
Theory Interpretation in Simple Type Theory?

William M. Farmer

The MITRE Corporation
202 Burlington Road

Bedford, MA 01730-1420, USA

farmer@mitre.org

26 October 1994

Abstract. Theory interpretation is a logical technique for relating one
axiomatic theory to another with important applications in mathematics
and computer science as well as in logic itself. This paper presents a
method for theory interpretation in a version of simple type theory, called
lutins, which admits partial functions and subtypes. The method is
patterned on the standard approach to theory interpretation in first-
order logic. Although the method is based on a nonclassical version of
simple type theory, it is intended as a guide for theory interpretation in
classical simple type theories as well as in predicate logics with partial
functions.

1 Introduction

Theory interpretation—in which one theory is interpreted in another via a syn-
tactic mapping—is a fundamental logical technique which has important ap-
plications in mathematics and computer science as well as in logic itself. An
interpretation1 of a theory2 T1 in a theory T2 is a mapping from the expres-
sions of T1 to the expressions of T2 which preserves the validity of sentences.
(T1 and T2 are called the source theory and the target theory of the interpreta-
tion, respectively.) In logic, interpretations are used to prove metamathematical
properties about theories and to compare theories in terms of their “strength”.
In mathematics, theorems and problems are transported from one context to
another via interpretations. In computer science, interpretations are a rigorous
? Supported by the MITRE-Sponsored Research program. Published in: J. Heering et

al., eds., Higher-Order Algebra, Logic, and Term Rewriting (Selected Papers, First
International Workshop, HOA ’93, Amsterdam, The Netherlands, September 1993),
Lecture Notes in Computer Science, Vol. 816, Springer-Verlag, Berlin, 1994, pp. 96–
123.

1 Theory interpretations of this kind are also called translations, theory morphisms,
immersions, and realizations.

2 We take a theory to be a set of sentences in a formal language (that is not necessarily
closed under logical consequence). The sentences are called the axioms of the theory.

1

tool for documenting and verifying that one system specification is a refinement
of another.

Until recently, interpretations have been almost exclusively employed by the-
oreticians. However, implementors are now discovering that interpretations are
useful for organizing and supporting mathematical reasoning in automated rea-
soning systems such as mechanical theorem provers and computer system speci-
fication and verification environments. Interpretations are used extensively with
success in the imps Interactive Mathematical Proof System [10, 11, 12]. They
are also a fundamental component in the following programming and verification
environments: ehdm [27], m-eves [5] and eves [6], iota [24], and obj3 [14].

Theory interpretation has primarily been studied and applied in the con-
text of first-order predicate logic. Logic textbooks like Enderton [7], Monk [22],
and Shoenfield [28] present a fairly standard approach to theory interpretation
in first-order logic. The approach revolves around a special class of interpreta-
tions that are well behaved both syntactically and semantically. Suppose Φ is
an interpretation of T1 in T2 which is in this class. Then Φ will be a kind of
homomorphism which preserves the structure of terms and formulas and which
is completely determined by how it associates the sorts (if there are any) and
constants of T1 with objects of T2. Moreover, Φ will define a way of extracting a
model for T1 from any model for T2.

Although there is a wealth of writing on theory interpretation in first-order
logic, the subject is only beginning to be seriously explored in higher-order logic
(and type theory) [9, 17, 36]. There are, however, at least two good reasons
to study theory interpretation in higher-order logic. First, higher-order logic is
becoming increasingly important in computer science and mechanized mathe-
matics. Second, since higher-order logic is much more expressive than first-order
logic, the space of interpretations is much richer in higher-order logic than in
first-order logic. This means that some techniques based on theory interpreta-
tion are more powerful in a higher-order logic than in a first-order logic (e.g., the
technique of verifying that a theory T ′ is a model conservative extension of T
by exhibiting an interpretation of T ′ in T which fixes T).

The most well-known and widely used form of higher-order logic is simple
type theory [4, 1]. Since it has built-in support for functions—a hierarchy of
function types, full quantification over functions, and (usually) λ-notation for
specifying functions—it is a convenient logic for formalizing mathematics. For
this reason, it is the logical basis for several automated reasoning systems, in-
cluding ehdm, hol [15], imps, Isabelle [25], pvs [26], and tps [2]. In spite of its
popularity and utility, there is not a well-developed approach to theory inter-
pretation in simple type theory.

The goal of this paper is to develop a method for theory interpretation in
simple type theory patterned on the standard first-order approach. We want the
method to handle interpretations in which a base type (i.e., a type of individuals)
of the source theory can be associated with either a (possibly higher-order) type
or subtype of the target theory.

In first-order logic, an interpretation which associates base types with types

2

is merely an interpretation which associates the universe (i.e., the implicit type
of individuals) of the source theory with the universe of the target theory. An
interpretation of this kind does not alter the quantifiers in expressions of the
source theory. An interpretation which associates base types with subtypes is
one which associates the universe of the source theory with a unary predicate
of the target theory. An interpretation of this kind “relativizes” the quantifiers
in expressions of the source theory. For example, if Φ is an interpretation which
associates the universe of the source theory with the predicate ϕ, then

Φ((∀x)ψ) = (∀x)(ϕ(x)→ Φ(ψ)).

Many natural theory interpretations associate a base type with a subtype
(i.e., part of a type). For example, suppose G is a theory of an abstract group in
which α is a base type denoting the set of group elements; F is a theory of an
abstract field in which β is a base type denoting the set of field elements; and Φ is
the interpretation of G in F in which the group structure of G is “interpreted” as
the structure of the multiplicative group of F . Then Φ would associate α with the
subtype of β consisting of the nonzero field elements. Moreover, the most natural
translation of the group operation of G via Φ would be an expression denoting the
multiplication operation of F restricted to the nonzero field elements. Thus we
see that associating base types with subtypes leads to functions with restricted
domains. (This example is worked out in detail in Section 7.)

If only interpretations which associate base types with full types are consid-
ered, it is easy to lift the first-order notion of a theory interpretation to simple
type theory. On the other hand, associating base types with subtypes is messy in
simple type theory since one must deal with functions with restricted domains,
as we have seen above. Restricting the domain of a function is unproblematic in
informal mathematics, but there is no completely satisfactory way that it can be
done in classical predicate logic since expressions cannot directly denote partial
functions. (See [8] for a discussion on the various ways of dealing with partial
functions in predicate logic.) In first-order logic, partial functions are avoided
by relativizing quantifiers. This approach would be more complicated in simple
type theory because more than just quantifiers would have to be relativized; in
particular, all predicates on functions (such as those corresponding to universal
and existential quantification) would have to be relativized.

Our method for theory interpretation is formulated in a version of simple
type theory, called lutins

3 [8, 9, 16], which supports both partial functions and
subtypes. We have chosen lutins over a classical simple type for three prag-
matic reasons. First, as we have pointed out, partial functions naturally arise
from interpretations that associate base types with subtypes. Consequently, in-
terpretations of this kind can be formalized more directly in a logic which admits
partial functions like lutins. Second, since lutins contains subtypes, an inter-
pretation in lutins does not have to relativize quantifiers and other variable
binders, provided appropriate subtypes are defined. Finally, as the logic of the

3 Pronounced as the word in French.

3

imps interactive theorem proving system, lutins has been implemented and rig-
orously and extensively tested [12]. It is clearly an effective logic for formalizing
a wide range of mathematics. Although the method is based on a nonclassical
form of simple type theory, we expect it to be useful as a guide for theory in-
terpretation in classical simple type theories as well as in predicate logics which
admit partial functions.

The paper is organized as follows. An overview and discussion via examples
of the standard approach to theory interpretation in first-order logic is given in
Sections 2 and 3. Section 4 gives a quick introduction to PF∗, an austere ver-
sion of simple type theory with partial functions and subtypes on which lutins

is based. The syntax and semantics of lutins are then presented in Section 5.
The notion of a theory interpretation in lutins is defined in Section 6. Sec-
tion 7 contains some examples in lutins of interpretations of groups in fields.
The interpretation and relative satisfiability theorems for lutins are proved in
Section 8. And a brief conclusion is found in Section 9.

Comparisons between our method of theory interpretation and the standard
approach in first-order logic are made at several places in the paper.

2 Theory Interpretation in First-Order Logic

This section presents an outline of the standard approach to theory interpre-
tation in first-order logic [7, 22, 28]. For the most part, we shall adopt in this
section the definitions and notation of first-order logic (with equality) presented
in [3]. An expression of a first-order language L or theory T is a term or a
formula of L or T . An n-ary expression function is a λ-expression of the form
λ{x1, . . . , xn . E} where E is an expression. Let θ = λ{x1, . . . , xn . E} be an
expression function. θ is a term [respectively, formula] function if E is a term
[respectively, formula]. Given terms t1, . . . , tn, θ(t1, . . . , tn) denotes the result of
simultaneously substituting ti for all free occurrences of xi in E, for all i with
1 ≤ i ≤ n.

Let Ti be a first-order theory for i = 1, 2. A standard translation from T1 to
T2 is a pair (U, ν) where U is a closed formula function of the form λ{x . ϕ} which
represents a unary predicate and ν is a function from the nonlogical constants of
T1 to the nonlogical constants, expressions, and expression functions of T2 such
that:

1. If c is an individual constant symbol of T1, then ν(c) is either an individual
constant symbol or a closed term.

2. If F is an n-ary function symbol of T1, then ν(F) is either an n-ary function
symbol or a closed n-ary term function.

3. If P is an n-ary relation symbol of T1, then ν(P) is either an n-ary relation
symbol or a closed n-ary formula function.

4. ν(≡) = ≡.4

4 In [3], the binary relation symbol ≡ denotes the equality relation.

4

Let Φ = (U, ν) be a standard translation from T1 to T2 throughout the rest
of this section. For an expression E of T1, the translation of E via Φ, written
Φ(E), is the expression of T2 defined inductively by:

1. Φ(x) = x, if x is a variable.
2. Φ(c) = ν(c), if c is an individual constant symbol.
3. Φ(S(t1, . . . , tn)) = ν(S)(Φ(t1), . . . , Φ(tn)), if S is an n-ary function or relation

symbol.
4. Φ(¬ϕ) = ¬Φ(ϕ).
5. Φ(ϕ2 ψ) = Φ(ϕ) 2 Φ(ψ), if 2 ∈ {∧,∨,→,↔}.
6. Φ((2x)ϕ) = (2x)Φ(ϕ), if 2 ∈ {∀,∃} and U = λ{x . x ≡ x}.

7. Φ((2x)ϕ) =
{

(∀x)(U(x)→ Φ(ϕ)) if 2 = ∀
(∃x)(U(x) ∧ Φ(ϕ)) if 2 = ∃

if U 6= λ{x . x ≡ x}.

A standard translation thus associates the universe of its source theory with
a closed unary predicate of its target theory; the nonlogical constants of its
source theory with closed expressions (of appropriate “type”) of its target the-
ory; and the variables and logical connectives with themselves. The quantifiers
are relativized to the unary predicate if it is not λ{x . x ≡ x}. Except for the
relativization of quantifiers, a standard translation preserves the structure of
first-order syntax. Hence, a standard translation can be viewed as a homomor-
phism from the expressions of its source theory to the expressions of its target
theory.

Φ is a standard interpretation of T1 in T2 if Φ(ϕ) is valid in T2 for each
sentence ϕ which is valid in T1. That is, Φ is an interpretation if it maps valid
sentences to valid sentences. The theorem below gives a sufficient condition for
a standard translation to be a standard interpretation.

An obligation of Φ is any one of the following sentences of T2:

1. Φ(ϕ) for each axiom ϕ of T1.
2. (∃x)U(x).
3. Φ((∃y)c ≡ y) for each individual constant symbol c of T1.
4. Φ((∀x1 · · ·xn)(∃y)F (x1, . . . , xn) ≡ y) for each function symbol F of T1.

The four kinds of obligations are called, in order, axiom, universe nonemptiness,
individual constant symbol , and function symbol obligations. The meaning of an
individual constant symbol obligation is that the interpretation of the universe
contains the interpretation of the individual constant symbol, and the meaning
of a function symbol obligation is that the interpretation of the universe is closed
under the interpretation of the function symbol. Note: The last three kinds of
obligations are trivially valid in T2 if U = λ{x . x ≡ x}.

Theorem 2.1 (Standard Interpretation Theorem) A standard transla-
tion from T1 to T2 is a standard interpretation if each of its obligations is valid
in T2.

5

T1 is interpretable in T2 (in the standard sense) if there is a standard inter-
pretation of T1 in T2. The next theorem is the most important consequence of
interpretability.

Theorem 2.2 (Standard Relative Satisfiability) If T1 is interpretable in
T2 and T2 is satisfiable, then T1 is satisfiable.

The key idea in the proof of this theorem is to use the standard interpre-
tation of T1 in T2 to extract a model of T1 from a model of T2. The Standard
Interpretation Theorem and the Standard Relative Satisfiability theorem are the
chief theorems of the standard approach to theory interpretation in first-order
logic.

By virtue of being a validity preserving homomorphism, a standard inter-
pretation syntactically and semantically embeds its source theory in its target
theory. Standard interpretations are used to compare the strength of theories: T2

is at least as strong as T1, if T1 is interpretable in T2. Also, standard interpreta-
tions have long been used in logic to prove metamathematical properties about
first-order theories, mainly relative consistency, decidability, and undecidability.
For example, the classic work of Tarski, Mostowski, and Robinson [32] illustrates
how the undecidability of T1 can be reduced to the undecidability of T2 by con-
structing an appropriate standard interpretation of T2 in T1. For other references
on the theory and use of standard interpretations, see [13, 23, 30, 31, 34].

3 Some Simple Examples

This section contains three examples of standard first-order interpretations. Al-
though the examples are very simple, they illustrate some of the power and
versatility of theory interpretation.

The first example is an interpretation of a theory of an abstract nonstrict
partial order in a theory of an abstract strict total order.

Example 3.1 Let PO be the theory consisting of the following three sentences
in the first-order language of a binary relation symbol ≤:

1. Reflexivity. (∀x)(x ≤ x).
2. Transitivity. (∀xyz)((x ≤ y ∧ y ≤ z)→ x ≤ z).
3. Antisymmetry. (∀xy)((x ≤ y ∧ y ≤ x)→ x ≡ y).

PO clearly specifies ≤ to be a nonstrict partial order.
Similarly, let TO be the theory consisting of the following three sentences in

the first-order language of a binary relation symbol <:

1. Irreflexivity. (∀x)¬(x < x).
2. Transitivity. (∀xyz)((x < y ∧ y < z)→ x < z).
3. Trichotomy. (∀xy)(x < y ∨ y < x ∨ x ≡ y).

6

TO clearly specifies < to be a strict total order.
Let Φ1 be the standard translation (U1, ν1) from PO to TO where U1 =

λ{x . x ≡ x} and ν1(≤) = λ{x, y . (x < y ∨ x ≡ y)}. Φ1 is clearly an interpreta-
tion of PO in TO by the Standard Interpretation Theorem. 2

Φ1 links two different axiomatizations—different axioms in different formal
languages—of the same mathematical domain (i.e., the notion of an order rela-
tion). Via Φ1, theorems proved in PO about the nonstrict partial order ≤ can be
transformed into corresponding theorems in TO about the strict total order <.
In other words, Φ1 serves as a conduit through which theorems can be freely
“transported” from one mathematical formalization to another. Interpretations
are used in this manner, at least informally, in many areas of mathematics to
transport theorems from abstract to more concrete contexts or to move a problem
to a more convenient setting (for examples, see [18]). Moreover, interpretations
of this sort are fundamental to the “little theories” version of the axiom method
in which mathematical reasoning is performed over a network of theories linked
by interpretations—instead of entirely within one single “big theory” such as
Zermelo-Fraenkel set theory. (In [11], we describe the little theories approach
and argue in favor of its implementation in mechanical theorem provers.)

Φ1 also establishes that TO is a “refinement” of PO. Actually, TO refines PO
in two ways: (1) the models of TO are a special kind of partial order, namely
a total order, and (2) the atomic relation ≤ is decomposed into a compound
relation built from < and ≡ via Φ1. (This latter sort of refinement is much
like a definition done in reverse.) Refinement is a basic technique in computer
science for specifying and building computer systems. Theory interpretation is an
excellent tool for rigorizing computer system development based on refinement
(for examples, see [20, 21, 29, 33, 35]).

The interpretation in the next example formalizes the symmetry between left
and right multiplication in a monoid.

Example 3.2 Let M be the theory consisting of the following three sentences
in the first-order language of a binary function constant ∗ and an individual
constant e:

1. Associativity. (∀xyz)((x ∗ y) ∗ z ≡ x ∗ (y ∗ z)).
2. Left Identity. (∀x)(e ∗ x ≡ x).
3. Right Identity. (∀x)(x ∗ e ≡ x).

M is a very standard formulation of a theory of an abstract monoid.
Now let Φ2 be the standard translation (U2, ν2) from M to itself where U2 =

λ{x . x ≡ x}, ν2(∗) = λ{x, y . y ∗x}, and ν2(e) = e. Φ2 is a homomorphism from
the expressions (terms and formulas) of M to the expressions of M , but (unlike
Φ1) Φ2 alters terms. Each expression A of M is mapped by Φ2 to an expression
Φ2(A) which is symmetric to A with respect to reversing the argument order of ∗.
For instance, Φ2 maps the Left Identity axiom to the Right Identity axiom and
vice versa. Consequently, Φ2 is an interpretation of M in itself by the Standard
Interpretation Theorem. 2

7

Interpretations like Φ2 allow one to reason “by symmetry” in mechanized
mathematics systems. For an illustration, suppose A and B are two sentences
we want to prove which are symmetric to each other in some way. In informal
mathematics, we would first construct a proof of A, and then we would prove
B by simply noting that there is a proof of B that is symmetric to the proof
of A. We would not have bothered to construct this proof of B, for nothing new
would be learned. In a mechanized mathematics system with interpretations,
after proving A, we would find an interpretation which formalizes the symmetry
between A and B and which maps A to B. Just as in informal mathematics,
we would not bother to produce a proof of B, but we would know that B is
valid because it is the image of a theorem by an interpretation. Moreover, the
verification that the mapping is really an interpretation would effectively be a
verification that this particular kind of reasoning by symmetry is valid.

The interpretation in the last example associates the universe of an abstract
monoid with the singleton set of the identity element.

Example 3.3 Let Φ3 be the standard translation (U3, ν3) fromM to itself where
U3 = λ{x . x ≡ e}, ν(∗) = ∗, and ν3(e) = e. Since ({e}, ∗, e) has the structure of
a monoid, it is easy to see that Φ3 is an interpretation of M in itself. 2

Since U3 denotes a proper subset of the universe of M , Φ3 relativizes quan-
tifiers. For example,

Φ3((∀x)(e ∗ x ≡ x)) = (∀x)(x ≡ e→ e ∗ x ≡ x).

Also, notice that Φ3 fixes the primitive constants of M (i.e., ∗ and e). The act
of verifying that Φ3 is an interpretation is equivalent to proving that {e} is a
submonoid of M . A standard interpretation that fixes the primitive constants
of the source theory but restricts the universe of the source theory is called
a relativization. Relativizations are commonly used in set theory to establish
relative consistency [19].

4 PF∗

PF∗ is a version of simple type theory with partial functions and subtypes. This
section gives a quick introduction to the syntax and semantics of PF∗. The next
section introduces a “user-friendly” version of PF∗ called lutins. See [9] for the
full, definitive presentation of PF∗.

Preliminary Definitions

We begin by defining the machinery we will use to specify the various symbols
of a PF∗ language. In particular, the set of type or subtype symbols built from
a set S of base type or subtype symbols will be the set Ω(S) defined below.

Let S be a set of symbols containing the symbol ∗. Ω(S) is the set defined
inductively by:

8

1. S ⊆ Ω(S).
2. If α1, . . . , αn, αn+1 ∈ Ω(S) (n ≥ 1), then [α1, . . . , αn, αn+1] ∈ Ω(S).

Ω∗(S) is the subset of Ω(S) defined inductively by:

1. ∗ ∈ Ω∗(S).
2. If α1, . . . , αn ∈ Ω(S) and αn+1 ∈ Ω∗(S) (n ≥ 1), then

[α1, . . . , αn, αn+1] ∈ Ω∗(S).

Given a total function f : S → Ω(S), �f is the smallest binary relation on
Ω(S) such that:

1. If α ∈ S, then α �f f(α).
2. �f is reflexive, i.e., for all α ∈ Ω(S), α �f α.
3. �f is transitive, i.e., for all α, β, γ ∈ Ω(S), if α �f β and β �f γ, then
α �f γ.

4. If α1 �f β1, . . . , αn �f βn, αn+1 �f βn+1, then
[α1, . . . , αn, αn+1] �f [β1, . . . , βn, βn+1].

�f is noetherian if every ascending sequence of members of Ω(S),

α1 �f α2 �f α3 �f · · · ,

is eventually stationary, i.e., there is some m such that αi = αm for all i ≥ m. If
�f is noetherian, then �f is obviously antisymmetric (i.e., for all α, β ∈ Ω(S), if
α �f β and β �f α, then α = β). Hence, �f is a partial order if it is noetherian.

An S-tagged symbol is a symbol tagged with a member of Ω(S). A tagged
symbol whose symbol is a and whose tag is α is written as aα. A tagged symbol
aα, where a = bi, will be written as biα (instead of as (bi)α). Two tagged symbols
aα and bβ are distinct if a 6= b.

Sort Systems

The types and subtypes of a PF∗ language are called “sorts”. Syntactically, they
form a partial order. The semantics of the partial order of sorts is a mapping that
takes each sort to a nonempty set and takes the order relation to set inclusion.

A sort system of PF∗ is a pair (A, ξ) where A is a finite set of symbols such
that, for some m ≥ 1, Bm = {∗, ι1, . . . , ιm} ⊆ A and ξ is a total function from
A to Ω(A) such that:

1. For all α ∈ A, α ∈ Bm iff ξ(α) = α.
2. For all α ∈ A, ξ(α) ∈ Ω∗(A) iff α = ∗.
3. �ξ is noetherian.

A sort of the system is any member of Ω(A), and a type of the system is any
member of Ω(Bm). The sorts in A, Ω(A) \ A, Bm, and Ω(Bm) \ Bm are called
the atomic sorts, compound sorts, base types, and function types of the system,
respectively. (∗ is the type of propositions, and each ιk is a type of individuals.)
The enclosing sort of α ∈ A is the sort ξ(α).

9

Let S be a sort system (A, ξ). By α ∈ S we shall mean α ∈ Ω(A). Also, let
T be the set of types of S. The definition of a sort system implies that, for each
α ∈ S, there is a unique β ∈ T , called the type of α, such that α �ξ β. The
type of α is denoted by τ(α). A sort α is of kind ∗ [respectively, ι] if α ∈ Ω∗(A)
[respectively, α ∈ Ω(A) \ Ω∗(A)]. Let S∗ [Sι] denote the set of all α ∈ S of
kind ∗ [ι]. The least upper bound of α and β, written α tξ β, is the least upper
bound of α and β in the partial order �ξ. Since each atomic sort has just a single
enclosing sort, the least upper bound of two sorts with the same type is always
defined.

A standard sort frame for S is a set {Dα : α ∈ S} of nonempty domains
(sets) such that:

1. D∗ = {t, f}. (t 6= f.)
2. If α �ξ β, then Dα ⊆ Dβ .
3. If α = [α1, . . . , αn, αn+1] is of kind ι, thenDα is the set of all partial functions
f : Dα1 × · · · × Dαn → Dαn+1 .

4. If α = [α1, . . . , αn, αn+1] is of kind ∗, then Dα is the set of all total functions
f : Dτ(α1) × · · · × Dτ(αn) → Dαn+1 such that, for all 〈b1, . . . , bn〉 ∈ Dτ(α1) ×
· · · × Dτ(αn), f(b1, . . . , bn) = fτ(αn+1) (see definition below) whenever bi 6∈
Dαi for at least one i with 1 ≤ i ≤ n.

For a type α ∈ S∗, fα is defined inductively by:

1. f∗ = f.
2. If α = [α1, . . . , αn, αn+1], then fα is the function which maps every n-tuple
〈a1, . . . , an〉 ∈ Dα1 × · · · × Dαn to fαn+1 .

It follows from the definition of a standard sort frame that fτ(α) ∈ Dα for all
α ∈ S∗.

Languages

A language of PF∗ is a tuple (A, ξ,V, C) such that:

1. (A, ξ) is a sort system of PF∗.
2. V and C are disjoint countable sets of pairwise distinct A-tagged symbols,

whose members are called variables and constants, respectively.
3. For each α ∈ Ω(A), there is an infinite subset Vα of V such that xβ ∈ Vα iff
β = α.

4. For each α ∈ Ω(A), =[α,α,∗] and ι[[α,∗],α] are members of C called logical
constants.

Variables are denoted by fα, gα, hα, xα, yα, zα, etc. For the rest of this section,
let L = (A, ξ,V, C) be a language of PF∗, S be the sort system (A, ξ), and T be
the set of types of S.

An expression of L of sort α is a finite sequence of members of V ∪ C ∪
{@, λ, “{”, “}”, “, ”, “.”} defined inductively by:

10

1. Each xα ∈ V and cα ∈ C is an expression of sort α.
2. If F is an expression of sort [α1, . . . , αn, β]; A1, . . . , An are expressions of sort
α′1, . . . , α

′
n; and τ(α1) = τ(α′1), . . . , τ(αn) = τ(α′n), then @{F,A1, . . . , An}

is an expression of sort β.
3. If x1

α1
, . . . , xnαn are distinct variables and B is an expression of sort β, then

λ{x1
α1
, . . . , xnαn . B} is an expression of sort [α1, . . . , αn, β].

Expressions are denoted by A,B,C, etc., and expressions of sort α are denoted
by Aα, Bα, Cα, etc. “Free variable”, “closed expression”, and similar notions are
defined in the obvious way. A formula is an expression of sort ∗. A sentence is a
closed formula.

Intuitively, when an expression @{F,A1, . . . , An} has a denotation, it denotes
the value of the function denoted by F applied to the arguments denoted by
A1, . . . , An. Also, an expression λ{x1, . . . , xn . B} denotes the function whose
value, when given arguments x1, . . . , xn, is the denotation of B (which generally
depends on x1, . . . , xn) if B has a denotation and is undefined otherwise.

The following abbreviations provide notation for the major logical operations
of PF∗:

F (A1, . . . , An) for @{F,A1, . . . , An}
(Aα =γ Bβ) for =[γ,γ,∗] (Aα, Bβ)
(A∗ ≡ B∗) for (A∗ =∗ B∗)
T∗ for (=[∗,∗,∗] =[∗,∗,∗] =[∗,∗,∗])
F∗ for (λ{x∗ . T∗} =[∗,∗] λ{x∗ . x∗})
¬[∗,∗] for λ{x∗ . (x∗ ≡ F∗)}
(¬A∗) for ¬[∗,∗](A∗)
∧[∗,∗,∗] for λ{x∗, y∗ . (λ{g[∗,∗,∗] . g[∗,∗,∗](T∗,T∗)} =[[∗,∗,∗],∗]

λ{g[∗,∗,∗] . g[∗,∗,∗](x∗, y∗)})}
(A∗ ∧B∗) for ∧[∗,∗,∗](A∗, B∗)
∨[∗,∗,∗] for λ{x∗, y∗ . (¬((¬x∗) ∧ (¬y∗)))}
(A∗ ∨B∗) for ∨[∗,∗,∗](A∗, B∗)
⊃[∗,∗,∗] for λ{x∗, y∗ . (x∗ ≡ (x∗ ∧ y∗))}
(A∗ ⊃ B∗) for ⊃[∗,∗,∗] (A∗, B∗)
Π[[α1,...,αn,∗],∗] for λ{p[α1,...,αn,∗] . (p[α1,...,αn,∗] =[α1,...,αn,∗]

λ{x1
α1
, . . . , xnαn . T∗})}

∀{x1
α1
, . . . , xnαn . A∗} for Π[[α1,...,αn,∗],∗](λ{x1

α1
, . . . , xnαn . A∗})

∃{x1
α1
, . . . , xnαn . A∗} for (¬∀{x1

α1
, . . . , xnαn . (¬A∗)})

I{xα . A∗} for ι[[α,∗],α](λ{xα . A∗})
(Aα ↓ β) for λ{xβ . T∗}(Aα)
(Aα ↑ β) for (¬(Aα ↓ β))
(Aα↓) for (Aα ↓ α)
(Aα↑) for (¬(Aα↓))
(Aα 'γ Bβ) for ((Aα↓) ∨ (Bβ↓)) ⊃ (Aα =γ Bβ)
(Aα 6=γ Bβ) for (¬(Aα =γ Bβ))
(Aα 6'γ Bβ) for (¬(Aα 'γ Bβ))
⊥α for I{xα . F∗} where α ∈ Sι

11

F[α1,...,αn,β] for λ{x1
α1
, . . . , xnαn . Fβ} where β ∈ S∗

α ⊆ β for ∀{xα . (xα ↓ β)}
if{A∗, Bβ , Cγ} for I{xα . ((A∗ ⊃ (xα =α Bβ)) ∧ ((¬A∗) ⊃

(xα =α Cγ)))} where α = β tξ γ and
xα does not occur in A∗, Bβ , or Cγ .

Parentheses in expressions may be suppressed when meaning is not lost.

Standard Models

In [9] we define two semantics for PF∗, one based on “general models” and the
other based on “standard models”. In this paper we are interested only in the
standard models semantics. We begin by describing the objects that the logical
constants are intended to denote.

Let {Dα : α ∈ S} be a standard sort frame for S. Fix β ∈ S with γ = τ(β).
The identity relation for Dβ is the total function p : Dγ ×Dγ → D∗ such that,
for all a, b ∈ Dγ , p(a, b) = t iff a, b ∈ Dβ and a = b. Given b ∈ Dγ , the b-
descriptor for Dγ is the total function p : Dγ → D∗ such that, for all a ∈ Dγ ,
p(a) = t iff a = b. When β ∈ Sι, the definite description function for Dβ is
the partial function f : D[γ,∗] → Dγ such that f(p) = b if p is the b-descriptor
for Dγ for some b ∈ Dβ , and f(p) is undefined otherwise. When β ∈ S∗, the
definite description function for Dβ is the total function f : D[γ,∗] → Dγ such
that f(p) = b if p is the b-descriptor for Dγ for some b ∈ Dβ , and f(p) = fγ

otherwise.
A standard model for L is a pairM = ({Dα : α ∈ S}, I) where {Dα : α ∈ S}

is a standard sort frame for S such that ⊥ 6∈ Dα for all α ∈ S and I is a
function which maps each cα ∈ C to an element of Dα such that, for each
α ∈ S, (1) I(=[α,α,∗]) is the identity relation for Dα and (2) I(ι[[α,∗],α]) is the
definite description function for Dα. A V-assignment intoM is a function which
maps each xα ∈ V to an element of Dα. Given a V-assignment ϕ into M;
distinct variables x1

α1
, . . . , xnαn ∈ V (n ≥ 1); and a1 ∈ Dα1 , . . . an ∈ Dαn , let

ϕ[x1
α1
7→ a1, . . . , x

n
αn 7→ an] be the V-assignment ψ such that ψ(xiαi) = ai for all

i with 1 ≤ i ≤ n and ψ(yβ) = ϕ(yβ) for all yβ 6∈ {x1
α1
, . . . , xnαn}.

Let M = ({Dα : α ∈ S}, I) be a standard model for L. Then there exists a
binary function V = VM such that: (1) for each V-assignment ϕ into M and
each expression Aα, Vϕ(Aα) ∈ Dα ∪ {⊥} if α ∈ Sι and Vϕ(Aα) ∈ Dα if α ∈ S∗,
and (2) the following conditions are satisfied for all V-assignments ϕ intoM and
all expressions:

1. Vϕ(xα) = ϕ(xα) if xα ∈ V.
2. Vϕ(cα) = I(cα) if cα ∈ C.
3. Let Aα = @{F,A1, . . . , An} with α ∈ Sι. If each of Vϕ(F), Vϕ(A1), . . . ,
Vϕ(An) does not equal ⊥ and Vϕ(F) is defined at 〈Vϕ(A1), . . . , Vϕ(An)〉,
then

Vϕ(Aα) = (Vϕ(F))(Vϕ(A1), . . . , Vϕ(An));

otherwise Vϕ(Aα) = ⊥.

12

4. Let Aα = @{F,A1, . . . , An} with α = [α1, . . . , αn, β] ∈ S∗. If each of
Vϕ(A1),. . .,Vϕ(An) does not equal ⊥, then

Vϕ(Aα) = (Vϕ(F))(Vϕ(A1), . . . , Vϕ(An));

otherwise Vϕ(Aα) = fτ(β).
5. Let Aα = λ{x1

α1
, . . . , xnαn . Bβ} with β ∈ Sι. Vϕ(Aα) is the partial function

f : Dα1 × · · · × Dαn → Dβ such that

f(a1, . . . , an) = Vϕ[x1
α1
7→a1,...,xnαn 7→an](Bβ)

if Vϕ[x1
α1
7→a1,...,xnαn 7→an](Bβ) is defined; otherwise f(a1, . . . , an) is undefined.

6. Let Aα = λ{x1
α1
, . . . , xnαn . Bβ} with β ∈ S∗. Vϕ(Aα) is the total function

f : Dτ(α1) × · · · × Dτ(αn) → Dβ such that

f(a1, . . . , an) = Vϕ[x1
α1
7→a1,...,xnαn 7→an](Bβ)

if 〈a1, . . . , an〉 ∈ Dα1 × · · · × Dαn ; otherwise f(a1, . . . , an) = fτ(β).

When Vϕ(Aα) 6= ⊥, Vϕ(Aα) is called the value of Aα in M with respect to ϕ.
Intuitively, Vϕ(Aα) = ⊥ means that Aα has no denotation or value in M with
respect to ϕ. That is, V is intuitively a partial valuation function. For a closed
expression Aα, it is clear that Vϕ(Aα) does not depend on ϕ and thus V (Aα) is
meaningful.

A formula A∗ of L is valid in M if Vϕ(A∗) = t for every V-assignment ϕ
into M.

Theories

A theory of PF∗ is a pair T = (L, Γ) where L is a language of PF∗ and Γ is a
set of sentences of L. The members of Γ are called the axioms of T . T, T ′, etc.
denote theories.

Let T = (L, Γ). A standard model for T is a standard model for L in which
each member of Γ is valid. T is satisfiable (in the standard sense) if there is
some standard model for T . A sentence A∗ is a (semantic) theorem of T (in the
standard sense), written T |= A∗, if A∗ is valid in every standard model for T .

5 LUTINS

lutins (Logic of Undefined Terms for Inference in a Natural Style) is the logic
of imps. It is essentially the same as PF∗ plus several additional expression
constructors, which are defined in terms of the primitive notions of PF∗: function
application, λ-abstraction, equality, and definite description. This section gives
a brief presentation of the syntax and semantics of lutins. A more detailed
presentation of a slightly different version of lutins is found in [16].5 We assume
that each concept and notation defined in the previous section for PF∗ is defined
for lutins in the obvious way if it is not explicitly defined in this section.
5 The reader should be aware that in [16] lutins is called PF.

13

Syntax

A language of lutins is a tuple (A, ξ,V, C) such that (A, ξ,V, C̃) is a language
of PF∗, where

C̃ = C ∪ {=[α,α,∗], ι[[α,∗],α] : α ∈ Ω(A)}.

For any language L = (A, ξ,V, C) of lutins, let L̃ be the language (A, ξ,V, C̃)
of PF∗.

For the remainder of this section, let L = (A, ξ,V, C) be a language of lutins,
S be the sort system (A, ξ), and T be the set of types of S. When there is no
possibility of confusion, the components of a language Li will be denoted by
Ai, ξi,Vi, Ci, and the sort system and set of types of Li will be denoted by Si
and T i, respectively.

Our version of lutins has 21 expression constructors: apply, lambda,
equals, quasi-equals, iota, iota-p, the-true, the-false, not, and, or,
implies, iff, if-form, forall, forsome, defined-in, is-defined, if,
undefined, and falselike. An expression of L of sort α ∈ S is a finite se-
quence of variables, constants, expression constructors, sorts, and punctuation
symbols defined inductively by:

1. Each xα ∈ V and cα ∈ C is an expression of sort α.
2. If F is an expression of sort [α1, . . . , αn, β]; A1, . . . , An are expressions

of sort α′1, . . . , α
′
n; and τ(α1) = τ(α′1), . . . , τ(αn) = τ(α′n), then

apply{F,A1, . . . , An} is an expression of sort β.
3. If x1

α1
, . . . , xnαn are distinct variables and B is an expression of sort β, then

lambda{x1
α1
, . . . , xnαn . B} is an expression of sort [α1, . . . , αn, β].

4. If A and B are expressions of sort α and β, respectively, with τ(α) = τ(β),
then equals{A,B} and quasi-equals{A,B} are expressions of sort ∗.

5. If xα, yβ are variables; α, β are of kind ι, ∗, respectively; and C is an expres-
sion of sort ∗, then iota{xα . C} and iota-p{yβ . C} are expressions of sort
α and β, respectively.

6. If A,B,C,A1, . . . , An are expressions of sort ∗ with n ≥ 0, then the-true{},
the-false{}, not{A} and{A1, . . . , An}, or{A1, . . . , An}, implies{A,B},
iff{A,B}, and if-form{A,B,C} are expressions of sort ∗.

7. If x1
α1
, . . . , xnαn are distinct variables and B is an expression of sort ∗, then

forall{x1
α1
, . . . , xnαn . B} and forsome{x1

α1
, . . . , xnαn . B} are expressions of

sort ∗.
8. If A is an expression of sort α and τ(α) = τ(β), then defined-in{A, β} and

is-defined{A} are expressions of sort ∗.
9. If A,B,C are expressions of sort ∗, β, γ, respectively, with τ(β) = τ(γ), then

if{A,B,C} is an expression of sort β tξ γ.
10. If α is of kind ι, then undefined{α} is an expression of sort α.
11. If α is of kind ∗, then falselike{α} is an expression of sort α.

Expressions that are not variables or constants are called compound expres-
sions. The length of an expression A, written |A|, is the number of occurrences
of expression constructors in A. The set of expressions of L [respectively, Li] is

14

denoted by E [respectively, E i], and the set of expressions of L̃ [L̃i] is denoted
by Ẽ [Ẽ i].

Semantics

The semantics of lutins is defined in terms of the standard models semantics
of PF∗.

Let ζ : E → Ẽ be the mapping defined by the following statements:

1. ζ(aα) = aα where aα ∈ V ∪ C.
2. ζ(apply{F,A1, . . . , An}) = @{ζ(F), ζ(A1), . . . , ζ(An)}.
3. ζ(lambda{x1

α1
, . . . , xnαn . B}) = λ{x1

α1
, . . . , xnαn . ζ(B)}.

4. ζ(equals{Aα, Bβ}) = (ζ(Aα) =γ ζ(Bβ)) where γ = τ(α) = τ(β).
5. ζ(quasi-equals{Aα, Bβ}) = (ζ(Aα) 'γ ζ(Bβ)) where γ = τ(α) = τ(β).
6. ζ(2{xα . A∗}) = I{xα . ζ(A∗)} where 2 is iota or iota-p.
7. ζ(2{}) = T∗ where 2 is the-true or and.
8. ζ(2{}) = F∗ where 2 is the-false or or.
9. ζ(not{A}) = ¬ζ(A).

10. ζ(and{A1, . . . , An}) = (ζ(A1) ∧ (ζ(A2) ∧ · · ·)) where n ≥ 1.
11. ζ(or{A1, . . . , An}) = (ζ(A1) ∨ (ζ(A2) ∨ · · ·)) where n ≥ 1.
12. ζ(implies{A,B}) = (ζ(A) ⊃ ζ(B)).
13. ζ(iff{A,B}) = (ζ(A) ≡ ζ(B)).
14. ζ(2{A,B,C}) = if{ζ(A), ζ(B), ζ(C)} where 2 is if-form or if.
15. ζ(forall{x1

α1
, . . . , xnαn . B}) = ∀{x1

α1
, . . . , xnαn . ζ(B)}.

16. ζ(forsome{x1
α1
, . . . , xnαn . B}) = ∃{x1

α1
, . . . , xnαn . ζ(B)}.

17. ζ(defined-in{A, β}) = (ζ(A) ↓ β).
18. ζ(is-defined{A}) = ζ(A)↓.
19. ζ(undefined{α}) = ⊥α.
20. ζ(falselike{α}) = Fα.

Notice that Aα and ζ(Aα) have the same sort for every expression Aα of L.
A model for L is a standard model for L̃. Let M = ({Dα : α ∈ S}, I) be a

model for L, and let V = VM be the valuation function for L̃ with respect to
M. U = UM is the binary function, on V-assignments ϕ intoM and expressions
Aα of L, defined by

Uϕ(Aα) = Vϕ(ζ(Aα)).

Clearly, for each V-assignment ϕ intoM and each expression Aα of L, Uϕ(Aα) ∈
Dα ∪ {⊥} if α ∈ Sι and Uϕ(Aα) ∈ Dα if α ∈ S∗. Thus U is a (partial) valuation
function for L with respect to M.

A formula A∗ of L is valid in M if Uϕ(A∗) = t for every V-assignment ϕ
into M.

Let Mi = ({Diα : α ∈ Si}, Ii) be a model for Ti = (Li, Γi) for i = 1, 2. L2

is an expansion of L1, written L1 ≤ L2, if A1 ⊆ A2, ξ1 is a subfunction of ξ2,
V1 ⊆ V2, and C1 ⊆ C2. T2 is an extension of T1, written T1 ≤ T2, if L1 ≤ L2 and
Γ1 ⊆ Γ2. M2 is an expansion of M1 to L2 (and M2 is the reduct of M1 to L1)
if D1

α = D2
α for all α ∈ S1 and I1 is a subfunction of I2.

15

6 Theory Interpretation in LUTINS

We have seen that, in first-order predicate logic, an interpretation of one theory
in another is a certain kind of homomorphism on expressions that preserves the
validity of sentences. In this section we define an interpretation of one lutins

theory in another which is very similar to the notion of a standard first-order in-
terpretation. We will first define a notion of a translation from a source theory to
a target theory. A translation is determined by how the primitive symbols of the
source theory (i.e., the atomic sorts, variables, and constants of the source the-
ory) are associated with objects of the target theory. In the definition given here,
atomic sorts are associated with sorts and closed unary predicates; variables are
associated with variables; and constants are associated with closed expressions
(of appropriate sort). Then an interpretation is defined to be a translation which
maps every theorem of the source theory to a theorem of the target theory.

Our notion of a translation in lutins extends the notion of a translation in
PF∗ defined in [9] in two ways:

– A lutins translation directly handles all 21 expression constructors of
lutins, while a PF∗ translation handles just the constructors corresponding
to apply and lambda.

– A lutins translation can associate an atomic sort with either a sort or a
closed unary predicate, but a PF∗ translation can associate an atomic sort
with only a sort.

This section is the heart of the paper. Most of the complexity in the defini-
tions is a result of allowing sorts to be associated with unary predicates.

Quasi-Sorts

Let us define a quasi-sort to be any closed unary predicate, i.e., any expression
whose sort is of the form [α, ∗]. Then let Q [Qi] denote the set of quasi-sorts of
the language L [Li].

For q ∈ S ∪ Q and Aα ∈ E , the domain of q, written δ(q), is defined by

δ(q) =
{
q if q ∈ S
α if q ∈ Q and [α, ∗] is the sort of q

and, provided δ(q) = α, the condition of q on Aα, written κ(q, Aα), is defined
by

κ(q, Aα) =
{
the-true{} if q ∈ S
apply{q, Aα} if q ∈ Q

We will need a quasi-sort constructor (denoted by [[· · ·]]) for building “com-
pound” quasi-sorts that is analogous to the [· · ·] sort constructor for building
compound sorts. Let q1, . . . , qn+1 ∈ S ∪ Q with n ≥ 1. When δ(qn+1) ∈ Sι,
[[q1, . . . , qn+1]] will be a quasi-sort whose extension (in a model) is the set of
partial functions f : D1 × · · · × Dn → Dn+1, where Di is the extension of qi for
i with 1 ≤ i ≤ n+ 1.

16

[[q1, . . . , qn+1]] is defined as follows. Let γ = [δ(q1), . . . , δ(qn+1)]. Choose dis-
tinct variables fγ , x1

δ(q1), . . . , x
n
δ(qn) which do not occur in q1, . . . , qn+1. Make the

following definitions:

A = and{κ(q1, x
1
δ(q1)), . . . , κ(qn, xnδ(qn))}.

B = apply{fγ , x1
δ(q1), . . . , x

n
δ(qn)}.

C =



if-form{A, if γ is of kind ι
implies{is-defined{B}, κ(qn+1, B)},
not{is-defined{B}}}

if-form{A, if γ is of kind ∗
κ(qn+1, B),
equals{B, falselike{δ(qn+1)}}}

Then define [[q1, . . . , qn+1]] to be

lambda{fγ . forall{x1
δ(q1), . . . , x

n
δ(qn) . C}}.

Clearly, for all q1, . . . , qn+1 ∈ S∪Q, [[q1, . . . , qn+1]] is a well-formed member of E .

Proposition 6.1
1. If α1, . . . , αn+1 ∈ S, then δ([α1, . . . , αn+1]) = [δ(α1), . . . , δ(αn+1)].
2. If q1, . . . , qn+1 ∈ S ∪ Q, then δ([[q1, . . . , qn+1]]) = [δ(q1), . . . , δ(qn+1)].

Translations

Let Ti = (Li, Γi) be a theory of lutins for i = 1, 2. Given a function µ : A1 →
S2 ∪ Q2, µ̄ : S1 → S2 ∪ Q2 is the canonical extension of µ defined inductively
by:

1. If α ∈ A1, then µ̄(α) = µ(α).
2. If α = [α1, . . . , αn+1] ∈ S1 and {µ̄(α1), . . . , µ̄(αn+1)} ⊆ S2, then µ̄(α) =

[µ̄(α1), . . . , µ̄(αn+1)].
3. If α = [α1, . . . , αn+1] ∈ S1 and {µ̄(α1), . . . , µ̄(αn+1)} 6⊆ S2, then µ̄(α) =

[[µ̄(α1), . . . , µ̄(αn+1)]].

Given α ∈ A1, let µ[α] = δ(µ(α)), and given α ∈ S1, let µ̄[α] = δ(µ̄(α)).
A translation from T1 to T2 is a pair (µ, ν), where µ : A1 → S2 ∪ Q2 and

ν : V1 ∪ C1 → E2, such that:

1. µ(∗) = ∗.
2. For all α ∈ A1 with α 6= ∗, µ[α] is a sort of type τ(µ̄[τ(α)]) of kind ι.
3. For all xα ∈ V1, ν(xα) is a variable of sort µ̄[α].
4. ν is injective on V1.
5. For all cα ∈ C1, ν(cα) is a closed expression of type τ(µ̄[α]).

(µ, ν) is normal if µ(α) ∈ S2 for all α ∈ A1. Obviously, µ̄[α] = µ̄(α) for all
α ∈ S1 if (µ, ν) is normal.

Let Φ = (µ, ν) be a translation from T1 to T2 throughout the rest of this
section. For A ∈ E1, the translation of A via Φ, written Φ(A), is the member of
E2 defined inductively by:

17

1. Φ(a) = ν(a) if a ∈ V1 ∪ C1.
2. Φ(2{A1, . . . , An}) = 2{Φ(A1), . . . , Φ(An)} if 2 is apply, equals,

quasi-equals, the-true, the-false, not, and, or, implies, iff, if-form,
is-defined, or if.

3. Φ(2{x1
α1
, . . . , xnαn . B}) = 2{Φ(x1

α1
), . . . , Φ(xnαn) . Φ(B)} if 2 is lambda,

iota, iota-p, forall, or forsome and {µ̄(α1), . . . , µ̄(αn)} ⊆ S2.
4. Φ(2{x1

α1
, . . . , xnαn . B}) =
2{Φ(x1

α1
), . . . , Φ(xnαn) . if{C,Φ(B),2′{γ}}} if 2 is lambda

2{Φ(x1
α1

), . . . , Φ(xnαn) . implies{C,Φ(B)}} if 2 is forall
2{Φ(x1

α1
), . . . , Φ(xnαn) . and{C,Φ(B)}} if 2 is forsome,

iota, or iota-p

if {µ̄(α1), . . . , µ̄(αn)} 6⊆ S2, where

C = and{κ(µ̄(α1), Φ(x1
α1

)), . . . , κ(µ̄(αn), Φ(xnαn))},

γ is the sort of Φ(B), and 2′ is undefined [falselike] if γ is of kind ι [∗].
5. Φ(2{α}) = 2{µ̄[α]} if 2 is undefined or falselike.

6. Φ(defined-in{A, β}) =
{
defined-in{Φ(A), µ̄(β)} if µ̄(β) ∈ S2

apply{µ̄(β), Φ(A)} if µ̄(β) ∈ Q2

Proposition 6.2 Let α, β ∈ S1.

1. α and µ̄[α] are of the same kind.
2. τ(µ̄[α]) = τ(µ̄[τ(α)]).
3. τ(α) = τ(β) implies τ(µ̄[α]) = τ(µ̄[β]).

Proof The same as the proof of Proposition 11.1 in [9]. 2

Proposition 6.3 Let Aα ∈ E1.

1. Φ(Aα) is a (well-formed) member of E2 of type τ(µ̄[α]).
2. If the sort of ν(cγ) is µ̄[γ] for each constant cγ occurring in Aα, then the

sort of Φ(Aα) is µ̄[α].

Proof By induction on |Aα|. 2

Before proceeding to the notion of an interpretation, we shall make a few
comments about this definition of a translation:

– The mapping µ plays the role of U in a standard translation.
– The variables of the source theory are injectively mapped to the variables

of the target theory by both a standard and lutins translation. In (single-
sorted) first-order logic, variables all have effectively the same sort. Conse-
quently, they can be uniformly mapped to themselves and need not be in
the domain of ν in a standard translation. Although variables have different
sorts in a sorted logic such as lutins, one might think that a variable of the
form xα could be uniformly mapped to xµ̄[α]. However, this mapping would

18

clearly not be injective if there exists variables xα, xβ ∈ V1 such that α 6= β
and µ̄[α] = µ̄[β]. Therefore, in our definition of Φ, the mapping of variables
is specified explicitly by ν.

– Since simple type theory has a more uniform syntax than first-order logic,
the definition of ν on constants is less complicated in a lutins translation
than in a standard translation.

– A normal lutins translation preserves the structure of lutins syntax, as
can be seen clearly by the definition given above.

– In some cases, a nonnormal lutins translation relativizes the constructor
defined-in and the variable-binding constructors: lambda, iota, iota-p,
forall, forsome. For each of these expression constructors, the relativiza-
tion is defined in the obvious way. In particular, the relativization of lambda
in an expression A = lambda{x1

α1
, . . . , xnαn . B} produces an expression be-

ginning with lambda which is the appropriate restriction of the unrelativized
translation of A.

Interpretations

Φ is an interpretation of T1 in T2 if Φ(A∗) is a theorem of T2 for each theorem
A∗ of T1. T1 is interpretable in T2 if there is an interpretation of T1 in T2.

A pre-obligation of Φ is any one of the following theorems of T1:

1. An axiom of T1.
2. forsome{xα . the-true{}} where α ∈ A1.
3. defined-in{cα, α} where cα ∈ C1.
4. forall{xα . defined-in{xα, ξ1(α)}} where α ∈ A1.

An obligation of Φ is any sentence Φ(A∗) where A∗ is a pre-obligation of Φ.
The four kinds of pre-obligations [obligations] are called, in order, axiom, sort
nonemptiness, constant sort , and sort inclusion pre-obligations [obligations].
Note: The sort nonemptiness obligations of Φ are trivially theorems of T2 if Φ is
normal.

The first three kinds of obligations correspond very closely to the four kinds
of obligations for a standard first-order translation (constant sort obligations
correspond to both individual constant symbol and function symbol obligations).
There are no standard translation obligations corresponding to sort inclusion
obligations because there are no subtypes in first-order logic. Obligations serve
the same purpose for lutins translations as they do for standard translations: if
all of the obligations of a translation are theorems of the target theory, then the
translation is an interpretation. This result is proved for lutins in Section 8.

19

7 Some Examples Involving Groups and Fields

In this section we construct some interpretations of a theory G of an abstract
group in a theory F of an abstract field. We will employ the following abbrevi-
ations:

– F (A1, . . . , An) for apply{F,A1, . . . , An}.
– A = B for equals{A,B}.
– A 6= B for ¬{equals{A,B}}.

Define G = ((AG, ξG,VG, CG), ΓG) to be a theory of an abstract group where:

1. AG = {∗, α}.
2. ξG is the identity function.
3. CG = {eα,mul[α,α,α], inv[α,α]}.
4. ΓG is the usual set of axioms for a group.

Define F = ((AF , ξF ,VF , CF), ΓF) to be a theory of an abstract field where:

1. AF = {∗, β}.
2. ξF is the identity function.
3. CF = {0β , 1β ,+[β,β,β],×[β,β,β]}.
4. ΓF is the usual set of axioms for a field.

Except for VG and VF , the languages of G and F are determined by the condi-
tions given above.

Example 7.1 Let Φ1 = (µ1, ν1) be an interpretation of G in F such that:

1. µ1(α) = β.
2. ν1(eα) = 0β .
3. ν1(mul[α,α,α]) = +[β,β,β].
4. ν1(inv[α,α]) = lambda{xβ . iota{yβ . +[β,β,β](xβ , yβ) = 0β}}.

Φ1 shows that the elements of a field form a group under addition. 2

Example 7.2 Let Φ2 = (µ2, ν2) be an interpretation of G in F such that:

1. µ2(α) = lambda{xβ . xβ 6= 0β}.
2. ν2(eα) = 1β .
3. ν2(mul[α,α,α]) = lambda{xβ , yβ . if{and{xβ 6= 0β , yβ 6= 0β},

×[β,β,β] (xβ , yβ),
undefined{β}}}.

4. ν2(inv[α,α]) = lambda{xβ . iota{yβ . ×[β,β,β](xβ , yβ) = 1β}}.

Φ2 shows that the nonzero elements of a field form a group under multiplication.
Since α is associated with a quasi-sort, Φ2 is nonnormal and thus relativizes
the quantifiers in expressions of G. Notice that mul[α,α,α] is associated with the
restriction of ×[β,β,β] to the nonzero elements of β, and ν2(inv[α,α]) is undefined
at 0β . 2

20

Now define F ′ = ((AF ∪ {γ}, ξF ′ ,VF ′ , CF), ΓF ∪ {A∗}) to be an extension of
F such that:

1. ξF ′(γ) = β.
2. A∗ = forall{xβ . iff{defined-in{xβ , γ}, xβ 6= 0β}}.

Thus F ′ is obtained by defining in F an atomic sort γ with the same extension
as the quasi-sort lambda{xβ . xβ 6= 0β}.

Example 7.3 Let Φ3 = (µ3, ν3) be an interpretation of G in F ′ such that:

1. µ3(α) = γ.
2. ν3(eα) = 1β .
3. ν3(mul[α,α,α]) = lambda{xγ , yγ . ×[β,β,β](xγ , yγ)}.
4. ν3(inv[α,α]) = lambda{xγ . iota{yγ . ×[β,β,β](xγ , yγ) = 1β}}.

Like Φ2, Φ3 shows that the nonzero elements of a field form a group under
multiplication. In a certain sense, Φ2 and Φ3 are two renditions of the same
interpretation. However, since Φ3 associates α with a sort, Φ3 is syntactically
more economical than Φ2. In particular, Φ3 is normal while Φ2 is nonnormal. 2

Examples 7.2 and 7.3 together illustrate how a nonnormal translation can
be transformed into a normal translation. Since lutins admits subtypes, any
nonnormal translation can be “normalized” in this way as long as one is willing
to define new atomic sorts. The general idea is as follows. Suppose the translation
Φ is nonnormal. For each α ∈ A1 such that µ(α) 6∈ S2, (1) add to T2 a new atomic
sort α′ and a new axiom which says that µ(α) and α′ are coextensional and (2)
redefine µ so that µ(α) = α′. The resulting translation is obviously normal.
(This construction is described in detail in the next section.) Hence, nonnormal
translations are unnecessary in lutins if there is no restriction on defining atomic
sorts. However, in practice the strict avoidance of nonnormal translations can
easily lead to theories with a large number of atomic sorts which are almost
never used.

8 Interpretation and Satisfiability Theorems

We prove in this section the interpretation and relative satisfiability theorems
for lutins. The former establishes a sufficient condition for a translation to be
an interpretation, and the latter says that a theory which is interpretable in a
satisfiable theory is itself satisfiable. They correspond, respectively, to the Stan-
dard Interpretation Theorem (Theorem 2.1) and Standard Relative Satisfiability
(Theorem 2.2) for first-order logic. The proofs are based on the interpretation
and relative satisfiability theorems for PF∗ proved in [9].

Let Ti = (Li, Γi) be a lutins theory for i = 1, 2.

21

PF∗ Theories and Translations

Given a lutins theory T = (L, Γ), let T̃ = (L̃, {ζ(A∗) : A∗ ∈ Γ}), which is a
PF∗ theory.

Proposition 8.1 Let T = (L, Γ) be a lutins theory and M be a model for L.
Then:

1. M is a model for T iff M is a standard model for T̃ .
2. T |= A∗ iff T̃ |= ζ(A∗), for all sentences A∗ ∈ E.

Proof Let ϕ be a V-assignment into M and A∗ be a formula of L. Then, by
definition, UMϕ (A∗) = VMϕ (ζ(A∗)). This identity implies (1), and (1) and the
identity imply (2). 2

Suppose Φn = (µ, ν) is a normal lutins translation from T1 to T2. Let
Φ̃n = (µ, ν̃) where ν̃ : V1 ∪ C̃1 → Ẽ2 is defined by:

1. For all xα ∈ V1, ν̃(xα) = ν(xα).
2. For all cα ∈ C1, ν̃(cα) = ζ(ν(cα)).
3. For all α ∈ S1, ν̃(=[α,α,∗]) = =[µ̄(α),µ̄(α),∗] and ν̃(ι[[α,∗],α]) = ι[[µ̄(α),∗],µ̄(α)].

Φ̃n is easily verified to be a PF∗ translation from T̃1 to T̃2. For E ∈ Ẽ1, let
Φ̃n(E) = ν̃(E), the translation of E via Φ̃n.

The key lemma of this section is

Lemma 8.2 Let Φ be a normal lutins translation from T1 to T2 such that each
of its constant sort and sort inclusion obligations is a theorem of T2. Also, let
M2 be a model for T2 and ϕ be a V2-assignment into M2. Then:

1. VM2
ϕ (ζ(Φ(E))) = VM2

ϕ (Φ̃(ζ(E))), for all expressions E ∈ E1.
2. T̃2 |= ζ(Φ(A∗)) iff T̃2 |= Φ̃(ζ(A∗)), for all sentences A∗ ∈ E1.

The proof of this lemma requires the following technical lemma:

Lemma 8.3 Let Φ = (µ, ν) be a normal lutins translation from T1 to T2

such that each of its constant sort and sort inclusion obligations is a theorem
of T2. Also, let M2 be a model for T2, ϕ be a V2-assignment into M2, and
Aα, Bβ , Cγ , X∗ ∈ E1. Then:

1. If 2 ∈ {=,'}, δ is the type of Φ(Aα), and ε = µ̄(τ(α)), then VM2
ϕ (Eδ) =

VM2
ϕ (Eε) where

Eθ = ζ(Φ(Aα)) 2θ ζ(Φ(Bβ)).

2. If δ is the least upper bound in �ξ2 of the sorts of Φ(Bβ) and Φ(Cγ), and
ε = µ̄(β tξ2 γ), then VM2

ϕ (Eδ) = VM2
ϕ (Eε) where

Eθ = I{xθ . (ζ(Φ(X∗)) ⊃ (xθ =θ ζ(Φ(Bβ)))) ∧
(¬ζ(Φ(X∗)) ⊃ (xθ =θ ζ(Φ(Cγ))))}.

22

3. If δ is the sort of Φ(Aα) and ε = µ̄(α), then VM2
ϕ (Eδ) = VM2

ϕ (Eε) where

Eθ = (ζ(Φ(Aα)) ↓ θ).

Proof Follows from the lemmas in Section 11 of [9]. 2

Proof of Lemma 8.2 Part (2) follows from part (1) by Proposition 8.1.
Let Φ = (µ, ν) and E ∈ E1. The proof of (1) is by induction on |E|.
Basis. Assume |E| = 0; then E ∈ V1 ∪ C1.
Let E ∈ V1. Then

VM2
ϕ (ζ(Φ(E))) = VM2

ϕ (Φ(E)) (1)

= VM2
ϕ (Φ̃(E)) (2)

= VM2
ϕ (Φ̃(ζ(E))) (3)

(1) and (3) hold since ζ is the identity on V1, and (2) holds since Φ = Φ̃ on V1.
Let E ∈ C1. Then

VM2
ϕ (ζ(Φ(E))) = VM2

ϕ (Φ̃(E)) (4)

= VM2
ϕ (Φ̃(ζ(E))) (5)

(4) holds since ζ ◦ Φ = Φ̃ on C1, and (5) holds since ζ is the identity on C1.
Induction step. Assume |E| > 0; then E is a compound expression beginning

with the expression constructor 2.
Let E = defined-in{Aα, β}. Then

VM2
ϕ (ζ(Φ(defined-in{Aα, β})))
= VM2

ϕ (ζ(defined-in{Φ(Aα), µ̄(β)})) (6)

= VM2
ϕ (ζ(Φ(Aα)) ↓ µ̄(β)) (7)

= VM2
ϕ (Φ̃(ζ(Aα)) ↓ µ̄(β)) (8)

= VM2
ϕ (Φ̃(ζ(Aα) ↓ β)) (9)

= VM2
ϕ (Φ̃(ζ(defined-in{Aα, β}))) (10)

(6) is by the definition of the application of a normal lutins translation to
an expression; (7) and (10) are by the definition of ζ; (8) is by the induction
hypothesis; and (9) is by Lemma 11.5 in [9].

The derivation is very similar when 2 is any one of the other expression con-
structors except for equals, quasi-equals, if, or is-defined. The derivations
for these last four expression constructors require Lemma 8.3.

This completes the proof. 2

23

A Special Case of the Interpretation Theorem

Lemma 8.2 and the Semantic Interpretation Theorem for PF∗ imply the Inter-
pretation Theorem for lutins restricted to normal translations:

Theorem 8.4 A normal lutins translation from T1 to T2 is an interpretation
if each of its obligations is a theorem of T2.

Proof Let Φ be a normal lutins translation from T1 to T2 such that each of
its obligations is a theorem of T2.

We begin by showing that Φ̃ is an interpretation. Let O be an obligation
of Φ̃. Then O has the form Φ̃(ζ(A∗)) where A∗ is an axiom, constant sort, or
sort inclusion pre-obligation of Φ. By hypothesis, T2 |= Φ(A∗). Then

T2 |= Φ(A∗) iff T̃2 |= ζ(Φ(A∗)) (11)

iff T̃2 |= Φ̃(ζ(A∗)) (12)

(11) holds by Proposition 8.1, and (12) holds by Lemma 8.2. Hence, each obli-
gation of Φ̃ is a theorem of T̃2, and so Φ̃ is a PF∗ interpretation by the Semantic
Interpretation Theorem for PF∗ [9, Theorem 12.4].

Let A∗ be a theorem of T1. Then

T1 |= A∗ iff T̃1 |= ζ(A∗) (13)

implies T̃2 |= Φ̃(ζ(A∗)) (14)

iff T̃2 |= ζ(Φ(A∗)) (15)
iff T2 |= Φ(A∗) (16)

(13) and (16) hold by Proposition 8.1; (14) holds because Φ̃ is a PF∗ interpre-
tation; and (15) holds by Lemma 8.2. Therefore, the sequence of implications
shows that Φ maps each theorem of T1 to a theorem of T2, that is, that Φ is an
interpretation. 2

The Translation Φ′ and Its Properties

Before we can strengthen Theorem 8.4 to the full interpretation theorem for
lutins, we must show how an arbitrary lutins translation can be transformed
into a normal translation.

Let Φ = (µ, ν) be a lutins translation from T1 to T2. The key idea is to add
new atomic sorts to T2. Let T ′2 = (L′2, Γ ′2) be the theory

((A ∪A2, ξ ∪ ξ2,V ∪ V2, C2), Γ ∪ Γ2)

such that:

1. A = {γµ(α) : α ∈ A1 and µ(α) ∈ Q2}.
2. ξ : A → A2 and ξ(γQ[α,∗]) = α.
3. V is an appropriate set of new variables.

24

4. Γ = {AQ[α,∗] : γQ[α,∗] ∈ A} where AQ[α,∗] is

forall{xτ(α) . iff{defined-in{xτ(α), γ
Q[α,∗]}, apply{Q[α,∗], xτ(α)}}}.

T ′2 is a “definitional” extension of T2; its new atomic sorts are axiomatically
defined to be coextensional with the quasi-sorts in the range of µ. Consequently,
the following proposition is easy to prove.

Proposition 8.5 Suppose each sort nonemptiness obligation of Φ is a theorem
of T2. Then:

1. Each model for T2 expands to a model for T ′2.
2. Each model for T ′2 reduces to a model for T2.

Let Φ′ = (µ′, ν′) be a translation from T1 to T ′2 such that:

1. If µ(α) ∈ S2, then µ′(α) = µ(α).
2. If µ(α) ∈ Q2, then µ′(α) = γµ(α).
3. If cα ∈ C1, then ν′(cα) = ν(cα).

Φ′ is clearly normal. Notice that Φ 6= Φ′ on V1 unless Φ is normal.

Lemma 8.6 Let M2 and M′2 be models for T2 and T ′2, respectively, such that
M′2 is an expansion of M2. Then

UM2
ϕ (Φ(E)) = U

M′2
ϕ′ (Φ′(E))

for all E ∈ E1, V2-assignments ϕ into M2, and V ′2-assignments ϕ′ into M′2
such that ϕ(Φ(xα)) = ϕ′(Φ′(xα)) for all xα ∈ V1.

Proof By induction on |E|. 2

Lemma 8.7 Suppose each sort nonemptiness obligation of Φ is a theorem of
T2. Then

T2 |= Φ(A∗) iff T ′2 |= Φ′(A∗)

for all sentences A∗ ∈ E1.

Proof By Proposition 8.5 and Lemma 8.6. 2

The Theorems

Theorem 8.8 (Interpretation Theorem) A translation from T1 to T2 is an
interpretation if each of its obligations is a theorem of T2.

Proof Let Φ be a lutins translation from T1 to T2 such that each of its
obligations is a theorem of T2. As above, construct the theory T ′2 from T2 and
the normal translation Φ′ from Φ. Since Φ and Φ′ have the same source theory,
they also have the same pre-obligations. Hence, each obligation of Φ′ is a theorem
of T ′2 by Lemma 8.7. Φ′ is normal, so Φ′ is an interpretation by Theorem 8.4.
This implies that Φ is an interpretation by Lemma 8.7. 2

25

Theorem 8.9 (Relative Satisfiability) If T1 is interpretable in T2 and T2 is
satisfiable, then T1 is satisfiable.

Proof Let Φ be a lutins interpretation of T1 in T2 andM2 be a model for T2.
As above, construct the theory T ′2 from T2 and the normal translation Φ′ from Φ.
By Proposition 8.5, there is a modelM′2 for T ′2 which is an expansion ofM2 since
Φ is an interpretation. M′2 is also a standard model for T̃ ′2 by Proposition 8.1.
By Lemma 8.7, Φ′ is an interpretation, and so by the proof of Theorem 8.4, Φ̃′
is a also an interpretation. Therefore, there is a standard model M1 for T̃1 by
Relative Satisfiability for PF∗ [9, Theorem 12.3]. M1 is also a model for T1 by
Proposition 8.1, so T1 is satisfiable. 2

9 Conclusion

In this paper we have developed a method for theory interpretation in lutins,
a version of simple type theory which supports partial functions and subtypes.
The method embodies the principal characteristics of the standard approach to
theory interpretation in first-order logic:

– A translation is a kind of homomorphism that is determined by how the
primitive symbols of the source theory are associated with objects of the
target theory.

– When sort symbols are associated with unary predicates, the translation of
an expression may involve the relativization of variable-binding constructors
such as the universal and existential quantifiers.

– A translation is an interpretation if the “obligations” of the translation are
theorems of the target theory (interpretation theorem).

– A theory which is interpretable in a satisfiable theory is itself satisfiable
(relative satisfiability).

Since the method is based on a logic with partial functions and subtypes, it
has two advantages over the standard first-order approach:

– The functions with restricted domains that naturally arise from interpreta-
tions which associate base types with subtypes are handled directly as partial
functions.

– Relativization of variable-binding constructors can be avoided completely,
provided that appropriate sort symbols are defined.

The method is intended as a guide for theory interpretation in classical simple
type theories as well as in predicate logics which admit partial functions.

Acknowledgments

I am grateful for the suggestions received from the referees. Many of the ideas in
this paper grew out of conversations I have had with Dr. Joshua Guttman and
Dr. Javier Thayer in the course of developing imps.

26

References

1. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. Academic Press, 1986.

2. P. B. Andrews, S. Issar, D. Nesmith, and F. Pfenning. The tps theorem proving
system (system abstract). In M. E. Stickel, editor, 10th International Conference
on Automated Deduction, volume 449 of Lecture Notes in Computer Science, pages
641–642. Springer-Verlag, 1990.

3. C. C. Chang and H. J. Keisler. Model Theory. North-Holland, 1990.
4. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,

5:56–68, 1940.
5. D. Craigen, S. Kromodimoeljo, I. Meisels, A. Neilson, B. Pase, and M. Saaltink.

m-eves: A tool for verifying software. In Proceedings of the 10th International
Conference on Software Engineering (ICSE), Singapore. IEEE Computer Society
Press, 1988.

6. D. Craigen, S. Kromodimoeljo, I. Meisels, B. Pase, and M. Saaltink. eves: An
overview. Technical Report CP-91-5402-43, ORA Corporation, 1991.

7. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.
8. W. M. Farmer. A partial functions version of Church’s simple theory of types.

Journal of Symbolic Logic, 55:1269–91, 1990.
9. W. M. Farmer. A simple type theory with partial functions and subtypes. Annals

of Pure and Applied Logic, 64:211–240, 1993.
10. W. M. Farmer, J. D. Guttman, and F. J. Thayer. imps: System description. In

D. Kapur, editor, Automated Deduction—CADE-11, volume 607 of Lecture Notes
in Computer Science, pages 701–705. Springer-Verlag, 1992.

11. W. M. Farmer, J. D. Guttman, and F. J. Thayer. Little theories. In D. Kapur, ed-
itor, Automated Deduction—CADE-11, volume 607 of Lecture Notes in Computer
Science, pages 567–581. Springer-Verlag, 1992.

12. W. M. Farmer, J. D. Guttman, and F. J. Thayer. imps: An Interactive Mathemat-
ical Proof System. Journal of Automated Reasoning, 11:213–248, 1993.

13. F. Giunchiglia and T. Walsh. A theory of abstraction. Artificial Intelligence,
57:323–389, 1992.

14. J. A. Goguen and T. Winkler. Introducing obj3. Technical Report sri-csl-99-9,
sri International, August 1988.

15. M. J. C. Gordon. hol: A proof generating system for higher-order logic. In
G. Birtwistle and P. A. Surahmanyam, editors, VLSI Specification, Verification,
and Synthesis, pages 73–128. Kluwer, Dordrecht, The Netherlands, 1987.

16. J. D. Guttman. A proposed interface logic for verification environments. Technical
Report M91-19, The mitre Corporation, 1991.

17. R. W. Harper and F. Pfenning. A module system for a programming language
based on the LF logical framework. Journal of Functional Programming. Forth-
coming.

18. D. Hilbert. The Foundations of Geometry. Open Court, Chicago, 1902.
19. K. Kunen. Set Theory: An Introduction to Independence Proofs. North-Holland,

1980.
20. B. H. Levy. An Approach to Compiler Correctness Using Interpretation Between

Theories. PhD thesis, University of California, Los Angeles, 1986. Also Technical
Report ATR-86(8454)-4, The Aerospace Corporation, El Segundo, California.

21. T. S. E. Maibaum, P. A. S. Veloso, and M. R. Sadler. A theory of abstract
data types for program development: Bridging the gap? In H. Ehrig, C. Floyd,

27

M. Nivat, and J. Thatcher, editors, Formal Methods and Software Development,
Volume 2, volume 186 of Lecture Notes in Computer Science, pages 214–230.
Springer-Verlag, 1985.

22. J. D. Monk. Mathematical Logic. Springer-Verlag, 1976.
23. J. Mycielski. A lattice of interpretability types of theories. Journal of Symbolic

Logic, 42(297–305), 1977.
24. R. Nakajima and T. Yuasa, editors. The iota Programming System, volume 160

of Lecture Notes in Computer Science. Springer-Verlag, 1982.
25. T. Nipkow and L. C. Paulson. Isabelle-91. In D. Kapur, editor, Automated

Deduction—CADE-11, volume 607 of Lecture Notes in Computer Science, pages
673–676. Springer-Verlag, 1992.

26. S. Owre, J. M. Rushby, and N. Shankar. pvs: A prototype verification system. In
D. Kapur, editor, Automated Deduction—CADE-11, volume 607 of Lecture Notes
in Computer Science, pages 748–752. Springer-Verlag, 1992.

27. J. Rushby, F. von Henke, and S. Owre. An introduction to formal specification
and verification using ehdm. Technical Report sri-csl-91-02, sri International,
1991.

28. J. R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.
29. D. R. Smith and M. R. Lowry. Algorithmic theories and design tactics. Science of

Computer Programming, 14:305–321, 1990.
30. L. W. Szczerba. Interpretability of elementary theories. In R. E. Butts and

J. Hintikka, editors, Logic, Foundations of Mathematics, and Computability The-
ory, pages 129–145. Reidel, 1977.

31. L. W. Szczerba. Interpretability and axiomatizability. Bulletin de L’Académie
Polonaise des Sciences, 27:425–429, 1979.

32. A. Tarski, A. Mostowski, and R. M. Robinson. Undecidable theories. North-
Holland, 1953.

33. W. M. Turski and T. S. E. Maibaum. The Specification of Computer Programs.
Addison-Wesley, 1987.

34. J. van Bentham and D. Pearce. A mathematical characterization of interpretation
between theories. Studia Logica, 43:295–303, 1984.

35. P. J. Windley. Formal modeling and verification of microprocessors. IEEE Trans-
actions on Computers. Forthcoming.

36. P. J. Windley. Abstract theories in hol. In L. Claesen and M. J. C. Gordon, edi-
tors, Proceedings of the 1992 International Workshop on the hol Theorem Prover
and its Applications. North-Holland, November 1992.

This article was processed using the LATEX macro package with LLNCS style

28

