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Abstract

This document illustrates how to use a set of LaTeX macros and envi-
ronments for presenting types, expressions, and modules of Alonzo, a
practice-oriented version of simple type theory.
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1 Introduction

Alonzo [1] is a practice-oriented logic based on Alonzo Church’s formulation
of simple type theory known as Church’s type theory. The LaTeX source file

alonzo-notation.tex,

whose contents are given in Section 4, contains a set of LaTeX macros for
presenting Alonzo types and expressions in both formal and compact nota-
tions. It also contains a set of LaTeX environments for presenting Alonzo
mathematical knowledge modules. This document illustrates how to use
these macros and environments with a series of examples.

2 Macros

In this section, each LaTeX macro in

alonzo-notation.tex

is presented with metavariable arguments followed by the output it produces.
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2.1 Macros for Presenting Types in Formal Notation

1. \fBoolTy

BoolTy

2. \fBaseTy {\mathbf{a}}

BaseTy(a)

3. \fFunTy {\alpha} {\beta}

FunTy(α, β)

4. \fProdTy {\alpha} {\beta}

ProdTy(α, β)

2.2 Macros for Presenting Expressions in Formal Notation

1. \fVar {\mathbf{x}} {\alpha}

Var(x, α)

2. \fCon {\mathbf{c}} {\alpha}

Con(c, α)

3. \fEq {\mathbf{A}_\alpha} {\mathbf{B}_\alpha}

Eq(Aα,Bα)

4. \fFunApp

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

{\mathbf{A}_\alpha}

FunApp(Fα→β,Aα)

5. \fFunAbs {\mathbf{x}} {\alpha} {\mathbf{B}_\beta}

FunAbs(Var(x, α),Bβ)

6. \fDefDes {\mathbf{x}} {\alpha} {\mathbf{A}_{\cB}}

DefDes(Var(x, α),Ao)

7. \fOrdPair {\mathbf{A}_\alpha} {\mathbf{B}_\beta}

OrdPair(Aα,Bβ)

3



2.3 Macros for Presenting Types in Compact Notation

1. \cBoolTy or \cB

o

2. \cBaseTy {\mathbf{a}}

a

3. \cFunTy {\alpha} {\beta}

(α→ β)

4. \cFunTyX {\alpha} {\beta}

α→ β

5. \cFunTyB {\alpha} {\beta} {\gamma}

(α→ β → γ)

6. \cFunTyBX {\alpha} {\beta} {\gamma}

α→ β → γ

7. \cFunTyC {\alpha} {\beta} {\gamma} {\delta}

(α→ β → γ → δ)

8. \cFunTyCX {\alpha} {\beta} {\gamma} {\delta}

α→ β → γ → δ

9. \cProdTy {\alpha} {\beta}

(α× β)

10. \cProdTyX {\alpha} {\beta}

α× β

11. \cProdTyB {\alpha} {\beta} {\gamma}

(α× β × γ)

12. \cProdTyBX {\alpha} {\beta} {\gamma}

α× β × γ

13. \cProdTyC {\alpha} {\beta} {\gamma} {\delta}

(α× β × γ × δ)
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14. \cProdTyCX {\alpha} {\beta} {\gamma} {\delta}

α× β × γ × δ

2.4 Macros for Presenting Expressions in Compact Notation

1. \cVar {\mathbf{x}} {\alpha}

(x : α)

2. \cVarY {\mathbf{x}} {\alpha}

x

3. \cCon {\mathbf{c}} {\alpha}

cα

4. \cConY {\mathbf{c}} {\alpha}

c

5. \cEq {\mathbf{A}_\alpha} {\mathbf{B}_\alpha}

(Aα = Bα)

6. \cEqX {\mathbf{A}_\alpha} {\mathbf{B}_\alpha}

Aα = Bα

7. \cFunApp

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

{\mathbf{A}_\alpha}

(Fα→β Aα)

8. \cFunAppX

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

{\mathbf{A}_\alpha}

Fα→β Aα

9. \cFunAppB

{\mathbf{F}_{\cFunTyBX {\alpha} {\beta} {\gamma}}}

{\mathbf{A}_\alpha}

{\mathbf{B}_\beta}

(Fα→β→γ Aα Bβ)
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10. \cFunAppBX

{\mathbf{F}_{\cFunTyBX {\alpha} {\beta} {\gamma}}}

{\mathbf{A}_\alpha}

{\mathbf{B}_\beta}

Fα→β→γ Aα Bβ

11. \cFunAppC

{\mathbf{F}_{\cFunTyCX

{\alpha}

{\beta}

{\gamma}

{\delta}}}

{\mathbf{A}_\alpha}

{\mathbf{B}_\beta}

{\mathbf{C}_\gamma}

(Fα→β→γ→δ Aα Bβ Cγ)

12. \cFunAppCX

{\mathbf{F}_{\cFunTyCX

{\alpha}

{\beta}

{\gamma}

{\delta}}}

{\mathbf{A}_\alpha}

{\mathbf{B}_\beta}

{\mathbf{C}_\gamma}

Fα→β→γ→δ Aα Bβ Cγ

13. \cFunAbs {\mathbf{x}} {\alpha} {\mathbf{B}_\beta}

(λx : α . Bβ)

14. \cFunAbsX {\mathbf{x}} {\alpha} {\mathbf{B}_\beta}

λx : α . Bβ

15. \cDefDes {\mathbf{x}} {\alpha} {\mathbf{A}_{\cB}}

(I x : α . Ao)

16. \cDefDesX {\mathbf{x}} {\alpha} {\mathbf{A}_{\cB}}

I x : α . Ao
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17. \cOrdPair {\mathbf{A}_\alpha} {\mathbf{B}_\beta}

(Aα,Bβ)

2.5 Macros for Boolean Operators

1. \cTPC or \cT

To

2. \cFPC or \cF

Fo

3. \cAndPC

∧o→o→o

4. \cAnd {\mathbf{A}_\cB} {\mathbf{B}_\cB}

(Ao ∧Bo)

5. \cAndX {\mathbf{A}_\cB} {\mathbf{B}_\cB}

Ao ∧Bo

6. \cAndB

{\mathbf{A}_\cB}

{\mathbf{B}_\cB}

{\mathbf{C}_\cB}

(Ao ∧Bo ∧Co)

7. \cAndBX

{\mathbf{A}_\cB}

{\mathbf{B}_\cB}

{\mathbf{C}_\cB}

Ao ∧Bo ∧Co

8. \cAndL

{\mathbf{A}^{1}_{\cB}

\And

\cdots

\And

\mathbf{A}^{n}_{\cB}}

(A1
o & · · · & An

o )
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9. \cAndLX

{\mathbf{A}^{1}_{\cB}

\And

\cdots

\And

\mathbf{A}^{n}_{\cB}}

A1
o & · · · & An

o

10. \cImpliesPC

⇒o→o→o

11. \cImplies {\mathbf{A}_\cB} {\mathbf{B}_\cB}

(Ao ⇒ Bo)

12. \cImpliesX {\mathbf{A}_\cB} {\mathbf{B}_\cB}

Ao ⇒ Bo

13. \cNegPC

¬o→o

14. \cNeg {\mathbf{A}_\cB}

(¬Ao)

15. \cNegX {\mathbf{A}_\cB}

¬Ao

16. \cOrPC

∨o→o→o

17. \cOr {\mathbf{A}_\cB} {\mathbf{B}_\cB}

(Ao ∨Bo)

18. \cOrX {\mathbf{A}_\cB} {\mathbf{B}_\cB}

Ao ∨Bo

19. \cOrB

{\mathbf{A}_\cB}

{\mathbf{B}_\cB}

{\mathbf{C}_\cB}

(Ao ∨Bo ∨Co)
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20. \cOrBX

{\mathbf{A}_\cB}

{\mathbf{B}_\cB}

{\mathbf{C}_\cB}

Ao ∨Bo ∨Co

21. \cOrL

{\mathbf{A}^{1}_{\cB}

\Or

\cdots

\Or

\mathbf{A}^{n}_{\cB}}

(A1
o ∨ · · · ∨An

o )

22. \cOrLX

{\mathbf{A}^{1}_{\cB}

\Or

\cdots

\Or

\mathbf{A}^{n}_{\cB}}

A1
o ∨ · · · ∨An

o

2.6 Macros for Binary Operators

1. \cBin

{\mathbf{A}_\alpha}

{\cCon

{\mathbf{c}}

{\cFunTyBX {\alpha} {\alpha} {\beta}}}

{\mathbf{B}_\alpha}

(Aα cα→α→β Bα)

2. \cBinX

{\mathbf{A}_\alpha}

{\cCon

{\mathbf{c}}

{\cFunTyBX {\alpha} {\alpha} {\beta}}}

{\mathbf{B}_\alpha}

Aα cα→α→β Bα
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3. \cBinB

{\mathbf{A}_\alpha}

{\cCon

{\mathbf{c}}

{\cFunTyBX {\alpha} {\alpha} {\beta}}}

{\mathbf{B}_\alpha}

{\cCon

{\mathbf{d}}

{\cFunTyBX {\alpha} {\alpha} {\beta}}}

{\mathbf{C}_\alpha}

(Aα cα→α→β Bα dα→α→β Cα)

4. \cBinBX

{\mathbf{A}_\alpha}

{\cCon

{\mathbf{c}}

{\cFunTyBX {\alpha} {\alpha} {\beta}}}

{\mathbf{B}_\alpha}

{\cCon

{\mathbf{d}}

{\cFunTyBX {\alpha} {\alpha} {\beta}}}

{\mathbf{C}_\alpha}

Aα cα→α→β Bα dα→α→β Cα

5. \cIff {\mathbf{A}_\cB} {\mathbf{B}_\cB}

(Ao ⇔ Bo)

6. \cIffX {\mathbf{A}_\cB} {\mathbf{B}_\cB}

Ao ⇔ Bo

7. \cNotEq {\mathbf{A}_\alpha} {\mathbf{B}_\alpha}

(Aα 6= Bα)

8. \cNotEqX {\mathbf{A}_\alpha} {\mathbf{B}_\alpha}

Aα 6= Bα

2.7 Macros for Quantifiers

1. \cForall {\mathbf{x}} {\alpha} {\mathbf{A}_\cB}

(∀x : α . Ao)
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2. \cForallX {\mathbf{x}} {\alpha} {\mathbf{A}_\cB}

∀x : α . Ao

3. \cForallB

{\mathbf{x}}

{\alpha}

{\mathbf{y}}

{\beta}

{\mathbf{A}_\cB}

(∀x : α, y : β . Ao)

4. \cForallBX

{\mathbf{x}}

{\alpha}

{\mathbf{y}}

{\beta}

{\mathbf{A}_\cB}

∀x : α, y : β . Ao

5. \cForallC

{\mathbf{x}}

{\alpha}

{\mathbf{y}}

{\beta}

{\mathbf{z}}

{\gamma}

{\mathbf{A}_\cB}

(∀x : α, y : β, z : γ . Ao)

6. \cForallCX

{\mathbf{x}}

{\alpha}

{\mathbf{y}}

{\beta}

{\mathbf{z}}

{\gamma}

{\mathbf{A}_\cB}

∀x : α, y : β, z : γ . Ao
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7. \cForsome {\mathbf{x}} {\alpha} {\mathbf{A}_\cB}

(∃x : α . Ao)

8. \cForsomeX {\mathbf{x}} {\alpha} {\mathbf{A}_\cB}

∃x : α . Ao

9. \cForsomeB

{\mathbf{x}}

{\alpha}

{\mathbf{y}}

{\beta}

{\mathbf{A}_\cB}

(∃x : α, y : β . Ao)

10. \cForsomeBX

{\mathbf{x}}

{\alpha}

{\mathbf{y}}

{\beta}

{\mathbf{A}_\cB}

∃x : α, y : β . Ao

11. \cForsomeC

{\mathbf{x}}

{\alpha}

{\mathbf{y}}

{\beta}

{\mathbf{z}}

{\gamma}

{\mathbf{A}_\cB}

(∃x : α, y : β, z : γ . Ao)

12. \cForsomeCX

{\mathbf{x}}

{\alpha}

{\mathbf{y}}

{\beta}

{\mathbf{z}}

{\gamma}
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{\mathbf{A}_\cB}

∃x : α, y : β, z : γ . Ao

13. \cForsomeUnique

{\mathbf{x}}

{\alpha}

{\mathbf{A}_\cB}

(∃! x : α . Ao)

14. \cForsomeUniqueX

{\mathbf{x}}

{\alpha}

{\mathbf{A}_\cB}

∃! x : α . Ao

2.8 Macros for Definedness

1. \cBotPC {\alpha}

⊥α

2. \cEmpFunPC {\alpha} {\beta}

∆α→β

3. \cIsDef {\mathbf{A}_\alpha}

(Aα↓)

4. \cIsDefX {\mathbf{A}_\alpha}

Aα↓

5. \cIsUndef {\mathbf{A}_\alpha}

(Aα↑)

6. \cIsUndefX {\mathbf{A}_\alpha}

Aα↑

7. \cQuasiEq {\mathbf{A}_\alpha} {\mathbf{B}_\alpha}

(Aα ' Bα)

8. \cQuasiEqX {\mathbf{A}_\alpha} {\mathbf{B}_\alpha}

Aα ' Bα
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9. \cNotQuasiEq {\mathbf{A}_\alpha} {\mathbf{B}_\alpha}

(Aα 6' Bα)

10. \cNotQuasiEqX {\mathbf{A}_\alpha} {\mathbf{B}_\alpha}

Aα 6' Bα

11. \cIfThenElse

{\mathbf{A}_\cB}

{\mathbf{B}_\alpha}

{\mathbf{C}_\alpha}

IF(Ao,Bα,Cα)

12. \cIf

{\mathbf{A}_\cB}

{\mathbf{B}_\alpha}

{\mathbf{C}_\alpha}

(Ao 7→ Bα | Cα)

13. \cIfX

{\mathbf{A}_\cB}

{\mathbf{B}_\alpha}

{\mathbf{C}_\alpha}

Ao 7→ Bα | Cα

2.9 Macros for Sets

1. \cSetTy {\alpha}

{α}

2. \cIn

{\mathbf{A}_\alpha}

{\mathbf{B}_{\cSetTy {\alpha}}}

(Aα ∈ B{α})

3. \cInX

{\mathbf{A}_\alpha}

{\mathbf{B}_{\cSetTy {\alpha}}}

Aα ∈ B{α}
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4. \cNotIn

{\mathbf{A}_\alpha}

{\mathbf{B}_{\cSetTy {\alpha}}}

(Aα 6∈ B{α})

5. \cNotInX

{\mathbf{A}_\alpha}

{\mathbf{B}_{\cSetTy {\alpha}}}

Aα 6∈ B{α}

6. \cSet {\mathbf{x}} {\alpha} {\mathbf{A}_\alpha}

{x : α | Aα}

7. \cEmpSetPC {\alpha}

∅{α}

8. \cEmpSetAltPC {\alpha}

{ }{α}

9. \cUnivSetPC {\alpha}

U{α}

10. \cFinSet {n} {\alpha}

n-α-SET

11. \cFinSetL

{\mathbf{A}^{1}_{\alpha}

,

\ldots

,

\mathbf{A}^{n}_{\alpha}}

{A1
α, . . . ,A

n
α}

12. \cSubseteqPC {\alpha}

⊆{α}→{α}→o

13. \cSubseteq

{\mathbf{A}_{\cSetTy {\alpha}}}

{\mathbf{B}_{\cSetTy {\alpha}}}

(A{α} ⊆ B{α})
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14. \cSubseteqX

{\mathbf{A}_{\cSetTy {\alpha}}}

{\mathbf{B}_{\cSetTy {\alpha}}}

A{α} ⊆ B{α}

15. \cUnionPC {\alpha}

∪{α}→{α}→{α}

16. \cUnion

{\mathbf{A}_{\cSetTy {\alpha}}}

{\mathbf{B}_{\cSetTy {\alpha}}}

(A{α} ∪ B{α})

17. \cUnionX

{\mathbf{A}_{\cSetTy {\alpha}}}

{\mathbf{B}_{\cSetTy {\alpha}}}

A{α} ∪ B{α}

18. \cIntersPC {\alpha}

∩{α}→{α}→{α}

19. \cInters

{\mathbf{A}_{\cSetTy {\alpha}}}

{\mathbf{B}_{\cSetTy {\alpha}}}

(A{α} ∩ B{α})

20. \cIntersX

{\mathbf{A}_{\cSetTy {\alpha}}}

{\mathbf{B}_{\cSetTy {\alpha}}}

A{α} ∩ B{α}

21. \cComplPC {\alpha}

· {α}→{α}

22. \cCompl {\mathbf{A}_{\cSetTy {\alpha}}}(
A{α}

)
23. \cComplX {\mathbf{A}_{\cSetTy {\alpha}}}

A{α}
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24. \cSetDiffPC {\alpha}

\{α}→{α}→{α}

25. \cSetDiff

{\mathbf{A}_{\cSetTy {\alpha}}}

{\mathbf{B}_{\cSetTy {\alpha}}}

(A{α} \ B{α})

26. \cSetDiffX

{\mathbf{A}_{\cSetTy {\alpha}}}

{\mathbf{B}_{\cSetTy {\alpha}}}

A{α} \ B{α}

2.10 Macros for Tuples

1. \cTupleTyL

{\alpha_1

\times

\cdots

\times

\alpha_n}

(α1 × · · · × αn)

2. \cTupleL

{\mathbf{A}^{1}_{\cB}

,

\ldots

,

\mathbf{A}^{n}_{\cB}}

(A1
o, . . . ,A

n
o )

3. \cFstPC {\alpha} {\beta}

fst(α×β)→α

4. \cSndPC {\alpha} {\beta}

snd(α×β)→β
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2.11 Macros for Functions

1. \cIdFunPC {\alpha}

idα→α

2. \cDomPC {\alpha} {\beta}

dom(α→β)→{α}

3. \cRanPC {\alpha} {\beta}

ran(α→β)→{β}

4. \cSubfuneqPC {\alpha} {\beta}

v(α→β)→(α→β)→o

5. \cFunCompPC {\alpha} {\beta} {\gamma}

◦(α→β)→(β→γ)→(α→γ)

6. \cFunComp

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

{\mathbf{G}_{\cFunTyX {\beta} {\gamma}}}

(Fα→β ◦Gβ→γ)

7. \cFunCompX

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

{\mathbf{G}_{\cFunTyX {\beta} {\gamma}}}

Fα→β ◦Gβ→γ

8. \cRestrictPC {\alpha} {\beta}

|(α→β)→{α}→(α→β)

9. \cRestrict

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

{\mathbf{A}_{\cSetTy {\alpha}}}

(Fα→β|A{α})

10. \cRestrictX

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

{\mathbf{A}_{\cSetTy {\alpha}}}

Fα→β|A{α}
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2.12 Macros for Miscellaneous Notation

1. \cTotal

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

TOTAL(Fα→β)

2. \cTotalB

{\mathbf{F}_{\cFunTyBX {\alpha} {\beta} {\gamma}}}

TOTAL2(Fα→β→γ)

3. \cSurj

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

SURJ(Fα→β)

4. \cSurjB

{\mathbf{F}_{\cFunTyBX {\alpha} {\beta} {\gamma}}}

SURJ2(Fα→β→γ)

5. \cInj

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

INJ(Fα→β)

6. \cInjB

{\mathbf{F}_{\cFunTyBX {\alpha} {\beta} {\gamma}}}

INJ2(Fα→β→γ)

7. \cBij

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

BIJ(Fα→β)

8. \cDistinctL

{\mathbf{A}^{1}_{\alpha}

,

\ldots

,

\mathbf{A}^{n}_{\alpha}}

DISTINCT(A1
α, . . . ,A

n
α)
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2.13 Macros for Quasitypes

1. \cFunAbsQTy

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{B}_\beta}

(λx : Q{α} . Bβ)

2. \cFunAbsQTyX

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{B}_\beta}

λx : Q{α} . Bβ

3. \cForallQTy

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{B}_\cB}

(∀x : Q{α} . Bo)

4. \cForallQTyX

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{B}_\cB}

∀x : Q{α} . Bo

5. \cForallQTyB

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{y}}

{\mathbf{R}_{\cSetTy {\beta}}}

{\mathbf{B}_\cB}

(∀x : Q{α}, y : R{β} . Bo)

6. \cForallQTyBX

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{y}}

{\mathbf{R}_{\cSetTy {\beta}}}
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{\mathbf{B}_\cB}

∀x : Q{α}, y : R{β} . Bo

7. \cForsomeQTy

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{B}_\cB}

(∃x : Q{α} . Bo)

8. \cForsomeQTyX

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{B}_\cB}

∃x : Q{α} . Bo

9. \cForsomeQTyB

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{y}}

{\mathbf{R}_{\cSetTy {\beta}}}

{\mathbf{B}_\cB}

(∃x : Q{α}, y : R{β} . Bo)

10. \cForsomeQTyBX

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{y}}

{\mathbf{R}_{\cSetTy {\beta}}}

{\mathbf{B}_\cB}

∃x : Q{α}, y : R{β} . Bo

11. \cDefDesQTy

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{B}_\cB}

(I x : Q{α} . Bo)

12. \cDefDesQTyX

{\mathbf{x}}
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{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{B}_\cB}

I x : Q{α} . Bo

13. \cIsDefInQTy

{\mathbf{A}_\alpha}

{\mathbf{Q}_{\cSetTy {\alpha}}}

(Aα ↓ Q{α})

14. \cIsDefInQTyX

{\mathbf{A}_\alpha}

{\mathbf{Q}_{\cSetTy {\alpha}}}

Aα ↓ Q{α}

15. \cIsUndInQTy

{\mathbf{A}_\alpha}

{\mathbf{Q}_{\cSetTy {\alpha}}}

(Aα ↑ Q{α})

16. \cIsUndefInQTyX

{\mathbf{A}_\alpha}

{\mathbf{Q}_{\cSetTy {\alpha}}}

Aα ↑ Q{α}

17. \cFunQTyPC {\alpha} {\beta}

→{α}→{β}→{α→β}

18. \cFunQTy

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

(Q{α} → R{β})

19. \cFunQTyX

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

Q{α} → R{β}

20. \cFunQTyB

{\mathbf{Q}_{\cSetTy {\alpha}}}
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{\mathbf{R}_{\cSetTy {\beta}}}

{\mathbf{S}_{\cSetTy {\gamma}}}

(Q{α} → R{β} → S{γ})

21. \cFunQTyBX

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

{\mathbf{S}_{\cSetTy {\gamma}}}

Q{α} → R{β} → S{γ}

22. \cFunQTyC

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

{\mathbf{S}_{\cSetTy {\gamma}}}

{\mathbf{T}_{\cSetTy {\delta}}}

(Q{α} → R{β} → S{γ} → T{δ})

23. \cFunQTyCX

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

{\mathbf{S}_{\cSetTy {\gamma}}}

{\mathbf{T}_{\cSetTy {\delta}}}

Q{α} → R{β} → S{γ} → T{δ}

24. \cProdQTyPC {\alpha} {\beta}

×{α}→{β}→{α×β}

25. \cProdQTy

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

(Q{α} ×R{β})

26. \cProdQTyX

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

Q{α} ×R{β}

27. \cProdQTyB

{\mathbf{Q}_{\cSetTy {\alpha}}}
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{\mathbf{R}_{\cSetTy {\beta}}}

{\mathbf{S}_{\cSetTy {\gamma}}}

(Q{α} ×R{β} × S{γ})

28. \cProdQTyBX

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

{\mathbf{S}_{\cSetTy {\gamma}}}

Q{α} ×R{β} × S{γ}

29. \cProdQTyC

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

{\mathbf{S}_{\cSetTy {\gamma}}}

{\mathbf{T}_{\cSetTy {\delta}}}

(Q{α} ×R{β} × S{γ} ×T{δ})

30. \cProdQTyCX

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

{\mathbf{S}_{\cSetTy {\gamma}}}

{\mathbf{T}_{\cSetTy {\delta}}}

Q{α} ×R{β} × S{γ} ×T{δ}

31. \cSetQTy

{\mathbf{Q}_{\cSetTy {\alpha}}}

P(Q{α})

32. \cTotalOn

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

TOTAL-ON(Fα→β,Q{α},R{β})

33. \cTotalOnB

{\mathbf{F}_{\cFunTyBX {\alpha} {\beta} {\gamma}}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

{\mathbf{S}_{\cSetTy {\gamma}}}
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TOTAL-ON2(Fα→β→γ ,Q{α},R{β},S{γ})

34. \cSurjOn

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

SURJ-ON(Fα→β,Q{α},R{β})

35. \cSurjOnB

{\mathbf{F}_{\cFunTyBX {\alpha} {\beta} {\gamma}}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

{\mathbf{S}_{\cSetTy {\gamma}}}

SURJ-ON2(Fα→β→γ ,Q{α},R{β},S{γ})

36. \cInjOn

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

INJ-ON(Fα→β,Q{α})

37. \cInjOnB

{\mathbf{F}_{\cFunTyBX {\alpha} {\beta} {\gamma}}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

INJ-ON2(Fα→β→γ ,Q{α},R{β})

38. \cBijOn

{\mathbf{F}_{\cFunTyX {\alpha} {\beta}}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

BIJ-ON(Fα→β,Q{α},R{β})

39. \cInf {\mathbf{Q}_{\cSetTy {\alpha}}}

INF(Q{α})

40. \cFin {\mathbf{Q}_{\cSetTy {\alpha}}}

FIN(Q{α})

41. \cCount {\mathbf{Q}_{\cSetTy {\alpha}}}

COUNT(Q{α})
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2.14 Macros for Dependent Types

1. \cPiTy {\alpha} {\beta}

{α} → (α→ {β})→ {α→ β}

2. \cPiPC {\alpha} {\beta}

Π{α}→(α→{β})→{α→β}

3. \cPi

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

(Π x : Q{α} . R{β})

4. \cPiX

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

Π x : Q{α} . R{β}

5. \cSigmaTy {\alpha} {\beta}

{α} → (α→ {β})→ {α× β}

6. \cSigmaPC {\alpha} {\beta}

Σ{α}→(α→{β})→{α×β}

7. \cSigma

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

(Σ x : Q{α} . R{β})

8. \cSigmaX

{\mathbf{x}}

{\mathbf{Q}_{\cSetTy {\alpha}}}

{\mathbf{R}_{\cSetTy {\beta}}}

Σ x : Q{α} . R{β}
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2.15 Macros for Sequences

1. \cSequencesPC {\alpha} {\beta}

sequences{α→β}

2. \cSeqQTy {\beta}

〈〈β〉〉

3. \cStreamsPC {\alpha} {\beta}

streams{α→β}

4. \cSeqInfQTy {\beta}

〈β〉

5. \cListsPC {\alpha} {\beta}

lists{α→β}

6. \cSeqFinQTy {\beta}

[β]

7. \cConsPC {\alpha} {\beta}

consβ→(α→β)→(α→β)

8. \cCons

{\mathbf{A}_\beta}

{\mathbf{B}_{\cFunTyX {\alpha} {\beta}}}

(Aβ :: Bα→β)

9. \cConsX

{\mathbf{A}_\beta}

{\mathbf{B}_{\cFunTyX {\alpha} {\beta}}}

Aβ :: Bα→β

10. \cHdPC {\alpha} {\beta}

hd(α→β)→β

11. \cTlPC {\alpha} {\beta}

tl(α→β)→(α→β)
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12. \cNilPC {\alpha} {\beta}

nilα→β

13. \cEmpListPC {\alpha} {\beta}

[ ]α→β

14. \cListL

{\mathbf{A}^{1}_{\beta}

,

\ldots

,

\mathbf{A}^{n}_{\beta}}

[A1
β, . . . ,A

n
β]

15. \cLenPC {\alpha} {\beta}

len(α→β)→α

16. \cLen {\mathbf{A}_{\cFunTyX {\alpha} {\beta}}}

|Aα→β|

17. \cAppendPC {\alpha} {\beta}

++(α→β)→(α→β)→(α→β)

18. \cAppend

{\mathbf{A}_{\cFunTyX {\alpha} {\beta}}}

{\mathbf{B}_{\cFunTyX {\alpha} {\beta}}}

(Aα→β ++ Bα→β)

19. \cAppendX

{\mathbf{A}_{\cFunTyX {\alpha} {\beta}}}

{\mathbf{B}_{\cFunTyX {\alpha} {\beta}}}

Aα→β ++ Bα→β

20. \cNlistsPC {\alpha} {\beta}

nlistsα→{α→β}

21. \cSeqNFinQTy {\beta} {\mathbf{N}_\alpha}

[β]Nα
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2.16 Macros for Reals

1. \cMinus {\mathbf{A}_R}

(−AR)

2. \cMinusX {\mathbf{A}_R}

−AR

3. \cRecip {\mathbf{A}_R}(
AR
−1)

4. \cRecipX {\mathbf{A}_R}

AR
−1

5. \cFrac {\mathbf{A}_R} {\mathbf{B}_R}(
AR
BR

)
6. \cFracX {\mathbf{A}_R} {\mathbf{B}_R}

AR
BR

7. \cAbs {\mathbf{A}_R}

|AR|

8. \cSqrt {\mathbf{A}_R}
√

AR

9. \cNorm {\mathbf{A}_{\cFunTyX {R} {R}}}

‖AR→R‖

10. \cSum

{\mathbf{i}}

{\mathbf{M}_R}

{\mathbf{N}_R} {\mathbf{A}_R}( NR∑
i=MR

AR

)
11. \cSumX

{\mathbf{i}}

{\mathbf{M}_R}

{\mathbf{N}_R} {\mathbf{A}_R}
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NR∑
i=MR

AR

12. \cProd

{\mathbf{i}}

{\mathbf{M}_R}

{\mathbf{N}_R} {\mathbf{A}_R}( NR∏
i=MR

AR

)
13. \cProdX

{\mathbf{i}}

{\mathbf{M}_R}

{\mathbf{N}_R} {\mathbf{A}_R}

NR∏
i=MR

AR

14. \cLim

{\mathbf{x}}

{\mathbf{A}_R}

{\mathbf{B}_R}(
lim

x→AR

BR

)
15. \cLimX

{\mathbf{x}}

{\mathbf{A}_R}

{\mathbf{B}_R}

lim
x→AR

BR

16. \cRightLim

{\mathbf{x}}

{\mathbf{A}_R}

{\mathbf{B}_R}(
lim

x→AR
+

BR

)
17. \cRightLimX

{\mathbf{x}}

{\mathbf{A}_R}
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{\mathbf{B}_R}

lim
x→AR

+
BR

18. \cLeftLim

{\mathbf{x}}

{\mathbf{A}_R}

{\mathbf{B}_R}(
lim

x→AR
−

BR

)
19. \cLeftLimX

{\mathbf{x}}

{\mathbf{A}_R}

{\mathbf{B}_R}

lim
x→AR

−
BR

20. \cLimSeq

{\mathbf{n}}

{\mathbf{B}_R}(
lim
n→∞

BR

)
21. \cLimSeqX

{\mathbf{n}}

{\mathbf{B}_R}

lim
n→∞

BR

22. \cIntegral

{\mathbf{A}_R}

{\mathbf{B}_R}

{\mathbf{C}_R}

{\mathbf{x}}( ∫ BR
AR

CR dx
)

23. \cIntegralX

{\mathbf{A}_R}

{\mathbf{B}_R}

{\mathbf{C}_R}

{\mathbf{x}}
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∫ BR
AR

CR dx

24. \cExp {\mathbf{A}_R}

(eAR)

25. \cExpX {\mathbf{A}_R}

eAR

26. \cExpB

{\mathbf{A}_R}

{\mathbf{B}_R}}

(AR
BR)

27. \cExpBX

{\mathbf{A}_R}

{\mathbf{B}_R}}

AR
BR

28. \cLog {\mathbf{A}_R}

(logAR)

29. \cLogX {\mathbf{A}_R}

logAR

30. \cLofB

{\mathbf{A}_R}

{\mathbf{B}_R}}

(logAR
BR)

31. \cLogBX

{\mathbf{A}_R}

{\mathbf{B}_R}}

logAR
BR
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3 Environments

In this section, an example of each LaTeX environment in

alonzo-notation.tex

is presented consisting of the LaTeX source code for the environment fol-
lowed by the output it produces.

3.1 Theory Definition

\begin{theory-def}

{Monoids}

{$\mName{MON}$.}
{$S$.}
{$\cdot_{\cFunTyBX {S} {S} {S}}, e_S$.}
{

\be

\item $\cForallX {x,y,z} {S} {\cEqX {\cBinX {x} {\cdot} {\cBin {y}

{\cdot} {z}}} {\cBinX {\cBin {x} {\cdot} {y}} {\cdot} {z}}}$
\hfill (associativity).

\item $\cForallX {x} {S} {\cEqX {\cBinX {e} {\cdot} {x}} {x}}$ \

hfill (left identity).

\item $\cForallX {x} {S} {\cEqX {\cBinX {x} {\cdot} {e}} {x}}$ \

hfill (right identity).

\ee

}

\end{theory-def}

Theory Definition 3.1 (Monoids)

Name: MON.

Base types: S.

Constants: ·S→S→S , eS .

Axioms:

1. ∀x, y, z : S . x · (y · z) = (x · y) · z (associativity).

2. ∀x : S . e · x = x (left identity).

3. ∀x : S . x · e = x (right identity).
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3.2 Theory Extension

\begin{theory-ext}

{Groups}

{$\mName{GRP}$.}
{$\mName{MON}$.}
{(none).}

{${\recip{\cdot}}_{\cFunTyX {S} {S}}$.}
{

\be \setcounter{enumi}{3}

\item $\cForallX {x} {S} {\cEqX {\cBinX {\recip{x}} {\cdot} {x}} {

e}}$ \hfill (left inverse).

\item $\cForallX {x} {S} {\cEqX {\cBinX {x} {\cdot} {\recip{x}}} {

e}}$ \hfill (right inverse).

\ee

}

\end{theory-ext}

Theory Extension 3.2 (Groups)

Name: GRP.

Extends MON.

New base types: (none).

New constants: ·−1S→S .

New axioms:

4. ∀x : S . x−1 · x = e (left inverse).

5. ∀x : S . x · x−1 = e (right inverse).

3.3 Inductive Type Theory Extension

\begin{ind-type-theory-ext}

{Peano Arithmetic}

{$\textsf{PA-ALT}$.}
{$\mName{MIN}$.}
{$N$.}
{
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\be

\item $0_N$.

\item $S_{\cFunTyX {N} {N}}$.

\ee

}

\end{ind-type-theory-ext}

Inductive Type Theory Extension 3.3 (Peano Arithmetic)

Name: PA-ALT.

Extends MIN.

New base type: N .

Constructors:

1. 0N .

2. SN→N .

3.4 Development Definition

\begin{dev-def}

{$\mName{PA}$ Development 1}

{\textsf{PA-dev-1}.}

{$\mName{PA}$.}
{

\bi

\item[] $\mName{Def1}$: $\cEqX {1_N} {\cFunAppX {S} {0}}$ \hfill (

number one).

\item[] $\mName{Def2}$: $\cEqX {P_{\cFunTyX {N} {N}}} {\cFunAbsX {

x} {N} {\cDefDesX {y} {N} {\cEqX {\cFunAppX {S} {y}} {x}}}}$ \

hfill (predecessor function).

\item[] $\mName{Def3}$: $\cEqX {+_{\cFunTyBX {N} {N} {N}}} {}$\\
\hspace*{2ex}${\cDefDesX {f} {\cFunTyBX {N} {N} {N}} {\cForallX

{x, y} {N} {\cAndX {\cEqX {\cFunAppBX {f} {x} {0}} {x}} {\

cEqX {\cFunAppBX {f} {x} {\cFunApp {S} {y}}} {\cFunAppX {S}

{\cFunAppB {f} {x} {y}}}}}}}$\\ \phantom{x} \hfill (addition

function).
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\item[] $\mName{Def4}$: $\cEqX {*_{\cFunTyBX {N} {N} {N}}} {}$\\
\hspace*{2ex}${\cDefDesX {f} {\cFunTyBX {N} {N} {N}} {\cForallX

{x, y} {N} {\cAndX {\cEqX {\cFunAppBX {f} {x} {0}} {0}} {\

cEqX {\cFunAppBX {f} {x} {\cFunApp {S} {y}}} {\cBinX {\

cFunAppB {f} {x} {y}} {+} {x}}}}}}$\\ \phantom{x} \hfill (

multiplication function).

\item[] $\mName{Thm1}$: $\cForallX {x} {N} {\cIfX {\cEqX {x} {0}}

{\cIsUndefX {\cFunApp {P} {x}}} {\cIsDefX {\cFunApp {P} {x}}}}

$ \hfill ($P$ is almost total).

\item[] $\mName{Thm2}$: $\cForallX {x} {N} {\cEqX {\cFunAppX {P}

{\cFunApp {S} {x}}} {x}}$ \hfill ($P$ is a left inverse of $S$
).

\item[] $\mName{Thm3}$: $\cTotalB {+}$. \hfill ($+$ is total).

\item[] $\mName{Thm4}$: $\cTotalB {*}$. \hfill ($*$ is total).

\ei

}

\end{dev-def}

Development Definition 3.4 (PA Development 1)

Name: PA-dev-1.

Bottom theory: PA.

Definitions and theorems:

Def1: 1N = S 0 (number one).

Def2: PN→N = λx : N . I y : N . S y = x (predecessor function).

Def3: +N→N→N =
I f : N → N → N . ∀x, y : N . f x 0 = x ∧ f x (S y) = S (f x y)

(addition function).

Def4: ∗N→N→N =
I f : N → N → N . ∀x, y : N . f x 0 = 0 ∧ f x (S y) = (f x y) + x

(multiplication function).

Thm1: ∀x : N . x = 0 7→ (P x)↑ | (P x)↓ (P is almost total).
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Thm2: ∀x : N . P (S x) = x (P is a left inverse of S).

Thm3: TOTAL2(+). (+ is total).

Thm4: TOTAL2(∗). (∗ is total).

3.5 Development Extension

\begin{dev-ext}

{$\mName{PA}$ Development 2}

{\textsf{PA-dev-2}.}

{\textsf{PA-dev-1}.}

{

\bi

\item[] $\mName{Thm5}$: $\cForallX {x,y,z} {N} {\cEqX {\cBinX {\

cBin {x} {+} {y}} {+} {z}} {\cBinX {x} {+} {\cBin {y} {+} {z

}}}}$ \hfill (associativity of $+$).

\item[] $\mName{Thm6}$: $\cForallX {x} {N} {\cBinBX {\cBinX {0}

{+} {x}} {=} {x} {=} {\cBinX {x} {+} {0}}}$ \hfill ($0$ is a $
+$-identity).

\item[] $\mName{Thm7}$: $\cForallX {x,y} {N} {\cEqX {\cBinX {x}

{+} {y}} {\cBinX {y} {+} {x}}}$ \hfill (commutativity of $+$).

\item[] $\mName{Thm8}$: $\cForallX {x,y,z} {N} {\cEqX {\cBinX {\

cBin {x} {*} {y}} {*} {z}} {\cBinX {x} {*} {\cBin {y} {*} {z

}}}}$ \hfill (associativity of $*$).

\item[] $\mName{Thm9}$: $\cForallX {x} {N} {\cBinBX {\cBinX {1}

{*} {x}} {=} {x} {=} {\cBinX {x} {*} {1}}}$ \hfill ($1$ is a $
*$-identity).

\item[] $\mName{Thm10}$: $\cForallX {x,y} {N} {\cEqX {\cBinX {x}

{*} {y}} {\cBinX {y} {*} {x}}}$ \hfill (commutativity of $*$).

\item[] $\mName{Thm11}$: $\cForallX {x,y,z} {N} {\cEqX {\cBinX {x}

{*} {\cBin {y} {+} {z}}} {\cBinX {\cBin {x} {*} {y}} {+} {\

cBin {x} {*} {z}}}}$\\ \phantom{x} \hfill (left distributivity

).

\item[] $\mName{Thm12}$: $\cForallX {x,y,z} {N} {\cEqX {\cBinX {\

cBin {x} {+} {y}} {*} {z}} {\cBinX {\cBin {x} {*} {z}} {+} {\
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cBin {y} {*} {z}}}}$\\ \phantom{x} \hfill (right

distributivity).

\item[] $\mName{Thm13}$: $\cForallX {x} {N} {\cBinBX {\cBinX {0}

{*} {x}} {=} {0} {=} {\cBinX {x} {*} {0}}}$ \hfill ($0$ is an

annihilator).

\ei

}

\end{dev-ext}

Development Extension 3.5 (PA Development 2)

Name: PA-dev-2.

Extends PA-dev-1.

New definitions and theorems:

Thm5: ∀x, y, z : N . (x + y) + z = x + (y + z) (associativity of +).

Thm6: ∀x : N . 0 + x = x = x + 0 (0 is a +-identity).

Thm7: ∀x, y : N . x + y = y + x (commutativity of +).

Thm8: ∀x, y, z : N . (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity of ∗).

Thm9: ∀x : N . 1 ∗ x = x = x ∗ 1 (1 is a ∗-identity).

Thm10: ∀x, y : N . x ∗ y = y ∗ x (commutativity of ∗).

Thm11: ∀x, y, z : N . x ∗ (y + z) = (x ∗ y) + (x ∗ z)
(left distributivity).

Thm12: ∀x, y, z : N . (x + y) ∗ z = (x ∗ z) + (y ∗ z)
(right distributivity).

Thm13: ∀x : N . 0 ∗ x = 0 = x ∗ 0 (0 is an annihilator).

38



3.6 Theory Translation Definition

\begin{theory-trans-def}

{$\mName{MON}$ to $\mName{COF}$ with $+$}
{\textsf{MON-to-COF-$+$}.}
{$\mName{MON}$.}
{$\mName{COF}$.}
{

\be

\item $S \mapsto R$.

\ee

}

{

\be

\item ${\cdot_{\cFunTyBX {S} {S} {S}}} \mapsto {+_{\cFunTyBX {R} {

R} {R}}}$.

\item $e_S \mapsto 0_R$.

\ee

}

\end{theory-trans-def}

Theory Translation Definition 3.6 (MON to COF with +)

Name: MON-to-COF-+.

Source theory: MON.

Target theory: COF.

Base type mapping:

1. S 7→ R.

Constant mapping:

1. ·S→S→S 7→ +R→R→R.

2. eS 7→ 0R.
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3.7 Theory Translation Extension

\begin{theory-trans-ext}

{$\mName{GRP}$ to $\mName{COF}$ with $+$}
{\textsf{GRP-to-COF-$+$}.}
{\textsf{MON-to-COF-$+$}.}
{$\mName{GRP}$.}
{$\mName{COF}$.}
{}

{

\be \setcounter{enumi}{2}

\item ${\recip{\cdot}}_{\cFunTyX {S} {S}} \mapsto {-}_{\cFunTyX {R

} {R}}$.

\ee

}

\end{theory-trans-ext}

Theory Translation Extension 3.7 (GRP to COF with +)

Name: GRP-to-COF-+.

Extends MON-to-COF-+.

New source theory: GRP.

New target theory: COF.

New base type mapping:

New constant mapping:

3. ·−1S→S 7→ −R→R.

3.8 Development Translation Definition

\begin{dev-trans-def}

{$\mathsf{PA}$ to $\mathsf{COF}$ 1}

{\textsf{PA-to-COF}.}

{\textsf{PA-dev-4}.}

{\textsf{COF-dev-5}.}

{

\be
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\item $N \mapsto N_{\cSetTy {R}}$.

\ee

}

{

\be

\item $0_N \mapsto 0_R$.

\item $S_{\cFunTyX {N} {N}} \mapsto \cFunAbsX {x} {N_{\cSetTy {R

}}} {\cBinX {x} {+} {1}}$.

\item $1_N \mapsto 1_R$.

\item $P_{\cFunTyX {N} {N}} \mapsto \cFunAbsX {x} {N_{\cSetTy {R

}}} {\cIfX {\cNotEqX {x} {0}} {\cBinX {x} {-} {1}} {\cBotPC {R

}}}$.

\item $+_{\cFunTyBX {N} {N} {N}} \mapsto \cFunAbsX {x} {N_{\cSetTy

{R}}} {\cFunAbsX {y} {N_{\cSetTy {R}}} {\cBinX {x} {+} {y}}}$
.

\item $*_{\cFunTyBX {N} {N} {N}} \mapsto \cFunAbsX {x} {N_{\cSetTy

{R}}} {\cFunAbsX {y} {N_{\cSetTy {R}}} {\cBinX {x} {*} {y}}}$
.

\ee

}

\end{dev-trans-def}

Development Translation Definition 3.8 (PA to COF 1)

Name: PA-to-COF.

Source development: PA-dev-4.

Target development: COF-dev-5.

Base type mapping:

1. N 7→ N{R}.

Constant mapping:

1. 0N 7→ 0R.
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2. SN→N 7→ λx : N{R} . x + 1.

3. 1N 7→ 1R.

4. PN→N 7→ λx : N{R} . x 6= 0 7→ x − 1 | ⊥R.

5. +N→N→N 7→ λx : N{R} . λ y : N{R} . x + y.

6. ∗N→N→N 7→ λx : N{R} . λ y : N{R} . x ∗ y.

3.9 Development Translation Extension

\begin{dev-trans-ext}

{$\mathsf{PA}$ to $\mathsf{COF}$ 2}

{\textsf{PA-to-COF-1}$.}
{\textsf{PA-to-COF}.}

{\textsf{PA-dev-4}.}

{\textsf{COF-dev-6}.}

{

\be

\item[] ${\mid}_{\cFunTyBX {N} {N} {\cB}} \mapsto {\mid}_{\

cFunTyBX {R} {R} {\cB}}$.

\ee

}

\end{dev-trans-ext}

Development Translation Extension 3.9 (PA to COF 2)

Name: PA-to-COF-1.

Extends PA-to-COF.

New source development: PA-dev-4.

New target development: COF-dev-6.

New defined constant mapping:

|N→N→o 7→ |R→R→o.
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3.10 Definition Transportation

\begin{def-transport}

{Transport of Divides to $\mathsf{COF}$}
{\textsf{Divides-via-PA-to-COF}.}

{\textsf{PA-dev-4}.}

{\textsf{COF-dev-5}.}

{\textsf{PA-to-COF}.}

{

\bi

\item[] $\mName{Def6}$: $\cEqX {{\mid}_{\cFunTyBX {N} {N} {\cB}}}

{\cFunAbsX {x} {N} {\cFunAbsX {y} {N} {\cForsomeX {z} {N} {\

cEqX {\cBinX {x} {*} {z}} {y}}}}}$ \hfill (divides).

\ei

}

{

\bi

\item[] $\textsf{Def6-via-PA-to-COF}$:\\
\hspace*{2ex}$\cEqX {{\mid}_{\cFunTyBX {R} {R} {\cB}}} {\

cFunAbsX {x} {N_{\cSetTy {R}}} {\cFunAbsX {y} {N_{\cSetTy {R

}}} {\cForsomeX {z} {N_{\cSetTy {R}}} {\cEqX {\cBinX {x} {*}

{z}} {y}}}}}$ \hfill (divides).

\ei

}

{\textsf{COF-dev-6}.}

{\textsf{PA-to-COF-1}.}

\end{def-transport}

Definition Transportation 3.10 (Transport of Divides to COF)

Name: Divides-via-PA-to-COF.

Source development: PA-dev-4.

Target development: COF-dev-5.

Development morphism: PA-to-COF.

Definition:

Def6: |N→N→o = λx : N . λ y : N . ∃ z : N . x ∗ z = y (divides).

Transported definition:
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Def6-via-PA-to-COF:
|R→R→o = λx : N{R} . λ y : N{R} . ∃ z : N{R} . x ∗ z = y (divides).

New target development: COF-dev-6.

New development morphism: PA-to-COF-1.

3.11 Theorem Transportation

\begin{thm-transport}

{Transport of 0 is Top to $\mathsf{COF}$}
{\textsf{0-is-Top-via-PA-to-COF-1}.}

{\textsf{PA-dev-4}.}

{\textsf{COF-dev-6}.}

{\textsf{PA-to-COF-1}.}

{

\bi

\item[] $\mName{Thm22}$: $\cForallX {x} {N} {\cBinX {x} {{\mid}_{\

cFunTyBX {N} {N} {\cB}}} {0}}$ \hfill ($0$ is top).

\ei

}

{

\bi

\item[] $\textsf{Thm22-via-PA-to-COF-1}$:
\hspace*{2ex}$\cForallX {x} {N_{\cSetTy {R}}} {\cBinX {x} {{\mid

}_{\cFunTyBX {R} {R} {\cB}}} {0}}$ \hfill ($0$ is top).

\ei

}

{\textsf{COF-dev-7}.}

\end{thm-transport}

Theorem Transportation 3.11 (Transport of 0 is Top to COF)

Name: 0-is-Top-via-PA-to-COF-1.

Source development: PA-dev-4.

Target development: COF-dev-6.

Development morphism: PA-to-COF-1.

Theorem:
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Thm22: ∀x : N . x |N→N→o 0 (0 is top).

Transported theorem:

Thm22-via-PA-to-COF-1: ∀x : N{R} . x |R→R→o 0 (0 is top).

New target development: COF-dev-7.

3.12 Group Transportation

\begin{group-transport}

{\small Transport of $\mid$ and ‘‘0 is Top’’ to $\mathsf{COF}$}
{\textsf{Divides-and-0-is-top-via-PA-to-COF}.}

{\textsf{PA-dev-4}.}

{\textsf{COF-dev-5}.}

{\textsf{PA-to-COF}.}

{

\bi

\item[] $\mName{Def6}$: $\cEqX {{\mid}_{\cFunTyBX {N} {N} {\cB}}}

{\cFunAbsX {x} {N} {\cFunAbsX {y} {N} {\cForsomeX {z} {N} {\cEqX

{\cBinX {x} {*} {z}} {y}}}}}$ \hfill (divides).

\item[] $\mName{Thm22}$: $\cForallX {x} {N} {\cBinX {x}

{{\mid}_{\cFunTyBX {N} {N} {\cB}}} {0}}$ \hfill ($0$ is top).

\ei

}

{

\bi

\item[] \textsf{Def6-via-PA-to-COF}:\\

\hspace*{2ex}$\cEqX {{\mid}_{\cFunTyBX {R} {R} {\cB}}}

{\cFunAbsX {x} {N_{\cSetTy {R}}} {\cFunAbsX {y} {N_{\cSetTy {R

}}}

{\cForsomeX {z} {N_{\cSetTy {R}}} {\cEqX {\cBinX {x} {*} {z}}

{y}}}}}$
\hfill (divides).

\item[] \textsf{Thm22-via-PA-to-COF}: $\cForallX {x} {N_{\cSetTy

{R}}} {\cBinX {x} {{\mid}_{\cFunTyBX {R} {R} {\cB}}} {0}}$
\hfill ($0$ is top).
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\ei

}

{\textsf{COF-dev-6}.}

{\textsf{PA-to-COF-1}.}

\end{group-transport}

Group Transportation 3.12 (Transport of | and “0 is Top” to COF)

Name: Divides-and-0-is-top-via-PA-to-COF.

Source development: PA-dev-4.

Target development: COF-dev-5.

Development morphism: PA-to-COF.

Definitions and theorems:

Def6: |N→N→o = λx : N . λ y : N . ∃ z : N . x ∗ z = y (divides).

Thm22: ∀x : N . x |N→N→o 0 (0 is top).

Transported definitions and theorems:

Def6-via-PA-to-COF:
|R→R→o = λx : N{R} . λ y : N{R} . ∃ z : N{R} . x ∗ z = y (divides).

Thm22-via-PA-to-COF: ∀x : N{R} . x |R→R→o 0 (0 is top).

New target development: COF-dev-6.

New development morphism: PA-to-COF-1.

4 LaTeX Source File

%% LaTeX Macros for Alonzo Notation

%%

%% William M. Farmer

%%

%% McMaster University

%%

%% October 15, 2024

%% Requires:
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\usepackage{amssymb}

\usepackage{amsmath}

\usepackage{phonetic}

\usepackage{xcolor}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% MISCELLANEOUS MACROS

\newcommand{\mName}[1]{\mathsf{#1}}

\newcommand{\mSet}[1]{\{ #1 \}}

\newcommand{\mTuple}[1]{( #1 )}

\newcommand{\mList}[1]{[ #1 ]}

\newcommand{\mSeq}[1]{\langle #1 \rangle}

\newcommand{\mSeqlike}[1]{\mSeq{\!\mSeq{#1}\!}}

\newcommand{\mAbs}[1]{\lvert #1 \rvert}

\newcommand{\mNorm}[1]{\lVert #1 \rVert}

\newcommand{\mDot}{\mathrel{.}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% FORMAL NOTATION

% Types

\newcommand{\fBoolTy}{\mName{BoolTy}}

\newcommand{\fBaseTy}[1]{\mName{BaseTy}(#1)}

\newcommand{\fFunTy}[2]{\mName{FunTy}(#1,#2)}

\newcommand{\fProdTy}[2]{\mName{ProdTy}(#1,#2)}

% Expressions

\newcommand{\fVar}[2]{\mName{Var}(#1,#2)}

\newcommand{\fCon}[2]{\mName{Con}(#1,#2)}

\newcommand{\fEq}[2]{\mName{Eq}(#1,#2)}

\newcommand{\fFunApp}[2]{\mName{FunApp}(#1,#2)}

\newcommand{\fFunAbs}[3]{\mName{FunAbs}(\fVar{#1}{#2},#3)}

\newcommand{\fDefDes}[3]{\mName{DefDes}(\fVar{#1}{#2},#3)}

\newcommand{\fOrdPair}[2]{\mName{OrdPair}(#1,#2)}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% COMPACT NOTATION

% Types
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\newcommand{\cBoolTy}{\omicron}

\newcommand{\cB}{\cBoolTy}

\newcommand{\cBaseTy}[1]{#1}

\newcommand{\cFunTy}[2]{({#1} \rightarrow {#2})}

\newcommand{\cFunTyX}[2]{{#1} \rightarrow {#2}}

\newcommand{\cFunTyB}[3]{\cFunTy {#1} {\cFunTyX {#2} {#3}}}

\newcommand{\cFunTyBX}[3]{\cFunTyX {#1} {\cFunTyX {#2} {#3}}}

\newcommand{\cFunTyC}[4]{\cFunTy {#1} {\cFunTyX {#2} {\cFunTyX {#3}

{#4}}}}

\newcommand{\cFunTyCX}[4]{\cFunTyX {#1} {\cFunTyX {#2} {\cFunTyX

{#3} {#4}}}}

\newcommand{\cProdTy}[2]{({#1} \times {#2})}

\newcommand{\cProdTyX}[2]{{#1} \times {#2}}

\newcommand{\cProdTyB}[3]{\cProdTy {#1} {\cProdTyX {#2} {#3}}}

\newcommand{\cProdTyBX}[3]{\cProdTyX {#1} {\cProdTyX {#2} {#3}}}

\newcommand{\cProdTyC}[4]{\cProdTy {#1} {\cProdTyX {#2} {\cProdTyX

{#3} {#4}}}}

\newcommand{\cProdTyCX}[4]{\cProdTyX {#1} {\cProdTyX {#2} {\cProdTyX

{#3} {#4}}}}

% Expressions

\newcommand{\cVar}[2]{({#1} : {#2})}

\newcommand{\cVarY}[2]{#1}

\newcommand{\cCon}[2]{{#1}_{#2}}

\newcommand{\cConY}[2]{#1}

\newcommand{\cEq}[2]{({#1} = {#2})}

\newcommand{\cEqX}[2]{{#1} = {#2}}

\newcommand{\cFunApp}[2]{(#1\,#2)}

\newcommand{\cFunAppX}[2]{#1\,#2}

\newcommand{\cFunAppB}[3]{(\cFunAppX {\cFunAppX {#1} {#2}} {#3})}

\newcommand{\cFunAppBX}[3]{\cFunAppX {\cFunAppX {#1} {#2}} {#3}}

\newcommand{\cFunAppC}[4]{(\cFunAppX {\cFunAppX {\cFunAppX

{#1}{#2}}{#3}}{#4})}

\newcommand{\cFunAppCX}[4]{\cFunAppX {\cFunAppX {\cFunAppX

{#1}{#2}}{#3}}{#4}}

\newcommand{\cFunAbs}[3]{(\lambda\, #1 : #2 \mDot #3)}

\newcommand{\cFunAbsX}[3]{\lambda\, #1 : #2 \mDot #3}

\newcommand{\cDefDes}[3]{(\mathrm{I}\, #1 : #2 \mDot #3)}

\newcommand{\cDefDesX}[3]{\mathrm{I}\, #1 : #2 \mDot #3}

\newcommand{\cOrdPair}[2]{(#1,#2)}

% Boolean Operators

48



\newcommand{\cTPC}{T_\cB}

\newcommand{\cT}{\cTPC}

\newcommand{\cFPC}{F_\cB}

\newcommand{\cF}{\cFPC}

\newcommand{\cAndPC}{\wedge_{\cFunTyBX{\cB}{\cB}{\cB}}}

\newcommand{\cAnd}[2]{({#1} \wedge {#2})}

\newcommand{\cAndX}[2]{{#1} \wedge {#2}}

\newcommand{\cAndB}[3]{\cAnd {#1} {\cAndX {#2} {#3}}}

\newcommand{\cAndBX}[3]{\cAndX {#1} {\cAndX {#2} {#3}}}

\newcommand{\cAndL}[1]{(#1)} % separator is $\And$
\newcommand{\cAndLX}[1]{#1} % separator is $\And$
\newcommand{\cImpliesPC}{\Rightarrow_{\cFunTyBX {\cB} {\cB} {\cB}}}

\newcommand{\cImplies}[2]{({#1} \Rightarrow {#2})}

\newcommand{\cImpliesX}[2]{{#1} \Rightarrow {#2}}

\newcommand{\cNegPC}{\neg_{\cFunTyX{\cB}{\cB}}}

\newcommand{\cNeg}[1]{(\neg{#1})}

\newcommand{\cNegX}[1]{\neg{#1}}

\newcommand{\cOrPC}{\vee_{\cFunTyBX{\cB}{\cB}{\cB}}}

\newcommand{\cOr}[2]{({#1} \vee {#2})}

\newcommand{\cOrX}[2]{{#1} \vee {#2}}

\newcommand{\cOrB}[3]{\cOr {#1} {\cOrX {#2} {#3}}}

\newcommand{\cOrBX}[3]{\cOrX {#1} {\cOrX {#2} {#3}}}

\newcommand{\cOrL}[1]{(#1)} % separator is $\Or$
\newcommand{\cOrLX}[1]{#1} % separator is $\Or$

% Binary Operators

\newcommand{\cBin}[3]{({#1} \mathrel{#2} {#3})}

\newcommand{\cBinX}[3]{{#1} \mathrel{#2} {#3}}

\newcommand{\cBinB}[5]{({#1} \mathrel{#2} {#3} \mathrel{#4} {#5})}

\newcommand{\cBinBX}[5]{{#1} \mathrel{#2} {#3} \mathrel{#4} {#5}}

\newcommand{\cIff}[2]{({#1} \Leftrightarrow {#2})}

\newcommand{\cIffX}[2]{{#1} \Leftrightarrow {#2}}

\newcommand{\cNotEq}[2]{({#1} \not= {#2})}

\newcommand{\cNotEqX}[2]{{#1} \not= {#2}}

% Quantifiers

\newcommand{\cForall}[3]{(\forall\, #1 : #2 \mDot #3)}

\newcommand{\cForallX}[3]{\forall\, #1 : #2 \mDot #3}

\newcommand{\cForallB}[5]{(\forall\, #1 : #2,\, #3 : #4 \mDot #5)}

\newcommand{\cForallBX}[5]{\forall\, #1 : #2,\, #3 : #4 \mDot #5}

\newcommand{\cForallC}[7]{(\forall\, #1 : #2,\, #3 : #4,\, #5 : #6 \

mDot #7)}

\newcommand{\cForallCX}[7]{\forall\, #1 : #2,\, #3 : #4,\, #5 : #6 \
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mDot #7}

\newcommand{\cForsome}[3]{(\exists\, #1 : #2 \mDot #3)}

\newcommand{\cForsomeX}[3]{\exists\, #1 : #2 \mDot #3}

\newcommand{\cForsomeB}[5]{(\exists\, #1 : #2,\, #3 : #4 \mDot #5)}

\newcommand{\cForsomeBX}[5]{\exists\, #1 : #2,\, #3 : #4 \mDot #5}

\newcommand{\cForsomeC}[7]{(\exists\, #1 : #2,\, #3 : #4,\, #5 : #6

\mDot #7)}

\newcommand{\cForsomeCX}[7]{\exists\, #1 : #2,\, #3 : #4,\, #5 : #6

\mDot #7}

\newcommand{\cForsomeUnique}[3]{(\exists!\, #1 : #2 \mDot #3)}

\newcommand{\cForsomeUniqueX}[3]{\exists!\, #1 : #2 \mDot #3}

% Definedness

\newcommand{\cBotPC}[1]{\bot_{#1}}

\newcommand{\cEmpFunPC}[2]{\Delta_{\cFunTyX {#1} {#2}}}

\newcommand{\cIsDef}[1]{(#1{\downarrow})}

\newcommand{\cIsDefX}[1]{#1{\downarrow}}

\newcommand{\cIsUndef}[1]{(#1{\uparrow})}

\newcommand{\cIsUndefX}[1]{#1{\uparrow}}

\newcommand{\cQuasiEq}[2]{({#1} \simeq {#2})}

\newcommand{\cQuasiEqX}[2]{{#1} \simeq {#2}}

\newcommand{\cNotQuasiEq}[2]{({#1} \not\simeq {#2})}

\newcommand{\cNotQuasiEqX}[2]{{#1} \not\simeq {#2}}

\newcommand{\cIfThenElse}[3]{\mName{IF}(#1,#2,#3)}

\newcommand{\cIf}[3]{(#1 \mapsto #2 \mid #3)}

\newcommand{\cIfX}[3]{#1 \mapsto #2 \mid #3}

% Sets

\newcommand{\cSetTy}[1]{\mSet{#1}}

\newcommand{\cIn}[2]{({#1} \in {#2})}

\newcommand{\cInX}[2]{{#1} \in {#2}}

\newcommand{\cNotIn}[2]{({#1} \not\in {#2})}

\newcommand{\cNotInX}[2]{{#1} \not\in {#2}}

\newcommand{\cSet}[3]{\mSet{{{#1} : {#2}} \mid {#3}}}

\newcommand{\cEmpSetPC}[1]{\emptyset_{\cSetTy {#1}}}

\newcommand{\cEmpSetAltPC}[1]{\mSet{\,}_{\cSetTy {#1}}}

\newcommand{\cUnivSetPC}[1]{U_{\cSetTy {#1}}}

\newcommand{\cFinSet}[2]{\textsf{{$#1$}-{$#2$}-SET}}
\newcommand{\cFinSetL}[1]{\mSet{#1}} % separator is ","

\newcommand{\cSubseteqPC}[1]{\subseteq_{\cFunTyBX {\cSetTy #1} {\

cSetTy #1} {\cB}}}

\newcommand{\cSubseteq}[2]{\cBin {#1} {\subseteq} {#2}}

\newcommand{\cSubseteqX}[2]{\cBinX {#1} {\subseteq} {#2}}
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\newcommand{\cUnionPC}[1]{\cup_{\cFunTyBX {\cSetTy #1} {\cSetTy #1}

{\cSetTy #1}}}

\newcommand{\cUnion}[2]{\cBin {#1} {\cup} {#2}}

\newcommand{\cUnionX}[2]{\cBinX {#1} {\cup} {#2}}

\newcommand{\cIntersPC}[1]{\cap_{\cFunTyBX {\cSetTy #1} {\cSetTy #1}

{\cSetTy #1}}}

\newcommand{\cInters}[2]{\cBin {#1} {\cap} {#2}}

\newcommand{\cIntersX}[2]{\cBinX {#1} {\cap} {#2}}

\newcommand{\cComplPC}[1]{\overline{\,\cdot\,}_{\cFunTyX {\cSetTy

#1} {\cSetTy #1}}}

\newcommand{\cCompl}[1]{\big(\,\overline{#1}\,\big)}

\newcommand{\cComplX}[1]{\overline{#1}}

\newcommand{\cSetDiffPC}[1]{\setminus_{\cFunTyBX {\cSetTy #1} {\

cSetTy #1} {\cSetTy #1}}}

\newcommand{\cSetDiff}[2]{\cBin {#1} {\setminus} {#2}}

\newcommand{\cSetDiffX}[2]{\cBinX {#1} {\setminus} {#2}}

% Tuples

\newcommand{\cTupleTyL}[1]{(#1)} % separator is $\times$
\newcommand{\cTupleL}[1]{(#1)} % separator is ","

\newcommand{\cFstPC}[2]{\mName{fst}_{\cFunTyX {\cProdTy {#1} {#2}}

{#1}}}

\newcommand{\cSndPC}[2]{\mName{snd}_{\cFunTyX {\cProdTy {#1} {#2}}

{#2}}}

% Functions

\newcommand{\cIdFunPC}[1]{\mName{id}_{\cFunTyX {#1} {#1}}}

\newcommand{\cDomPC}[2]{\mName{dom}_{\cFunTyX {\cFunTy {#1} {#2}} {\

cSetTy {#1}}}}

\newcommand{\cRanPC}[2]{\mName{ran}_{\cFunTyX {\cFunTy {#1} {#2}} {\

cSetTy {#2}}}}

\newcommand{\cSubfuneqPC}[2]{\sqsubseteq_{\cFunTyBX {\cFunTy {#1}

{#2}} {\cFunTy {#1} {#2}} {\cB}}}

\newcommand{\cFunCompPC}[3]{\circ_{\cFunTyBX {\cFunTy {#1} {#2}} {\

cFunTy {#2} {#3}} {\cFunTy {#1} {#3}}}}

\newcommand{\cFunComp}[2]{({#1} \circ {#2})}

\newcommand{\cFunCompX}[2]{#1 \circ {#2}}

\newcommand{\cRestrictPC}[2]{|_{\cFunTyBX {\cFunTy {#1} {#2}} {\

cSetTy {#1}} {\cFunTy {#1} {#2}}}}

\newcommand{\cRestrict}[2]{(#1 |_{#2})}

\newcommand{\cRestrictX}[2]{#1 |_{#2}}

% Miscellaneous Notation
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\newcommand{\cTotal}[1]{\mName{TOTAL}(#1)}

\newcommand{\cTotalB}[1]{\mName{TOTAL2}(#1)}

\newcommand{\cSurj}[1]{\mName{SURJ}(#1)}

\newcommand{\cSurjB}[1]{\mName{SURJ2}(#1)}

\newcommand{\cInj}[1]{\mName{INJ}(#1)}

\newcommand{\cInjB}[1]{\mName{INJ2}(#1)}

\newcommand{\cBij}[1]{\mName{BIJ}(#1)}

\newcommand{\cDistinctL}[1]{\mName{DISTINCT}(#1)} % separator is ","

% Quasitypes

\newcommand{\cFunAbsQTy}[3]{\cFunAbs {#1} {#2} {#3}}

\newcommand{\cFunAbsQTyX}[3]{\cFunAbsX {#1} {#2} {#3}}

\newcommand{\cForallQTy}[3]{\cForall {#1} {#2} {#3}}

\newcommand{\cForallQTyX}[3]{\cForallX {#1} {#2} {#3}}

\newcommand{\cForallQTyB}[5]{\cForallB {#1} {#2} {#3} {#4} {#5}}

\newcommand{\cForallQTyBX}[5]{\cForallBX {#1} {#2} {#3} {#4} {#5}}

\newcommand{\cForsomeQTy}[3]{\cForsome {#1} {#2} {#3}}

\newcommand{\cForsomeQTyX}[3]{\cForsomeX {#1} {#2} {#3}}

\newcommand{\cForsomeQTyB}[5]{\cForsomeB {#1} {#2} {#3} {#4} {#5}}

\newcommand{\cForsomeQTyBX}[5]{\cForsomeBX {#1} {#2} {#3} {#4} {#5}}

\newcommand{\cDefDesQTy}[3]{\cDefDes {#1} {#2} {#3}}

\newcommand{\cDefDesQTyX}[3]{\cDefDesX {#1} {#2} {#3}}

\newcommand{\cIsDefInQTy}[2]{({#1} \downarrow {#2})}

\newcommand{\cIsDefInQTyX}[2]{{#1} \downarrow {#2}}

\newcommand{\cIsUndefInQTy}[2]{({#1} \uparrow {#2})}

\newcommand{\cIsUndefInQTyX}[2]{{#1} \uparrow {#2}}

\newcommand{\cFunQTyPC}[2]{\rightarrow_{\cFunTyBX {\cSetTy {#1}} {\

cSetTy {#2}} {\cSetTy {\cFunTyX {#1} {#2}}}}}

\newcommand{\cFunQTy}[2]{\cFunTy {#1} {#2}}

\newcommand{\cFunQTyX}[2]{\cFunTyX {#1} {#2}}

\newcommand{\cFunQTyB}[3]{\cFunTyB {#1} {#2} {#3}}

\newcommand{\cFunQTyBX}[3]{\cFunTyBX {#1} {#2} {#3}}

\newcommand{\cFunQTyC}[4]{\cFunTyC {#1} {#2} {#3} {#4}}

\newcommand{\cFunQTyCX}[4]{\cFunTyCX {#1} {#2} {#3} {#4}}

\newcommand{\cProdQTyPC}[2]{\times_{\cFunTyBX {\cSetTy {#1}} {\

cSetTy {#2}} {\cSetTy {\cProdTyX {#1} {#2}}}}}

\newcommand{\cProdQTy}[2]{\cProdTy {#1} {#2}}

\newcommand{\cProdQTyX}[2]{\cProdTyX {#1} {#2}}

\newcommand{\cProdQTyB}[3]{\cProdTyB {#1} {#2} {#3}}

\newcommand{\cProdQTyBX}[3]{\cProdTyBX {#1} {#2} {#3}}

\newcommand{\cProdQTyC}[4]{\cProdTyC {#1} {#2} {#3} {#4}}

\newcommand{\cProdQTyCX}[4]{\cProdTyCX {#1} {#2} {#3} {#4}}

\newcommand{\cSetQTy}[1]{{\cal P}(#1)}
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\newcommand{\cTotalOn}[3]{\textsf{TOTAL-ON}(#1,#2,#3)}

\newcommand{\cTotalOnB}[4]{\textsf{TOTAL-ON2}(#1,#2,#3,#4)}

\newcommand{\cSurjOn}[3]{\textsf{SURJ-ON}(#1,#2,#3)}

\newcommand{\cSurjOnB}[4]{\textsf{SURJ-ON2}(#1,#2,#3,#4)}

\newcommand{\cInjOn}[2]{\textsf{INJ-ON}(#1,#2)}

\newcommand{\cInjOnB}[3]{\textsf{INJ-ON2}(#1,#2,#3)}

\newcommand{\cBijOn}[3]{\textsf{BIJ-ON}(#1,#2,#3)}

\newcommand{\cInf}[1]{\mName{INF}(#1)}

\newcommand{\cFin}[1]{\mName{FIN}(#1)}

\newcommand{\cCount}[1]{\mName{COUNT}(#1)}

% Dependent Quasitypes

\newcommand{\cPiTy}[2]{\cFunTyBX {\cSetTy {#1}} {\cFunTy {#1} {\

cSetTy {#2}}} {\cSetTy {\cFunTyX {#1} {#2}}}}

\newcommand{\cPiPC}[2]{\Pi_{\cPiTy {#1} {#2}}}

\newcommand{\cPi}[3]{(\Pi\, #1 : #2 \mDot #3)}

\newcommand{\cPiX}[3]{\Pi\, #1 : #2 \mDot #3}

\newcommand{\cSigmaTy}[2]{\cFunTyBX {\cSetTy {#1}} {\cFunTy {#1} {\

cSetTy {#2}}} {\cSetTy {\cProdTyX {#1} {#2}}}}

\newcommand{\cSigmaPC}[2]{\Sigma_{\cSigmaTy {#1} {#2}}}

\newcommand{\cSigma}[3]{(\Sigma\, #1 : #2 \mDot #3)}

\newcommand{\cSigmaX}[3]{\Sigma\, #1 : #2 \mDot #3}

% Sequences

\newcommand{\cSequencesPC}[2]{\mName{sequences}_{\cSetTy {\cFunTyX

{#1} {#2}}}}

\newcommand{\cSeqQTy}[1]{\mSeqlike{#1}}

\newcommand{\cStreamsPC}[2]{\mName{streams}_{\cSetTy {\cFunTyX {#1}

{#2}}}}

\newcommand{\cSeqInfQTy}[1]{\mSeq{#1}}

\newcommand{\cListsPC}[2]{\mName{lists}_{\cSetTy {\cFunTyX {#1}

{#2}}}}

\newcommand{\cSeqFinQTy}[1]{\mList{#1}}

\newcommand{\cConsPC}[2]{\mName{cons}_{\cFunTyBX {#2} {\cFunTy {#1}

{#2}} {\cFunTy {#1} {#2}}}}

\newcommand{\cCons}[2]{({#1} :: {#2})}

\newcommand{\cConsX}[2]{{#1} :: {#2}}

\newcommand{\cHdPC}[2]{\mName{hd}_{\cFunTyX {\cFunTy {#1} {#2}}

{#2}}}

\newcommand{\cTlPC}[2]{\mName{tl}_{\cFunTyX {\cFunTy {#1} {#2}} {\

cFunTy {#1} {#2}}}}

\newcommand{\cNilPC}[2]{\mName{nil}_{\cFunTyX {#1} {#2}}}

\newcommand{\cEmpListPC}[2]{{\mList{\;}}_{\cFunTyX {#1} {#2}}}
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\newcommand{\cListL}[1]{\mList{#1}} % separator is ","

\newcommand{\cLenPC}[2]{\mName{len}_{\cFunTyX {\cFunTy {#1} {#2}}

{#1}}}

\newcommand{\cLen}[1]{\mAbs {#1}}

\newcommand{\cAppendPC}[2]{\mName{++}_{\cFunTyBX {\cFunTy {#1} {#2}}

{\cFunTy {#1} {#2}} {\cFunTy {#1} {#2}}}}

\newcommand{\cAppend}[2]{({#1} \mathrel{++} {#2})}

\newcommand{\cAppendX}[2]{{#1} \mathrel{++} {#2}}

\newcommand{\cNlistsPC}[2]{\mName{nlists}_{\cFunTyX {#1} {\cSetTy {\

cFunTyX {#1} {#2}}}}}

\newcommand{\cSeqNFinQTy}[2]{\mList{#1}^{#2}}

% Real Numbers

\newcommand{\cMinus}[1]{(-{#1})}

\newcommand{\cMinusX}[1]{-{#1}}

\newcommand{\cRecip}[1]{\big( {#1}^{-1} \big)}

\newcommand{\cRecipX}[1]{{#1}^{-1}}

\newcommand{\cFrac}[2]{\big( \frac {#1} {#2} \big)}

\newcommand{\cFracX}[2]{\frac {#1} {#2}}

\newcommand{\cAbs}[1]{\mAbs {#1}}

\newcommand{\cSqrt}[1]{\sqrt {#1}}

\newcommand{\cNorm}[1]{\mNorm {#1}}

\newcommand{\cSum}[4]{\Big( \sum\limits_{{#1} = {#2}}^{#3} {#4} \Big

)}

\newcommand{\cSumX}[4]{\sum\limits_{{#1} = {#2}}^{#3} {#4}}

\newcommand{\cProd}[4]{\Big( \prod\limits_{{#1} = {#2}}^{#3} {#4} \

Big)}

\newcommand{\cProdX}[4]{\prod\limits_{{#1} = {#2}}^{#3} {#4}}

\newcommand{\cLim}[3]{\Big( \lim\limits_{{#1} \to {#2}} {#3} \Big)}

\newcommand{\cLimX}[3]{\lim\limits_{{#1} \to {#2}} {#3}}

\newcommand{\cRightLim}[3]{\Big( \lim\limits_{{#1} \to {#2}^+} {#3}

\Big)}

\newcommand{\cRightLimX}[3]{\lim\limits_{{#1} \to {#2}^+} {#3}}

\newcommand{\cLeftLim}[3]{\Big( \lim\limits_{{#1} \to {#2}^-} {#3} \

Big)}

\newcommand{\cLeftLimX}[3]{\lim\limits_{{#1} \to {#2}^-} {#3}}

\newcommand{\cLimSeq}[2]{\Big( \lim\limits_{{#1} \to \infty} {#2} \

Big)}

\newcommand{\cLimSeqX}[2]{\lim\limits_{{#1} \to \infty} {#2}}

\newcommand{\cIntegral}[4]{\Big( \int_{#1}^{#2} {#3}\,d{#4} \Big)}

\newcommand{\cIntegralX}[4]{\int_{#1}^{#2} {#3}\,d{#4}}

\newcommand{\cExp}[1]{(\mName{e}^{#1})}

\newcommand{\cExpX}[1]{\mName{e}^{#1}}

\newcommand{\cExpB}[2]{({#1}^{#2})}
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\newcommand{\cExpBX}[2]{{#1}^{#2}}

\newcommand{\cLog}[1]{(\mName{log}\,{#1})}

\newcommand{\cLogX}[1]{\mName{log}\,{#1}}

\newcommand{\cLogB}[2]{(\mName{log}_{#1}\,{#2})}

\newcommand{\cLogBX}[2]{\mName{log}_{#1}\,{#2}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% THEOREM ENVIRONMENTS

\newtheorem{thm}{Theorem}[section]

\newtheorem{cor}[thm]{Corollary}

\newtheorem{lem}[thm]{Lemma}

\newtheorem{prop}[thm]{Proposition}

\newtheorem{eg}[thm]{Example}

\newtheorem{rem}[thm]{Remark}

\newtheorem{thydef}[thm]{Theory Definition}

\newtheorem{thyext}[thm]{Theory Extension}

\newtheorem{indtypethyext}[thm]{Inductive Type Theory Extension}

\newtheorem{devdef}[thm]{Development Definition}

\newtheorem{devext}[thm]{Development Extension}

\newtheorem{thytransdef}[thm]{Theory Translation Definition}

\newtheorem{thytransext}[thm]{Theory Translation Extension}

\newtheorem{devtransdef}[thm]{Development Translation Definition}

\newtheorem{devtransext}[thm]{Development Translation Extension}

\newtheorem{deftransport}[thm]{Definition Transportation}

\newtheorem{thmtransport}[thm]{Theorem Transportation}

\newtheorem{grouptransport}[thm]{Group Transportation}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ENVIRONMENTS

\newenvironment{theory-def}[5]

{

\color{brown!90!black}

\begin{thydef}[#1]\em

\noindent

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{Name:} #2

\item[]\hspace{-3ex}\textbf{Base types:} #3

\item[]\hspace{-3ex}\textbf{Constants:} #4

\item[]\hspace{-3ex}\textbf{Axioms:}

\end{itemize}
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#5

\end{thydef}

}

\newenvironment{theory-ext}[6]

{

\color{brown!90!black}

\begin{thyext}[#1]\em

\noindent

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{Name:} #2

\item[]\hspace{-3ex}\textbf{Extends\ } #3

\item[]\hspace{-3ex}\textbf{New base types:} #4

\item[]\hspace{-3ex}\textbf{New constants:} #5

\item[]\hspace{-3ex}\textbf{New axioms:}

\end{itemize}

#6

\end{thyext}

}

\newenvironment{ind-type-theory-ext}[5]

{

\color{brown!90!black}

\begin{indtypethyext}[#1]\em

\noindent

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{Name:} #2

\item[]\hspace{-3ex}\textbf{Extends\ } #3

\item[]\hspace{-3ex}\textbf{New base type:} #4

\item[]\hspace{-3ex}\textbf{Constructors:}

\end{itemize}

#5

\end{indtypethyext}

}

\newenvironment{dev-def}[4]

{

\color{brown!90!black}

\begin{devdef}[#1]\em

\noindent

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{Name:} #2

\item[]\hspace{-3ex}\textbf{Bottom theory:} #3

\item[]\hspace{-3ex}\textbf{Definitions and theorems:}

\end{itemize}
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#4

\end{devdef}

}

\newenvironment{dev-ext}[4]

{

\color{brown!90!black}

\begin{devext}[#1]\em

\noindent

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{Name:} #2

\item[]\hspace{-3ex}\textbf{Extends\ } #3

\item[]\hspace{-3ex}\textbf{New definitions and theorems:}

\end{itemize}

#4

\end{devext}

}

\newenvironment{theory-trans-def}[6]

{

\color{brown!90!black}

\begin{thytransdef}[#1]\em

\noindent

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{Name:} #2

\item[]\hspace{-3ex}\textbf{Source theory:} #3

\item[]\hspace{-3ex}\textbf{Target theory:} #4

\item[]\hspace{-3ex}\textbf{Base type mapping:}

\end{itemize}

#5

\begin{itemize}

\item[]\hspace{-3ex}\textbf{Constant mapping:}

\end{itemize}

#6

\end{thytransdef}

}

\newenvironment{theory-trans-ext}[7]

{

\color{brown!90!black}

\begin{thytransext}[#1]\em

\noindent

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{Name:} #2

\item[]\hspace{-3ex}\textbf{Extends\ } #3
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\item[]\hspace{-3ex}\textbf{New source theory:} #4

\item[]\hspace{-3ex}\textbf{New target theory:} #5

\item[]\hspace{-3ex}\textbf{New base type mapping:}

\end{itemize}

#6

\begin{itemize}

\item[]\hspace{-3ex}\textbf{New constant mapping:}

\end{itemize}

#7

\end{thytransext}

}

\newenvironment{dev-trans-def}[6]

{

\color{brown!90!black}

\begin{devtransdef}[#1]\em

\noindent

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{Name:} #2

\item[]\hspace{-3ex}\textbf{Source development:} #3

\item[]\hspace{-3ex}\textbf{Target development:} #4

\item[]\hspace{-3ex}\textbf{Base type mapping:}

\end{itemize}

#5

\begin{itemize}

\item[]\hspace{-3ex}\textbf{Constant mapping:}

\end{itemize}

#6

\end{devtransdef}

}

\newenvironment{dev-trans-ext}[6]

{

\color{brown!90!black}

\begin{devtransext}[#1]\em

\noindent

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{Name:} #2

\item[]\hspace{-3ex}\textbf{Extends\ } #3

\item[]\hspace{-3ex}\textbf{New source development:} #4

\item[]\hspace{-3ex}\textbf{New target development:} #5

\item[]\hspace{-3ex}\textbf{New defined constant mapping:}

\end{itemize}

#6

\end{devtransext}
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}

\newenvironment{def-transport}[9]

{

\color{brown!90!black}

\begin{deftransport}[#1]\em

\noindent

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{Name:} #2

\item[]\hspace{-3ex}\textbf{Source development:} #3

\item[]\hspace{-3ex}\textbf{Target development:} #4

\item[]\hspace{-3ex}\textbf{Development morphism:} #5

\item[]\hspace{-3ex}\textbf{Definition:}

\end{itemize}

#6

\begin{itemize}

\item[]\hspace{-3ex}\textbf{Transported definition:}

\end{itemize}

#7

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{New target development:} #8

\item[]\hspace{-3ex}\textbf{New development morphism:} #9

\end{itemize}

\end{deftransport}

}

\newenvironment{thm-transport}[8]

{

\color{brown!90!black}

\begin{thmtransport}[#1]\em

\noindent

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{Name:} #2

\item[]\hspace{-3ex}\textbf{Source development:} #3

\item[]\hspace{-3ex}\textbf{Target development:} #4

\item[]\hspace{-3ex}\textbf{Development morphism:} #5

\item[]\hspace{-3ex}\textbf{Theorem:}

\end{itemize}

#6

\begin{itemize}

\item[]\hspace{-3ex}\textbf{Transported theorem:}

\end{itemize}

#7

\begin{itemize}

\item[]\hspace{-3ex}\textbf{New target development:} #8
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\end{itemize}

\end{thmtransport}

}

\newenvironment{group-transport}[9]

{

\color{brown!90!black}

\begin{grouptransport}[#1]\em

\noindent

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{Name:} #2

\item[]\hspace{-3ex}\textbf{Source development:} #3

\item[]\hspace{-3ex}\textbf{Target development:} #4

\item[]\hspace{-3ex}\textbf{Development morphism:} #5

\item[]\hspace{-3ex}\textbf{Definitions and theorems:}

\end{itemize}

#6

\begin{itemize}

\item[]\hspace{-3ex}\textbf{Transported definitions and theorems:}

\end{itemize}

#7

\begin{itemize} \setlength{\itemsep}{0pt}

\item[]\hspace{-3ex}\textbf{New target development:} #8

\item[]\hspace{-3ex}\textbf{New development morphism:} #9

\end{itemize}

\end{grouptransport}

}
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