
A New Style of Mathematical Proof?

William M. Farmer1

McMaster University, Canada
wmfarmer@mcmaster.ca

http://imps.mcmaster.ca/wmfarmer/

7 September 2018

Abstract. Mathematical proofs will play a crucial role in building a
universal digital mathematics library (UDML). Traditional and formal
style proofs do not adequately fulfill all the purposes that mathematical
proofs have. We propose a new style of proof that fulfills seven purposes
of mathematical proofs. We believe this style of proof is needed to build
a highly interconnected UDML.
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1 Introduction

Over the course of the next few decades, mathematical software systems will
revolutionize how mathematical knowledge is expressed, organized, and applied.
The end product of this revolution will be a universal digital mathematics li-
brary (UDML) containing vast amounts of highly interconnected mathematical
knowledge.

We believe that the mathematical knowledge in a UDML should be repre-
sented in accordance with the little theories method [2] as a theory graph [4] con-
sisting of axiomatic theories as nodes and theory morphisms as directed edges.
The theories — which may have different underlying logics — serve as abstract
mathematical models. The morphisms — which are meaning-preserving map-
pings from the formulas of one theory to the formulas of another — serve as
information conduits that enable theory components such as definitions and
theorems to be transported across the graph [1]. A theory graph enables math-
ematical knowledge to be formalized in the most convenient underlying logic at
the most convenient level of abstraction using the most convenient vocabulary
and then applied in many different contexts. In addition, the morphisms and
other connections in a theory graph provide an infrastructure for finding rel-
evant concepts and facts in the theory graph, e.g., all the definitions that are
equivalent to a given definition.

? This paper is published in: J. H. Davenport, M. Kauers, G. Labahn, and J. Urban,
eds, Mathematical Software — ICMS 2018, Lecture Notes in Computer Science,
Vol. 10931, pp. 175–181, Springer, 2018. This research was supported by NSERC.
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As one would expect, mathematical proofs will have a crucial role to play in
the building of a UDML. They will serve as threads that tie the knowledge in
a UDML together. We will argue that both the traditional proofs that appear
in mathematical books and articles and the formal proofs developed using proof
assistants are not adequate for the job and that a new style of proof is needed.

2 Styles of Mathematical Proof

A proof is a deductive argument intended to show that a mathematical statement
is a logical consequence of a set of premises. There are many styles of proof.
Some proofs describe a deduction of the statement from the premises, while
other proofs prescribe the steps needed to produce the deduction. Many proofs
are presented in a two-column format where each line in the left column is
an intermediate result in a deduction and the corresponding line in the right
column explains why the result is justified. Some proofs contain computations
(e.g., numeric or algebraic simplifications) or constructions (e.g., via straightedge
and compass). Geometry proofs are deductions guided by a geometric drawing.
Visual proofs are presented by a series of diagrams or an animation.

The proofs presented in mathematical books and articles usually exhibit a
particular style that we call the traditional proof style. Proofs of this style are
arguments written in a stylized form of natural language with a heavy use of
special symbols. In traditional proofs the terminology and notation may be am-
biguous, assumptions may be unstated, and the argument may contain logical
gaps. However, the reader is expected to be able to resolve the ambiguities, iden-
tify the unstated assumptions, and fill in the gaps in the argument. The writer
— whose purpose is to serve some particular community of readers — has the
freedom to express the argument in whatever manner is deemed most effective.
This includes exhibiting other styles of proof within the traditional style.

The formal proof style is to present a proof as a derivation in a proof system
for a formal logic. Using software systems, formal proofs can be interactively
developed and mechanically checked. This style of proof is highly constrained
by the logic, proof system, and the fact that every detail must be verified. On
the other hand, there is a very high level of assurance that the statement proved
is indeed a theorem of the proof system. Although the traditional proof style
dominates mathematics, the formal proof style is beginning to make some modest
inroads in mathematical practice.

3 Purposes of Mathematical Proof

Mathematical proofs serve (at least) seven purposes. For each of the seven, we
describe what the purpose is and compare how well traditional and formal proofs
fulfill the purpose.
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Purpose 1: Communication

The main purpose of a proof given in a textbook or scientific article is to commu-
nicate to the reader why a mathematical statement follows from a set of premises.
Proofs constructed for communication are used to convey insight and to build
intuition. The highly flexible style of traditional proofs is usually a much better
vehicle for communication than the highly constrained style of formal proofs.
This is especially true when the writer is more concerned about high-level ideas
than low-level details (that often can be mechanically checked by computation).
However, formal proofs can be much more effective at presenting intricate syn-
tactic manipulations than traditional proofs.

Purpose 2: Certification

Another important purpose of a proof is to certify that a mathematical statement
follows from a set of premises. Such a proof serves as a certificate that can
be independently checked. Since a traditional proof is written for a particular
audience, it may not be easily checked by someone outside of this audience.
Moreover, a traditional proof may contain mistakes that are not easily noticed
by a reader, even a reader in the intended audience. In contrast, a formal proof
can be mechanically checked by software alone. A formal proof thus offers the
highest level of certification.

Purpose 3: Discovery

A proof is often formulated to be a provisional argument that a mathematician
can use to discover new theorems. This idea is brilliantly expressed in Proofs
and Refutations by Imre Lakatos [7]. See also Yehuda Rav, “Why Do We Prove
Theorems?” [8]. Traditional proofs are well suited for expressing provisional ar-
guments that can be analyzed by humans. Formal proofs are too rigid to express
provisional arguments and thus are poorly suited for this task. On the other
hand, machines can be used to discover various kinds of structure embodied in
a formal proof, but it is much more difficult to analyze traditional proofs in this
way.

Purpose 4: Learning

The most effective way to learn mathematics is to read and write proofs. Tra-
ditional proofs are today generally much easier to read and write than formal
proofs. However, a reader of a traditional proof may have to work harder on re-
solving ambiguities, identifying unstated assumptions, and filling in the gaps in
the argument, and a writer may have to work harder on verifying that each step
of the argument is valid. With effective software support, reading and writing
formal proofs could become almost as easy as reading and writing traditional
proofs.
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Purpose 5: Universality

A proof is universal if it is expressed without any superfluous ideas and can thus
be applied in every context in which the conditions of the proof hold. Traditional
proofs can be expressed in a universal manner, but the underlying mathematical
foundation is usually implicit. Traditional proofs are thus untethered; they do not
have a precise mathematical home. Formal proofs have a precise mathematical
home, but the home is usually not connected to many other contexts in which
the proof can be applied. Hence both traditional and formal proofs fall short in
achieving universality.

Purpose 6: Coherency

A theorem is coherent with a body of mathematical knowledge if it properly
fits into the body without any contradictions or unexpected relationships. A
proof by itself does not establish that the theorem it proves is coherent. Most
mathematicians are reluctant to accept a theorem on only the basis of its proof.
There is always the possibility of error, especially if the proof is not machine
checked. Georg Kreisel has noted in several of his papers, e.g., in [5, p. 126]
and [6, p. 145], that a better way to avoid error than carefully checking a proof
is to use cross checks to compare the result with known facts. For example,
the proof can be checked against similarly structured proofs and the theorem
can be compared with consequences of the theorem or related versions of the
theorem that have been independently proven. Although cross checks are very
important, they are rarely written down and are not considered as part of either
a traditional or a formal proof.

Purpose 7: Beauty

Mathematics is a utilitarian art form like architecture or industrial design.
The desire to create beauty (what mathematicians call elegance) is one of the
strongest driving forces in mathematics. Mathematicians seek to develop proofs
that are beautiful as well as correct. Indeed some mathematicians will not accept
a theorem until an elegant proof of the theorem has been found. It is safe to say
that most mathematicians find it easier to write beautiful proofs in the highly
flexible traditional proof style than in the highly constrained formal proof style.

Summary

Table 1 summarizes the differences between traditional and formal proofs. As
can be seen, neither traditional proofs nor formal proofs fulfill all the purposes
that mathematical proofs have. Furthermore, both styles lack the capacity to
fully achieve universality and coherency.
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Traditional Proofs Formal Proofs

Communication  

H#

Certification

H#

 

Discovery (Human)  #

Discovery (Machine) #  

Learning (Reading) H#

H#
Learning (Writing) H#

H#
Universality

H# H#

Coherency # #

Beauty  #

 : high; H# : medium high;

H#

: medium low; # : low.

Table 1. Traditional vs. Formal Proofs

4 A Proposed New Style of Proof

Since traditional and formal proofs do not adequately achieve universality and
coherency, they are not adequate for building a highly interconnected UDML. We
therefore propose a new style of proof that is better suited for threading together
the concepts and facts in a UDML. This new proof style has four components:

1. A home theory HT consisting of a formal logic Log, a language Lang in Log,
and a set Axms of formulas in Lang that serve as the axioms of the theory.

2. A theorem Thm that is a formula in Lang purported to be a logical conse-
quence of Axms.

3. An argument Arg that shows Thm is a logical consequence of Axms.
4. A set CC of cross checks that compare Arg with similar arguments and the

theorem with related theorems.

The home theory is a node in a UDML and a formal context for the proof. It
is connected via meaning-preserving morphisms to other theories in the UDML.
Ideally, the home theory is at the optimal level of abstraction for the proof
and contains only the concepts and assumptions needed to express the proof’s
argument and theorem.

The theorem is a formal statement of what the proof’s argument shows.
It can be transported via appropriate morphisms to other theories in which
the conditions of the proof hold. The home theory HT and the theorem Thm
together thus serve as a specification of the set of theories T and formulas A in
the UDML’s theory graph such that T is an instance of HT, A is an instance
of Thm, and A is a theorem of T . In this way, the proof fulfills the purpose of
universality.

The argument Arg has both a traditional component for communication,
human-oriented discovery, learning, and beauty and a formal component for
certification, machine-oriented discovery, and learning. The two components are
tightly integrated so that, for example, a reader of the traditional component
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can switch, if desired, to the formal component when a gap in the argument
is reached. It is not necessary that the formal component is a complete formal
proof of the theorem. The formal component can even be totally absent. Thus
the proof is flexiformal [3].

The set of cross checks should be carefully chosen to show that the theorem
is coherent with the web of previously established facts in the UDML. There are
various kinds of cross checks that can be in CC. One kind is a similar proof of
a similar theorem. A second kind is a logical consequence of Thm in HT that
has been proved independently of Thm. For example, the logical consequence
could be a special case of Thm or a corollary of Thm. A third kind is an instance
of Thm in an instance of HT that has been proved independently of Thm. For
example, the instance of Thm could be an expression of Thm in a more concrete
setting than HT or the dual of Thm in HT under some notion of duality. With
the set CC the proof thus fulfills the purpose of coherency.

Of course, it is possible that a cross check fails. This could indicate that a
mistake has been made or that something is not adequately understood. Thus
failed cross checks are valuable because they can lead to finding hidden mistakes
and making new discoveries.

In summary, the new style of proof we propose is a mixture of the traditional
and formal proof styles in which the context of the proof and the statement
proved are formal, the argument of the proof is expressed in a traditional style,
and parts of the argument may be integrated with formal derivations. The home
theory of the proof is a node in a theory graph of a UDML that is an optimal
expression of the context of the proof. And the cross checks of the proof connect
the proof and the theorem to similar proofs and related theorems in the theory
graph.

5 Conclusion

We have proposed a new style of proof that contains elements of the traditional
and formal styles of proof. It fulfills the seven purposes of mathematical proofs
including universality and coherency. We believe this proof style is the thread
that is needed to interconnect the concepts and facts in a UDML. We also
believe its use will promote the formalization of mathematical knowledge while
preserving the benefits of both traditional and formal proofs.
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