

119

– (jump-to-node label). label is a deduction graph sequent node
label.

• Conditionals. (if test-form consequent alternative) These are forms
which provide conditional execution of command forms. The test-form
can be of the following kinds:

– (matches? assertion assumption-list1 · · · assumption-listn),
where assertion and assumption-listi are script expressions. The
condition is true if the value of assertion matches the assertion
of the current sequent node and every formula in the value of
assumption-list matches an assumption of the current sequent
node.

– (minor?). True if the current sequent node is the minor premise
of some inference node.

– (major?). True if the current sequent node is the major premise
of some inference node.

– (generated-by-rule? rule-name). True if the current sequent
node is an assumption of an inference node with name rule-name.

– (succeeds? script-form). True if script-form applied to current
sequent node grounds it. May cause side effects on the deduction
graph (and is usually intended to do so.)

– (progresses? script-form). True if script-form applied to cur-
rent sequent node makes any progress. May cause side effects on
the deduction graph (and is usually intended to do so.)

– (not test-form). True if test-form fails. May cause side effects
on the deduction graph.

– (and test-form1 · · · test-formn). True if all test-formi are true.
May cause side effects on the deduction graph.

– (or test-form1 · · · test-formn). True if at least one test-formi is
true. May cause side effects on the deduction graph.

• Blocks. (block script-form1 · · · script-formn). A block form merely
provides a grouping for a list of script forms.

• Iteration forms. These are of two kinds:

120

– Range iterations provide for execution over a specified range of
nodes. These have the form (for-nodes range-form script-form).
range-form can be one of the following:

∗ (unsupported-descendents).
∗ (minor-premises).
∗ (node-and-siblings).

– Conditional iterations provide for execution while a specified con-
dition holds. These have the form (while test-form script-form),
where test-form is specified in the same way as for conditional
forms.

• Skip. (skip). This is a form used to insert in locations where at least
one script form is required. It is essentially equivalent to (block).

• Assignments.

– (let-script name arg-count script). This form adds a command
with name $name. The value of $name is this name in the current
execution environment.

– (let-macete name compound-macete-specification). This form
adds a macete with name $name. The value of $name is this
name in the current execution environment.

– (let-val name expression). The value of $name is this name in
the current execution environment.

• Deduction graph node labels.

– (label-node name). This form assigns the label name to the
current node.

All these forms modify the current execution environment.

• Comments. (script-comment comment-string). Adds a comment to
the preceding history entry. This keyword form has no other effect.

Other Forms

Execution of any other form form in a script has the following result: The
value of form must be a command form which is applied to the current node.
In other words:

121

• If the value of form is a symbol, this value should be the name of a
command which takes no arguments; otherwise an error results. The
script interpreter then applies that command to the current sequent
node.

• If the value of form is a list, the first expression of the list must be
the name of a command, while the remaining elements should be ar-
guments of the command; otherwise an error results. The script in-
terpreter then applies that command with the resulting arguments to
the current sequent node.

The following are possible arguments to a command:

• A symbol. Depending on the command and the location of the argu-
ment, this symbol may refer to a theorem, a macete, a translation, an
inductor, a quasi-constructor, or a constant.

• A string. This string can be used to refer to an expression, a theorem,
or a context.

• An integer. This integer can be used to refer to a sequent node, an
occurrence number within an expression, or the number of an assump-
tion.

• A list of strings.

• A list of integers.

10.6 Hints and Cautions

(1) To build a proof script for insertion in a def-theorem form, it is much
easier to first prove the theorem interactively and then record the
proof script using C-c i. A novice user should not attempt to build
scripts from scratch without thoroughly understanding how scripts
replay interactive proofs.

(2) More experienced users can build new scripts by modifying existing
ones. For example, the following is a def-theorem form with a valid
proof:

(def-theorem MIN-LEMMA

122

"forall(a,b,c:rr,
a<b and a<c
implies

forsome(d:rr, a<d and d<=b and d<=c))"
(theory h-o-real-arithmetic)
(proof
(
direct-and-antecedent-inference-strategy
(instantiate-existential ("min(b,c)"))
(unfold-single-defined-constant-globally min)
(case-split ("b<=c"))
simplify
simplify
(apply-macete-with-minor-premises minimum-1st-arg)
(apply-macete-with-minor-premises minimum-2nd-arg)
)))

To get a valid proof for an analogous theorem where the arguments to
< and ≤ are interchanged, one can edit the previous script replacing
min by max everywhere in the proof:

(def-theorem MAX-LEMMA
"forall(a,b,c:rr,

b<a and c<a
implies
forsome(d:rr, d<a and b<=d and c<=d))"

(theory h-o-real-arithmetic)
(proof
(
direct-and-antecedent-inference-strategy
(instantiate-existential ("max(b,c)"))
(unfold-single-defined-constant-globally max)
(case-split ("b<=c"))
simplify
simplify
(apply-macete-with-minor-premises maximum-1st-arg)
(apply-macete-with-minor-premises maximum-2nd-arg)
)))

123

Chapter 11

Simplification

11.1 Motivation

One of the goals of the imps system is to assist users in producing formal
proofs in which the number of steps and the kinds of justification used for
each step are close to those of a rigorous and detailed (but informal) proof.
One of the main reasons that formal proofs are usually so long is that many
proof steps involve replacement of an occurrence of a term t1 with a term
t2 having the same value as t1 and which is obtained from t1 by a variety
of theory-specific transformations. A formal proof might require hundreds
of steps to justify such a replacement. In imps, the simplifier is designed to
handle many of these inferences directly without user intervention and to
bundle them into a single inference step. The simplifier accomplishes this
as follows:

• By invoking a variety of theory-specific transformations on expressions,
such as rewrite rules and simplification of polynomials (given that the
theory has suitable algebraic structure, such as that of a field);

• By simplifying expressions based on their logical structure; and

• By discharging the great majority of definedness and sort-definedness
assertions needed to apply many forms of inference.

The simplifier can be invoked directly by the user as an imps command.
As such it is an exceedingly powerful tool. More significantly, the simplifier
is a central element in the imps inference architecture, since it is routinely
invoked by other commands.

124

The simplifier can be viewed as a function of a context Γ and an expres-
sion e which returns an expression S(Γ, e). The following condition serves
as the correctness requirement for the simplifier: For any context Γ (in a
theory T) and expression e, T and Γ must together entail e ' S(Γ, e). That
is to say, either e and e′ are both defined and share the same denotation, or
else they are both undefined.

11.2 Implementation

The simplifier is a highly recursive procedure. For instance, simplification
of a compound expression may require prior simplification of all its compo-
nents (that this is not always true reflects the fact that the simplification
procedure for an expression depends on the constructor of the expression).
Simplification of individual expression components is done with respect to
the local context of that component in the expression. Thus, for instance,
in simplifying an implication A ⊃ B, A may be assumed true in the local
context relative to which B is simplified. Similarly, in simplifying the last
conjunct C of a ternary conjunction A ∧ B ∧ C, A and B may be assumed
in the local context. On the other hand, when a variable-binding operator
is traversed, and there are context assumptions in which the bound variable
occurs free, then the simplifier must either rename the bound variable or
discard the offending assumptions. The strategy of exploiting local contexts
is discussed in [20].

At any stage in this recursive descent, certain theory-specific procedures
may be applied to a subexpression of the original expression or to a se-
mantically equivalent form of the original expression. These procedures are
called transforms. A transform T takes two arguments, a context Γ and
an expression e, and returns two values, an expression T (Γ, e) and a set of
formulas {c1(Γ, e), . . . , cn(Γ, e)} called convergence requirements. To apply
a transform T to a context Γ and an expression e means to do one of three
things:

• If the simplifier can determine that all the convergence requirements
are met in Γ, replace e with T (Γ, e).

• If the simplifier can determine that one of the convergence require-
ments fails in Γ, replace e with an undefined expression of the same
sort as e.

• Otherwise, leave e as it is.

125

This process is sound provided, for every context Γ and expression e, the
following conditions hold:

• If all the convergence requirements c1(Γ, e), · · · , cn(Γ, e) are true in Γ,
then T (Γ, e) ' e.

• If any of the convergence requirements is false in Γ, then T (Γ, e) is
undefined.

Each theory has a table of transforms indexed on two keys: (1) a constructor,
a quasi-constructor, or the atom nil and (2) a constant or the atom no-
defined-constant. The simplifier determines what transforms in the table
to apply to an expression as follows:

• It first computes the expression’s lead constructor . This is the quasi-
constructor of the expression if it has one. Otherwise, it is the con-
structor of the expression (which is the atom nil for variables and
constants).

• It then computes the given expression’s lead constant . This is the first
constant in a left-to-right traversal of the expression tree, if there is
one, or no-defined-constant otherwise. Thus, the lead constant of
λx, y:R, x+ y is +.

• Finally, it applies, in a nondeterministic order, the transforms in the
table whose keys are the same as the expression’s lead constructor and
lead constant.

11.3 Transforms

The transforms used by the imps simplifier include:

(1) Algebraic simplification of polynomial expressions.

(2) A decision procedure for linear inequalities, based on the variable elim-
ination method used in many other theorem provers.

(3) Rewrite rules for the current theory T , or for certain theories T0 for
which imps can find interpretations from T0 into T).

The framework for applying rewrite rules is entirely general, and uses
pattern matching and substitution in a familiar way. By contrast, the trans-
forms that perform algebraic manipulation use specially coded procedures;

126

they are applied to expressions in a way that may not be easily expressed
as patterns. Nevertheless, their validity, like the validity of rewrite rules,
depends on theorems, many of which are universal, unconditional equalities
(e.g., associative and commutative laws).

11.4 Algebraic Processors

Instead of providing a fixed set transforms for manipulating expressions in
a limited class of algebraic structures, we have implemented a facility for
automatically generating and installing such transforms for general classes
of algebraic structures. This is possible since algorithmically the transforms
are the same in many cases; only the names have to be changed, so to speak.
The algebraic manipulation transform is one component of a data structure
called an algebraic processor.

An algebraic processor has either two or three associated transforms.
There is one transform for handling terms of the form f(a, b) where f is one
of the algebraic operations in the processor definition. A separate transform
handles equalities of algebraic expressions. Frequently, when the structure
has an ordering relation, there is a third transform for handling inequalities
of algebraic expressions.

When an algebraic processor is created, the system generates a set of
formulas which must hold in order for its manipulations to be valid. The
processor’s transforms are installed in a theory T only if the system can
ascertain that each of these formulas is a theorem of T .

The user builds an algebraic processor using a specification such as

(def-algebraic-processor FIELD-ALGEBRAIC-PROCESSOR
(language fields)
(base ((operations

(+ +_kk)
(* *_kk)
(- -_kk)
(zero o_kk)
(unit i_kk))
commutes)))

This specification has the effect of building a processor with a transform for
handling terms of the form f(a, b), where f is one the arithmetic functions
+K, ∗K,−K. For example, the entry (+ +_kk) tells the transform to treat

127

the function symbol +K as addition. The transforms are installed in the
theory fields by the specification

(def-theory-processors FIELDS
(algebraic-simplifier

(field-algebraic-processor *_kk +_kk -_kk))
(algebraic-term-comparator field-algebraic-processor))

When this form is evaluated, imps checks that the conditions for doing
algebraic manipulation do indeed hold in the theory fields.

11.5 Hints and Cautions

(1) Though simplification is a powerful user command, there are several
reasons why you do not want to invoke it indiscriminately at every
sequent node:

• If the sequent node context is very large or the expression is
large (a fact which may be masked by the presence of quasi-
constructors), simplification may take considerable time.

• Simplification may transform an expression into a form which
may be easier for imps to work with, but may be harder for
you to visualize. For instance, the expression x − y simplifies to
x+ [−1]y.

(2) The simplifier may at times appear to exhibit “temperamental” be-
havior. At one extreme, it may seem to the user that the simplifier
does too little or that it has ignored an assumption that would have
immediately grounded the sequent. At the other extreme, the simpli-
fier may do too much work, reducing the assertion in unintuitive or
unusable ways.

What may be especially infuriating to the user is that the presence
of additional assumptions may actually cause the simplifier to return
a much less usable answer. For instance, in the theory h-o-real-
arithmetic, the simplifier will reduce the formula

∀x, y:R, 1 < 2xy ⊃ 0 < 2xy

to T. However,

∀x, y:R, 0 < y ∧ 1 < 2xy ⊃ 0 < 2xy

128

simplifies to
∀x, y:R, 0 < y ∧ 1 < 2xy ⊃ 0 < 2x.

This discrepancy results from its factoring the positive y in 0 < 2xy
before applying the decision procedure for linear inequalities.

129

Chapter 12

Macetes

In addition to its simplifier, imps also provides a separate mechanism for ma-
nipulating formal expressions by applying theorems. Unlike simplification,
it is under the control of the user. The basic idea is that some expression ma-
nipulation procedures—for instance, conditional rewrite rules—are in fact
direct applications of theorems. Other expression manipulation procedures
can be formed from existing ones using a simple combination language.
These expression manipulation procedures are called macetes.1 Formally, a
macete is a function M which takes as arguments a context Γ and an expres-
sion e (called the source expression) and returns another expression M(Γ, e)
(called the replacement expression). In general, the replacement expression
does not have to be equal to the source expression.

Macetes serve two somewhat different purposes:

• They are a straightforward way to apply a theorem or a collection of
theorems to a sequent in a deduction graph.

• They are also a mechanism for computing with theorems.

12.1 Classification

A macete can be atomic or compound. Compound macetes are obtained by
applying a macete constructor to a list of one or more macetes.

Atomic macetes are classified as:
1In Portuguese, a macete is an ingenious trick. “Macete” is pronounced with a soft c.

Do not pronounce it as in “Government supporters dropped confetti on the man waving
the machete.”

130

• Schematic macetes. A schematic macete is one in which the replace-
ment expression is obtained from the source expression by matching
and substitution. Schematic macetes can be thought of as conditional
rewrite rules.

• Procedural macetes. These are macetes which compute the replace-
ment expression by a more complicated procedure. There are only a
few such procedures:

– simplify

– beta-reduce

– beta-reduce-insistently

Having these procedures as macetes allows you to build more powerful
and useful compound macetes.

Macetes can be also classified according to the relation between the
source and replacement expressions.

• Bidirectional. Whatever the context and source expression, the re-
placement expression is quasi-equal to the source expression, that is,
given any legitimate model in which the context assumptions are true,
either both source expression and replacement expression have no value
or their value is identical.

• Backward-directional. Whatever the context and source expression,
the replacement expression is quasi-equal to or implies the source ex-
pression. Notice that implication only makes sense for formulas of sort
∗.

• Nondirectional. There are contexts and source expressions in which
the target expression is neither quasi-equal to nor implies the source
expression.

12.2 Atomic Macetes

12.2.1 Schematic Macetes

A schematic macete can be associated to any formula in two ways depending
on the kind of matching procedure used. imps has two general forms of
matching called expression matching and translation matching.

131

Let us consider first the case of expression matching. To any imps for-
mula we can associate:

• A source pattern. This is an expression s.

• A replacement pattern. This is an expression r.

• A list of condition patterns. This is a list of expressions c1, · · · , cn.

• A direction specifier: this specifier can be either bidirectional or back-
ward-directional.

Suppose the formula is ∀x1:σ1, . . . , xn:σn, ϕ, where ϕ itself is not a universal
formula. The patterns are extracted from ϕ depending on the form of ϕ as
described by the following table:

Form Source Replacement Conditions Spec.
ϕ1 ∧ · · · ∧ ϕn ⊃ t1 ' t2 † t1 t2 ϕ1, . . . , ϕn Bid.
ϕ1 ∧ · · · ∧ ϕn ⊃ t1 = t2 † t1 t2 ϕ1, . . . , ϕn Bid.
ϕ1 ∧ · · · ∧ ϕn ⊃ ψ1 ⇔ ψ2 ψ1 ψ2 ϕ1, . . . , ϕn Bid.
ϕ ⊃ ψ ψ ϕ None Back.
t1 ' t2 † t1 t2 None Bid.
t1 = t2 † t1 t2 None Bid.
ψ1 ⇔ ψ2 ψ1 ψ2 None Bid.
¬ψ ψ F None Bid.
ψ ψ T None Bid.

Notes

• If the replacement pattern ϕ according to the above table is of sort ∗
and contains free variables y1, . . . , ym not occurring freely in the source
pattern ψ, then consider instead the replacement pattern

∃y1:δ1, . . . , ym:δn, ϕ.

• Nested implications ϕ1 ⊃ (ϕ2 ⊃ (· · ·ϕn ⊃ ψ)) are treated as single
implications ϕ1 ∧ · · · ∧ ϕn ⊃ ψ when applying the above table.

• In those cases marked with †, if t2 contains free variables which do not
occur freely in t1, then consider instead the source pattern t1 = t2 or
t1 ' t2 and replacement pattern ϕ1 ∧ · · · ∧ ϕn or T.

132

We now describe how a schematic macete M is obtained from the source,
replacement, condition patterns, and direction specifier of a formula. Given
a context Γ and an expression t, the result of applying M to Γ and t is deter-
mined as follows: Let P be the set of paths l = (l1, . . . , ln) to subexpressions
el of t which satisfy all of the following conditions:

• If the directional specifier is backward-directional, the parity of l must
be +1; otherwise, no condition is imposed on the path.

• The source pattern s matches el. Thus there is a substitution ρl =
{〈x1, t1〉, . . . , 〈xn, tn〉} such that ρl applied to s gives el.

• The validity of all the convergence requirements of the substitution ρl
and all the formulas ρl(ci) in the context Γ localized at the path l are
called the minor premises generated by the macete application. These
formulas may or may not generate applicability conditions:

– If the macete is being applied with the accumulation of minor
premises, then these formulas are posted as new sequents and
must be proven separately. No new applicability conditions are
generated in this case.

– Otherwise, the minor premises must be recognized as valid by the
simplifier.

• No smaller path (l1, . . . , lk) satisfies the preceding conditions.

The replacement formula is obtained by replacing each subexpression el by
ρl(el). Macetes obtained in this way are called elementary macetes.

Whenever you enter a theorem into a theory, the associated schematic
macete is automatically installed, so that you can use it in deductions by
hitting the key m.

The case of translation matching is similar, but instead of consider-
ing only convergence requirements, we need to insure that the translation
component of the translation match is a theory interpretation. Macetes ob-
tained in this way are called transportable macetes. The use of a theorem as
a transportable macete must be entered into its usage list when the theorem
is entered.

12.2.2 Nondirectional Macetes

Frequently it is useful to construct a schematic macete from an arbitrary
formula by using a matching and substitution procedure which does not obey

133

the variable capturing protections and other restrictions of normal matching.
We refer to this as nullary matching and substitution. For instance, to apply
a theorem which involves quantification over functions, one often has to build
a lambda-abstraction of a sub-expression. We shall see later on how this can
be done.

12.3 Compound Macetes

Compound macetes are built from atomic macetes and other compound
macetes using macete constructors. The constructors are:

• Series: This constructor takes a list M1, . . . ,Mn of macetes as ar-
guments and yields a macete Series(M1, . . . ,Mn) which applies every
macete in the list once, from left to right. Thus given a context Γ and
an expression e,

Series(M1, . . . ,Mn)(Γ, e) = Mn(Γ,Mn−1(Γ, . . . ,M1(Γ, e) . . .))

• Sequential: This constructor takes any number of macetes as argu-
ments. It works like the series constructor, except that when a macete
fails to change an expression, subsequent macetes on the list are not
applied.

• Parallel: This constructor takes a list M1, . . . ,Mn of macetes as argu-
ments and yields a macete Parallel(M1, . . . ,Mn) which applies macetes
in the list from left to right until a macete changes the expression. Thus
given a context Γ and an expression e,

Parallel(M1, . . . ,Mn)(Γ, e) = Mi(Γ, e)

provided Mi(Γ, e) 6= e and Mj(Γ, e) = e for all 1 ≤ j < i.

• Repeat: Takes any number of macetes (M1, . . . ,Mn) as arguments and
yields a macete in the following way: The series composition M of
(M1, . . . ,Mn) is applied repeatedly to the expression e until no more
change occurs. It may possibly compute forever. Thus the macete
terminates if

M(Γ,M(Γ, . . . ,M(Γ, e) . . .))

stabilizes to some expression t. This expression is the value of

Repeat(M1, . . . ,Mn)(Γ, e).

134

• Sound: This constructor takes a list M1,M2,M3 of three macetes and
yields a macete characterized as follows: Given a context Γ and an
expression e, Sound(M1,M2,M3)(Γ, e) is

– M1(Γ, e) if M3(Γ,M1(Γ, e)) is alpha-equivalent to M2(Γ, e)

– e otherwise.

• Without-minor-premises: This constructor takes a single argument
macete M . It returns a new macete which applies M without minor
premises. That is, macete substitution is only done when the macete
requirements are satisfied.

Now whether the resulting macete is bidirectional or backward-
directional, can be determined by considering the bidirectionality or
backward-directionality each of the components.

• Series, sequential, parallel, repeat, and without-minor-premises macete
constructors: If all the Mi are bidirectional macetes then the com-
pound macete

Constructor(M1, . . . ,Mn)(Γ, e)

is bidirectional. Similarly, if all the arguments Mi are backward-
directional macetes then the compound macete is also backward-
directional.

• Sound macete constructor: If M2,M3 are bidirectional, then the com-
pound macete

Sound(M1,M2,M3)(Γ, e)

is always bidirectional, regardless of M1. If M2 is backward-directional
and M3 is bidirectional, then the compound macete is backward-
directional. In all other cases, the compound macete is nondirectional.

12.4 Building Macetes

Schematic macetes are for the most part installed by the system when the-
orems installed.

(1) Elementary macetes are automatically installed when a theorem is
added to a theory. The name of the installed macete is the same as
the name of the theorem which generates it.

135

(2) Transportable macetes are installed when the transportable-macete
modifier is present in the usage list of a theorem or axiom. Moreover,
in this case, the name of the installed macete is the name of theorem
which generates it with the prefix tr%.

Macetes are also automatically built when atomic sort and constant def-
initions are made by the user.

(1) For directly defined constants, the macete corresponding to the con-
stant defining equation is installed. This macete is named

constant-name-equation theory-name.

If the usage list of the definition includes the rewrite modifier and
the defined constant is a function, the constant defining equation in
applied form is also include as a macete named

constant-name-applied-equation theory-name.

(2) For recursively defined constants, a number of macetes are installed:

(a) The equation axioms named
constant-name-equation theory-name

(b) The minimality axiom named
definition-name-strong-minimality theory-name

(c) The minimality theorem named
definition-name-minimality theory-name

(3) For defined atomic sorts a number of macetes are installed:

(a) The sort defining axiom named
sort-name-defining-axiom theory-name.

(b) Some auxiliary theorems named
sort-name-in-quasi-sort theory-name

and
sort-name-in-quasi-sort-domain theory-name

Nondirectional schematic macetes usually are not associated to theo-
rems. The form def-schematic-macete can be used for building schematic
macetes of all kinds. You can build compound macetes using the form def-
compound-macete.

136

12.5 Applicable Macetes

A macete is “applicable” to a formula if applying the macete modifies the for-
mula in some way. The only sure-fire way of determining whether a macete
is applicable, is to actually apply the macete and see the result. However,
there are simple heuristic conditions which can be used to quickly deter-
mine that some macetes are not applicable. For example, for an elementary
bidirectional macete, if the left hand side of the macete does not match any
subexpression of the formula, then clearly the macete it is not applicable.
For transportable macetes other similar inapplicability conditions are used.
Macetes are tabulated in such a way that it is possible to quickly throw
out inapplicable ones using these heuristic conditions. imps exploits this to
provide users with a dynamic help facility for selecting macetes. The use of
this facility is explained more extensively in Chapter ??.

12.6 Hints and Cautions

(1) Conceptually the macete mechanism is extremely simple. Users how-
ever, should not underestimate its power, usefulness, and flexibility.
The utility of macetes hinges on three facts:

• The way a theorem is converted into a macete depends on the
syntactic form of the the theorem as explained earlier in this
section. In particular, it is important that theorems which are
implications can be used as macetes along with those that are
conditional equalities. Moreover, the “conversion algorithm” is
based on a number of heuristics that in our experience work very
well.

• Macetes can be combined using macete constructors. It has been
our experience that carefully building a collection of compound
macetes is an important part of developing a theory.

• Macetes are tabulated in such a way that the macetes which are
applicable to a given formula can be retrieved very effectively
and displayed to the user in a menu. In situations where over 500
macetes are installed, the menu usually contains less than twenty
entries and takes less than ten seconds to compute.

(2) Though there are various modes of applying macetes, the default
mode, with minor premises, is the one you want to use in most

137

cases. The without-minor-premises macete constructor is often useful
for building compound macetes to be used in this mode.

138

Chapter 13

The Iota Constructor

13.1 Motivation

The iota or ι constructor is a definite description operator for objects of
kind ι. Given a variable x of sort α of kind ι and a unary predicate ϕ,

ιx:α,ϕ(x)

denotes the unique x that satisfies ϕ if there is such an x and is undefined
otherwise. For example,

ιx:α, 0 ≤ x ∧ x ∗ x = 2

denotes
√

2 but

ιx:α, x ∗ x = 2

is undefined.
The iota constructor is very useful for specifying functions, especially

partial functions. For example, ordinary division of sort [R,R,R] (which is
undefined whenever its second argument is 0) can be defined from the times
function ∗ by the lambda-expression

λx, y:R, ιz:R, x ∗ z = y.

Of course, this kind of definite description operator is only possible in a logic
that admits undefined expressions.

139

13.2 Reasoning with Iota

An iota-expression is any expression which begins with the iota constructor
(without any abbreviations by quasi-constructors). Proving a sequent with
an assertion containing an iota-expression can be tricky. The key idea is
to reduce the sequent to a new sequent with one less iota-expression. This
is called “eliminating iota.” There are two commands and one macete for
eliminating iota, each of which is discussed below in a separate subsection.

13.2.1 eliminate-defined-iota-expression

This command, which is described in Chapter 16, is the best iota-elimination
tool in imps. Generally, you should use it whenever you want to eliminate
an iota-expression whose definedness is implied by the sequent’s context.
It can also be used effectively in some cases on an iota-expression E whose
definedness is not implied by the sequent’s context. This is done by applying
case-split with E↓ ∨¬(E↓), followed by applying eliminate-defined-iota-
expression on the E↓ case.

The eliminate-defined-iota-expression command is multi-inference;
it adds about 20 new sequent nodes to a deduction graph.

13.2.2 eliminate-iota

This command is also described in Chapter 16. It is a single-inference com-
mand that is applicable to just atomic and negated atomic formulas. You
should use it when you want to eliminate an iota-expression whose defined-
ness is not implied by the sequent’s context.

13.2.3 eliminate-iota-macete

This is a compound macete with built-in abstraction specified by:

(def-compound-macete ELIMINATE-IOTA-MACETE
(sequential
iota-abstraction-macete
(series
tr%defined-iota-expression-elimination
tr%negated-defined-iota-expression-elimination
tr%left-iota-expression-equation-elimination
tr%right-iota-expression-equation-elimination)

140

beta-reduce))

The four elimination theorems are in the file $IMPS/theories/generic-
theories/iota.t. You should try eliminate-iota-macete when the asser-
tion has one of the following forms:

(1) (ιx:α,ϕ(x))↓

(2) ¬((ιx:α,ϕ(x))↓)

(3) (ιx:α,ϕ(x)) = E

(4) (ιx:α,ϕ(x)) 6= E

(5) E = (ιx:α,ϕ(x))

(6) E 6= (ιx:α,ϕ(x))

(7) (ιx:α,ϕ(x)) ' E

(8) E ' (ιx:α,ϕ(x))

For forms (1)–(6), the macete can be applied immediately, but for forms (7)
and (8), the command insistent-direct-inference must be applied first.
Beware that, for various reasons, eliminate-iota-macete may fail to do
anything, in which case you should use one of the two iota-elimination com-
mands.

13.3 Hints and Cautions

(1) Suppose E is an expression of sort α. Sometimes it is convenient to
have a new expression E′ of sort β (where τ(β) = τ(α) but β 6= α)
such that E and E′ have the same denotation. Such an expression
can be easily constructed from E and β using iota: ιx:β, x = E is
quasi-equal to E and is of sort β. For example, ιx:N, x = 2 denotes
the natural number 2. It is important to mention here that the imps
simplifier reduces an iota-expression of the form ιx:β, x = E to the
conditional if (E ↓ β,E,⊥β), and further to E or ⊥β if it can decide
the formula E ↓ β.

(2) Suppose f is a function constant defined to be

λx:α, ιy:β, ϕ(x, y)

141

such that the following “existence implies uniqueness” theorem holds
for ϕ:

∀x:α, (∃y:β, ϕ(x, y)) ⊃ (∃!y:β, ϕ(x, y)).

By virtue of this theorem, there is an “iota-free characterization” of
f ,

∀x:α, y:β, f(x) = y ≡ ϕ(x, y),

which enables one to prove a formula f(a) = b by showing only
existence—without employing any of the aforementioned tools for
eliminating iota.

As an example, consider the limit operator lim%rr on sequences of
reals defined by:

(def-constant LIM%RR
"lambda(s:[zz,rr], iota(x:rr, forall(eps:rr,

0<eps
implies
forsome(n:zz, forall(p:zz,
n<=p implies abs(x-s(p))<=eps)))))"

(theory h-o-real-arithmetic))

Since a sequence always has at most one limit point, there is an iota-
free characterization of lim%rr:

(def-theorem CHARACTERIZATION-OF-REAL-LIMIT
"forall(s:[zz,rr],

x:rr,lim%rr(s)=x
iff
forall(eps:rr,
0<eps
implies

forsome(n:zz, forall(p:zz,
n<=p implies abs(x-s(p))<=eps))))"

(theory h-o-real-arithmetic))

(3) It is rarely a good idea to unfold a constant defined as an iota-
expression, if it has an iota-free characterization. Instead, the following
steps are suggested. For concreteness, let us assume the constant we

142

are unfolding is a function constant f as in the previous item. Our aim
is to reduce all occurrences of f to occurrences of the form f(a) = b,

• If all occurrences in the formula are of the form f(a) = b then
apply the iota-free characterization of f as a macete.

• Otherwise, for every occurrence f(a), where a is a free variable,
cut with the formula

∃y:β, f(a) = y.

Each application of cut adds two new sequent nodes to the de-
duction graph:

– The cut major premise, which is the original sequent plus the
cut formula as another assumption.

– The cut minor premise, which has the cut formula as the
assertion. The minor premise can be proved by instantiating
y with f(a). To proceed with this part of the proof you will
need to establish the definedness of f(a).

For a precise description of the sequent nodes added by cut, see
the documentation on the command cut-with-single-formula.

• To deal with the major premise, do an antecedent inference on
the cut formula to remove its existential quantifier. This yields a
new goal with an assumption of the form f(a) = v.

• Backchain repeatedly on f(a) = v. This replaces all occurrences
of f(a) with v.

• Incorporate the antecedent f(a) = v and apply the iota-free char-
acterization of f as a macete. This should replace all such oc-
currences with some condition not involving f , and more impor-
tantly, not involving iota.

(4) The iota-p constructor is a definite description operator for objects of
kind ∗. It has a different semantics than iota: if there is no unique x
of sort α satisfying a unary predicate ϕ, then ιpx:α,ϕ is defined (like
all expressions of kind ∗) but has the value fτ(α). There is currently
no support in imps for reasoning about the iota-p. This should not
cause you any concern because iota-p has little practical value.

143

Chapter 14

Syntax: Parsing and Printing

The purpose of this chapter is threefold:

(1) To explain the relation between syntax and imps expressions.

(2) To explain the default syntax, which we refer to as the “string syntax,”
and briefly to explain how you can extend or modify this syntax.

(3) To explain how you can redefine the syntax altogether.1

14.1 Expressions

As explained in Chapter 5, expressions are variables, constants, and com-
pound expressions formed by applying constructors to other expressions.
Expressions can thus be represented as Lisp s-expressions:

• Formal symbols (i.e., constants or variables) correspond to atoms.

• Compound expressions correspond to certain lists of the form

(constructor c1 · · · cn)

where each ci is itself an expression.

In the implementation, an expression is a data structure which also caches
a large amount of information such as the free and bound variables of the
expression, the constants contained in the expression, the home language

1imps is designed so that it does not impose a syntax on the user.

144

of the expression, and so on. For the imps user, an expression is typically
something which can be represented as text, for instance

∫ b
a lnxdx. The cor-

respondence of an expression as a data structure to an external representa-
tion for input or output is determined by the user syntax which is employed.
imps allows multiple user syntaxes, so for example, the syntax that is used
for reading in expressions (usually text) may be different from the syntax
used to display expressions (which could be text or text interspersed with
TEX commands which would make the output suitable for input to the TEX
processor.) This flexible arrangement means users can freely change from
one syntax to another, even during the course of an interactive proof.

14.2 Controlling Syntax

The process of building an imps expression from user input can be broken
up into two steps:

(1) Parsing a string into an s-expression s.

(2) Building an imps expression from the s-expression s.

Similarly, the process of displaying an expression also consists of two parts:

(1) Building an s-expression s from an imps expression.

(2) Providing some representation of s as a string.

The phases “string to s-expression” for reading and “s-expression to string”
for printing are under direct user control. They can be modified by resetting
the following switches:

• (imps-reader) is a T procedure which takes a language and a port
and returns an s-expression. If proc is a procedure of this type, you
can reset the imps-reader switch by evaluating

(set (imps-reader) proc)

• (imps-printer) is a procedure which takes an s-expression and a port
and prints something to this port. If proc is a procedure of this type,
you can reset the imps-printer switch by evaluating

(set (imps-printer) proc)

145

To write your own reader and printer procedures, you will have to do some
programming in the T language. However, some reader and printer pro-
cedures are particularly easy to write. For example to write your own
reader and printer for s-expression syntax, you could evaluate the follow-
ing s-expressions:

(set (imps-reader)
(lambda (l port) (read port)))

(set (imps-printer)
(lambda (s-exp port) (pretty-print s-exp port)))

In the next section we describe the default syntax which is similar to the
syntax of some computer algebra systems.

14.3 String Syntax

We begin with some notation: if “Term” is a class of strings,

Term* = zero or more comma-separated members of Term
Term+ = one or more comma-separated members of Term.

A string is accepted by the string syntax exactly when imps can build
an s-expression s from it. Otherwise, imps will give you a parsing error.
However, to say the string is accepted does not mean that the system can
build an imps expression from s. A number of things could go wrong:

• An atom in s has no sort specification, so that imps assumes it is the
name of a constant, but no such constant exists in the language.

• The arguments of a function are of the wrong type, or there are too
many or too few arguments.

• A constructor was given components of the wrong type, or the number
of components is wrong.

The tables 14.1, 14.2, and 14.3 are a description of those sequences of
characters accepted by the string syntax. This description is fairly close to
a BNF grammar, but fails to be one since some of the expression categories
(such as the category of binary infix operators or the category of quasi-
constructors) are only specified partially or not at all. This is because these

146

expression categories depend on parts of the state of the imps system, which
are likely to change from user to user.

We also want to stress that these tables say nothing about how strings
are parsed into nested lists (and much less about what the strings mean
mathematically.) For example, one cannot say how argument associations
are disambiguated from these tables alone. The table of operator prece-
dences in the next section specifies this information. The syntax tables are
thus of limited value and should only be consulted to get a very rough idea
of what expressions look like.

14.4 Parsing

The process of building an s-expression from an input string, itself breaks
up into two parts:

• Tokenization of the input string. This can be thought of as dividing
the input string into a list of substrings called tokens.

• Parsing of the list of tokens. This can be thought of as transforming
a linear structure of tokens into a tree structure of tokens.

The table below gives some examples of how a string s is translated into an
s-expression Φ(s) according to the string syntax.

String Reads
p1 and · · · and pn (and Φ(p1) · · · Φ(pn))
p1 or · · · or pn (or Φ(p1) · · · Φ(pn))
if(x, y, z) (if Φ(x) Φ(y) Φ(z))
if(x, y, z, w, v) (if Φ(x) Φ(y) (if Φ(z) Φ(w) Φ(v)))
#(t, s) (defined-in Φ(t) Φ(s))
#(t) (is-defined Φ(t))
x+ y (apply + Φ(x) Φ(y))
x− y (apply − Φ(x) Φ(y))
f(x1, . . . , xn) (apply Φ(f) Φ(x1) · · · Φ(xn))

To build an s-expression from the input tokens, it is necessary to dis-
ambiguate the tokens which are operators2 from the tokens which are argu-
ments. The association of tokens to operators is determined by the operator

2Note that the word “operator” is being used here in a different sense than it is used
in logic: an operator is simply a token which is parsed as the first element of a list.

147

Exp ::= Aexp
Oxp(Oxp*) Function application
Exp BInfxOp Exp Binary infix application
(Oxp) Parenthesized Oxp
Exp oo Exp Composition
Oxp=Oxp
Oxp==Oxp
not Exp
Exp and Exp
Exp or Exp
Exp implies Exp
Exp iff Exp
Binder(Binding* , Exp) Binders (including with)
iota(Atom:Sort, Exp)
if(Exp, Exp, Exp+) Requires an odd number of Exp
Qc{Exp+} Prefix quasi-constructor Exp
Qc{Exp+,Sort} Prefix quasi-constructor Exp
?Sort Undefined from sort
#(Exp,Sort) Sort definedness assertion
#(Exp) Definedness assertion

Oxp ::= Exp Operator or expression
PrefxOp
LogfxOp
BInfxOp
PostfxOp

Aexp ::= Num Numerical constants
Atom Variables & other constants

Table 14.1: Description of String Syntax 1

148

Sort ::= Asort These are base sorts
[Sort,Sort+] N -ary function sort constructor.

Binder ::= lambda
forall
forsome
with

Binding ::= Sortdecl+
Sortdecl ::= Atom+ : Sort
PrefxOp ::= comb Combinatorial coefficients

lim Limit operator for sequences
LogfxOp ::= -
BInfxOp ::= *

+
<
<=
i-in
i-subset

PostfxOp ::= !

Table 14.2: Description of String Syntax 2

Atom ::= TextChar followed by TextChar’s or Digit’s
SpecialSeq
SpecialSeq followed by _ and TextChar’s or Digit’s

TextChar ::= a | · · · | z | _ | % | $ | &
Digit ::= 0 | · · · | 9
SpecialSeq ::= ^ | * | + | - | ^^ | ** | ++ | ! | < | <= | > | >=

Table 14.3: Description of Atoms

149

Operator Binding
+ 100
- 110
* 120
/ 121
^ 140
! 160
= 80
== 80
i-subset 101
i-in 101
> 80
>= 80
< 80
<= 80
not 70
iff 65
implies 59
and 60
or 50

Table 14.4: Operator Binding Powers

binding powers. For example, the string x+2*3 is parsed as

(apply + x (apply ∗ 2 3))

because the operator * has a higher binding power than +. Table 14.4 is a
list of the bindings of some common operators.

14.5 Modifying the String Syntax

The string syntax can be modified or extended using the def-forms def-
parse-syntax and def-print-syntax. The use of def-forms is documented
in Chapter 15.

150

14.6 Hints and Cautions

(1) A parsing error is indicated by an error message

**Error: Parsing error:

This means imps was unable to build an s-expression from your in-
put. imps will provide some indication as to where the error occurred.
Following are some examples of common parsing errors:

> (qr "with(a,b:rr a=b)")
** Error: Parsing error: Illegal token A encountered.

with(a,b:rr a <<== =b).

This error occurred because the variable sort specifications have to be
followed by a comma.

> (qr "forall(a,b:rr,a=b")
** Error: Parsing error: Expecting ":" or "," or ")".
forall(a,b:rr,a=b <<== .

This error results from a missing right parenthesis.

(2) An error message of one of the following kinds is usually an indication
that the current theory (this is the value of the switch (current-
theory)) is different from what you expected. This typically happens
when you begin an interactive proof of a formula without having set
the current theory to its desired value.

> (qr "with(x:rr,x=1)")
** Error: QUANTIFIER-DECODE-VAR-SUB-LIST:
RR is not a sort in
#{IMPS-basic-language 12: THE-KERNEL-LANGUAGE}.

This error message indicates that imps was unable to build an expres-
sion in the current theory because there is no sort named rr.

> (qr "with(x:ind, x+x)")
** Error: SEXP->EXPRESSION-1:
Cannot locate + in
#{IMPS-basic-language 12: THE-KERNEL-LANGUAGE}.

151

This error message indicates that imps was unable to build an expres-
sion in the current theory because there is no constant named +. To
remedy an error of the above type, reset the (current-theory) switch
by using the menu.

152

Part III

Reference Manual

153

Chapter 15

The IMPS Special Forms

In this chapter, we document a number of user forms for defining and mod-
ifying imps objects, for loading sections and files, and for presenting ex-
pressions. We will use the following template to describe each one of these
forms.

Positional Arguments. This is a list of arguments that must occur in the
order given, and must precede the modifier arguments and the keyword
arguments. All imps definition forms have a name as first argument
or, a list of names as first argument.

Modifier Arguments. Each modifier argument is a single symbol called
the modifier.

Keyword Arguments. Each keyword argument is a list whose first ele-
ment is a symbol called the keyword. Keyword arguments have one of
two forms:

• (keyword arg-component).

• (keyword arg-component1 . . . arg-componentn).

Note: By default, nearly every special form in this chapter is allowed
to have a keyword argument of the form

(syntaxsyntax-name)

where syntax-name is the name of a syntax (e.g., string-syntax or
sexp-syntax) which specifies what syntax to use when reading the

154

form. If this keyword argument is missing, the current syntax is used
when reading the form.

Modifier and keyword arguments can occur in any order.

Description. A brief description of the definition form.

Remarks: Hints or observations that we think you should find useful.

Examples. Some example forms.

155

15.1 Creating Objects

def-algebraic-processor

Positional Arguments:

• processor-name.

Modifier Arguments:

• cancellative. This modifier argument tells the simplifier to do mul-
tiplicative cancellation.

Keyword Arguments:

• (language language-name). Required.

• (base spec-forms). Required.

• (exponent spec-forms). Instructs processor how to simplify expo-
nents if there are any.

• (coefficient spec-forms). Instructs processor how to simplify coef-
ficients for modules.

In all of the above cases, spec-forms is either a name of an algebraic
processor or is a list with keyword arguments and modifier arguments of its
own. The keyword arguments for spec-forms are:

• (scalars numerical-type).

• (operations operation-alist1 . . . operation-alistn). operation-alist
is a list of entries (operation-type operator). operation-type is one
of the symbols + * - / ^ sub zero unit. operator is the name of a
constant in the processor language.

The modifier arguments for spec-forms are:

• use-numerals-for-ground-terms.

• commutes.

156

Description:

This form builds an object called a processor for algebraic simplification.
Processors are used by imps to generate algebraic and order simplification
procedures used by the simplifier for the following purposes:

• To utilize theory-specific information of an algebraic nature in per-
forming simplification. For example, the expression x + x − x should
simplify to x, or x < x+ 1 should simplify to true.

• To reduce any expression built from formal constants whose value can
be algebraically computed from the values of the components. Thus
the expression 2 + 3 should reduce to 5.

In order for simplification to reduce expressions involving only formal
constants (for instance, 2 + 3), a processor associates such imps terms to
executable T expressions involving algebraic procedures and objects from
some data type S. This type is specified by the scalars declaration of the
def-algebraic-processor form. We refer to this data type as a numerical
type. Each formal constant o which denotes an algebraic function (such as
+ or −) is associated to an operation f(o) on the data type. This corre-
spondence is specified by the operations keyword of processor. Finally,
certain terms must be associated to elements of S. This is accomplished by
a predicate and two mappings constructed by imps when the processor is
built:

• A predicate that singles out certain terms as numerical constants.
These are called numerical terms. For the processor used in the the-
ory h-o-real-arithmetic the numerical constants are those formal
constants whose names are rational numbers.

• A function m 7→ T (m) which maps certain elements of S to terms.

• A function t 7→ N(t) which maps certain terms to S.

The simplifier uses these functions to reduce expressions containing numeri-
cal terms, according to the following rule: If f denotes a processor operation,
and s, t denote numerical terms, and o(s, t) is defined, then o(s, t) is replaced
by T (f(o)(N(s), N(t))).

157

Remarks:

Evaluating a def-algebraic-processor form by itself will not affect theory
simplification in any way. To add algebraic simplification to a theory, eval-
uate the form def-theory-processors. It is also important to note that
an algebraic processor can only be installed in the simplifier when certain
theorems generated by the processor are valid in the theory.

Examples:

(def-algebraic-processor RR-ALGEBRAIC-PROCESSOR
(language numerical-structures)
(base ((scalars *rational-type*)

(operations
(+ +)
(* *)
(- -)
(^ ^)
(/ /)
(sub sub))
use-numerals-for-ground-terms
commutes)))

(def-algebraic-processor VECTOR-SPACE-ALGEBRAIC-PROCESSOR
(language real-vector-language)
(base ((operations

(+ ++)
(* **)
(zero v0))))

(coefficient rr-algebraic-processor))

def-atomic-sort

Positional Arguments:

• sort-name. The name of the atomic sort to be defined. sort-name also
is the name of the newly built definition.

• quasi-sort-string.

158

Keyword Arguments:

• (theory theory-name). Required.

• (usages symbol1 . . . symboln).

• (witness witness-expr-string).

Description:

This form creates a new atomic sort σ called sort-name from a unary pred-
icate p of sort [σ, ∗] specified by quasi-sort-string and adds a set of new
theorems with usage list symbol1, . . . , symboln. The new atomic sort and
new theorems are added to the theory T named theory-name provided:

• sort-name is not the name of any current atomic sort of T or of a
structural supertheory of T ; and

• the formula ∃x:σ, p(x) is known to be a theorem of T .

If there is a witness argument, the systems tries to verify condition (2) by
simplifying p(a), where a is the expression specified by witness-expr-string.

Examples:

(def-atomic-sort NN
"lambda(x:zz, 0<=x)"
(theory h-o-real-arithmetic)
(witness "0"))

def-bnf

Positional Arguments:

• name. A symbol to serve as the name of the theory that will be
created as a consequence of this def-form. In addition, a second im-
plementation object with this name is also created; it represents the
BNF definition itself together with the axioms and theorems that it
generates.

159

Keyword Arguments:

• (theory theory-name). Required. The theory that will be conser-
vatively extended by adding the new datatype. We will refer to this
theory as the underlying theory.

• (base-type type-name). Required. The name of the new data type.

• (sorts (subsort1 enclosing-sort1) ... (subsortn enclosing-sortn)).

Subsorts of the new datatype. All these subsorts must be included
within the new base type. Thus, the enclosing sort of the first subsort
must be the new base type, and the enclosing sort of a later subsort
must be either the base type or a previously mentioned subsort of it.

• (atoms (atom1 sort1) ... (atomn sortn)). Individual constants
declared to belong to the base type (or one of its subsorts).

• (constructors (constr1 (sort1 ...sortn) (selectors s1 ...sn−1))).

Function constants declared to construct elements of the new type (or
its subsorts). Each range sort must be the new base type or one of its
subsorts. Each domain sort may belong to the underlying theory, or
alternatively it may be the new base or one of its subsorts. It may not
be a higher sort involving the new type.

• (sort-inclusions (subsort1 supersort1) ... (subsortn supersortn)).
Declare that every element of subsort is also a member of supersort.
This is not needed when subsort is a syntactic subsort of supersort
in the sense that there are zero or more intermediate sorts α1, . . . , αn
such that the enclosing sort of subsort is α1, the enclosing sort of αn is
supersort, and the enclosing sort of αi is αi+1 for each i with 1 ≤ i < n.

Description:

The purpose of the def-bnf form is to define a new recursive data type to be
added (as a conservative extension) to some existing theory. The members
of the new data type are the atoms in the declaration together with the
objects returned (“constructed”) by the constructor functions. We will use
the τ to refer to the base type; symbols such as αi will stand for any sort
included in the base type (such as the base sort τ itself); βi will be used for
any sort of the underlying theory.

160

The logical content of a data type definition of this kind is determined
by two main ideas:

• No Confusion. If c0 and c1 are two different constructor functions,
then the range of c0 is disjoint from the range of c1. If a and b are two
atoms, then a 6= b. Moreover a /∈ ran(c0).

• No Junk. Everything in τ apart from the atoms is generated by the
constructor functions. This is in fact a form of induction. It allows us
to infer that a property holds of all members of the data type on two
assumptions:

(1) The property holds true of each atom;

(2) The property holds true of a value returned by any constructor
function c, assuming that it holds true of those arguments that
belong to τ (rather than to some sort β of the underlying theory).

The implementation ensures that the resulting theory will be a model con-
servative extension of the underlying theory. That is, given any model M of
the underlying theory, we can augment M with a new domain to interpret τ
and provide interpretations of the new vocabulary so that the resulting M ′

is a model of extended theory.
In the case where τ contains no subtype, it is clear that to ensure con-

servatism, it is enough to establish that τ will be non-empty. The syntax of
the declaration suffices to determine whether this condition is met: either
there must be an atom, or else at least one constructor function must take
all of its arguments from types βi of the underlying theory.

If τ does have subtypes, the implementation must establish that each
subtype is non-empty. That will hold if there is an ordering of the new sorts
αi such that, for each αi, at least one of the following conditions holds:

(1) There is an atom declared to be of sort αi; or

(2) There is a sort αj occurring earlier in the ordering, and αj is declared
to be included within αi; or

(3) There is at least one constructor c declared with range sort αi, and
every domain sort of c is either some βi belonging to the underlying
theory or some αj occurring earlier in the ordering that αi.

When this condition is not met, the implementation raises an error and
identifies the uninhabited sort (or sorts) for the user.

161

Axioms Generated. The bnf mechanism generates six categories of ax-
ioms:

Constructor definedness A constructor is well-defined for ev-
ery selection of arguments of the syntactically declared sorts.

Disjointness If a and b are atoms and c0 and c1 are construc-
tors, then a 6= b, a /∈ ran(c0), and ran(c0) is disjoint from
ran(c1).

Selector/constructor If s is the ith selector for the construc-
tor c, then s(c(~x)) = xi. Moreover, if s(y)↓, then y = c(~x)
for some ~x.

Sort Inclusions ∀x:α0, x ↓ α1, when α0 is specified as included
within α1.

Induction The type τ is the smallest containing the atoms and
closed under the constructor functions in the sense given
above (“No Junk”).

Case Analysis If x ↓ α, where α is the new type or one of its
subsorts, then one of the following holds:

(1) x is one of the atoms declared with sort α;
(2) x is in the range of some constructor declared with

range α;
(3) x ↓ α′, where either α is the enclosing sort of α′, or

else the inclusion of α′ within α is declared as a sort
inclusion.

Strictly speaking this should be a theorem rather than an
axiom, as it follows from the induction principle.

Primitive Recursion. A data type introduced via the bnf mechanism
justifies a schema for defining functions by primitive recursion. Roughly
speaking, a function g of sort τ → σ is uniquely determined if a sort σ is
given, together with the following:

• For each atom, a value of sort σ;

• For each constructor c, with sort

α1 × . . .× αn × β1 × . . .× βm → α0,

162

a functional Φc of sort

(σ × . . .× σ × β1 × . . .× βm → σ)

is given. The primitive recursively defined function g will have the
property that g(c(x1, . . . , xn, y1, . . . , ym)) is quasi-equal to

Φc(g(x1), . . . , g(xn), y1, . . . , ym).

Thus in effect Φc says how to combine the results of the recursive calls
(for arguments in the primary type) with the values of the parameters
(from sorts βi of the underlying theory).

Additional Theorems. A number of consequences of the axioms are in-
stalled.

Examples:

The simplest example possible is:

(def-bnf nat
(theory pure-generic-theory-1)
(base-type nat)
(atoms (zero nat))
(constructors (succ (nat nat) (selectors pred))))

The axioms generated from this definition are displayed in Figure 15.1 on
page 164.

As a more complicated example, consider a programming language with
phrases of three kinds, namely identifiers, expressions, and statements. The
data type to be introduced corresponds to set of phrases of all three syntactic
categories; each syntactic category will be represented by a subsort. A bnf
for the language might take the form given in Figure 15.2, with x ranging
over numbers and s ranging over strings. A corresponding imps def form is
shown in Figure 15.3, where it is assumed that the underlying theory String-
theory contains a sort string representing ascii strings, as well as containing
R.

163

bnf data type nat:
Constructor definedness axioms: Theorem succ-definedness nat is:
total(succ, [nat ⇀ nat]).

Disjointness axioms: Theorem succ-zero-distinctness nat is:
∀y0:nat, ¬(succ(y0) = zero).

Selector constructor axioms: Theorem succ-pred nat is:
∀y0:nat, pred(succ(y0)) = y0.

Selector undefinedness axioms: Theorem pred-definedness nat is:
∀x:nat, pred(x) ↓⊃ (∃y0:nat, succ(y0) = x).

Sort case axioms: Theorem nat-cases nat is:
∀e:nat, e = zero ∨ succ(pred(e)) = e.

Induction axiom: Theorem nat-induction nat is:
∀ϕ:nat ⇀ ∗,

(∀x0:nat, ϕ(x0))
⇐⇒

(ϕ(zero) ∧ (∀y succ0:nat, ϕ(y succ0) ⊃ ϕ(succ(y succ0)))).

Figure 15.1: Axioms for Nat, as Introduced by bnf

S ::= I:=E | while E do S od | if E then S1 else S2

| skip
E ::= I | E1 + E2 | E1 ∗ E2

| Num(x)
I ::= Ide(s)

Figure 15.2: bnf Syntax for a Small Programming Language

164

(def-bnf pl-syntax
(theory string-theory)
(base-type phrase)
(sorts (statement phrase)

(expression phrase)
(identifier expression))

(atoms (skip statement))
(constructors
(assign "[identifier, expression, statement]"

(selectors lvar rexp))
(while "[expression, statement, statement]"

(selectors while%test body))
(if "[expression, statement, statement, statement]"

(selectors if%test consequent alternative))
(plus "[expression, expression, expression]"

(selectors first%addend second%addend))
(times "[expression, expression, expression]"

(selectors first%factor second%factor))
(numconst "[rr, expression]"

(selectors num%value))
(ide "[string, identifier]"

(selectors ide%name))))

Figure 15.3: imps def-bnf Form for Programming Language Syntax

165

def-cartesian-product

Positional Arguments:

• name. A symbol to name the product sort.

• (sort-name1 . . . sort-namem). sort-name is the name of a sort α.

Keyword Arguments:

• (constructor constructor-name).

• (accessors accessor-name1 . . . accessor-namen).

• (theory theory-name). Required.

Description:

This form creates a new atomic sort σ called name. This sort can be regarded
as the cartesian product of the sorts α1 . . . αm. The sort actually created is
a subsort of the function sort

α1 × · · · × αm ⇀ unit sort

• constructor-name is the name of the canonical “n-tuple” mapping:

α1 × · · · × αm ⇀ σ.

• accessor-namei is the name of the canonical projection onto the i-th
coordinate: σ ⇀ αi.

Examples:

(def-cartesian-product complex
(rr rr)
(constructor make%complex)
(accessors real imaginary)
(theory h-o-real-arithmetic))

166

def-compound-macete

Positional Arguments:

• name.

• spec. A compound macete specification is defined recursively as either:

– A symbol, macete-name.

– A list of the form:

∗ (series spec1 . . . specn).
∗ (repeat spec1 . . . specn).
∗ (sequential spec1 . . . specn).
∗ (sound spec1 spec2 spec3).
∗ (parallel spec1 . . . specn).
∗ (without-minor-premises spec).

where spec is itself a macete specification.

Keyword Arguments:

None.

Description:

This form adds a compound macete with the given name and components.
See the section on macetes for the semantics of macetes.

Examples:

(def-compound-macete FRACTIONAL-EXPRESSION-MANIPULATION
(repeat

beta-reduce
addition-of-fractions
multiplication-of-fractions
multiplication-of-fractions-left
multiplication-of-fractions-right
equality-of-fractions
left-denominator-removal-for-equalities
right-denominator-removal-for-equalities
strict-inequality-of-fractions

167

right-denominator-removal-for-strict-inequalities
left-denominator-removal-for-strict-inequalities
inequality-of-fractions
right-denominator-removal-for-inequalities
left-denominator-removal-for-inequalities))

(def-compound-macete ELIMINATE-IOTA-MACETE
(sequential
(sound
tr%abstraction-for-iota-body
beta-reduce
beta-reduce)
(series
tr%defined-iota-expression-elimination
tr%negated-defined-iota-expression-elimination
tr%left-iota-expression-equation-elimination
tr%right-iota-expression-equation-elimination)
beta-reduce))

def-constant

Positional Arguments:

• constant-name. The name of the constant to be defined. constant-
name is also the name of the newly-built definition.

• defining-expr-string.

Keyword Arguments:

• (theory theory-name). Required.

• (sort sort-string).

• (usages symbol1 . . . symboln).

Description:

This form creates a new constant c called constant-name and a new axiom of
the form c = e with usage list symbol1, . . . , symboln, where e is the expression

168

specified by defining-expr-string . The sort σ of c is the sort specified by sort-
string if there is a sort argument and otherwise is the sort of e. The new
constant and new axiom are added to the theory T named theory-name
provided:

• constant-name is not the name of any current constant of T or of a
structural supertheory of T ; and

• the formula (e ↓ σ) is known to be a theorem of T .

Examples:

(def-constant ABS
"lambda(r:rr, if(0<=r,r,-r))"
(theory h-o-real-arithmetic))

(def-constant >
"lambda(x,y:rr,y<x)"
(theory h-o-real-arithmetic)
(usages rewrite))

(def-constant POWER%OF%TWO
"lambda(x:zz,2^x)"
(sort "[zz,zz]")
(theory h-o-real-arithmetic))

def-imported-rewrite-rules

Positional Arguments:

• theory-name.

Keyword Arguments:

• (source-theory source-theory-name).

• (source-theories source-theory-name1 . . . source-theory-namen).

Description:

This form imports into the theory named theory-name all the transportable
rewrite rules installed in the theory named source-theory-name (or in the
theories named source-theory-name1, . . . , source-theory-namen).

169

def-inductor

Positional Arguments:

• inductor-name.

• induction-principle. Can be a string representing the induction prin-
ciple in the current syntax or a name of a theorem.

Keyword Arguments:

• (theory theory-name). Required.

• (translation name). name is the name of a theory interpretation. If
this keyword is present, the formula used in constructing the induction
principle is actually the translation of induction-principle.

• (base-case-hook name). name is the name of a macete or a com-
mand.

• (induction-step-hook name). name is the name of a macete or a
command.

• (dont-unfold name1 . . . namen). name is the name of a recursive
constant in the theory or the symbol #t. This form instructs the induc-
tor not to unfold the recursive constant named name when processing
the induction step. If #t is specified, then no recursive definitions will
be unfolded in the induction step.

Remarks:

The induction principle used for constructing an inductor must satisfy a
number of requirements.

• The induction principle must be a theorem.

• The induction principle must be a universally quantified biconditional
of the form

∀p:[α, ∗], x1:α1, . . . , xn:αn, ϕ⇔ ψ0 ∧ ψ1.

with none of the sorts α1, . . . , αn being of kind ∗. ψ0 is referred to as
the base case and ψ1 is the induction step.

170

Description:

This form builds an inductor from the formula ϕ represented by induction-
principle or if the translation keyword is present, from the translation of
ϕ under the translation named by name. The base-case and induction-step
hooks are macetes or commands that provide additional handling for the
base and induction cases.

Examples:

(def-inductor TRIVIAL-INTEGER-INDUCTOR
"forall(s:[zz,prop],m:zz,

forall(t:zz,m<=t implies s(t))
iff
(s(m) and
forall(t:zz,m<=t implies (s(t) implies s(t+1)))))"

(theory h-o-real-arithmetic))

(def-inductor NATURAL-NUMBER-INDUCTOR
"forall(s:[nn,prop],

forall(t:nn, s(t))
iff
(s(0) and forall(t:nn,s(t) implies s(t+1))))"

(theory h-o-real-arithmetic))

(def-inductor INTEGER-INDUCTOR
induct
(theory h-o-real-arithmetic)
(base-case-hook unfold-defined-constants-repeatedly))

(def-inductor SM-INDUCT
"forall(p:[state,prop],

forall(s:state, accessible(s) implies p(s))
iff
(forall(s:state, initial(s) implies p(s)) and
forall(s_1, s_2:state, a:action,

(accessible(s_1) and p(s_1) and tr(s_1, a, s_2))
implies
p(s_2))))"

(theory h-o-real-arithmetic)

171

(base-case-hook
eliminate-nonrecursive-definitions-and-simplify))

(def-inductor SEQUENCE-INDUCTOR
"forall(p:[[nn,ind_1],prop],

forall(s:[nn,ind_1], f_seq_q(s) implies p(s))
iff
(p(nil(ind_1)) and
forall(s:[nn,ind_1], e:ind_1,

f_seq_q(s) and p(s) implies p(cons{e,s}))))"
(theory sequences)
(base-case-hook simplify))

def-language

Positional Arguments:

• language-name. A symbol.

Keyword Arguments:

• (embedded-languages name1 . . . namen). name is the name of a
language or theory.

• (embedded-language name). name is the name of a language or the-
ory.

• (base-types type-name1 . . . type-namen).

• (sorts sort-spec1 . . . sort-specn). sort-spec is a list of the form (sort
enclosing-sort), called a sort-specification. sort must be a symbol, and
enclosing-sort must satisfy one of the following:

– It occurs in a previous sort specification.

– It is a sort in one of the embedded languages.

– It is a compound sort which can be built up from sorts of the
preceding kinds.

• (extensible type-sort-alist1 . . . type-sort-alistn). type-sort-alist is
a list of the form (numerical-type-name sort). numerical-type-name
is the name of a numerical type, that is, a class of objects defined in

172

T. For example, *integer-type* and *rational-type* are names
of numerical types. This keyword argument is used for defining self-
extending languages. This is a language that incorporates new formal
symbols when the expression reader encounters numerical objects of
the given type.

• (constants constant-spec1 . . . constant-specn). constant-spec is a
list (constant-name sort-or-compound-sort).

Description:

This form builds a language with name language-name satisfying the follow-
ing properties:

• This language contains the sorts and constants given by the sort and
constant specification subforms.

• It contains the languages named namei as sublanguages.

• If the language contains the extensible keyword, then the language
may contain an infinite number of constants; these constants are
in one-to-one correspondence with elements of the numerical types
present in the type-sort-alist.

Examples:

(def-language NUMERICAL-STRUCTURES
(extensible (*integer-type* zz) (*rational-type* qq))
(sorts (rr ind) (qq rr) (zz qq))
(constants
(^ (rr zz rr))
(+ (rr rr rr))
(* (rr rr rr))
(sub (rr rr rr))
(- (rr rr))
(/ (rr rr rr))
(<= (rr rr prop))
(< (rr rr prop))))

(def-language METRIC-SPACES-LANGUAGE
(embedded-language h-o-real-arithmetic)

173

(base-types pp)
(constants
(dist (pp pp rr))))

(def-language REAL-VECTOR-LANGUAGE
(embedded-language h-o-real-arithmetic)
(base-types uu)
(constants
(++ (uu uu uu))
(v0 uu)
(** (rr uu uu))))

(def-language HAM-SANDWICH-LANGUAGE
(base-types sandwich)
(embedded-language h-o-real-arithmetic)
(constants
(ham%sandwich sandwich)
(tuna%sandwich sandwich)
(refrigerator (sandwich unit%sort))))

def-order-processor

Positional Arguments:

• name.

Keyword Arguments:

• (algebraic-processor name). The name of an algebraic processor.

• (operations operation-alist1 . . . operation-alistn). operation-alist
is a list of entries (operation-type operator), where operation-type is
one of: <, <=. operator is the name of a constant in the language of
the associated algebraic processor.

• (discrete-sorts sort-spec1 . . . sort-specn).

Description:

This form builds an object called an order processor for simplification of
formulas involving order relations. Processors are used by imps to generate

174

algebraic and order simplification procedures used by the simplifier for the
following purposes:

• To utilize theory-specific information of an algebraic nature in per-
forming simplification. For example, the expression x + x − x should
simplify to x, or x < x+ 1 should simplify to true.

• To reduce any formula built from formal constants whose value can be
algebraically computed from the values of the components. Thus the
expression 2 < 3 should reduce to true.

Examples:

(def-order-processor RR-ORDER
(algebraic-processor rr-algebraic-processor)
(operations (< <) (<= <=))
(discrete-sorts zz))

def-primitive-recursive-constant

Positional Arguments:

• constant name: The name of the function (or predicate) constant to
be introduced by the def-form.

• bnf: The bnf object furnishing the primitive recursive schema for the
definition (see def-bnf). The base type of this bnf will also be the
domain of the constant.

Keyword Arguments:

• (theory theory-name): Required. The theory to which the defined
constant will be added. This may be an extension of the theory of the
bnf with respect to which the recursion is performed.

• (range-sort range-sort-form): Required. This specifies the range of
the function or predicator being introduced; since the domain will be
the base sort of the bnf, this fixes the sort of the constant.

• (atom-name value): Required, one for each bnf atom. This specifies
one base case of the recursive definition.

175

• (constructor-name var-names operator-body): Required, one for each
bnf constructor. This specifies one recursive step of the recursive
definition. The operator-body specifies how the results of the recursive
subcalls should be combined (possibly with parameters not belonging
to the datatype) to produce the value of the recursive operator for an
argument of this form.

Description:

Each bnf is automatically equipped with a principle of definition by struc-
tural (primitive) recursion. A def-primitive-recursive-constant form in-
stantiates this principle by stipulating the intended range sort, the values
for atoms of the bnf data type, and how the recursively defined operator
combines its results on the arguments of each datatype constructor.

Examples:

See, for instance, the compiler exercise file.

def-quasi-constructor

Positional Arguments:

• name. The name of the quasi-constructor.

• lambda-expr-string.

Keyword Arguments:

• (language language-name). Required. language-name may also be
the name of a theory.

• (fixed-theories theory-name1 . . . theory-namen).

Description:

This form builds a quasi-constructor named name from the schema spec-
ified by lambda-expr-string , which is a lambda-expression in the language
named language-name. The sorts in the theories named theory-name1, . . .
theory-namen are held fixed.

176

Examples:

(def-quasi-constructor PREDICATE-TO-INDICATOR
"lambda(s:[uu,prop],

lambda(x:uu, if(s(x),an%individual, ?unit%sort)))"
(language indicators)
(fixed-theories the-kernel-theory))

(def-quasi-constructor GROUP
"lambda(a:sets[gg],

mul%:[gg,gg,gg],
e%:gg,
inv%:[gg,gg],

forall(x,y:gg,
(x in a and y in a) implies mul%(x,y) in a) and

e% in a and
forall(x:gg, x in gg% implies inv%(x) in gg%) and
forall(x:gg, x in a implies mul%(e%,x)=x) and
forall(x:gg, x in a implies mul%(x,e%)=x) and
forall(x:gg, x in a implies mul%(inv%(x),x)=e%) and
forall(x:gg, x in a implies mul%(x,inv%(x))=e%) and
forall(x,y,z:gg,

(x in a) and (y in a) and (z in a)
implies
mul%(mul%(x,y),z) = mul%(x,mul%(y,z))))"

(language groups))

def-record-theory

Positional Arguments:

• theory-name. The name of a theory.

Keyword Arguments:

• (type symbol). Required.

• (accessors accessor-spec1 . . . accessor-specn). accessor-spec is a
list

(accessor-name target-sort).

177

Description:

NO DESCRIPTION.

Examples:

(def-record-theory ENTITIES-AND-LEVELS
(type access)
(accessors
(read "prop")
(write "prop")))

def-recursive-constant

Positional Arguments:

• names. The name or lists of names of the constant or constants to be
defined.

• defining-functional-strings. A string or list of strings specifying the
defining functionals of the definition.

Keyword Arguments:

• (theory theory-name). Required.

• (usages symbol1 . . . symboln).

• (definition-name def-name). The name of the definition.

Description:

Let T be the theory named theory-name; const-name1,. . . ,const-namen be
the names given by names; and f1, . . . , fn be the functionals specified by
the strings in defining-functional-strings. This form creates a list of new
constants c1, . . . , cn called const-name1,. . . ,const-namen and a set of new
axioms with usage list symbol1,. . . ,symboln. The axioms say that c1, . . . , cn
are a minimal fixed point of the family f1, . . . , fn of functionals. The new
constants and new axioms are added to T provided:

• each const-namei is not the name of any current constant of T or of a
structural supertheory of T ; and

178

• each functional fi is known to be monotone in T .

If the definition-name keyword is present, the name of the definition is
def-name; otherwise, it is const-name1.

Examples:

(def-recursive-constant SUM
"lambda(sigma:[zz,zz,[zz,rr],rr],

lambda(m,n:zz,f:[zz,rr],
if(m<=n,sigma(m,n-1,f)+f(n),0)))"

(theory h-o-real-arithmetic)
(definition-name sum))

(def-recursive-constant (EVEN ODD)
("lambda(even,odd:[nn,prop],

lambda(n:nn, if_form(n=0, truth, odd(n-1))))"
"lambda(even,odd:[nn,prop],

lambda(n:nn, if_form(n=0, falsehood, even(n-1))))")
(theory h-o-real-arithmetic)
(definition-name even-odd))

(def-recursive-constant OMEGA%EMBEDDING
"lambda(f:[nn,nn], a:sets[nn],

lambda(k:nn,
if(k=0,

iota(n:nn, n in a and
forall(m:nn, m<n implies not(m in a))),

lambda(z:nn,
iota(n:nn, n in a and z<n

forall(m:nn, (z<m and m<n) implies
(not(m in a)))))(f(k-1)))))"

(theory h-o-real-arithmetic)
(definition-name omega%embedding))

def-renamer

Positional Arguments:

• name. A symbol naming the renamer.

179

Keyword Arguments:

• (pairs pair1 . . . pairn). pair is of the form (old-name new-name).

Description:

This form defines a T procedure named name which, given a symbol x,
returns the symbol y if (x y) is one of the pairs, and otherwise returns x.

Examples:

(def-renamer SB-RENAMER
(pairs
(last%a%index last%b%index)
(a%inf b%inf)
(a%even b%even)
(a%odd b%odd)))

def-schematic-macete

Positional Arguments:

• macete-name. A symbol naming the schematic macete.

• formula. A string representing the formula using the current syntax.

Modifier Arguments:

• null. The presence of this modifier means the macete is nondirec-
tional. This means that schematic macete which is built uses a match-
ing and substitution procedure which does not obey the variable cap-
turing protections and other restrictions of normal matching and sub-
stitution.

• transportable. The presence of this modifier means the macete is
transportable.

Keyword Arguments:

• (theory theory-language-name). Required. The name of the lan-
guage in which expression should be read in.

180

Examples:

(def-schematic-macete ABSTRACTION-FOR-DIFF-PROD
"with(a,b:rr,y:rr,

diff(lambda(x:rr,a*b))(y)=
diff(lambda(x:rr,

lambda(x:rr,a)(x)*lambda(x:rr,b)(x)))(y))"
null

(theory calculus-theory))

def-script

Positional Arguments:

• script-name. The name of the new command being created.

• N. The number of arguments required by the script.

• (form1 . . . formm). A proof script consisting of 0 or more forms.

Keyword Arguments:

• (retrieval-protocol proc). proc is the name of an Emacs procedure
which imps uses to interactively request command arguments from
the user. The default procedure is general-argument-retrieval-
protocol which requires the user to supply all the arguments in the
minibuffer.

• (applicability-recognizer proc). proc is the name of a T predi-
cate or is the symbol #t. The inclusion of this argument will cause the
command name to appear as a selection in the command menu when-
ever the current sequent node satisfies the predicate. Supplying #t
as an argument is equivalent to supplying a predicate which is always
true.

Description:

This form is used to build a new command named script-name. This new
command can be used in either interactive mode or in script mode. The
script defining the command is a list of forms, each of which is a command

181

form or a keyword form. See a description of the proof script language in
Chapter 10.

Examples:

(def-script EPSILON/N-ARGUMENT 1
((instantiate-universal-antecedent

"with(p:prop, forall(eps:rr, 0<eps implies p))" ($1))))

def-section

Positional Arguments:

• section-name.

Keyword Arguments:

• (component-sections section-name1 . . . section-namen).

• (files file-spec1 . . . file-specn).

Description:

This form builds a section which, when loaded, loads the sections with
names section-name1, . . . , section-namen and then loads the files with spec-
ifications file-spec1, . . . ,file-specn. A section can be loaded with the form
load-section.

Examples:

(def-section BASIC-REAL-ARITHMETIC
(component-sections reals)
(files
(imps theories/reals/some-lemmas)
(imps theories/reals/arithmetic-macetes)
(imps theories/reals/number-theory)))

(def-section FUNDAMENTAL-COUNTING-THEOREM
(component-sections
basic-cardinality
basic-group-theory)

182

(files
(imps theories/groups/group-cardinality)
(imps theories/groups/counting-theorem)))

def-sublanguage

Positional Arguments:

• sublanguage-name.

Keyword Arguments:

• (superlanguage superlanguage-name). Required. The name of the
language containing the sublanguage.

• (languages language-name1 . . . language-namen).

• (sorts sort-name1 . . . sort-namen).

• (constants constant-name1 . . . constant-namen).

Description:

This form finds the smallest sublanguage of the language L named super-
language-name which contains the sublanguages of L named language-name1,
. . . , language-namen; the atomic sorts of L named sort-name1, . . . , sort-
namen; and the constants of L named constant-name1, . . . , constant-namen.

Each of superlanguage-name, language-name1, . . . , language-namen may
be the name of a theory instead of a language.

Examples:

(def-sublanguage REAL-VECTOR-LANGUAGE
(superlanguage vector-spaces-over-rr-language)
(languages h-o-real-arithmetic)
(sorts uu)
(constants ++ v0 **))

183

def-theorem

Positional Arguments:

• name. The name of the theorem which may be ().

• formula-spec. A string representing the formula using the current syn-
tax or the name of a theorem.

Modifier Arguments:

• reverse.

• lemma. Not loaded when quick-loading.

Keyword Arguments:

• (theory theory-name). Required. The name of the theory in which
to install the theorem.

• (usages symbol1 . . . symboln).

• (translation translation-name). The name of a theory interpreta-
tion.

• (macete macete-name). The name of a bidirectional macete.

• (home-theory home-theory-name). The name of the home theory of
the formula specified by formula-spec.

• (proof proof-spec).

Description:

This form installs a theorem in three steps. Let Φ be the theory inter-
pretation named translation-name when there is a translation argument,
and let M be the bidirectional macete named macete-name when there is
a macete argument. Also, let T be the theory named theory-name, and let
H be the theory named by home-theory-name. If there is no home-theory
argument, then H is the source theory of Φ if there is a translation ar-
gument and otherwise H = T . Finally, let ϕ be the formula specified by
formula-spec in H.

184

Step 1. imps verifies that ϕ is a theorem of H. If proof-spec is the symbol
existing-theorem, imps checks to see that ϕ is alpha-equivalent to some
existing theorem of H. If the theorem is being installed in “batch mode”
(see Section 10.3.1), imps verifies that ϕ is a theorem of H by running the
script proof-spec. Otherwise, imps simply checks that ϕ is a formula in H,
and it is assumed that the user has verified that ϕ is a theorem of H.

Step 2. The theorem ϕ′ to be installed is generated from ϕ as follows:

• If there is no translation or macete argument and T = H, then
ϕ′ = ϕ.

• If there is no translation or macete argument and T is a subtheory of
H, ϕ′ is a formula of T which is the result of generalizing the constants
of H which are not in T (assuming each sort of T is also a sort of H).

• If there is a translation argument but no macete argument, then ϕ′

is the translation of ϕ by Φ.

• If there is a macete argument but no translation argument, then ϕ′

is the result of applying M to ϕ.

• If there is both a translation and macete argument, then ϕ′ is the
result of applying M to the translation of ϕ by Φ.

Step 3. ϕ′ is installed as a theorem in T with usage list symbol1, . . .,
symboln.

If the modifier argument reverse is present, evaluating this form is
equivalent to evaluating the form without reverse followed by evaluating
the form again without reverse but with:

• name changed to the concatenation of rev% with name, and

• formula-spec changed to a string which specifies the “reverse” of the
formula specified by formula-spec.

In other words, the reverse argument allows you to install both a theorem
and its reverse. It is very useful for building a macete (or transportable
macete) and its reverse by evaluating one form. Of course, it would not be
wise to use the reverse argument when rewrite is a usage.

185

Examples:

(def-theorem ABS-IS-TOTAL
"total_q(abs,[rr,rr])"
(theory h-o-real-arithmetic)
(usages d-r-convergence)
(proof
(
(unfold-single-defined-constant (0) abs)
insistent-direct-inference
beta-reduce-repeatedly
)))

(def-theorem RIGHT-CANCELLATION-LAW
left-cancellation-law
(theory groups)
(translation mul-reverse)
(proof existing theorem))

(def-theorem FUNDAMENTAL-COUNTING-THEOREM
"f_indic_q{gg%subgroup}

implies
f_card{gg%subgroup} =
f_card{stabilizer(zeta)}*f_card{orbit(zeta)}"

;; "forall(zeta:uu,
;; f_indic_q{gg%subgroup}
;; implies
;; f_card{gg%subgroup} =
;; f_card{stabilizer(zeta)}*f_card{orbit(zeta)})"
(theory group-actions)
(home-theory counting-theorem-theory))

def-theory

Positional Arguments:

• theory-name.

Keyword Arguments:

• (language language-name).

186

• (component-theories theory-name1 . . . theory-namen).

• (axioms axiom-spec1 . . . axiom-specn). axiom-spec is a list

(name formula-string usage1 . . . usagen)

where name, a symbol, is the optional name of the axiom and formula-
string is a string representing the axiom in the syntax of the language
of the theory.

• (distinct-constants distinct1 . . . distinctn). distinct is a list

(constant-name1 . . . constant-namen).

Description:

This form builds a theory named theory-name. The language of this theory
is the union of the language language-name and the languages of the com-
ponent theories. The axioms of the theory are the formulas represented by
the strings in the list axiom-spec. The distinct-constants list implicitly adds
new axioms asserting that the constants in each list distinct are not equal.

Examples:

(def-theory METRIC-SPACES
(component-theories h-o-real-arithmetic)
(language metric-spaces-language)
(axioms

(positivity-of-distance
"forall(x,y:pp, 0<=dist(x,y))"
transportable-macete)

(point-separation-for-distance
"forall(x,y:pp, x=y iff dist(x,y)=0)"
transportable-macete)

(symmetry-of-distance
"forall(x,y:pp, dist(x,y) = dist(y,x))"
transportable-macete)

(triangle-inequality-for-distance
"forall(x,y,z:pp, dist(x,z)<=dist(x,y)+dist(y,z))")))

187

(def-theory VECTOR-SPACES-OVER-RR
(language real-vector-language)
(component-theories generic-theory-1)
(axioms
("forall(x,y,z:uu, (x++y)++z=x++(y++z))")
("forall(x,y:uu, x++y=y++x)")
("forall(x:uu, x++v0=x)")
("forall(x,y:rr, z:uu, (x*y)**z=x**(y**z))")
("forall(x,y:uu,a:rr,a**(x++y)=(a**x)++(a**y))")
("forall(a,b:rr, x:uu,(a+b)**x=(a**x)++(b**x))")
("forall(x:uu, 0**x=v0)")
("forall(x:uu, 1**x=x)")))

def-theory-ensemble

Positional Arguments:

• ensemble-name. The name of the theory ensemble. This will also be
the name of the base theory unless the base-theory keyword argu-
ment is provided.

Keyword Arguments:

• (base-theory theory-name) theory-name is the name of the base the-
ory of the ensemble. If this keyword argument is not included then
the base theory is that theory with the name ensemble-name.

• (fixed-theories theory1 . . . theoryn). The theories listed are not
replicated when the theory replicas and multiples are built. If this
argument is not provided, then the fixed theories are those in the
global fixed theories list at the time the form is evaluated.

• (replica-renamer proc-name). proc-name is the name of a proce-
dure of one integer argument, used to name sorts and constants of
theory replicas. The default procedure is to subscript the correspond-
ing sort and constant of the base theory.

Description:

This form builds a theory ensemble such that

188

(1) The base theory is the theory with name theory-name if the base-theory
keyword argument is provided or ensemble-name otherwise.

(2) The fixed theories are those given in the fixed-theories keyword ar-
gument list if the fixed-theories keyword argument is provided or
those theories in the global fixed theories list at the time the form is
evaluated.

Remarks:

If there is already a theory ensemble with name ensemble-name but with
different fixed-theories set or different renamer an error will result.

Examples:

(def-theory-ensemble METRIC-SPACES)

def-theory-ensemble-instances

Positional Arguments:

• ensemble-name. An error will result if no ensemble exists with en-
semble-name.

Keyword Arguments:

• (target-theories name0 . . . nameN−1). For each i, namei must
be the name of a theory T i or an error will result.

• (target-multiple N). N must be an integer. This is equivalent to
giving a keyword argument

(target-theories name0 . . .nameN−1)

where namei is the name of the i-th theory replica. The target-
multiple and target-theories keyword arguments are exclusive.

• (sorts sort-assoc1 . . . sort-assocn). sort-assoc is a list

(sort sort0 . . . sortN−1)

where sort is an atomic sort in the base theory of the ensemble and
sorti is either

189

– A sort specification in the theory T ior

– A string representing a quasi-sort in T i.

In particular, the length of each sort-assoc entry must be one more
than the number N of theory entries given in the target-theories
keyword argument. This argument is valid only in case the target-
theories keyword is given.

• (constants const-assoc1 . . . const-assocp). const-assoc is a list

(const expr0 . . . exprN−1)

where const is a constant in the base theory of the ensemble and expri
is either

– A constant in the theory T i or

– A string representing an expression in T i.

In particular, the length of each const-assoc entry must be one more
than the number N of theory entries. This argument is valid only in
case the target-theories keyword is given.

• (multiples M1 . . . Mn). Each argument M is an integer not exceed-
ing the number N of theory entries. This instructs imps to translate
constants defined in the ensemble M-multiple.

• (permutations P1 . . . Pn). Each argument P is a list (ρ1, . . . ρ`) of
integers in {0, . . . N − 1}. The presence of this list instructs imps to
translate constants defined in the ensemble `-multiple into the theory
generated by the theories

T ρ1 , . . . ,Tρ`
.

• (special-renamings renaming1 . . . renamingn). A list of entries
(name new-name) if you want to override the system’s naming con-
ventions. Note that name is the full constant name, not just the root
name.

190

Description:

This form is used to build translations from selected theory multiples and
to transport natively defined constants and sorts from these multiples. To
describe the effects of evaluating this form, we consider a number of cases
and subcases determined by the presence of certain keyword arguments.

• (target-theories name0 . . . nameN−1). Let Ti be the theory with
name namei. In this case, evaluation of the form builds translations
and transports natively defined constants and sorts by these transla-
tions from selected theory multiples into the theory union

T0 ∪ · · · ∪ TN−1.

The theory multiples that are selected as translation source theories
are determined by the multiples or permutations keyword argu-
ments as follows:

– (permutations P1 . . . Pn). Each argument P is a list
(ρ1, . . . ρ`) of integers in {0, . . . N − 1}, which instructs imps to
translate constants defined in the ensemble `-multiple into the
theory union

T ρ1 ∪ · · · ∪ T ρ`
.

The translation data are provided by the sorts and constants
keyword arguments.

– (multiples M1 . . . Mn). This case can be reduced to the case
of the (permutations P1 . . . Pn) argument by considering all
lists of length Mi of nonnegative integers ≤ N − 1.

• (target-multiple n). This case can be reduced to the case of the
(target-theories name1 . . . namen) argument by letting namei
be the name of the i-th theory replica.

Examples:

(def-theory-ensemble-instances METRIC-SPACES
(target-theories h-o-real-arithmetic metric-spaces)
(multiples 1 2)
(sorts (pp rr pp))
(constants (dist "lambda(x,y:rr,abs(x-y))" dist)))

191

def-theory-ensemble-multiple

Positional Arguments:

• ensemble-name. An error will result if no ensemble exists with en-
semble-name.

• N. An integer.

Description:

Builds a theory which is an N -multiple of the theory ensemble base, together
with N theory interpretations from the base theory into the multiple. All ex-
isting definitions of the base theory are translated via these interpretations.
The N -multiple is constructed to be a subtheory of the (N + 1)-multiple.

Examples:

(def-theory-ensemble-multiple metric-spaces 2)

def-theory-ensemble-overloadings

Positional Arguments:

• ensemble-name. An error will result if no ensemble exists with en-
semble-name.

• (N1 . . .Nk). Each N is an integer

Description:

Installs overloadings for constants natively defined in the theory multiples
N1 . . .Nk.

Examples:

(def-theory-ensemble-overloadings metric-spaces 1 2)

192

def-theory-instance

Positional Arguments:

• name. The name of the theory to be created.

Keyword Arguments:

• (source source-theory-name). Required.

• (target target-theory-name). Required.

• (translation trans-name). Required.

• (fixed-theories theory-name1 . . . theory-namen).

• (renamer renamer). Name of a renaming procedure.

• (new-translation-name new-trans-name). Name of the the transla-
tion to be created.

Description:

Let T0 and T ′0 be the source and target theories, respectively, of the trans-
lation Φ named trans-name. Also, let T1 and T ′1 be the theories named
source-theory-name and target-theory-name, respectively. Lastly, let F be
the set of theories named theory-name1, . . . , theory-namen.

Suppose that T0 and T ′0 are subtheories of T1 and T ′1, respectively, and
that every member of F is a subtheory of T1. The theory named name is
an extension U of T ′1 built as follows. First, the primitive vocabulary of T1

which is outside of T0 and F is added to the language of T ′1; the vocabulary
is renamed using the value of renamer . Next, the translations of the axioms
of T1 which are outside of T0 and F are added to the axioms of T ′1; the
axioms are renamed using the value of renamer . U is union of the resulting
theory and the members of F . The translation Φ′ from T1 to U extending
Φ is created with name new-trans-name.

Examples:

(def-theory-instance METRIC-SPACES-COPY
(source metric-spaces)
(target the-kernel-theory)

193

(translation the-kernel-translation)
(fixed-theories h-o-real-arithmetic))

(def-theory-instance VECTOR-SPACES-OVER-RR
(source vector-spaces)
(target h-o-real-arithmetic)
(translation fields-to-rr)
(renamer vs-renamer))

def-theory-processors

Positional Arguments:

• theory-name.

Keyword Arguments:

• (algebraic-simplifier spec1 . . . specn).
Each entry spec is a list

(processor-name op1 . . . opn),

where processor-name is the name of an algebraic processor and

op1 . . . opn

are constant names denoting functions. We will say that the operators
opi are within the scope of the specified processor.

• (algebraic-order-simplifier spec1 . . . specn).
Each spec is a list

(processor-name pred1 . . . predn),

where processor-name is the name of an order processor and

pred1 . . . predn

are constant names denoting two-place predicates. We will say that the
predicates predi are within the scope of the specified order processor.

• (algebraic-term-comparator spec1 . . . specn). spec is just the name
of an algebraic or order processor. We will say that the equality con-
structor is within the scope of the specified processor.

194

Description:

This form causes the simplifier of the theory named theory-name to simplify
certain terms using the specified algebraic and order processors as follows:

• All applications of an operator or predicate within the scope of a pro-
cessor are handled by that processor. An operation or predicate may
be within the scope of more than one processor.

• All equalities are handled by processors which contain the equality
constructor within its scope.

Examples:

(def-theory-processors H-O-REAL-ARITHMETIC
(algebraic-simplifier

(rr-algebraic-processor * ^ + - / sub))
(algebraic-order-simplifier (rr-order < <=))
(algebraic-term-comparator rr-order))

(def-theory-processors VECTOR-SPACES-OVER-RR
(algebraic-simplifier

(vector-space-algebraic-processor ** ++))
(algebraic-term-comparator

vector-space-algebraic-processor))

def-translation

Positional Arguments:

• name: The name of the translation.

Modifier Arguments:

• force.

• force-under-quick-load.

• dont-enrich.

195

Keyword Arguments:

• (source source-theory-name). Required.

• (target target-theory-name). Required.

• (assumptions formula-string1 . . . formula-stringn).

• (fixed-theories theory-name1 . . . theory-namen).

• (sort-pairs sort-pair-spec1 . . . sort-pair-specn).
Each sort-pair-spec has one of the following forms:

– (sort-name sort-name).

– (sort-name sort-string).

– (sort-name (pred expr-string)).

– (sort-name (indic expr-string)).

• (constant-pairs const-pair-spec1 . . . const-pair-specn), where
const-pair-spec has one of the following forms:

– (constant-name constant-name).

– (constant-name expr-string).

• (core-translation core-translation-name). The name of a theory
interpretation.

• (theory-interpretation-check check-method).

Description:

This form builds a translation named name from the source theory S named
source-theory-name to the target theory T named target-theory-name. (The
target context in T is the set of assumptions specified by formula-string1,
. . ., formula-stringn.) The translation is specified by the set of fixed theories,
the set of sort pairs, and the set of constant pairs.

If there is a core-translation argument, an extension of the translation
named core-translation-name is build using the information given by the
other arguments. The argument theory-interpretation-check tells imps
how to check if the translation is a theory interpretation (relative to the set
of assumptions).

196

If the modifier argument force is present, the obligations of the transla-
tion are not generated, and thereby the translation is forced to be a theory in-
terpretation. Similarly, if the modifier argument force-under-quick-load
is present and the switch quick-load? is set to true, the obligations of the
translation are not generated. The former lets you build a theory interpre-
tation when the obligations are very hard to prove, and the latter is useful
for processing the def-form faster, when it has been previously determined
that the translation is indeed a theory interpretation.

If the modifier argument dont-enrich is present, the translation will not
be enriched. A translation is enriched at various times to take into account
new definitions in the source and target theories. If one expects there to be
many untranslated definitions after enrichment, it may be computationally
beneficial to use this modifier argument.

Examples:

(def-translation MONOID-THEORY-TO-ADDITIVE-RR
(source monoid-theory)
(target h-o-real-arithmetic)
(fixed-theories h-o-real-arithmetic)
(sort-pairs
(uu rr))
(constant-pairs
(e 0)
(** +))
(theory-interpretation-check using-simplification))

(def-translation MUL-REVERSE
(source groups)
(target groups)
(fixed-theories h-o-real-arithmetic)
(constant-pairs
(mul "lambda(x,y:gg, y mul x)"))

(theory-interpretation-check using-simplification))

(def-translation GROUPS->SUBGROUP
force
(source groups)
(target groups)

197

(assumptions
"with(a:sets[gg], nonempty_indic_q{a})"
"with(a:sets[gg],

forall(g,h:gg,
(g in a) and (h in a)
implies

(g mul h) in a))"
"with(a:sets[gg],

forall(g:gg, (g in a) implies (inv(g) in a)))")
(fixed-theories h-o-real-arithmetic)
(sort-pairs
(gg (indic "with(a:sets[gg], a)")))
(constant-pairs
(mul "with(a:sets[gg],

lambda(x,y:gg,
if((x in a) and (y in a), x mul y, ?gg)))")

(inv "with(a:sets[gg],
lambda(x:gg, if(x in a, inv(x), ?gg)))"))

(theory-interpretation-check using-simplification))

def-transported-symbols

Positional Arguments:

• names. The name or lists of names of defined atomic sorts and con-
stants to be transported.

Keyword Arguments:

• (translation translation-name). Required.

• (renamer renamer.) Name of a renaming procedure.

Description:

Let T and T ′ be the source and target theories, respectively, of the trans-
lation Φ named translation-name, and let sym1,. . . ,symn be the symbols
whose names are given by names. For each symi which is a defined symbol
in T , this form creates a corresponding new defined symbol sym′i in T ′ by

198

translating the defining object of symi via Φ. If Φ already translates symi

to some defined symbol, the new symbol is not created.

Examples:

(def-transported-symbols
(last%a%index a%inf a%even a%odd)
(translation schroeder-bernstein-symmetry)
(renamer sb-renamer))

(def-transported-symbols
(prec%increasing prec%majorizes prec%sup)
(translation order-reverse)
(renamer first-renamer))

15.2 Changing Syntax

def-overloading

Positional Arguments:

• symbol. A symbol to overload (that is, to have multiple meanings
which are determined by context.)

• theory-name-pair1 . . . theory-name-pairm theory-name-pair is a list
(theory-name symbol-name).

Examples:

(def-overloading *
(h-o-real-arithmetic *)
(normed-linear-spaces **))

def-parse-syntax

Positional Arguments:

• constant-name. This is a symbol or a list of symbols.

199

Keyword Arguments:

• (token spec). spec is a symbol or a string. If this argument is omitted,
by default it is constant-name.

• (left-method proc-name). proc-name is the name of a procedure for
left parsing of the token.

• (null-method proc-name). proc-name is the name of a procedure for
null parsing of the token.

• (table table-name). table-name is the name of the parse-table being
changed. If this argument is omitted, the default value is the global
parse table *parse*.

• (binding N). Required. N is the binding or precedence of the token.

Description:

This form allows you to set (or reset) the parse syntax of a constant. In
particular, you can change the precedence, parsing method, and token rep-
resentation of a constant. The most common parsing methods are:

• infix-operator-method. For example multiplication and addition
use this method.

• prefix-operator-method. comb, the binomial coefficient function,
uses this method.

• postfix-operator-method. ! uses this method.

Note that an operator can have both a null-method and a left-method.

Examples:

(def-parse-syntax +
(left-method infix-operator-method)
(binding 100))

(def-parse-syntax factorial
(token !)
(left-method postfix-operator-method)
(binding 160))

200

def-print-syntax

Positional Arguments:

• constant-name. This is a symbol.

Modifier Arguments:

• tex. If this argument is present, then the syntax is added to the global
TEX print table.

Keyword Arguments:

• (token spec). spec is a symbol, a string or a list of such. If this
argument is omitted, by default it is constant-name.

• (method proc-name). proc-name is the name of a procedure for print-
ing of the token.

• (table table-name). table-name is the name of the parse-table being
changed. If this argument is omitted, and the tex modifier argument
is not given, the default value is the global print table *form*.

• (binding N). Required. N is the binding or precedence of the token.

Description:

This form allows you to set (or reset) the print syntax of a constant. In
particular, you can change the precedence, parsing method, and token rep-
resentation of a constant.

Examples

(def-print-syntax +
(method present-binary-infix-operator)
(binding 100))

(def-print-syntax factorial
(token !)
(method present-postfix-operator)
(binding 160))

201

15.3 Loading Sections and Files

load-section

Positional Arguments:

• section-name.

Modifier Arguments:

• reload. Causes the section to be reloaded if the section has already
been loaded.

• reload-files-only. Causes the files of the section (but not the com-
ponent sections) to be reloaded if the section has already been loaded.

• quick-load. Causes the section to be quick-loaded.

Keyword Arguments:

None.

Description:

If there are no modifier arguments, this form will simply load the component
sections and files of the section named section-name which have not been
loaded.

include-files

Positional Arguments:

None.

Modifier Arguments:

• reload. Causes a file to be reloaded if the file has already been loaded.

• quick-load. Causes the files to be quick-loaded.

202

Keyword Arguments:

• (files file-spec1 . . . file-specn).

Description:

If there are no modifier arguments, this form will simply load the files with
specifications file-spec1, . . . ,file-specn which have not been loaded.

15.4 Presenting Expressions

view-expr

Positional Arguments:

• expression-string. A string representing the expression to be built and
viewed.

Modifier Arguments:

• fully-parenthesize. Causes the expression to be viewed fully paren-
thesized.

• fully. Same as fully-parenthesize.

• no-quasi-constructors. Causes the expression to be viewed without
quasi-constructor abbreviations.

• no-qcs. Same as no-quasi-constructors.

• tex. Causes the expression to be xviewed (i.e., printed in TEX and
displayed in an X window TEX previewer).

Keyword Arguments:

• (language language-name). language-name is the name of a language
or theory in which to build the expression.

203

Chapter 16

The Proof Commands

This chapter is intended to provide users with documentation for imps proof
commands. However, it is not suggested that users read this chapter before
using imps.

Commands can be used in two modes:

• Interactive mode. In this mode an individual command is invoked by
supplying the command’s name. The system will then prompt you for
additional arguments.

• Script mode. In this mode a command is invoked by a command form.
Command forms are s-expressions

(command-name a1 . . . an)

To use commands in this way, you must know the possible command
arguments. Commands in script mode can be invoked line by line,
by region, or in batch mode. Moreover, if the command requires no
arguments, then the name of the command by itself is a command
form.

We will use the following template to describe use of individual commands.
(The last three entries are optional.)

Script usage Describes the use of the command in scripts. Arguments
such as theories, macetes, and theorems are specified by name. Some
arguments can be specified in various ways. When an argument is an
assumption, it can be specified as follows:

204

• A nonnegative integer i. This denotes the i-th assumption.

• A string σ. If σ denotes an expression which is alpha-equivalent
to an assumption, then it denotes that assumption. If σ matches
one or more assumptions, then it refers to the first of those as-
sumptions. Matching here is done in a way that does not preserve
scopes of binding constructors and places only type constraints
on the matching of variables.

Interactive argument retrieval. This tells you how arguments are re-
quested in the minibuffer when used interactively, with a brief de-
scription of each argument. In cases where imps can determine that
there is only one possible choice for an argument, for example, if the
argument is an index number for an assumption when there is exactly
one assumption, then imps will make this choice and not return for
additional input.

Command Kind. Null-inference, single-inference, or multi-inference. A
null-inference command never adds any inference nodes to the deduc-
tion graph. A single-inference commands adds exactly one inference
node to the deduction graph, when it is successful. A multi-inference
command adds more than one inference node to the deduction graph
in some cases.

Description. A brief description of the command. Some commands can
be described as rules of inference in a logical calculus. For each such
command we use a table composed of the following units:

Conclusion template

Premise template

where the item template for the conclusion refers to the form for
the given goal (sequent), while the template item for the premise
indicates the form for the resulting subgoal. In general, there will be
more than one premise; moreover, in some cases we distinguish one
particular premise as a major premise. In so doing, we regard the
remaining premises as minor premises.

205

Related commands. These are other commands you might consider ap-
plying because, for example, they are quicker or more effective for your
task at hand.

Remarks. Hints or observations that we think you should find useful.

Key binding. A single key to invoke the command.

Command Application in Interactive Mode

To apply a command in interactive mode to the current sequent node (that
is, the one visible in the sequent node buffer), hit !. You can also apply a
command by selecting it from the command menu as follows:

• For Emacs version 19, click on the entry Extend-DG in the menubar
and select the option Commands.

• For Emacs version 18, click right on the Command menu item in
the Extending the Deduction Graph pane. You can also invoke
the command menu directly by pressing the key F3.

You will be presented with a well-pruned menu of those commands which
are applicable to the given sequent node. Once you select a command, the
system will request the additional arguments it needs to apply the command.
You will notice that for a given command, the system will sometimes request
additional arguments and at other times not do so. In the cases where the
system fails to make a request for arguments, the system determines what
these additional arguments should be on its own.

Command Application in Script Mode

For the precise definition of what a script is, see the section on the proof
script language in Chapter 10. Essentially a proof script is a sequence of
forms of the following kinds:

• (keyword a1 . . . an)

• (command-name a1 . . . an)

Each command form (that is, a form which begins with a command name)
instructs imps to do the following two things:

206

• Apply the command with name command-name to the current sequent
node with the arguments a1 . . . an.

• Reset the current sequent node to be the first ungrounded relative.

To apply a single command in script mode to the current sequent node,
place the cursor on the first line of the command form and type C-c l. In
order for the interface software to recognize the form to execute, there cannot
be more than one command form per line. However, a single command form
can occupy more than one line.

To apply in sequence the command forms within a region, type C-c r.

207

antecedent-inference

Script usage: (antecedent-inference assumption). assumption can be
given as an integer i or a string σ.

Interactive argument retrieval:

• 0-based index of antecedent formula – (i1 i2 · · · in): i.
The i1, i2, . . . , in are the indices of the assumptions of sequent node
on which antecedent inferences can be done, that is an implication,
conjunction, disjunction, biconditional, conditional-formula, or an ex-
istential formula. In case there is only one such formula, this argument
request is omitted.

Command kind: Single-inference.

Description:

Conclusion Γ ∪ {ϕ ⊃ ψ} ⇒ θ

Premises Γ ∪ {¬ϕ} ⇒ θ

Γ ∪ {ψ} ⇒ θ

Conclusion Γ ∪ {ϕ1 ∧ · · · ∧ ϕn} ⇒ ψ

Premise Γ ∪ {ϕ1, . . . , ϕn} ⇒ ψ

Conclusion Γ ∪ {ϕ1 ∨ · · · ∨ ϕn} ⇒ ψ

Premises (1 ≤ i ≤ n) Γ ∪ {ϕi} ⇒ ψ

Conclusion Γ ∪ {ϕ ≡ ψ} ⇒ θ

Premises Γ ∪ {ϕ,ψ} ⇒ θ

Γ ∪ {¬ϕ,¬ψ} ⇒ θ

Conclusion Γ ∪ {if-form(ϕ,ψ, θ)} ⇒ ξ

Premises Γ ∪ {ϕ,ψ} ⇒ ξ

Γ ∪ {¬ϕ, θ} ⇒ ξ

Conclusion Γ ∪ {∃x1:σ1, . . . , xn:σn, ϕ} ⇒ ψ

Premise Γ ∪ {ϕ′} ⇒ ψ

Notes:

• Each sequent in the preceding table is of the form Γ ∪ {ϕ} ⇒ ψ.

• The index of the assumption ϕ in context Γ ∪ {ϕ} is i.

208

• ϕ′ is obtained from ϕ by renaming the variables among x1, . . . , xn
which are free in both ϕ and the original sequent.

Related commands:
antecedent-inference-strategy
direct-and-antecedent-inference-strategy
direct-inference

Remarks: Keep in mind that any antecedent inference produces subgoals
which together are equivalent to the original goal. Thus, it is always safe
to do antecedent inferences, in the sense that they do not produce false
subgoals from true ones.

Key binding: a

antecedent-inference-strategy

Script usage: (antecedent-inference-strategy assumption-list).
assumption-list can be given as a list of numbers, a list of strings, or an
assumption-list form.

Interactive argument retrieval:

• List of formula indices for antecedent inferences --
(i1 i2 · · · im):j1 j2 · · · jn. The i1, i2, . . . , im are the indices of the
assumptions of sequent node on which antecedent inferences can be
done, that is an implication, conjunction, disjunction, biconditional,
conditional-formula, or an existential formula. In case there is only
one such formula, this argument request is omitted.

Command kind: Multi-inference.

Description: Call an assumption of the goal sequent node fixed if its index
is not among j1, . . . , jn. This command repeatedly applies the antecedent-
inference command to the goal node and resulting subgoal nodes until the
only possible antecedent inferences are on fixed assumptions.

209

Related commands:
antecedent-inference
direct-and-antecedent-inference-strategy

Remarks: This command is called as a subroutine by a number of other
commands including instantiate-theorem and instantiate-universal-
antecedent.

Key binding: A

apply-macete

Script usage: (apply-macete macete).

Interactive argument retrieval:

• Macete name: The name of a macete. Formally, a macete is a function
which takes as arguments a context and an expression and returns an
expression. Macetes are used to apply a theorem or a collection of
theorems to a sequent in a deduction graph. In order to use them
effectively, read the section on macetes in the manual.

Command kind: Single-inference.

Description: This command applies the argument macete to the given
sequent node.

Related commands:
apply-macete-locally
apply-macete-locally-with-minor-premises
apply-macete-with-minor-premises

Remarks: Macetes are an easy and very effective way of applying lemmas
in a proof. In fact, in the course of developing a theory, we suggest that some
effort be expended in formulating lemmas with a view to applying them as
macetes.

Key binding: m

210

apply-macete-locally

Script usage: (apply-macete-locally macete expression occurrences).

Interactive argument retrieval:

• Macete name: The name of a macete.

• Expression to apply macete: A subexpression of the sequent as-
sertion to which you want to apply the macete.

• Occurrences of expression (0-based): The list occurrences of
the expression you want to apply the macete to.

Command kind: Single-inference.

Description: This command applies the argument macete to the given
sequent node at those occurrences of the expression supplied in response to
the minibuffer prompt.

Related commands:
apply-macete
apply-macete-locally-with-minor-premises
apply-macete-with-minor-premises

Remarks: This command is useful when you need to control where a
macete is applied, in cases where it applies at several locations. For example,
if the sequent assertion is |x + y2| = |y2 + x|, then applying the macete
commutative-law-for-addition to the 0-th occurrence of x+ y2 yields a
new sequent with assertion |y2+x| = |y2+x|. If the macete had been applied
globally, the resulting assertion would have been |y2 + x| = |x+ y2|.

apply-macete-locally-with-minor-premises

Script usage: (apply-macete-locally-with-minor-premises macete
expression occurrences).

211

Interactive argument retrieval:

• Macete name: The name of a macete.

• Expression to apply macete: A subexpression of the sequent as-
sertion to which you want to apply the macete.

• Occurrences of expression (0-based): The list occurrences of
the expression you want to apply the macete to.

Command kind: Single-inference.

Description: This command applies the argument macete to the given se-
quent node, in the same way as apply-macete-locally, but with the following
important difference: whenever the truth or falsehood of a definedness or
sort-definedness assertion cannot be settled by the simplifier, the assertion
is posted as a additional subgoal to be proved.

Related commands:
apply-macete
apply-macete-locally
apply-macete-with-minor-premises

apply-macete-with-minor-premises

Script usage: (apply-macete-with-minor-premises macete).

Interactive argument retrieval:

• Macete name: The name of a macete.

Command kind: Single-inference.

Description: This command applies the argument macete to the given
sequent node, in the same way as apply-macete, but with the following
important difference: whenever the truth or falsehood of a convergence re-
quirement cannot be settled by the simplifier, the assertion is posted as a
additional subgoal to be proved.

212

Related commands:
apply-macete
apply-macete-locally
apply-macete-locally-with-minor-premises

Remarks: The convergence requirements which are posted as additional
subgoals arise from two different sources:

(1) Convergence requirements are generated by the simplifier in the course
of certain reductions, including algebraic simplification and beta-
reduction.

(2) Convergence requirements are also generated by checks that instanti-
ations of universally valid formulas used by the macete are sound.

You should never assume that subgoals generated by this command are
always true. As always for nonreversible commands, you should inspect the
new subgoals to insure imps is not misdirecting your proof.

assume-theorem

Script usage: (assume-theorem theorem).

Interactive argument retrieval:

• Theorem name: The name of a theorem in the deduction graph theory.

Command kind: Single-inference.

Description: This command adds the argument theorem to the context
of the given sequent.

Related commands:
apply-macete
assume-transported-theorem
instantiate-theorem

Remarks: To apply a theorem to a sequent, you will usually want to use
apply-macete or instantiate-theorem instead of assume-theorem.

213

assume-transported-theorem

Script usage: (assume-transported-theorem theorem interpretation).

Interactive argument retrieval:

• Theorem name: The name of a theorem in T .

• Theory interpretation: The name of a theory interpretation of T
in the deduction graph’s theory.

Command kind: Single-inference.

Description: This command transports the argument theorem to the de-
duction graph’s theory via the argument theory interpretation. Then the
transported theorem is added to the context of the given sequent using
assume-theorem.

Related commands:
apply-macete
assume-theorem
instantiate-transported-theorem

Remarks: To apply a theorem to a sequent from outside the deduction
graph’s theory, you will usually want to use apply-macete or instantiate-
transported-theorem instead of assume-transported-theorem.

auto-instantiate-existential

Script usage: auto-instantiate-existential.

Interactive argument retrieval: None.

Command Kind: Multi-inference.

Description: This command tries to instantiate an existential assertion
with terms from the context of the given sequent.

214

Related commands:
auto-instantiate-universal-antecedent
instantiate-existential

auto-instantiate-universal-antecedent

Script usage: (auto-instantiate-universal-antecedent
assumption). assumption can be given as an integer i or a string σ.

Interactive argument retrieval:

• 0-based index of universal antecedent formula --
(i1 i2 · · · in): i. The i1, i2, . . . , in are the indices of the universal
assumptions of the sequent node. In case there is only one universal
antecedent formula, this argument request is omitted.

Command Kind: Multi-inference.

Description: This command tries to instantiate the i-th assumption of
the context of the given sequent with terms from the context.

Related commands:
auto-instantiate-existential
instantiate-universal-antecedent

backchain

Script usage: (backchain assumption). assumption can be given as an
integer i or a string σ.

Interactive argument retrieval:

• 0-based index of antecedent formula: If there is only one as-
sumption, this argument request is omitted.

Command Kind: Single-inference.

215

Description: This command includes the behavior described under
backchain-through-formula. However, for a part of the assumption of
one of the forms s = t, s ' t, s ≡ t, if a subexpression of the assertion
matches s, then it is replaced by the corresponding instance of t.

Related commands:
backchain-backwards
backchain-repeatedly
backchain-through-formula

Key Binding: b

backchain-backwards

Script usage: (backchain-backwards assumption). assumption can be
given as an integer i or a string σ.

Interactive argument retrieval:

• 0-based index of antecedent formula:

Command Kind: Single-inference.

Description: Backchain-backwards differs from backchain in that sub-
formulas of the assumption of the forms s = t, s ' t, s ≡ t are used from
right to left.

Related commands:
backchain
backchain-repeatedly
backchain-through-formula

backchain-repeatedly

Script usage: (backchain-repeatedly assumption-list). assumption-
list can be given as a list of numbers, of strings or an assumption-list form.

216

Interactive argument retrieval:

• List of 0-based indices of antecedent formulas: If there is
only one assumption, this argument request is omitted.

Command Kind: Multi-inference.

Description: A succession of backchains are performed using the indi-
cated assumptions. Execution terminates when every backchaining oppor-
tunity against those assumptions has been used up.

Related commands:
backchain
backchain-backwards
backchain-through-formula

backchain-through-formula

Script usage: (backchain-through-formula assumption). assumption
can be given as an integer i or a string σ.

Interactive argument retrieval:

• 0-based index of antecedent formula: If there is only one as-
sumption, this argument request is omitted.

Command kind: Single-inference.

Description: This command attempts to use the assumption with the
given index to replace the assertion to be proved. In the simplest case,
if the given assumption is ϕ ⊃ ψ and the assertion is ψ, then backchain-
through-formula replaces the assertion with ϕ. Similarly, if the assertion is
¬ϕ, it is replaced with ¬ψ. The command extends this simplest case in four
ways:

• If the assumption is universally quantified, then matching is used to
select a relevant instance.

217

• If the assumption is a disjunction∨
i∈i
ϕi,

then, for any j ∈ i, it may be treated as

(
∧

i∈i,i 6=j
¬ϕi) ⊃ ϕj .

• If the assumption is a conjunction, each conjunct is tried separately,
in turn.

• These rules are used iteratively to descend through the structure of
the assumption as deeply as necessary.

If imps cannot recognize that the terms returned by a match are defined in
the appropriate sorts, then these assertions are returned as additional minor
premises that must later be grounded to complete the derivation.

Related commands:
backchain
backchain-backwards
backchain-repeatedly

beta-reduce

Script usage: beta-reduce.

Interactive argument retrieval: None.

Command kind: Single-inference.

Description: This command attempts to beta-reduce each lambda-
application in the assertion of the given sequent.

Related commands:
beta-reduce-antecedent
beta-reduce-insistently
beta-reduce-repeatedly
beta-reduce-with-minor-premises
simplify

218

Remarks: Since beta-reduction can often be applied several times in a
row, the command beta-reduce-repeatedly is usually preferable to this
command. Beta-reduction is also performed by simplify.

beta-reduce-antecedent

Script usage: (beta-reduce-antecedent assumption). assumption can
be given as an integer i or a string σ.

Interactive argument retrieval:

• 0-based index of antecedent-formula: i. If there is only one as-
sumption, this argument request is omitted.

Command kind: Multi-inference.

Description: This command is used for beta-reducing an assumption in
the context of the given sequent. It is equivalent to the following sequence
of commands: incorporate-antecedent applied to the given sequent with
argument i; beta-reduce-repeatedly applied to the sequent yielded by the
previous command; and direct-inference applied to the sequent yielded by
the previous command. The commands halts if beta-reduce-repeatedly
grounds the first produced sequent.

Related commands::
beta-reduce-repeatedly
simplify-antecedent

Remarks: The implementation of this command has the side effect that
the assertion is beta-reduced as well as the antecedent formula.

beta-reduce-insistently

Script usage: beta-reduce-insistently.

Interactive argument retrieval: None.

Command kind: Single-inference.

219

Description: This command is equivalent to disabling all quasi-construc-
tors and then calling beta-reduce.

Related commands:
beta-reduce
insistent-direct-inference
simplify-insistently

Remarks: There is rarely any need to use this command. It has the
disagreeable effect of exploding quasi-constructors.

beta-reduce-repeatedly

Script usage: beta-reduce-repeatedly.

Interactive argument retrieval: None.

Command kind: Single-inference.

Description: This command attempts to beta-reduce each lambda-
application in the assertion of the given sequent repeatedly until there are
no longer any lambda-applications that beta-reduce.

Related commands:
beta-reduce
beta-reduce-antecedent

Remarks: Since beta-reduction can often be applied several times in a
row, this command is usually preferable to the command beta-reduce.

Key binding: C-c b

beta-reduce-with-minor-premises

Script usage: beta-reduce-with-minor-premises.

Interactive argument retrieval: None.

220

Command kind: Single-inference.

Description: This command is the same as beta-reduce except that,
instead of failing when convergence requirements are not verified, it posts
the unverified convergence requirements as additional subgoals to be proved.

Related commands:
beta-reduce
simplify-with-minor-premises

Remarks: This command is useful for determining why a lambda-
application does not beta-reduce.

case-split

Script usage: (case-split list-of-formulas).

Interactive argument retrieval:

• First formula: ϕ1.

• Next formula (<RET> if done): ϕ1.
...

• Next formula (<RET> if done): ϕn (n ≥ 1).

Description: This command considers all the different possible cases for
ϕ1, . . . , ϕn.

Conclusion Γ⇒ ψ

Premises (A ⊆ {1, . . . , n}) Γ ∪ {ϕA1 ∧ · · · ∧ ϕAn } ⇒ ψ

Notes:

• For each A ⊆ {1, . . . , n}, ϕAi is ϕi if i ∈ A, and ¬ϕi otherwise.

221

case-split-on-conditionals

Script usage: (case-split-on-conditionals occurrences). occurrences
is a list of integers.

Interactive argument retrieval:

• Occurrences of conditionals to be raised (0-based): A list l
given in the form l1 · · · ln.

Command kind: Multi-inference.

Description: This command applies case-split to the first components of
the conditional expressions in the given sequent specified by l. The command
simplify is then applied to each of the newly created sequents.

Related commands::
case-split
raise-conditional

Remarks: Avoid using this command with more than two occurrences of
conditionals.

choice-principle

Script usage: choice-principle.

Interactive argument retrieval: None.

Command kind: Single-inference.

Description: This command implements a version of the axiom of choice.

Conclusion Γ⇒ ∃f :[σ1, . . . , σn, τ],∀x1:σ′1, . . . , xn:σ′n, ϕ
Premise Γ⇒ ∀x1:σ′1, . . . , xn:σ′n,∃yf :τ, ϕ[yf/f(x1, . . . , xn)]all

Notes:

222

• σi and σ′i have the same type for all i with 1 ≤ i ≤ n.

• The command fails if there is any occurrence of f in ϕ which is not in
an application of the form f(x1, . . . , xn).

Remarks: The existential sequence is often introduced into the deduction
graph using cut-with-single-formula.

contrapose

Script usage: (contrapose assumption). assumption can be given as an
integer i or a string σ.

Interactive argument retrieval:

• 0-based index of antecedent-formula: i. If there is only one as-
sumption, this argument request is omitted.

Command kind: Single-inference.

Description: This command interchanges the given sequent’s assertion
and its assumption given by i.

Conclusion Γ ∪ {ϕ} ⇒ ψ

Premise Γ ∪ {¬ψ} ⇒ ¬ϕ

Notes:

• The index of ϕ in context Γ ∪ {ϕ} is i.

Remarks: Use contrapose if you want to do “proof by contradiction.”
However, if there is nothing to contrapose with (because the sequent has
no assumptions), you will have to add an assumption by using cut-with-
single-formula or instantiate-theorem.

Key binding: c

223

cut-using-sequent

Script usage: (cut-using-sequent sequent-node). sequent-node can be
given as an integer (referring to the sequent node with that number) or as
a list (context-string assertion-string).

Interactive argument retrieval:

• Major premise number: The number of a sequent node.

Command kind: Single-inference.

Description: This command allows you to add some new assumptions
to the context of the given sequent. Of course, you are required to show
separately that the new assumptions are consequences of the context. The
node containing the major premise sequent must exist before the command
can be called. Usually you create this sequent node with edit-and-post-
sequent-node.

Conclusion Γ⇒ ϕ

Major Premise Γ ∪ {ψ1, . . . , ψn} ⇒ ϕ

Minor Premises (1 ≤ i ≤ n) Γ⇒ ψi

Related commands: cut-with-single-formula.

Remarks: To cut with one formula, you should usually use cut-with-
single-formula.

cut-with-single-formula

Script usage: (cut-with-single-formula formula).

Interactive argument retrieval:

• Formula to cut: String specifying a formula ψ.

Command kind: Single-inference.

224

Description: This command allows you to add a new assumption to the
context of the given sequent. Of course, you are required to show separately
that the new assumption is a consequence of the context.

Conclusion Γ⇒ ϕ

Major Premise Γ ∪ {ψ} ⇒ ϕ

Minor Premise Γ⇒ ψ

Related commands: cut-using-sequent.

Remarks: To cut with several formulas at the same time, use cut-using-
sequent.

Key binding: &

definedness

Script usage: definedness.

Interactive argument retrieval: None.

Command kind: Single-inference.

Description: This command applies to a sequent whose assertion is a
definedness statement of the form t↓. The command first tests whether the
context entails the definedness of t. If the test fails, the command then tries
to reduce the sequent to a set of simpler sequents.

Related commands: sort-definedness.

Remarks: This command is mainly useful when t is an application or a
conditional.

direct-and-antecedent-inference-strategy

Script usage: direct-and-antecedent-inference-strategy.

225

Interactive argument retrieval: None.

Command kind: Multi-inference.

Description: This command repeatedly applies (1) direct-inference to
the given sequent and resulting sequents and (2) antecedent-inference to
newly created antecedents of the given sequent and resulting sequents until
no more such direct and antecedent inferences are possible.

Related commands:
antecedent-inference-strategy
direct-and-antecedent-inference-strategy-with-simplification
direct-inference-strategy

Key binding: D

direct-and-antecedent-inference-strategy-with-
simplification

Script usage:
direct-and-antecedent-inference-strategy-with-simplification.

Interactive argument retrieval: None.

Command kind: Multi-inference.

Description: This command first applies direct-and-antecedent-
inference-strategy to the given sequent, and then applies simplify to
all resulting sequents.

Related commands:
antecedent-inference-strategy
direct-and-antecedent-inference-strategy
direct-inference-strategy

226

direct-inference

Script usage: direct-inference.

Interactive argument retrieval: None.

Command kind: Single-inference.

Description: This command applies an analogue of an introduction rule
of Gentzen’s sequent calculus (in reverse), based on the leading constructor
of the assertion of the given sequent.

Conclusion Γ⇒ ϕ ⊃ ψ
Premise Γ ∪ {ϕ} ⇒ ψ

Conclusion Γ⇒ ϕ1 ∧ · · · ∧ ϕn
Premises (1 ≤ i ≤ n) Γ ∪ {ϕ1, . . . , ϕi−1} ⇒ ϕi

Conclusion Γ⇒ ϕ1 ∨ · · · ∨ ϕn
Premise Γ ∪ {¬ϕ1, . . . ,¬ϕn−1} ⇒ ϕn

Conclusion Γ⇒ ϕ ≡ ψ
Premises Γ ∪ {ϕ} ⇒ ψ

Γ ∪ {ψ} ⇒ ϕ

Conclusion Γ⇒ if-form(ϕ,ψ, θ)
Premises Γ ∪ {ϕ} ⇒ ψ

Γ ∪ {¬ψ} ⇒ θ

Conclusion Γ⇒ ∀x1:σ1, . . . , xn:σn, ϕ
Premise Γ⇒ ϕ′

Notes:

• ϕ′ is obtained from ϕ by renaming the variables among x1, . . . , xn
which are free in both ϕ and the context Γ.

Related commands:
antecedent-inference
direct-inference-strategy
unordered-direct-inference

227

Remarks: Keep in mind that any direct inference produces subgoals which
together are equivalent to the original goal. Thus it is always safe to do direct
inferences, in the sense that they do not produce false subgoals from true
goals.

Key binding: d

direct-inference-strategy

Script usage: direct-inference-strategy.

Interactive argument retrieval: None.

Command kind: Multi-inference.

Description: This command repeatedly applies direct-inference to the
given sequent and resulting sequents until no more direct inferences are
possible. In other words, it adds to the deduction graph the smallest set of
sequents containing the given sequent and closed under direct inferences.

Related commands:
antecedent-inference-strategy
direct-inference
direct-and-antecedent-inference-strategy

disable-quasi-constructor

Script usage: (disable-quasi-constructor quasi-constructor).

Interactive argument retrieval:

• Quasi-constructor name: The name of a quasi-constructor in the
expression.

Command kind: Null-inference.

Description: This command disables the quasi-constructor given as ar-
gument.

228

edit-and-post-sequent-node

Script usage: (edit-and-post-sequent-node context-string assertion-
string).

Interactive argument retrieval:

• Edit sequent and C-c C-c when finished. A sequent presented
as a string of formulas using => to separate the sequent assumptions
from the sequent assertion.

Command kind: Null-inference.

Description: This commands adds the sequent given as an argument to
the deduction graph.

Key binding: e

eliminate-defined-iota-expression

Script usage: (eliminate-iota index symbol).

Interactive argument retrieval:

• 0-based index of iota-expression occurrence: i.

• Name of replacement variable: y

Command kind: Multi-inference.

Description: This command replaces the i-th occurrence of an iota-
expression in the given sequent’s assertion with the variable y. The com-
mand is predicated upon the iota-expression being defined with respect to
the sequent’s context. (An iota-expression is an expression whose lead con-
structor is iota or a quasi-constructor that builds an iota-expression.)

Conclusion Γ⇒ ψ

Major Premise Γ ∪ {ϕ[y/x]free, ∀z:σ, (ϕ[z/x]free ⊃ z = y)} ⇒ ψ′

Minor Premise Γ⇒ (ιx:σ, ϕ)↓

229

Notes:

• ιx:σ, ϕ is the i-th iota-expression occurrence in ψ.

• ψ′ is the result of replacing the i-th iota expression occurrence in ψ
with y.

Related commands: eliminate-iota.

Remarks: This command is very useful for dealing with iota-expressions
that are known to be defined with respect to the sequent’s context. The
minor premise is grounded automatically if the sequent’s context contains
(ιx:σ, ϕ)↓.

eliminate-iota

Script usage: (eliminate-iota index).

Interactive argument retrieval:

• 0-based index of iota-expression occurrence: i.

Command kind: Single-inference.

Description: This command applies to a sequent whose assertion is an
atomic formula or negated atomic formula containing a specified occurrence
of an iota-expression. The command reduces the sequent to an equivalent
sequent in which the specified iota-expression occurrence is “eliminated.”
(An iota-expression is an expression whose lead constructor is iota or a
quasi-constructor that builds an iota-expression.)

Conclusion Γ⇒ ψ

Major Premise Γ⇒ ∃y:σ, (ϕ[y/x]free ∧ ∀z:σ, (ϕ[z/x]free ⊃ z = y) ∧ ψ′)
Conclusion Γ⇒ ¬ψ
Major Premise Γ⇒ ∃y:σ, (ϕ[y/x]free ∧ ∀z:σ, (ϕ[z/x]free ⊃ z = y)) ⊃

∃y:σ, (ϕ[y/x]free ⊃ ¬ψ′)

Notes:

230

• ψ is an atomic formula.

• ιx:σ, ϕ is the i-th iota-expression occurrence in ψ, an atomic formula.

• ψ′ is the result of replacing the i-th iota-expression occurrence in ψ
with y.

• The occurrence of ιx:σ, ϕ in ψ is within some argument component s
of ψ. Moreover, the occurrence is an extended application component
of s, where a is an extended application component of b if either a is
b or b is an application of kind ι and a is an extended application
component of a component of b.

Related commands: eliminate-defined-iota-expression.

Remarks: If ψ is an equation or a definedness expression, the macete
eliminate-iota-macete is more direct than eliminate-iota.

enable-quasi-constructor

Script usage: (enable-quasi-constructor quasi-constructor).

Interactive argument retrieval:

• Quasi-constructor name: The name of a quasi-constructor in the
expression.

Command kind: Null-inference.

Description: This command enables the quasi-constructor given as argu-
ment.

extensionality

Script usage: extensionality.

Interactive argument retrieval: None.

Command kind: Single-inference.

231

Description: If the sequent node assertion is an equality or quasi-equality
or the negation of an equality or quasi-equality of n-ary functions, this com-
mand applies the extensionality principle.

Conclusion Γ⇒ f = g

Major Premise Γ⇒ ∀x1:σ1, . . . , xn:σn, f(x1, · · · , xn) ' g(x1, · · · , xn)
Minor Premise Γ⇒ f↓
Minor Premise Γ⇒ g↓
Conclusion Γ⇒ f ' g
Major Premise Γ⇒ ∀x1:σ1, . . . , xn:σn, f(x1, · · · , xn) ' g(x1, · · · , xn)
Minor Premise Γ ∪ {g↓} ⇒ f↓
Minor Premise Γ ∪ {f↓} ⇒ g↓
Conclusion Γ⇒ ¬f = g

Premise Γ⇒ ∃x1:σ1, . . . , xn:σn,¬f(x1, · · · , xn) ' g(x1, · · · , xn)
Conclusion Γ⇒ ¬f ' g
Premise Γ⇒ ∃x1:σ1, . . . , xn:σn,¬f(x1, · · · , xn) ' g(x1, · · · , xn)

Notes:

• If the sorts of f and g are [α1, . . . , αn, αn+1] and [β1, . . . , βn, βn+1],
respectively, then σi = αi t βi for all i with 1 ≤ i ≤ n.

• A sequent node corresponding to a minor premise is not created if the
truth of the minor premise is immediately apparent to imps.

• If f and g are of kind ∗, then “=” is used in place of “'” in the
premise.

Remarks: By substitution of quasi-equals for quasi-equals, both f = g
and f ' g imply

∀x1:σ1, . . . , xn:σn, f(x1, · · · , xn) ' g(x1, · · · , xn).

So in this direction extensionality is nothing new.

Key binding: ~

232

force-substitution

Script usage: (force-substitution expression replacement occurrences).
expression and replacement are denoted by strings, and occurrences is a list
of integers.

Interactive argument retrieval:

• Expression to replace: The subexpression e of the sequent node
assertion you want to replace.

• Replace it with: The new expression r you want to replace it with.

• 0-based indices of occurrences to change: A list l given in the
form l1 · · · ln.

Command kind: Single-inference.

Description: This command allows you to change part of the sequent
assertion. It yields two or more new subgoals. One subgoal is obtained from
the original sequent assertion by making the requested replacements. The
other subgoals assert that the replacements are sound.

Conclusion Γ⇒ ϕ

Major Premise Γ⇒ ϕ[r/e]l
Minor Premises (1 ≤ i ≤ n) Γi ⇒ ϕi

Notes:

• Γi is the local context of Γ⇒ ϕ at the location of the li-th occurrence
of e in ϕ.

• ϕi is

– e ≡ r if e is a formula and the parity of the path li is 0.

– r ⊃ e if e is a formula and the parity of the path li is 1.

– e ⊃ r if e is a formula and the parity of the path li is −1.

– e ' r in all other cases.

233

Key binding: f

generalize-using-sequent

Script usage: (generalize-using-sequent major-premise). major-
premise can be given as an integer (referring to the sequent node with that
number) or as a list (context-string assertion-string).

Interactive argument retrieval:

• Major premise number: The number of a sequent node.

Command kind: Single-inference.

Description: This command generalizes the assertion of the given se-
quent. The node containing the major premise sequent must exist before
the command can be called. Usually you create this sequent node with
edit-and-post-sequent-node.

Conclusion Γ⇒ ϕ

Major Premise Γ⇒ ∀x1:σ1, . . . , xn:σn, ϕ′

Minor Premises (1 ≤ i ≤ n) Γ⇒ ti ↓ σi

Notes:

• ϕ is the result of simultaneously replacing each free occurrence of xi
in ϕ′ with ti for all i with 1 ≤ i ≤ n.

• ti is free for xi in ϕ′ for each i with 1 ≤ i ≤ n.

incorporate-antecedent

Script usage: (incorporate-antecedent assumption). assumption can
be given as an integer i or a string σ.

Interactive argument retrieval:

• 0-based index of antecedent-formula: i. If there is only one as-
sumption, this argument request is omitted.

234

Command kind: Single-inference.

Description: This commands does the reverse of direct-inference on an
implication.

Conclusion Γ ∪ {ϕ} ⇒ ψ

Premise Γ⇒ ϕ ⊃ ψ

Notes:

• The index of ϕ in the context Γ ∪ {ϕ} is i.

Related commands: direct-inference.

Remarks: This command is used for incorporating an assumption of a
sequent’s context into the sequent’s assertion. It is particularly useful as a
preparation for applying such commands as apply-macete, beta-reduce,
and simplify.

Key binding: @

induction

Script usage: (induction inductor variable). inductor is a symbol nam-
ing an inductor, and variable is a string or (). If () is supplied as argument,
imps will choose the variable of induction itself.

Interactive argument retrieval:

• Inductor: An inductor is an imps structure which has an associated
induction principle together with heuristics (in the form of macetes
and commands) to handle separately the base and induction cases.

• Variable to induct on (<RET> to use IMPS default): imps will
choose a variable of the appropriate sort to induct on. Thus, in general,
there is no danger that it will attempt to induct on a variable for which
induction makes no sense. However, if various choices for an induction
variable are possible, the choice is more or less arbitrary. In these
cases, you should be prepared to suggest the variable.

235

Command kind: Multi-inference.

Description: This command attempts to apply a formula called an induc-
tion principle to a sequent and applies some auxiliary inferences as well. The
induction principle used by imps is determined by the inductor you give as
an argument. When using the induction command, the system will attempt
to reformulate the sequent in a form which matches the induction principle.
In particular, you can use the induction command directly in cases where
the goal sequent does not exactly match the induction principle.

Remarks: In a formal sense “induction” refers to an axiom or theorem
in a particular theory (for example, the formula of weak induction below),
and in this sense, “applying induction,” means applying this formula to a
sequent. However, induction alone rarely gets the job done. Other tricks,
such as algebraic simplification, beta-reduction, and unfolding of definitions,
especially recursive ones, are usually needed. In this broader sense, induction
can be thought of as a proof technique incorporating a large number of fairly
standard inferences.

Despite its simplicity, induction is one of the most powerful proof tech-
niques in mathematics, especially in proofs for formulas involving the inte-
gers. Moreover, forms of induction are also used in theories of syntax or
theories of lists. An induction principle in one of these theories is usually
referred to as structural induction.

The induction principle for the inductor integer-inductor is the for-
mula

∀s:[z, ∗],m:z,
∀t:z, (m ≤ t ⊃ s(t) ≡ (s(m) ∧ ∀t:z,m ≤ t ⊃ (s(t) ⊃ s(t+ 1)))).

This formula is usually referred to as the principle of weak induction. You
might also be familiar with the principle of strong induction; in fact, both in-
duction principles are equivalent. However, some formulas cannot be proved
directly with the principle of weak induction, because the induction hypothe-
sis is not sufficiently strong to prove the induction conclusion. In such cases,
instead of using a different induction principle, you first prove a stronger for-
mula by using the same weak induction principle.

You can build inductors using the form def-inductor. See Section 15.1.

Key binding: i

236

insistent-direct-inference

Script usage: insistent-direct-inference.

Interactive argument retrieval: None.

Command kind: Single-inference.

Description: This command is equivalent to disabling all quasi-construc-
tors and then calling direct-inference.

Related commands:
direct-inference
insistent-direct-inference-strategy.

Remarks: There is rarely any need to use this command. It has the
disagreeable effect of exploding quasi-constructors.

insistent-direct-inference-strategy

Script usage: insistent-direct-inference-strategy.

Interactive argument retrieval: None.

Command kind: Multi-inference.

Description: This command repeatedly applies the insistent-direct-in-
ference command to the goal node and resulting subgoal nodes until no
more insistent direct inferences are possible. In other words, it adds to the
deduction graph the smallest set of sequents containing the goal sequent and
closed under insistent direct inferences. This command is equivalent to dis-
abling all quasi-constructors and then calling direct-inference-strategy.

Related commands:
direct-inference-strategy
insistent-direct-inference

237

Remarks: Like insistent-direct-inference, this command has the dis-
agreeable effect of exploding quasi-constructors.

instantiate-existential

Script usage: (instantiate-existential instantiations). instantia-
tions is a list of strings denoting expressions.

Interactive argument retrieval:

• Instance for variable x1 of sort σ1: t1.
...

• Instance for variable xn of sort σn: tn (n ≥ 1).

Command kind: Multi-inference.

Description: This command instantiates an existential assertion with the
specified terms.

Conclusion Γ⇒ ∃x1:σ1, . . . , xn:σn, ϕ
Major Premise Γ⇒ ϕ′

Minor Premises (1 ≤ i ≤ n) Γ⇒ ti ↓ σi

Notes:

• ϕ′ is the result of simultaneously replacing each free occurrence of x1

in ϕ with ti, for each i with 1 ≤ i ≤ n, if necessary renaming bound
variables in ϕ to avoid variable captures.

Related commands: auto-instantiate-existential.

instantiate-theorem

Script usage (instantiate-theorem theorem instantiations). theorem
is the name of a theorem, and instantiations is a list of strings denoting
expressions.

238

Interactive argument retrieval:

• Theorem name: The name of a theorem ∀x1:σ1, . . . , xn:σn, ψ in the
deduction graph’s theory.

• Instance for variable x1 of sort σ1: t1.
...

• Instance for variable xn of sort σn: tn (n ≥ 1).

Command kind: Multi-inference.

Description: This command instantiates the argument theorem with the
specified terms t1, . . . , tn and then adds the resulting formula to the context
of the given sequent.

Conclusion Γ⇒ ϕ

Major Premise Γ ∪ {ψ′} ⇒ ϕ

Minor Premises (1 ≤ i ≤ n) Γ⇒ ti ↓ σi

Notes:

• ψ′ is the result of simultaneously replacing each free occurrence of xi
in ψ with ti, for each i with 1 ≤ i ≤ n, if necessary renaming bound
variables in ψ to avoid variable captures.

Related commands:
assume-theorem
instantiate-transported-theorem

instantiate-transported-theorem

Script usage: (instantiate-transported-theorem theorem interpreta-
tion instantiations). theorem is the name of a theorem, interpretation is the
name of a theory interpretation, and instantiations is a list of strings denot-
ing expressions.

239

Interactive argument retrieval:

• Theorem name: The name of a theorem ∀x1:σ1, . . . , xn:σn, ψ in T .

• Theory interpretation (<RET> to let IMPS find one): The
name of a theory interpretation i of T in the deduction graph’s theory.

• Instance for variable x1 of sort σ1: t1.
...

• Instance for variable xn of sort σn: tn (n ≥ 1).

Command kind: Multi-inference.

Description: This command transports the argument theorem to the de-
duction graph’s theory via i. Then, the transported theorem is instantiated
with the specified terms t1, . . . , tn. And, finally, the resulting formula is
added to the context of the given sequent.

If no theory interpretation name is given, imps will try to find a theory
interpretation to play the role of i using the sort information contained in
the terms t1, . . . , tn.

Related commands:
assume-transported-theorem
instantiate-theorem

Remarks: imps can often find an appropriate theory interpretation auto-
matically when the home theory of the theorem is a generic theory, i.e., a
theory which contains neither constants nor axioms.

instantiate-universal-antecedent

Script usage: (instantiate-universal-antecedent assumption instan-
tiations). assumption can be given as an integer i or a string σ, and instan-
tiations is a list of strings denoting expressions.

240

Interactive argument retrieval:

• 0-based index of universal antecedent formula
(i1 i2 · · · in): i. The i1, i2, . . . , in are the indices of the universal
assumptions of the sequent node. In case there is only one universal
antecedent formula, this argument request is omitted.

• Instance for variable x1 of sort σ1: t1.
...

• Instance for variable xn of sort σn: tn (n ≥ 1).

Command kind: Multi-inference.

Description: This command instantiates the i-th assumption of the con-
text of the given sequent (provided the assumption is a universal statement).

Conclusion Γ ∪ {∀x1:σ1, . . . , xn:σn, ψ} ⇒ ϕ

Major Premise Γ ∪ {ψ′} ⇒ ϕ

Minor Premises (1 ≤ i ≤ n) Γ⇒ ti ↓ σi

Notes:

• The index of the assumption ∀x1:σ1, . . . , xn:σn, ψ in the context Γ ∪
{∀x1:σ1, . . . , xn:σn, ψ} is i.

• ψ′ is the result of simultaneously replacing each free occurrence of x1

in ψ with ti, for each i with 1 ≤ i ≤ n, if necessary renaming bound
variables in ψ to avoid variable captures.

Related commands:
auto-instantiate-universal-antecedent
instantiate-universal-antecedent-multiply

instantiate-universal-antecedent-multiply

Script usage: (instantiate-universal-antecedent-multiply assump-
tion lists-of-instantiations). assumption can be given as an integer i or a
string σ, and lists-of-instantiations is a list of lists of strings which specify
the expressions that instantiate the universally quantified assumption.

241

Interactive argument retrieval:

• 0-based index of antecedent-formula: i. If there is only one as-
sumption, this argument request is omitted.

• First instance term: t1.

• Next instance term (<RET> if done): t2.
...

• Next instance term (<RET> if done): tn (n ≥ 1).

• Input terms for another instance? (y or n)
...

Command kind: Multi-inference.

Description: This command produces one or more instances of the i-th
assumption of the context of the given sequent (provided the assumption
is a universal statement) in the same way that instantiate-universal-
antecedent produces one instance of the assumption.

Related commands:
auto-instantiate-universal-antecedent
instantiate-universal-antecedent

prove-by-logic-and-simplification

Script usage: (prove-by-logic-and-simplification persistence).

Interactive argument retrieval:

• Backchaining persistence: An integer, which is 3 by default.

Command kind: Multi-inference.

242

Description This command tries to ground a sequent by applying a list
inference procedures (some of which have a sequent assumption as an addi-
tional argument) to the goal node and recursively to the generated subgoal
nodes. See Table 16.1. When an inference procedure is applied to the goal
sequent or to a subgoal sequent, two possibilities can occur:

(1) The inference procedure fails. In this case, prove-by-logic-and-
simplification tries the same inference procedure with the next as-
sumption as argument (if this makes sense), the next inference proce-
dure on the list, if one exists, or otherwise backtracks.

(2) The inference procedure succeeds, either grounding the node or gen-
erating one or more new subgoals to prove. In this case we attempt to
prove each new subgoal by applying the primitive inferences in order.

Remarks: This command is an example of an ending strategy, that is, a
proof construction procedure to be used when all that remains to be done is
completely straightforward reasoning. It should be used with great caution
since in the cases in which it fails to ground a node it may generate a large
number of irrelevant subgoals.

Key binding: None, lest you accidently hit it.

raise-conditional

Script usage: (raise-conditional occurrences). occurrences is given
by a list of integers.

Interactive argument retrieval:

• Occurrences of conditionals to be raised (0-based): A list l
given in the form l1 · · · ln.

Command kind: Single-inference.

243

Condition Procedure Action
do-simplify? simplify lower do-simplify?
0 < persist backchain-through-formula lower persist

raise do-simplify?
antecedent-inference for
existentials and conjunctions
direct-inference
antecedent-inference for
other assumptions raise do-simplify?

0 < persist backchain-inference
sort-definedness
definedness
extensionality raise do-simplify?
conditional-inference followed raise do-simplify?
by direct-inference

Notes:

(1) The variable persist is the backchaining persistence supplied as an
argument to the command. lower persist means reduce backchaining
persistence by 1.

(2) do-simplify? is a boolean flag which starts off as true when the com-
mand is called.

Table 16.1: Search Order for prove-by-logic-and-simplification

244

Description: This command will “raise” a subset of the conditional ex-
pressions (i.e., expressions whose lead constructor is if), specified by l, in
the assertion of the given sequent Γ⇒ ϕ.

For the moment, let us assume that n = 1. Suppose the l1-th occurrence
of a conditional expression in ϕ is the a-th occurrence of s = if(θ, t1, t2) in
ϕ; the smallest formula containing the a-th occurrence of s in ϕ is the b-th
occurrence of ψ in ϕ; and the a-th occurrence of s in ϕ is the c-th occurrence
of s in ψ. If every free occurrence of a variable in s is also a free occurrence
in ψ, the command reduces the sequent to

Γ⇒ ϕ[if-form(θ, ψ[t1/s]c, ψ[t2/s]c)/ψ]b,

and otherwise the command fails.
Now assume n > 1. The command will then simultaneously raise each

specified occurrence of a conditional expression in ϕ, in the manner of the
previous paragraph, if there are no conflicts between the occurrences. The
kinds of conflicts that can arise and how they are resolved are listed below:

• If two or more specified occurrences of a conditional expression s in ϕ
are contained in same smallest formula, they are raised together.

• If two or more specified occurrences of distinct conditional expressions
in ϕ are contained in same smallest formula, at most one of the occur-
rences is raised.

• If ψ1 and ψ2 are the smallest formulas respectively containing two
specified occurrences of a conditional expression in ϕ and ψ1 is a proper
subexpression of ψ2, then the first specified conditional expression is
not raised.

Related commands: case-split-on-conditionals.

Remarks: This command can be used to change a conditional expression
if(θ, ϕ1, ϕ2) in a sequent’s assertion, where ϕ1 and ϕ2 are formulas, to the
conditional formula if-form(θ, ϕ1, ϕ2).

Key binding: r

simplify

Script usage: simplify.

245

Interactive argument retrieval: None.

Command kind: Single-inference.

Description: This command simplifies the assertion of the given sequent
with respect to the context of the sequent. It uses both theory-specific
and general logical methods to reduce the sequent to a logically equiva-
lent sequent. The theory-specific methods include algebraic simplification,
deciding rational linear inequalities, and applying rewrite rules.

Related commands:
beta-reduce
simplify-antecedent
simplify-insistently
simplify-with-minor-premises

Remarks: This is a very powerful command that can be computationally
expensive. Computation can often be saved by using the weaker command
beta-reduce.

Key binding: C-c s

simplify-antecedent

Script usage: (simplify-antecedent assumption). assumption can be
given as an integer i or a string σ.

Interactive argument retrieval:

• 0-based index of antecedent-formula: i. If there is only one as-
sumption, this argument request is omitted.

Command kind: Multi-inference.

246

Description: This command is used for simplifying an assumption in the
context of the given sequent with respect to this context. It is equivalent
to the following sequence of commands: contrapose applied to the given
sequent with argument i; simplify applied to the sequent yielded by the
previous command; and contrapose applied to the sequent yielded by the
previous command with the index of the negated assertion of the original
sequent. The commands halts if simplify grounds the first produced se-
quent.

Related commands::
beta-reduce-antecedent
simplify

simplify-insistently

Script usage: simplify-insistently.

Interactive argument retrieval: None.

Command kind: Single-inference.

Description: This command is equivalent to disabling all quasi-construc-
tors and then calling simplify.

Related commands:
beta-reduce-insistently
insistent-direct-inference
simplify

Remarks: There is rarely any need to use this command. It has the
disagreeable effect of exploding quasi-constructors.

simplify-with-minor-premises

Script usage: simplify-with-minor-premises.

Interactive argument retrieval: None.

247

Command kind: Single-inference.

Description: This command is the same as simplify except that, instead
of failing when convergence requirements are not verified, it posts the un-
verified convergence requirements as additional subgoals to be proved.

Related commands::
beta-reduce-with-minor-premises
simplify

Remarks: This command is useful for identifying convergence require-
ments that the simplifier cannot verify.

sort-definedness

Script usage: sort-definedness.

Interactive argument retrieval: None.

Command kind: Single-inference.

Description: This command applies to a sequent whose assertion is a
definedness statement of the form (t ↓ σ). The command first tests whether
the context entails the definedness of t in σ. If the test fails, the command
then tries to reduce the sequent to a set of simpler sequents. In particular,
when t is a conditional term if(ϕ, t0, t1), it distributes the sort definedness
assertion into the consequent and alternative. If t0 and t1 are not themselves
conditional terms, the new subgoal has the assertion if-form(ϕ, (t0 ↓ σ), (t1 ↓
σ)). If one or both of them is a conditional term, then the sort definedness
assertion is recursively distributed into the consequents and alternatives.

Related commands: definedness.

Remarks: This command is mainly useful when t is an application, a
function, or a conditional term.

248

sort-definedness-and-conditionals

Interactive argument retrieval: None.

Command kind: Multi-inference.

Description: This strategy invokes sort-definedness. Insistent direct in-
ference and repeated beta reduction are then invoked, followed by case-split-
on-conditionals, applied to the first conditional term.

Related commands: sort-definedness.

Remarks: This command is useful for a goal (t ↓ σ) when the definition
of σ involves a conditional term.

unfold-defined-constants

Script usage: unfold-defined-constants.

Interactive argument retrieval: None.

Command kind: Multi-inference.

Description: This command replaces every occurrence of a defined con-
stant by its respective unfolding. The command beta-reduce-repeatedly
is called after all the unfoldings are performed.

Related commands:
unfold-defined-constants-repeatedly
unfold-directly-defined-constants
unfold-recursively-defined-constants
unfold-single-defined-constant

Key binding: C-c u

unfold-defined-constants-repeatedly

Script usage: unfold-defined-constants-repeatedly.

249

Interactive argument retrieval: None.

Command kind: Multi-inference.

Description: This command replaces every occurrence of a defined con-
stant by its respective unfolding, repeatedly, until there are no occurrences of
defined constants. The command beta-reduce-repeatedly is called after
all the unfoldings are performed.

Related commands:
unfold-defined-constants
unfold-directly-defined-constants-repeatedly
unfold-recursively-defined-constants-repeatedly
unfold-single-defined-constant

Remarks: If there are occurrences of recursively defined constants, this
command can run forever.

unfold-directly-defined-constants

Script usage: unfold-directly-defined-constants.

Interactive argument retrieval: None.

Command kind: Multi-inference.

Description: This command replaces every occurrence of a directly de-
fined constant by its respective unfolding. (A directly defined constant is a
constant defined nonrecursively.) The command beta-reduce-repeatedly
is called after all the unfoldings are performed.

Related commands:
unfold-defined-constants
unfold-directly-defined-constants-repeatedly
unfold-recursively-defined-constants
unfold-single-defined-constant

250

unfold-directly-defined-constants-repeatedly

Script usage: unfold-directly-defined-constants-repeatedly.

Interactive argument retrieval: None.

Command kind: Multi-inference.

Description: This command replaces every occurrence of a directly de-
fined constant by its respective unfolding, repeatedly, until there are no
occurrences of directly defined constants. (A directly defined constant is a
constant defined nonrecursively.) The command beta-reduce-repeatedly
is called after all the unfoldings are performed.

Related commands:
unfold-defined-constants-repeatedly
unfold-directly-defined-constants
unfold-recursively-defined-constants-repeatedly
unfold-single-defined-constant

Remarks: This command will always terminate, unlike
unfold-defined-constants-repeatedly and
unfold-recursively-defined-constants-repeatedly.

unfold-recursively-defined-constants

Script usage: unfold-recursively-defined-constants.

Interactive argument retrieval: None.

Command kind: Multi-inference.

Description: This command replaces every occurrence of a recursively
defined constant by its respective unfolding. The command beta-reduce-
repeatedly is called after all the unfoldings are performed.

251

Related commands:
unfold-defined-constants
unfold-directly-defined-constants
unfold-recursively-defined-constants-repeatedly
unfold-single-defined-constant

unfold-recursively-defined-constants-repeatedly

Script usage: unfold-recursively-defined-constants-repeatedly.

Interactive argument retrieval: None.

Command kind: Multi-inference.

Description: This command replaces every occurrence of a recursively
defined constant by its respective unfolding, repeatedly, until there are no
occurrences of recursively defined constants. The command beta-reduce-
repeatedly is called after all the unfoldings are performed.

Related commands:
unfold-defined-constants-repeatedly
unfold-directly-defined-constants-repeatedly
unfold-recursively-defined-constants
unfold-single-defined-constant

Remarks: This command may run forever.

unfold-single-defined-constant

Script usage: (unfold-single-defined-constant occurrences constant).
occurrences is a list of integers, and constant is denoted by the constant
name.

Interactive argument retrieval:

• Constant name: c.

252

• Occurrences to unfold (0-based): A list l given in the form
l1 · · · ln.

Notice that the order in which arguments are requested is different than the
order for script usage.

Command kind: Multi-inference.

Description: This command replaces each specified occurrence of the de-
fined constant c by its unfolding e:

Conclusion Γ⇒ ϕ

Premise Γ⇒ ϕ[e/c]l

The command beta-reduce-repeatedly is called after all the unfoldings
are performed.

Related commands:
unfold-defined-constants
unfold-defined-constants-repeatedly
unfold-directly-defined-constants
unfold-directly-defined-constants-repeatedly
unfold-recursively-defined-constants
unfold-recursively-defined-constants-repeatedly
unfold-single-defined-constant-globally

Remarks: The related commands are all elaborations of this command.

Key binding: u

unfold-single-defined-constant-globally

Script usage: (unfold-single-defined-constant-globally constant).

Interactive argument retrieval:

• Constant name: c.

253

Command kind: Multi-inference.

Description: This command replaces every occurrence of the defined con-
stant c by its unfolding e:

Conclusion Γ⇒ ϕ

Premise Γ⇒ ϕ[e/c]all

The command beta-reduce-repeatedly is called after all the unfoldings
are performed.

Related commands: unfold-single-defined-constant.

Key binding: U

unordered-direct-inference

Script usage: unordered-direct-inference.

Interactive argument retrieval: None.

Command kind: Single-inference.

Description: If the sequent node assertion is a conjunction, this command
does a direct inference without strengthening the context.

Conclusion Γ⇒ ϕ1 ∧ · · · ∧ ϕn
Premises (1 ≤ i ≤ n) Γ⇒ ϕi

Related commands: direct-inference.

weaken

Script usage: (weaken assumption-list). assumption-list can be given as
a list of numbers, a list of strings, or an assumption-list form.

254

Interactive argument retrieval:

• List of formula indices to omit (0-based): A list l given in the form
l1 · · · ln.

Command Kind: Single-inference.

Description: This command removes one or more assumptions you spec-
ify from the context of the given sequent.

Conclusion Γ ∪∆⇒ ϕ

Premise Γ⇒ ϕ

Notes:

• The indices of the members of ∆ in the context Γ ∪∆ are given by l.

Remarks: You might wonder why you would ever want to remove an
assumption, but in fact, in many cases this is a natural step to take:

• If an assumption is irrelevant, then removing it will do no harm and
will make the job of the simplifier a lot easier,

• It is often the case that sequent nodes are identical except for the addi-
tion of “irrelevant” assumptions. In this case, removing the irrelevant
assumptions allows you to ground both sequents by just grounding
one.

Key binding: w

255

Chapter 17

The Primitive Inference
Procedures

In this chapter we list and document each of the primitive inference proce-
dures. We will use the following format to describe them.

Parameters. A list of the arguments (other than the sequent node) re-
quired by procedure. These arguments can be of the following types:

• A formula.

• A list of formulas.

• A path represented as a list of nonnegative integers.

• A list of paths.

• A constant.

• A macete.

• Another sequent node (usually referred to as the major premise).

Description. A brief description of the primitive inference. Some of prim-
itive inference procedures have descriptions which are identical to the
description of the corresponding interactive proof command.

antecedent-inference

Parameters: A sequent node assumption.

256

Description: The effect of applying this primitive inference procedure is
given by the following table.

Conclusion Γ ∪ {ϕ ⊃ ψ} ⇒ θ

Premises Γ ∪ {¬ϕ} ⇒ θ

Γ ∪ {ψ} ⇒ θ

Conclusion Γ ∪ {ϕ1 ∧ · · · ∧ ϕn} ⇒ ψ

Premise Γ ∪ {ϕ1, . . . , ϕn} ⇒ ψ

Conclusion Γ ∪ {ϕ1 ∨ · · · ∨ ϕn} ⇒ ψ

Premises (1 ≤ i ≤ n) Γ ∪ {ϕi} ⇒ ψ

Conclusion Γ ∪ {ϕ ≡ ψ} ⇒ θ

Premises Γ ∪ {ϕ,ψ} ⇒ θ

Γ ∪ {¬ϕ,¬ψ} ⇒ θ

Conclusion Γ ∪ {if-form(ϕ,ψ, θ)} ⇒ ξ

Premises Γ ∪ {ϕ,ψ} ⇒ ξ

Γ ∪ {¬ϕ, θ} ⇒ ξ

Conclusion Γ ∪ {∃x1:σ1, . . . , xn:σn, ϕ} ⇒ ψ

Premise Γ ∪ {ϕ′} ⇒ ψ

Notes:

• Each sequent in the preceding table is of the form Γ∪{ϕ} ⇒ ψ, where
{ϕ} is the parameter to the primitive inference procedure.

• ϕ′ is obtained from ϕ by renaming the variables among x1, . . . , xn
which are free in both ϕ and the original sequent.

backchain-inference

Parameters: A sequent node assumption.

Description This primitive inference procedure attempts to use the as-
sumption given as argument to replace the assertion to be proved. In the
simplest case, if the given assumption is ϕ ⊃ ψ and the assertion is ψ, then
backchain-inference replaces the assertion with ϕ. Similarly, if the assertion
is ¬ϕ, it is replaced with ¬ψ. The command extends this simplest case in
four ways:

257

• If the assumption is universally quantified, then matching is used to
select a relevant instance.

• If the assumption is a disjunction∨
i∈I

ϕi,

then, for any j ∈ I, it may be treated as

(
∧

i∈I,i 6=j
¬ϕi) ⊃ ϕj .

• If the assumption is of one of the forms s = t, s ' t, s ≡ t, if a
subexpression of the assertion matches s, then it is replaced by the
corresponding instance of t.

• If the assumption is a conjunction, each conjunct is tried separately,
in turn.

• These rules are used iteratively to descend through the structure of
the assumption as deeply as necessary.

If imps cannot recognize that the terms returned by a match are defined in
the appropriate sorts, then these assertions are returned as additional minor
premises that must later be grounded to complete the derivation.

backchain-backwards-inference

Parameters: A sequent node assumption.

Description: This primitive inference procedure works the same way as
backchain, except that subformulas of the assumption of the forms s = t,
s ' t, s ≡ t are used from right to left.

backchain-through-formula-inference

Parameters: A sequent node assumption.

Description: Similar to backchain, except that it does not backchain
through equivalences, i.e., formulas of the form s = t, s ' t, or s ≡ t.

258

choice

Parameters: None.

Description: This primitive inference procedure implements a version of
the axiom of choice.

Conclusion Γ⇒ ∃f :[σ1, . . . , σn, τ],∀x1:σ′1, . . . , xn:σ′n, ϕ
Premise Γ⇒ ∀x1:σ′1, . . . , xn:σ′n,∃yf :τ, ϕ[yf/f(x1, . . . , xn)]all

Notes:

• σi and σ′i have the same type for all i with 1 ≤ i ≤ n.

• The command fails if there is any occurrence of f in ϕ which is not in
an application of the form f(x1, . . . , xn).

contraposition

Parameters: A sequent node assumption ϕ.

Description: This primitive inference procedure interchanges the given
sequent’s assertion and the assumption ϕ.

Conclusion Γ ∪ {ϕ} ⇒ ψ

Premise Γ ∪ {¬ψ} ⇒ ¬ϕ

cut

Parameters: A sequent node to be the major premise.

Description:

Conclusion Γ⇒ ϕ

Major Premise Γ ∪ {ψ1, . . . , ψn} ⇒ ϕ

Minor Premises (1 ≤ i ≤ n) Γ⇒ ψi

Notes:

• The major premise is the sequent Γ ∪ {ψ1, . . . , ψn} ⇒ ϕ.

259

definedness

Parameters: None.

Description: This primitive inference procedure applies to a sequent
whose assertion is a definedness statement of the form t↓. The primitive
inference procedure first tests whether the context entails the definedness of
t. If the test fails, the primitive inference then tries to reduce the sequent
to a set of simpler sequents.

defined-constant-unfolding

Parameters:

• A list of paths (p1, . . . , pn) to occurrences of a defined constant c.

• The constant c itself.

Description: This primitive inference procedure replaces occurrences of
the defined constant c at the paths pi by its unfolding e.

direct-inference

Parameters: None.

Description: This primitive inference procedure applies an analogue of
an introduction rule of Gentzen’s sequent calculus (in reverse), based on the
lead constructor of the assertion of the given sequent.

260

Conclusion Γ⇒ ϕ ⊃ ψ
Premise Γ ∪ {ϕ} ⇒ ψ

Conclusion Γ⇒ ϕ1 ∧ · · · ∧ ϕn
Premises (1 ≤ i ≤ n) Γ ∪ {ϕ1, . . . , ϕi−1} ⇒ ϕi

Conclusion Γ⇒ ϕ1 ∨ · · · ∨ ϕn
Premise Γ ∪ {¬ϕ1, . . . ,¬ϕn−1} ⇒ ϕn

Conclusion Γ⇒ ϕ ≡ ψ
Premises Γ ∪ {ϕ} ⇒ ψ

Γ ∪ {ψ} ⇒ ϕ

Conclusion Γ⇒ if-form(ϕ,ψ, θ)
Premises Γ ∪ {ϕ} ⇒ ψ

Γ ∪ {¬ψ} ⇒ θ

Conclusion Γ⇒ ∀x1:σ1, . . . , xn:σn, ϕ
Premise Γ⇒ ϕ′

Notes:

• ϕ′ is obtained from ϕ by renaming the variables among x1, . . . , xn
which are free in both ϕ and the context Γ.

disjunction-elimination

Parameters: A sequent node.

Description: NO DESCRIPTION.

eliminate-iota

Parameters: A path p to an iota-expression occurrence in the assertion.

Description: This primitive inference procedure applies to a sequent
whose assertion is an atomic formula or negated atomic formula contain-
ing a specified occurrence of an iota-expression. The command reduces the
sequent to an equivalent sequent in which the specified iota-expression oc-
currence is “eliminated.”

261

Conclusion Γ⇒ ψ

Major Premise Γ⇒ ∃y:σ, (ϕ[y/x]free ∧ ∀z:σ, (ϕ[z/x]free ⊃ z = y) ∧ ψ′)
Conclusion Γ⇒ ¬ψ
Major Premise Γ⇒ ∃y:σ, (ϕ[y/x]free ∧ ∀z:σ, (ϕ[z/x]free ⊃ z = y)) ⊃

∃y:σ, (ϕ[y/x]free ⊃ ¬ψ′)

Notes:

• ψ is an atomic formula.

• ιx:σ, ϕ is the expression located at the path p in ψ.

• ψ′ is the result of replacing the i-th iota-expression occurrence in ψ
with y.

• The occurrence of ιx:σ, ϕ in ψ is within some argument component s
of ψ. Moreover, the occurrence is an extended application component
of s, where a is an extended application component of b if either a is
b or b is an application of kind ι and a is an extended application
component of a component of b.

existential-generalization

Parameters: A sequent node Γ⇒ ϕ.

Description: This primitive inference procedure proves an existential as-
sertion by exhibiting witnesses.

Conclusion Γ⇒ ∃x1:σ1, . . . , xn:σn, ϕ
Premise Γ⇒ ϕ

Notes:

• The command will fail unless the parameter sequent node is of the
form Γ⇒ ϕ.

extensionality

Parameters: None.

262

Description: If the sequent node assertion is an equality or quasi-equality
or the negation of an equality or quasi-equality of n-ary functions, this prim-
itive inference applies the extensionality principle.

Conclusion Γ⇒ f = g

Major Premise Γ⇒ ∀x1:σ1, . . . , xn:σn, f(x1, · · · , xn) ' g(x1, · · · , xn)
Minor Premise Γ⇒ f↓
Minor Premise Γ⇒ g↓
Conclusion Γ⇒ f ' g
Major Premise Γ⇒ ∀x1:σ1, . . . , xn:σn, f(x1, · · · , xn) ' g(x1, · · · , xn)
Minor Premise Γ ∪ {g↓} ⇒ f↓
Minor Premise Γ ∪ {f↓} ⇒ g↓
Conclusion Γ⇒ ¬f = g

Premise Γ⇒ ∃x1:σ1, . . . , xn:σn,¬f(x1, · · · , xn) ' g(x1, · · · , xn)
Conclusion Γ⇒ ¬f ' g
Premise Γ⇒ ∃x1:σ1, . . . , xn:σn,¬f(x1, · · · , xn) ' g(x1, · · · , xn)

Notes:

• If the sorts of f and g are [α1, . . . , αn, αn+1] and [β1, . . . , βn, βn+1],
respectively, then σi = αi t βi for all i with 1 ≤ i ≤ n.

• A sequent node corresponding to a minor premise is not created if the
truth of the minor premise is immediately apparent to imps.

• If f and g are of kind ∗, then “=” is used in place of “'” in the
premise.

force-substitution

Parameters:

• Paths. A list of paths p1, . . . , pn.

• Replacements. A list of expressions r1, . . . , rn.

263

Description: This primitive inference procedure changes part of the se-
quent assertion. It yields two or more new subgoals. One subgoal is obtained
from the original sequent assertion by replacing the subexpression ei at the
path pi with ri. The other subgoals assert that the replacements are sound.

Conclusion Γ⇒ ϕ

Major Premise Γ⇒ ϕ[ri/ei]
Minor Premises (1 ≤ i ≤ n) Γi ⇒ ϕi

Notes:

• Γi is the local context of Γ⇒ ϕ at the path pi.

• ϕi is:

– ei ≡ ri if ei is a formula and the parity of the path pi is 0.

– ri ⊃ ei if ei is a formula and the parity of the path pi is 1.

– ei ⊃ ri if ei is a formula and the parity of the path pi is −1.

– ei ' ri in all other cases.

incorporate-antecedent

Parameters: A sequent node assumption ϕ.

Description: This primitive inference procedure does the reverse of
direct-inference on an implication.

Conclusion Γ ∪ {ϕ} ⇒ ψ

Premise Γ⇒ ϕ ⊃ ψ

insistent-direct-inference

Parameters: None.

Description: This primitive inference procedure is equivalent to disabling
all quasi-constructors and then calling direct-inference.

264

insistent-simplification

Parameters: None.

Description: This primitive inference procedure is equivalent to disabling
all quasi-constructors and then calling simplification.

macete-application-at-paths

Parameters:

• A list of paths (p1, . . . , pn).

• A macete.

Description: This primitive inference procedure applies the argument
macete to the sequent node assertion at those occurrences specified by the
paths p1, . . . , pn.

macete-application-with-minor-premises-at-paths

Parameters:

• A list of paths (p1, . . . , pn).

• A macete

Description: This primitive inference procedure applies the argument
macete to the given sequent node, in the same way as macete-application,
but with the following important difference: whenever the truth or false-
hood of a convergence requirement cannot be determined by the simplifier,
the assertion is posted as a additional subgoal to be proved.

raise-conditional-inference

Parameters: A list of paths (p1, . . . , pn) to conditional subexpressions.

265

Description: This primitive inference procedure will “raise” a subset of
the conditional expressions (i.e., expressions whose lead constructor is if),
specified by the paths pi, in the assertion of the given sequent Γ⇒ ϕ.

For the moment, let us assume that n = 1. Suppose the conditional
expression in ϕ located at p1 is the a-th occurrence of s = if(θ, t1, t2) in
ϕ; the smallest formula containing the a-th occurrence of s in ϕ is the b-th
occurrence of ψ in ϕ; and the a-th occurrence of s in ϕ is the c-th occurrence
of s in ψ. If every free occurrence of a variable in s is also a free occurrence
in ψ, the primitive inference procedure reduces the sequent to

Γ⇒ ϕ[if-form(θ, ψ[t1/s]c, ψ[t2/s]c)/ψ]b,

and otherwise the primitive inference procedure fails.
Now assume n > 1. The primitive inference procedure will then simul-

taneously raise each specified occurrence of a conditional expression in ϕ, in
the manner of the previous paragraph, if there are no conflicts between the
occurrences. The kinds of conflicts that can arise and how they are resolved
are listed below:

• If two or more specified occurrences of a conditional expression s in ϕ
are contained in same smallest formula, they are raised together.

• If two or more specified occurrences of distinct conditional expressions
in ϕ are contained in same smallest formula, at most one of the occur-
rences is raised.

• If ψ1 and ψ2 are the smallest formulas respectively containing two
specified occurrences of a conditional expression in ϕ and ψ1 is a proper
subexpression of ψ2, then the first specified conditional expression is
not raised.

simplification

Parameters: None.

Description: This primitive inference procedure simplifies the assertion
of the given sequent with respect to the context of the sequent. It uses both
theory-specific and general logical methods to reduce the sequent to a logi-
cally equivalent sequent. The theory-specific methods include algebraic sim-
plification, deciding rational linear inequalities, and applying rewrite rules.

266

simplification-with-minor-premises

Parameters: None.

Description: This primitive inference procedure is the same as simpli-
fication except that, instead of failing when convergence requirements are
not verified, it posts the unverified convergence requirements as additional
subgoals to be proved.

sort-definedness

Parameters: None.

Description: This primitive inference procedure applies to a sequent
whose assertion is a definedness statement of the form (t ↓ σ). The primitive
inference procedure first tests whether the context entails the definedness
of t in σ. If the test fails, the primitive inference procedure then tries to
reduce the sequent to a set of simpler sequents. In particular, when t is a
conditional term if(ϕ, t0, t1), it distributes the sort definedness assertion into
the consequent and alternative. If t0 and t1 are not themselves conditional
terms, the new subgoal has the assertion if-form(ϕ, (t0 ↓ σ), (t1 ↓ σ)). If one
or both of them is a conditional term, then the sort definedness assertion is
recursively distributed into the consequents and alternatives.

theorem-assumption

Parameters: A formula which must be a theorem of the context theory.

Description: This primitive inference procedure adds the argument the-
orem to the context of the given sequent.

universal-instantiation

Parameters: A sequent node Γ⇒ ∀x1:σ1, . . . , xn:σn, ϕ.

267

Description: This primitive inference procedure proves a formula by
proving a universal.

Conclusion Γ⇒ ϕ

Premise Γ⇒ ∀x1:σ1, . . . , xn:σn, ϕ

Notes:

• The command will fail unless the parameter sequent node is of the
form Γ⇒ ∀x1:σ1, . . . , xn:σn, ϕ.

unordered-conjunction-direct-inference

Parameters: None.

Description: If the sequent node assertion is a conjunction, this primi-
tive inference procedure does a direct inference without strengthening the
context.

Conclusion Γ⇒ ϕ1 ∧ · · · ∧ ϕn
Premises (1 ≤ i ≤ n) Γ⇒ ϕi

weakening

Parameters: A set of formulas ∆.

Description: This primitive inference procedure removes one or more as-
sumptions you specify from the context of the given sequent.

Conclusion Γ ∪∆⇒ ϕ

Premise Γ⇒ ϕ

268

Chapter 18

The Initial Theory Library:
An Overview

A theory library is a collection of theories, theory interpretations, and theory
constituents (e.g., definitions and theorems) which serves as a database of
mathematics. The basic unit of a theory library is a section; each section
is a body of mathematics. Each section consists of a sequence of def-form
specifications which are stored in a set of text files.

The imps initial theory library contains a large variety of basic mathe-
matics. It is intended to provide you with a starting point for building your
own theory library. It also is a source of examples that illustrates some of
the diverse ways mathematics can be formulated in imps.

This chapter contains only a sampling of the sections that are contained
in the imps initial theory library with a partial description of each section.
Some of the descriptions contain a listing of the theories and some of the
more important theorems and definitions included in that section.

Each section description begins with the symbol § followed by the section
name. Each theory description begins with the symbol ¶ followed by the
theory name.

§ abstract-calculus

The main theory of this section is normed-spaces. The section develops
the basic notions of calculus (e.g., the derivative and the integral) in the
context of normed spaces.

269

§ banach-fixed-point-theorem

This section has a proof of the Banach contractive mapping fixed point
theorem, which states that any contractive mapping on a complete metric
space has a unique fixed point.

§ basic-cardinality

This section introduces the basic notions of cardinality. It also proves some
basic theorems about finite cardinality such as the fact that every subset of
a finite set is itself finite.

§ basic-fields

The main theory of this section is fields. The section develops the ma-
chinery of field theory sufficiently for installing an algebraic processor for
simplification.

§ basic-group-theory

This section contains two principle theories: groups and group-actions.
The section includes a proof that the quotient of a group by a normal sub-
group is itself a group. Also, several interpretations of group-actions in
groups are defined.

§ basic-monoids

This section contains the theories monoid-theory and commutative-
monoid-theory. In monoid-theory a constant monoid%prod is defined
recursively as the iterated product of the primitive monoid operation. Ba-
sic properties of this constant are proved in monoid-theory and then are
transported to theories with their own iterated product operators, such as
h-o-real-arithmetic with the operators

∑
and

∏
.

270

§ binary-relations

Binary relations are represented in this section as certain partial functions
in the same way that sets are represented as indicators. Several basic op-
erations on binary relations are formalized as quasi-constructors. As an
exercise, the transitive closure of the union of two equivalence relations is
shown to be an equivalence relation.

§ binomial-theorem

This section proves the combinatorial identity and the binomial theorem for
fields.

§ counting-theorems-for-groups

This section contains a proof of the fundamental counting theorem for
group theory. Several consequences of this theorem are proved including
Lagrange’s theorem.

§ foundation

This section is always loaded with imps. It contains the theory h-o-real-
arithmetic and a number of definitions, theorems, and macetes in this
theory. It also adds a number of definitions and theorems in the “generic
theories” named generic-theory-1, generic-theory-2, generic-theory-3
and generic-theory-4 and the theory indicators.

Definitions

The following constants in h-o-real-arithmetic are among those included
in the section foundation.

• sum (denoted
∑

in the mathematical syntax) is the least fixed point
of the functional:

σ 7→ λm, n:Z, f :Z ⇀ R, if(m ≤ n, σ(m,n− 1, f) + f(n), 0)

271

• prod (denoted
∏

in the mathematical syntax) is the least fixed point
of the functional:

π 7→ λm, n:Z, f :Z ⇀ R, if(m ≤ n, π(m,n− 1, f) f(n), 1)

• abs (denoted | · | in the mathematical notation) is

λr:R, if(0 ≤ r, r,−r)

• floor: λx:R, ιz:Z, z ≤ x ∧ x < 1 + z

§ groups-as-monoids

This section interprets monoid-theory in groups and then proves the
telescoping product formula.

§ knaster-fixed-point-theorem

The main interest of this section is the statement and proof of the Knaster
fixed point theorem which states that on a complete partial order with a
least element and a greatest element, any monotone mapping has a fixed
point. One important application of this result included in this section is a
proof of the Schröder-Bernstein theorem.

§ metric-spaces

metric-spaces is the only new theory included in this section.

¶ metric-spaces

Contains h-o-real-arithmetic as a component theory.

Language:

• Sorts: pp (P in the mathematical syntax) denotes the underlying set
of points of the metric space.

• Constants: dist denotes a real-valued, two-place function on pp.

272

Axioms:

(1) Positivity. ∀x, y:P, 0 ≤ dist(x, y)

(2) Separation. ∀x, y:P, x = y ≡ dist(x, y) = 0

(3) Symmetry. ∀x, y:P,dist(x, y) = dist(y, x)

(4) Triangle Inequality. ∀x, y, z:P,dist(x, z) ≤ dist(x, y) + dist(y, z)

§ metric-space-pairs

This section introduces the theory metric-space-pairs.

¶ metric-space-pairs

This theory is defined by the theory ensemble mechanism. Alternatively, it
can be described as follows:

Language: The language contains two copies of the language for metric
spaces. Notice, however, that it does not contain two copies of the reals.

• Sorts:

– pp 0 (P0 in the mathematical syntax).

– pp 1 (P1 in the mathematical syntax).

• Constants:

– dist 0 (dist0 in the mathematical syntax).

– dist 1 (dist1 in the mathematical syntax).

Axioms: The axioms are the positivity, separation, symmetry, and triangle
inequality axioms for both functions dist 0 and dist 1. (See [13] for some
example proofs.)

§ metric-space-continuity

This section develops continuity and related notions in the context of metric
spaces.

273

§ number-theory

This section develops the rudiments of number theory. The fundamental
theorem of arithmetic and the infinity of primes are proved.

§ pairs

A pair of elements a, b of sort α, β is represented as a function whose domain
equals the singleton set {〈a, b〉}. The basic operations on pairs are formalized
as quasi-constructors.

§ partial-orders

This section contains the following theories:

• partial-order

• complete-partial-order

¶ partial-order

Language:

• Base Types: uu (U in the mathematical syntax) denotes the underly-
ing set of points.

• Constants: prec (≺ in the mathematical syntax) denotes a binary
relation on uu.

Axioms:

• Transitivity. ∀a, b, c:U, a ≺ b ∧ b ≺ c ⊃ a ≺ c

• Reflexivity. ∀a:U, a ≺ a

• Anti-symmetry. ∀a, b:U, a ≺ b ∧ b ≺ a ⊃ a = b

274

¶ complete-partial-order

Axioms: In addition to the axioms for the theory partial-order, this
theory has the completeness axiom which states that any nonempty set
with an upper bound has a least upper bound. In a complete partial order
it is also true that any nonempty set bounded below has a greatest lower
bound.

§ pre-reals

Two imps theories of the real numbers are included in the pre-reals section:

• complete-ordered-field

• h-o-real-arithmetic

These theories are equivalent in the sense that each one can be interpreted in
the other; moreover, the two interpretations compose to the identity. These
interpretations are constructed in the section using the imps translation
machinery.

¶ complete-ordered-field

In this theory, the real numbers are specified as a complete ordered field and
the rational numbers and integers are specified as substructures of the real
numbers. Exponentiation to an integer power is a defined constant denoting
a partial function.

Language:

• Sorts:

– zz (Z in the mathematical syntax) denotes the set of integers.

– qq (Q in the mathematical syntax) denotes the set of rational
numbers.

– rr (R in the mathematical syntax) denotes the set of real num-
bers.

• Constants:

– + denotes real addition.

275

– * (in the mathematical syntax, denoted by juxtaposition of its
arguments) denotes rel multiplication.

– - denotes sign negation.

– / denotes division.

– < denotes the binary predicate “less than.”

There are also an infinite number of constants, one for each rational
number. Thus 8, [-9], [21/4] denote rational numbers.

Axioms: The following is the list of all the axioms of the imps theory
complete-ordered-field in the mathematical syntax.

(1) Trichotomy. ∀y, x:R, x < y ∨ x = y ∨ y < x

(2) Irreflexivity. 0 6< 0

(3) Strict Positivity for Products. ∀y, x:R, 0 < x ∧ 0 < y ⊃ 0 < xy

(4) < Invariance . ∀z, y, x:R, x < y ≡ x+ z < y + z

(5) Transitivity. ∀z, y, x:R, x < y ∧ y < z ⊃ x < z

(6) Negative Characterization. ∀x:R, x+ (−x) = 0

(7) Characterization of 0. ∀x:R, x+ 0 = x

(8) Associative Law for Multiplication. ∀z, y, x:R, (xy)z = x(yz)

(9) Left Distributive Law. ∀z, y, x:R, x(y + z) = xy + xz

(10) Multiplicative Identity. ∀x:R, 1x = x

(11) Commutative Law for Multiplication. ∀y, x:R, xy = yx

(12) Associative Law for Addition. ∀z, y, x:R, (x+ y) + z = x+ (y + z)

(13) Commutative Law for Addition. ∀y, x:R, x+ y = y + x

(14) Characterization of Division. ∀a, b:R, b 6= 0 ⊃ b(a/b) = a

(15) Division by Zero Undefined. ∀a, b : ind, b = 0 ⊃ ¬a/b ↓

(16) Z Additive Closure. ∀x, y : Z, x+ y ↓ Z

276

(17) Z Negation Closure. ∀x : Z,−x ↓ Z

(18) Induction.

∀s : Z→ ∗,∀t : Z,
0 < t ⊃ s(t) ≡ (s(1) ∧ ∀t : Z, 0 < t ⊃ (s(t) ⊃ s(t+ 1)))

(19) Characterization of [-1]. [−1] = −1

(20) Q is the field of fractions of Z. ∀x:R, x ↓ Q ≡ ∃a, b : Z, x = a/b

(21) Order Completeness.

∀p:R→ ∗,
nonvacuous? (p) ∧ ∃α:R, (∀θ:R, p(θ) ⊃ θ ≤ α) ⊃
∃γ:R, (∀θ:R, p(θ) ⊃ θ ≤ γ) ∧
∀γ1:R, (∀θ:R, p(θ) ⊃ θ ≤ γ1) ⊃ γ ≤ γ1

¶ h-o-real-arithmetic

This is another axiomatization of the real numbers which we consider to be
our working theory of the real numbers. The axioms of h-o-real-arithmetic
include the axioms of complete-ordered-field, formulas characterizing ex-
ponentiation as a primitive constant and formulas which are theorems proven
in complete-ordered-field. These theorems are needed for installing an
algebraic processor and for utilizing the definedness machinery of the simpli-
fier. The proofs of these theorems in the theory complete-ordered-field
require a large number of intermediate results with little independent inter-
est. The use of two equivalent axiomatizations frees our working theory of
the reals from the burden of recording these uninteresting results.

The theory h-o-real-arithmetic is equipped with routines for simpli-
fying arithmetic expressions and rational linear inequalities. These routines
allow the system to perform a great deal of low-level reasoning without user
intervention. The theory contains several defined entities; e.g., the natu-
ral numbers are a defined sort and the higher-order operators Σ and Π are
defined recursively.

h-o-real-arithmetic is a useful building block for more specific theories.
If a theory has h-o-real-arithmetic as a subtheory, the theory can be
developed with the help of a large portion of basic, everyday mathematics.
For example, in a theory of graphs which includes h-o-real-arithmetic, one
could introduce the concept of a weighted graph in which nodes or edges
are assigned real numbers. We imagine that h-o-real-arithmetic will be a
subtheory of most theories formulated in imps.

277

§ sequences

Sequences over a sort α are represented as partial functions from the natural
numbers to α. Lists are identified with sequences whose domain is a finite
initial segment of the natural numbers. The basic operations on sequences
and lists, including nil, car, cdr, cons, and append are formalized as
quasi-constructors.

278

Glossary

Alpha-equivalence Two expressions are alpha-equivalent if one can be
obtained from the other by renaming bound variables.

Application An expression whose lead constructor is named apply. Ap-
plications must have at least two components. The first component of an
application is called the operator and the remaining components are called
arguments. Applications are usually denoted by prefixing the operator to the
arguments enclosed in parentheses as f(x1, . . . , xn). However, other forms
(such as infix for algebraic operations) are also used.

Beta-reduction An inference rule which plugs in the values of lambda-
applications. For example, beta-reduction transforms the expression

λ(x, y:bfZ, x3 + 6 ∗ y)(1, 2)

to 13.

Buffer An Emacs data structure for representing portions of text, for ex-
ample, text files which are being edited. To the user, a buffer has the
appearance of a scrollable page. More than one buffer may exist at a given
time in an Emacs session. Users will also use buffers to build, edit and
evaluate def-forms.

Command form An s-expression

(command-name arg1 . . . argn)

used in proof scripts. The number and type of arguments is command-
dependent. If the command takes no arguments, then the form
command-name is also valid.

279

Compound expression An expression with a constructor and a (pos-
sibly empty) list of components. 1 + 2 is a compound expression whose
constructor is named apply and whose components are +, 1, 2.

Constant A kind of imps expression. For example, in the theory named
h-o-real-arithmetic, the expressions 1, 2,+ are constants.

Constructor One of the 19 logical constants of LUTINS. Constructors
are used to build compound expressions.

Context An imps data structure representing a set of of formulas to be
used as assumptions. Contexts contain various kinds of cached information
(for example, about definedness of terms), used by the imps simplification
machinery.

Core All the basic logical and deductive machinery of imps on which the
soundness of the system depends.

Deduction graph An imps data structure representing a proof. Deduc-
tion graphs contain two kinds of nodes: inference nodes and sequent
nodes.

Def-form An s-expression whose evaluation has some effect on the imps
environment, such as building a theory, adding a theorem to a theory, mak-
ing a definition in a theory or building a translation between theories. There
are about 30 such def-forms.

Emacs A text editor. Although various implementations of Emacs exist,
in this manual we mean exclusively gnu Emacs, which is the extensible
display editor developed by the Free Software Foundation. Because of the
many extension facilities it provides (including a programming language with
many string-processing functions), gnu Emacs is well-suited for developing
interfaces.

Expression An imps data structure representing an element of a language.
Expressions are used to describe mathematical entities or to make logical

280

assertions. Two examples (printed in TEX) are 22n − 1 and

∀k,m : Z, (1 ≤ k ∧ k ≤ m) ⊃
(

1 +m

k

)
=

(
m

k − 1

)
+

(
m

k

)
.

An expression is either a formal symbol or a compound expression.

Evaluate To cause an s-expression to be read by the T process, thereby
creating an internal representation of a program, which is then executed by
T. This sequence of events usually has a number of side-effects on the imps
environment. For example, to define a constant named square in the theory
h-o-real-arithmetic, evaluate the s-expression:

(def-constant SQUARE
"lambda(x:rr, x^2)"
(theory h-o-real-arithmetic))

Formal symbol A primitive imps expression. A formal symbol has no
components, although it is possible for an expression with no components
to be a compound expression. A formal symbol can be a variable or a
constant. Every formal symbol has a name which is used for display. The
name is a Lisp object such as a symbol or a number.

Formula Intuitively, an expression having a truth value, for example,

∀x, y, z : R, x < y ∧ y < z ⊃ x < z.

In imps a formula is an expression whose sort is ∗.

IMPS A formal reasoning system and theorem prover developed at The
MITRE Corporation.

Inference node A node in a deduction graph, connecting a conclusion
sequent node with zero or more hypothesis sequent nodes, that represents
an instance of a rule of inference.

Iota-expression A compound expression whose lead constructor is named
iota, denoted in the mathematical syntax by ι. An iota-expression has the
form ιx:σ, ϕ. It denotes the unique object in the sort σ which satisfies the
condition ϕ, if such an object exists. Otherwise, the iota-expression is un-
defined.

281

Kind Each sort and expression is of kind ι (also written as iota) or ∗
(prop). Expressions of kind ι are used to refer to mathematical objects;
they may be undefined. Expressions of kind ∗ are primarily used in making
assertions about mathematical objects; they are always defined.

Lambda-application An application whose operator is a lambda-
expression. For example λ(x, y:R, x2 + 3 ∗ y)(1, z).

Lambda-expression A compound expression whose lead constructor is
named lambda, denoted in the mathematical syntax by λ. A lambda-
expression has the form λx1:σ1, . . . , xn:σn, ϕ. It denotes the function of n
arguments whose value at x1, . . . , xn is given by the value of term ϕ, pro-
vided the xi are of sort σi.

Language Mathematically, a language in imps consists of expressions,
sorts, and user-supplied information about sort inclusions. At the imple-
mentation level, a language is a Lisp data structure having additional struc-
ture which procedurally encodes this information. This is meant to facilitate
various kinds of lower level reasoning, such as reasoning about membership
of an expression in a sort.

Little theories A version of the axiomatic method in which mathematical
reasoning is distributed over a network of theories linked to one another by
theory interpretations, in contrast to the “big theory” approach in which all
reasoning is performed within a single, usually very expressive theory.

Local context The set of assumptions relevant to a particular location in
an expression.

LUTINS A version of type theory with partial functions and subtypes;
the logic of imps.

Macete A user-defined extension of the simplifier. When a theorem is
installed, it is also automatically installed as a macete. The way the corre-
sponding macete works depends on the syntactic form of the theorem. In
the simplest case in which the theorem is a universally quantified equality,
the theorem is used as a rewrite rule. Macetes can be composed using the
def-form named def-compound-macete. The word “macete” comes from

282

Brazilian Portuguese, where it means “clever trick.” Theorem macetes can
also be made into transportable macetes.

Mode Line The line at the bottom of each buffer window. It provides
information about the displayed buffer such as its name and mode.

Parser A program which takes user input, usually represented as text,
and builds a data structure suitable for computer processing.

Primitive inference procedure An imps procedure that implements
one of the primitive rules of inference of the imps proof system. imps has
about 30 primitive inference procedures.

Proof Conclusive mathematical evidence of the validity of some assertion.
The rules for admissible evidence are given by a proof system.

Quasi-constructor A user-defined macro/abbreviation for building ex-
pressions. Quasi-constructors are used much like constructors.

Quasi-equality A quasi-constructor, written as infix ' in the mathemat-
ical syntax. t ' s means that either t and s are both undefined or they are
equal.

S-expression The external representation of the basic data structure of
Lisp-like languages including T. S-expressions are usually represented as
nested lists such as (fuba (abacaxi farofa) alface).

Sequent node A node in a deduction graph that represents a sequent, a
formula composed of a set of assumptions and an assertion.

Sort A sort denotes a nonempty set of mathematical entities. Every ex-
pression has a sort which restricts the value of that expression.

Syntax Rules for parsing and printing expressions. The syntaxes that
are currently used in imps are the string syntax which allows for infix and
postfix notation, the s-expression syntax which provides a uniform prefix
syntax for all constructors and operators, and the tex syntax for displaying
(but not parsing) in TEX.

283

T A dialect of Lisp developed at the Yale University Computer Science
Department in which the core machinery of imps is implemented. T is very
similar to the Scheme programming language, familiar to readers of Abelson
and Sussman’s book [1].

Tea An alias for the T programming language.

Theory The term “theory” as used in this manual, consists of a language
and a set of closed formulas in the language called axioms. A theory is
implemented as a record structure having slots for the language, the list of
axioms, and other relevant information. There is also a slot for a table of
procedures which the simplifier uses to apply the axioms. This is meant to
facilitate various kinds of lower-level reasoning, such as algebraic or order
simplification. In a different sense, theory is also commonly used to refer to
a collection of related facts about a given mathematical structure, such as
the theory of rings or the theory of ordinary differential equations.

Theory ensemble A data structure which bundles together theories
which are unions of copies of a single base theory. Theory ensembles are
mainly used to treat multiple instances of structures, such as triples of met-
ric spaces or pairs of vector spaces.

Theory interpretation A translation that maps theorems to theorems.

Translation An imps data structure, created with the def-form named
def-translation, that is used to translate expressions from one theory to
another.

Transportable macete A theorem macete that can be used in a theory
different from the one in which it was installed. Transportable macetes are
named by the system by prefixing tr% to the name of the theorem.

Type A sort that is maximal with respect to the subsort relation.

Variable A kind of imps expression. An occurrence of a variable v within
an expression is bound if it occurs with the body of a binding constructor
which includes v as a binding variable. Otherwise, the occurrence of v is
free.

284

Xview An imps procedure for printing expressions in TEX and then
displaying them in an X window TEX previewer.

285

Bibliography

[1] H. Abelson and G. J. Sussman. Structure and Interpretation of Com-
puter Programs. mit Press, 1985.

[2] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press,
1972.

[3] W. M. Farmer. Abstract data types in many-sorted second-order logic.
Technical Report M87-64, The mitre Corporation, 1987.

[4] W. M. Farmer. A partial functions version of Church’s simple theory
of types. Journal of Symbolic Logic, 55:1269–91, 1990.

[5] W. M. Farmer. A simple type theory with partial functions and sub-
types. Annals of Pure and Applied Logic, 64:211–240, 1993.

[6] W. M. Farmer. A technique for safely extending axiomatic theories.
Technical report, The mitre Corporation, 1993.

[7] W. M. Farmer. Theory interpretation in simple type theory. In Pro-
ceedings, International Workshop on Higher Order Algebra, Logic and
Term Rewriting (HOA ’93), Amsterdam, The Netherlands, September
1993, Lecture Notes in Computer Science. Springer-Verlag, 1994. Forth-
coming.

[8] W. M. Farmer, J. D. Guttman, M. E. Nadel, and F. J. Thayer. Proof
script pragmatics in imps. In 12 International Conference on Automated
Deduction (CADE-12), Lecture Notes in Computer Science. Springer-
Verlag, 1994. Forthcoming.

[9] W. M. Farmer, J. D. Guttman, and F. J. Thayer. imps: System descrip-
tion. In D. Kapur, editor, Automated Deduction—CADE-11, volume

286

607 of Lecture Notes in Computer Science, pages 701–705. Springer-
Verlag, 1992.

[10] W. M. Farmer, J. D. Guttman, and F. J. Thayer. Little theories.
In D. Kapur, editor, Automated Deduction—CADE-11, volume 607 of
Lecture Notes in Computer Science, pages 567–581. Springer-Verlag,
1992.

[11] W. M. Farmer, J. D. Guttman, and F. J. Thayer. imps: an Interactive
Mathematical Proof System. Journal of Automated Reasoning, 11:213–
248, 1993.

[12] W. M. Farmer, J. D. Guttman, and F. J. Thayer. Reasoning with
contexts. In A. Miola, editor, Design and Implementation of Symbolic
Computation Systems, volume 722 of Lecture Notes in Computer Sci-
ence, pages 216–228. Springer-Verlag, 1993.

[13] W. M. Farmer and F. J. Thayer. Two computer-supported proofs in
metric space topology. Notices of the American Mathematical Society,
38:1133–1138, 1991.

[14] J. A. Goguen. Principles of parameterized programming. Technical
report, sri International, 1987.

[15] J. A. Goguen and R. M. Burstall. Introducing institutions. In Logic
of Programs, volume 164 of Lecture Notes in Computer Science, pages
221–256. Springer-Verlag, 1984.

[16] J. D. Guttman. A proposed interface logic for verification environments.
Technical Report M91-19, The mitre Corporation, 1991.

[17] J. D. Guttman. Building verification environments from components:
A position paper. In Proceedings, Workshop on Effective Use of Auto-
mated Reasoning Technology in System Development, pages 4–17, Naval
Research Laboratory, Washington, D.C., April 1992.

[18] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. or-
bit: An optimizing compiler for scheme. In Proceedings of the sigplan
’86 Symposium on Compiler Construction, volume 21, pages 219–233,
1986. Proceedings of the ’86 Symposium on Compiler Construction.

[19] J. D. Monk. Mathematical Logic. Springer-Verlag, 1976.

287

[20] L. G. Monk. Inference rules using local contexts. Journal of Automated
Reasoning, 4:445–462, 1988.

[21] Y. N. Moschovakis. Elementary Induction on Abstract Structures.
North-Holland, 1974.

[22] Y. N. Moschovakis. Abstract recursion as a foundation for the theory
of algorithms. In Computation and Proof Theory, Lecture Notes in
Mathematics 1104, pages 289–364. Springer-Verlag, 1984.

[23] J. A. Rees, N. I. Adams, and J. R. Meehan. The T Manual. Computer
Science Department, Yale University, fifth edition, 1988.

[24] J. R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

[25] F. J. Thayer. Obligated term replacements. Technical Report MTR-
10301, The mitre Corporation, 1987.

288

