A Scheme for Defining Partial Higher-Order Functions by
Recursion

William M. Farmer
McMaster University
Hamilton, Ontario, Canada

wmfarmer@mcmaster.ca

17 April 2001

Abstract

This paper describes a scheme for defining partial higher-order functions as the least fixed points of monotone
functionals. The scheme can be used to define both single functions by recursion and systems of functions by
mutual recursion. The scheme is implemented inithes Interactive Mathematical Proof System. Thers
implementation includes an automatic syntactic check for monotonicity that succeeds for many common recursive
definitions.

1 Introduction

Recursion is a powerful technique for defining functions (and other mathematical objects). It is one of the
mainstays of formal methods. Defining a function by recursion can facilitate both reasoning and computa-
tion performed with the function. Constructing a recursive definition of a function requires care: a faulty
definition will not define a bona fide function and may introduce inconsistencies. For example, there is no
function f onN (the set of natural numbers) that satisfies the recursive formula

Vn. f(n) = f(n)+1,

and the assumption that there is such a function implietkat .

Various schemes for defining functions by recursion have been proposed. A definition that is admitted
by a scheme is called a@nstanceof the scheme. Each scheme has a sehsthnce requirementhat a
proposed definition must satisfy in order to be an instance of the scheme. For some schemes a definition
is required only to have a certain syntactic form, while for other schemes a definition must possess certain
semantic properties. A schemepper if every instance of the scheme actually defines a function. The
domainof a scheme is the sé? of functions such that € D iff there is some instance of the scheme that
definesf.

A popular proper recursive definition scheme is the schenmiofitive recursion(see [10]). An in-
stance of primitive recursion is a pair of equations satisfying certain syntactic requirements. The domain of
primitive recursion is a broad, but proper, subset of the computablé fataitions onN. For example, the
following pair of equations constitute a primitive recursive definition of the factorial fungtioN — N:

1The domain of definitiorof a function f is the setD; of values at whichf is defined, and thdomain of applicatiorof f is the setD;: of
values to whichf may be applied. A functioif is total if Dy = D;‘, andpartial if Dy C D;‘,. Thus a total function is a special case of a partial
function.

3rd Irish Workshop on Formal Methods, 1999 1

A Scheme for Defining Partial Higher-Order Functions by Recursion

(1) £(0)=1.
(2) f(n+1)=h(n, f(n)) where h(z,y) =yx* (z+1).

There is a family of proper recursive definition schemes that are baseelbfounded recursionA
definition of a unary functiorf in this kind of scheme consists of a triglé, ¢, <) where7 is a theoryy
is an formula of the form

V. f(af) = A(f(a1($>)7) f(ak('r)))7

and« is a well-founded relation. The definition is an instance of the scheme if each applicagian tife
right side ofi is always “«-simpler” than the application gf on the left side ofy, i.e., that, for eachwith
1<:<E,

a;i(z) <z

holds in7 together with the “local context” of assumptions that govern the occurrenggagfz)) in

. The domain of a well-founded recursive definition scheme can be very large including the primitive
recursive functions and other computable total functions as well as possibly noncomputable total functions.
Normally, the domain will not contain functions that are strictly partial. For exanigley, <) constitutes

a well-founded recursive definition of the factorial functibhN — N where:

(1) Ais a standard theory of real arithmetic.
(2 ¢ isVn. f(n)=if(n=0,1, f(n —1) *xn).
(3) < isthe usual total order oN.

Mechanized mathematics systems—interactive computer systems for supporting and improving math-
ematical reasoning—usually provide their users with an implemented scheme for defining functions by
recursion. The designers of a mechanized mathematics system generally choose a proper scheme with eas-
ily checked instance requirements and a large domain. For exarple9] implements a generalization
of primitive recursion an@vs [13] implements a scheme for defining total higher-order functions by well-
founded recursion. Although strictly partial functions are ubiquitous in mathematics and computer science,
nearly all implemented schemes for defining functions by recursion admit only total functions.

This paper describes a proper scheme for defipigial (as well as total) higher-order functions by
recursion. In the scheme a function is defined as the least fixed pointrafnatone functionaland a
system of functions is defined as the simultaneous least fixed poinsydtam of monotone functionals
The scheme is derived from an approach to recursion developed by Y. Moschovakis [12]. Moschovakis
presents the approach in his paper [12] using an informal second-order logic that admits undefined terms
and partial functions. Our scheme is presented within a formal higher-order logic cafieds [2, 3, 4, 8]
that admits undefined terms and partial functions and that contains a definite description operator.

The scheme has been implemented and tested imtheInteractive Mathematical Proof System [7, 8]
which hasLUTINS as its logic.IMPS is equipped with an automatic mechanism for syntactically checking
whether a functional is monotone. Many common functions can be definedris by functionals on
which the monotonicity check succeeds. As a result, defining functiomgrs by recursion is usually
just a matter of writing down the appropriate functional: there are rarely any side conditions that need to
be proved. Although the scheme is presented withimiNs, it will work in other logics that admit partial
higher-order functions.

3rd Irish Workshop on Formal Methods, 1999 2

A Scheme for Defining Partial Higher-Order Functions by Recursion

The rest of the paper is organized as follows. Section 2 briefly introducesis, the logic ofimPs.
Section 3 states some of the key definitions concerning functionals and fixed points. The central theorem
underlying the scheme, a fixed point theorem for monotone functionals, is proved in section 4. The notion
of a recursive definition is defined in section 5. Section 6 presents some extensions to the basic scheme for
defining functions by recursion. How the scheme is implementesi#s is the subject of section 7. The
IMPS monotonicity check is described in section 8. The paper ends with a short conclusion in section 9 and
an appendix which presents a fixed point theorem for continuous functionals.

2 LUTINS

LUTINS? is a nonconstructive version of simple type theory [1]. A formalization of the traditional approach
to partial functions [5], it admits undefined terms and partial functions and has a definite description opera-
tor I. LUTINS is also equipped with a systemsirtsfor classifying terms by value which is an extension of

the system of types.UTINS closely corresponds to mathematics practice and has proven to be an effective
logic for formalizing traditional mathematics (e.g., see [6]).

The application of a term denoting a partial function to a term that denotes an argument outside of the
domain of the partial function is undefined. For exampJ@,and/—3 are undefined in a standard theory of
real arithmetic. The application of a term denoting a partial function to an undefined term is also undefined.
Undefined terms do not denote anything and are indiscernible from one another. The definite description
operator | is used to construdefinite descriptionsthat is, terms of the fornfl .). Aterm (I1z. @)
denotes the unique that satisfies if there is such an: and is undefined otherwise.

Although terms may be nondenoting)TINS is a bivalent logic: formulas are either true or false. In
particular, the application of a term denoting a predicate to an undefined term is always false. Most of the
laws of classical simple type theory holdinTINS without modification. However, the laws dealing with
instantiation and equality substitution are slightly different. For example, universal instantiation holds only
for defined terms.

A sortis a syntactic object that denotes a nonempty domdin, of values. Types are the maximal
sorts: every sort is a subtype of some type. Sorts are of either kindind x. A sort of the form

a1 X -0 X Qpy — Qe

of kind . wheren > 1 denotes the domain ef-ary partial functions fromD,, x --- x D, to D A

sort of the form

Qn41°"

o X -+ X QU — %

wheren > 1is of kind « and it denotes the domain afary total functions fromD,, x --- x D,,, t0 %, the
sort denoting the domaiftr, F} of truth values.
Every term is assigned a sort on the basis of its syntax. If atésrassigned a sott, then the value of
t is a member oD, providedt is defined A formula of the form¢ | asserts is defined, andt | «) asserts
thatt is defined ina, i.e., thatt is defined with a value iD,,. Sorts are also used to restrict the binding
operators of UTINS: A, V, 3, and I.
In LUTINS, = is a binary predicate that satisfies the usual axioms of equality. Like any other predicate,
if = is applied to an undefined term, the resulting expression is false. H&fite; 5 andy/—3 = /=3
are both false in a standard theodyof real arithmetic. An expression of the fors~ ¢ is an abbreviation

2pronounced as the word in French.

3rd Irish Workshop on Formal Methods, 1999 3

A Scheme for Defining Partial Higher-Order Functions by Recursion

for (s|] Vt]) D s = t, which asserts that eitherand¢ denote the same value srand¢ both denote no
value. Hence2/0 ~ 5 is false and/—3 ~ \/—3 is true in.A. Note that~ is nota predicate, just part of an
abbreviation.

A theoryof LUTINS is a pair? = (£,T') , whereL is a language ofuTIiNs andl is a set of sentences
in £ which serve as the axioms @f.

For more information aboutuTINS, see the references fouTINS given above.

3 Preliminary Definitions
Let £ be a language afuTINSs. An expressioris an term or formula of. For the rest of the paper, let
a=o01 X+ X Qp — Opy1
be a sort of kind wheren > 1.
A functional of sort «v is an expression of sort — «. A functional isin canonical formif it is a

lambda-expression. Given functiopsindh, g is asubfunctiorof % if the domainD, of g is a subset of the
domain ofh andg equalsh on D,.

We define the following predicates i1

Definition 3.1 (Subfunction) Vg,h: a. g Co h =
Vay:on, ooy ptapn. g(xr, ... x0)] D gz, ... xn) = h(z1,...,2p).

An expressiory C,, h asserts thag andh denote functions of sort such thayy is a subfunction of.
Proposition 3.2 C,, is a partial order onc.

Definition 3.3 (Monotone) V F': o« — «. monotone, (F) =
Vg.h:a.gCah D F(g) Ca F(h).

Definition 3.4 (Fixed Point) V f: o, F: a« — a. fp(f, F) = F(f) = f.

Definition 3.5 (Least Fixed Point) V f : o, F': a« — . Ifp (f, F) =
foo(f, F) A (Vg: o fp,(9, F) O f Ea 9).

Definition 3.6 (Strong Fixed Point) V f: a, F': a« — «. sfp,(f, F) =
foo(f; F) A (Vg: . F(g) Ea gD f Ea 9)-

Proposition 3.7 A functional has at most one least fixed point.

Proposition 3.8 A strong fixed point of a functional is a least fixed point of the functional.

3rd Irish Workshop on Formal Methods, 1999 4

A Scheme for Defining Partial Higher-Order Functions by Recursion

4 The Fixed Point Theorem

In this section we prove that every monotone functional has a strong fixed point. We begin by showing that
every monotone functiondl of sorta is total, i.e., defined for every member ®f

Lemma 4.1 The sentence
VF:a— a.monotone,(F) DV f:a. F(f)|

is valid in L.

Proof Let F' and f be variables of sorv — « anda, respectively. We will assumeonotone,, (F')
and then derivé’(f) |. After expanding the definition ahonotone,, and then instantiating the expanded
formula with f and f, we obtainf C,, f D F(f) C, F(f). SinceC,, is a partial order orx (by Propo-
sition 3.2) andf is defined ina, it follows that F(f) T, F(f). The latter impliesF'(f) | sinceCC, is a
predicate 0

Theorem 4.2 (Fixed Point Theorem for Monotone Functionals)The sentence
VF:a— «a.monotone,(F) >3 f:a.sfp,(f,F)

is valid in L.

Proof Fix a modelM for £, and letX », be the denotation itM of an expression or soX of L. Let I’
be a functional of sort and assume thdt,(is monotone inM. We must show that there is a strong fixed
point of Fly(in M.

For a functionf of sorta in M and an ordinal, defineF"],(f) inductively by:

1) FR(f) = f.
@) FL () = Fm(EL ().

) F/‘i,l(f) for a limit ordinal§ is the function represented by the set of ordered pairs

((a1,...,an), F(f)(a,...,an))

wherey < 4, (a1,...,a,) € (@1)pm X -+ X (o) m, @NdEF((f) (a1, .. ., ay) is defined.

The definition ofF"}(f) is well-defined sincé” is monotone and hence total by Lemma 4.1.

Define A, to be the empty function of sodt in M andcard(S) to be the cardinality of a given sét
Assume thaf""}(A,) is not a fixed point ofF'y4 for all ordinalsy. By this assumption, the monotonicity
of F'y¢, and induction on the ordinals, we can show that

card(y) < card(domain(F},(As)))

for all ordinalsy. Letx = card((ai)am X -+ X (an)am). Then
card(domain(F},(Aa))) <

for all ordinals~y. But then

K+ 1=card(x + 1) < card(domain(Fy{ 1 (A.))) < &,

3rd Irish Workshop on Formal Methods, 1999 5

A Scheme for Defining Partial Higher-Order Functions by Recursion

which is a contradiction.

We have thus shown that, for some ordinaF’},(A,) is a fixed point ofF)y,. Letd be the least ordinal
such thatF},,(A,) is a fixed point off'y,. We claim thatF}, (A,) is a strong fixed point of 4. Let g be
any function of sortv in M such thatF'y((g) =, g. Clearly,A,, C, g, and so by the monotonicity df,
FS(A0) Ca F34(9) Eo g Therefore F, (A) is a strong fixed point of . O

This fixed point theorem is related to the Knaster-Tarski fixed point theorem for complete partial
orders [11] and the Tarski fixed point theorem for complete lattices [16].

A fixed point theorem with a stronger conclusion can be obtained if “monotone functional” is replaced
with “continuous functional”. See the appendix for details. Continuous functionals are a popular device
in computer science for defining functions by recursion, and in particular, they are a basic component of
denotational semantics [14, 15].

5 Recursive Definitions

We can now present our scheme for defining (partial higher-order) functiansrims by recursion.
A recursive definitionn the scheme is a tripl& = (7, f, F') where:

(1) 7T = (L£,T") is atheory ofLUTINS.
(2) fis a constant of sort that is not a member of.
(3) F is a functional of sort: that is monotone ifT .

The defining axionof R is sfp,,(f, F'). Thedefinitional extension resulting froli is the extension of”
obtained by adding to £ and the defining axiom aR to I".

In the examples below, led be a standard theory of real arithmetic ahdZ, andR be the sorts i4 of
the natural numbers, the integers, and the real numbers, respectively.

Example 5.1 The term
F=Xf:N=N.An:N.if(n=0,1,f(n—1)*n)

is a monotone functional il of sortN — N. The recursive definitiof4, !, F') defines the factorial function
in A (where ! is a constant of sa — N not in £).

Example 5.2 The term

F = Xo:ZxZx(Z—R)—R.
Amn:Z,f: Z—=R.if(m<n,oc(mn—1,f)+ f(n),0)

is a monotone functional iil of sort
ZxZx(Z—R)—=R.

The recursive definitioni.4, 3, F') defines the function itd that gives the summation of a function of sort
Z — R over a finite segment of integers (whetds a constant of so x Z x (Z — R) — R notin).
(X(m,n, f) would usually be writtery_*_ . f(3).)

3rd Irish Workshop on Formal Methods, 1999 6

A Scheme for Defining Partial Higher-Order Functions by Recursion

Example 5.3 The term
F=\f:Z—~2Z.An:Z. f(n)

is @ monotone functional itl of sortZ — Z. Notice that every function of so — Z is a fixed point
of I. Thus, the recursive definitio4, Az _. 7, I') defines the empty function of saft— Z in A (where
Az _.7 is aconstant of soZ — Z notin £).

Example 5.4 The term
F=Xf:Z—-Z.An:Z. f(n)+1

is @ monotone functional inl of sortZ — Z. Notice that the empty function of saft — Z is the only
fixed point of . Thus, the recursive definitiad, A7 .7, F') defines the empty function of séft— Z in
A (whereA7 _ 7 is a constant of soZ — Z notin £).

The theorem below shows that recursive definitions are merely a convenience: they do not allow any
new functions to be defined that could not be defined by direct means.

Theorem 5.5 Let 7 be aLUTINS theory. A function can be directly definednby a term iff it can be
recursively defined i by a monotone functional.

Proof Let f be a constant of sort. Assumef is directly defined inZ” by a termt¢ of sorta. Thent |
holds in7, f does not occur in, and the defining axiom ig = ¢. Let F be\ f: . t. F' is a monotone
functional since | holds in7 and f does not occur i. Clearly,t is the unique fixed point of". Hence,f
is recursively defined il by F'.
Now assumef is recursively defined i by a monotone functionat’. Then the defining axiom is
sfp,,(f, F). Lett be
lf:a.sfp,(f, F).

Clearly,t | holds in7". Hence,f is directly defined irZ by ¢. O

6 Extensions

Our scheme for recursively defining functionsLinTINS can be extended in three ways.

First, the notion of defining a single function by recursion can be straightforwardly generalized to the
notion of defining a system of functions by mutual recursionregursive definitions redefined to be a
triple

R:(T7<f1af27"'afn>a<F17F27'--7Fn>)
where:
(1) 7 = (£,T") is atheory ofLUTINS.

(2) n>1.

3SinceLUTINS is a higher-order logic with a definite description operator, any function that can be defined indirectly by a formula can also be
defined directly by a term that is a definite description.

3rd Irish Workshop on Formal Methods, 1999 7

A Scheme for Defining Partial Higher-Order Functions by Recursion

(3) Foralliwith1 <i <mn:

(a) f;is a constant of sort; that is not a member of.
(b) F;is an expression of sott; x --- x a;, — «; that is monotone with respect to itth argument
in7.

Thedefining axionof R says that f1, fa, . . ., f) is a “simultaneous strong fixed point” ¢f}, F, ..., F),).
Thedefinitional extension resulting frof is the extension of obtained by adding, f», ..., f, to £ and
the defining axiom oRR to T".

Second, recursive definitions can be allowed to contain parameters. A recursive definition (of a single
function) with parameters of sort, . . ., 7, defines a constant of sortm; x --- x m,, — « by means of
a “parameterized functionalF’ of sorta x 7 x --- X m,;, — « that is monotone with respect to its first
argument. Thelefining axionof the definition is the sentence

\V/pl STy ooy Pmt Tm - Sfpa(f(pla” . 7pm)7)\g: Q. F(gvp177pm))

which says that each instance fofs a strong fixed point of the corresponding instancé’of

Example 6.1 The triple
(A7 Zl’ F)7
where

F = Xo:Zx(Z—=R)—=R,m:Z.
An:Z,f:Z—=R.if(m<n,o(n—1,f)+ f(n),0),

is a recursive definition of the summation functiérdefined in Example 5.2 with the first argument treated
as a parameter. Notice thatm, n, f) = X'(m)(n, f).

Example 6.2 Let sets(N) be the sort of sets of hatural numbers4nThe triple
(A, omega_embedding, F'),
where

F = XAf:N—=N,a:sets(N). Ak: N.
if(k =0,
In:N.n€aA(¥Vm:N.m<nD-(mé€a)),
In:N.n€an f(k—1)<nA
(Vm:N.(f(k—1) <mAm<n)D-(mEea))),

is a recursive definition with a parameter ogets(N). Leta be an expression defined sets(N). Then
omega_embedding(a) maps the natural numbers to the members sfich thati is mapped to théth
member ofz for all ¢ with with 0 < i < card(a). omega_embedding(a) is total iff card(a) is infinite.

3rd Irish Workshop on Formal Methods, 1999 8

A Scheme for Defining Partial Higher-Order Functions by Recursion

Third, a scheme for defining predicates by recursion can be obtained by modifying the scheme for
defining functions by recursion described above. Let

B=F1 %o x By —

be a sort of kindk wheren > 1. A predicateof sort/ is a total function of sorf. In the recursive definition
scheme for predicates, tisetbpredicateelation defined below is used in place of t#functiorrelation
defined above.

Definition 6.3 (Subpredicate)Vg,h: 3. g Cg h =

Var: Bry ooy Tnt Bn. g(x1,... xn) D h(z, ... 2p).

Example 6.4 The recursive definitiofi4, (even, odd), (F, F»)), where
Fi=Xe,0: N—x.if(n=0,T,o(n—1))

and
Fy=MXe,0: N— x.if(n=0,F,e(n—1),

defines inA the predicates even and odd on the natural numbers by mutual recufisaendtes true and
denotes false.)

7 Implementation in IMPS

Suppose that ammps user would like to define a new constghin a theory7 to be the function defined
by a (presumably monotone) functiorf@lin 7. The user will submit the triplé7, f, F') to IMPS, and then
IMPs will perform the following steps:

(1) Check thatf is a constant of a function sasitthat is not currently ir/” or in a structural supertheory
of 7.

(2) Check that is a functional in7” in canonical form of sordv.
(3) Check thatf’ is known to be monotone if.

(4) Ifthe checks above are successful, add the congtarthe language df, add the formulafp,, (f, F)
to the axioms of/’, and install the formuléfp,,(f, F) in 7 as a theorem.

IMPS knows thatF' is monotone in7 if monotone, (F') has been installed i as theorem or if the
monotonicity check described in the next section succeeds. on

8 The Monotonicity Check

For an expressio®’ and variables:, y, defineE[z — y] to be the result of replacing each free occurrence
of z in £ with y. Let f, g, andh be variables of sord, and letE be an expression that contains neither
norh. E'is f-stablein animps theory7 if

(9 Ea b A E[f —gll) D E[f = g] = E[f — h]

is valid in7. Notice that, ifE is f-stable andy C,, h, then eithetE[f — ¢] is undefined oF[f — ¢] and
E[f — h] are equal. Notice also thdititself is not f-stable.

3rd Irish Workshop on Formal Methods, 1999 9

A Scheme for Defining Partial Higher-Order Functions by Recursion

Lemma 8.1 (Stability Lemma) Let
F=\f:a. Ae1:aq,...,zp: ap. B
be a functional of sortv in a theoryZ. Thenmonotone,, (F') is valid in7 providedB is f-stable in7 .

Proof SupposeB is f-stable in7, andg andh are variables of sort not occurring inB. Then
(9Eah A B[f—gll) D Blf —g]=B[f—h]
is valid in 7. This implies
gCahD
ATi:Qp, oo, Tt ap. Blf —g] Co Az1: a1, ..., Tn: oy . B[f — A
isvalid in7, and hencg C, h D F(g) C, F(h) is valid in7. Thereforemonotone,, (F') is valid in 7.
O

The following four lemmas are easy to prove:
Lemma 8.2 If f is not free ink, thenE is f-stable in7.
Lemma 8.3 if(p, s,t) is f-stable in7 if f is not free inp and boths and¢ are f-stable in7.
Lemma 8.4 f(Ay,...,Ay)is f-stableinT if A; is f-stable in7 for all i with1 < i < n.

Lemma 8.5 E(By,...,B,,) Is f-stable in7 if E is f-stable in7 and B; is f-stable in7 for all i with
1 <7< m.

Given a functional
F=\f:a.B
in canonical form of sordv in a theoryZ , theiMPS monotonicity check works as follows. First, a functional
Fr=Xf:a. zp:oq, ..., Tn: an. Blay,...,20)

is constructed such thd = F” is valid in 7. Second, the applicatioB(z1, ..., z,) is beta-reduced (in
T), yielding a possibly new expressidsi. Lastly, the four lemmas above are repeatedly applief'tm a
purely syntactic manner until eithél is shown to bef-stable in7 or else no more applications of the four
lemmas are possible. In the former case, the check succeeds and the furfctisriabn monotone 7
by the Stability Lemma. In the latter case, the check fails and nothing is implied about whetherfoisnot
monotone in7 .

TheIMPs monotonicity check succeeds on the functionals given in Examples 5.1, 5.2, 5.3, 5.4, and 6.1
but does not succeed on the functional given in Example 6.2 because the véigfee in the body of the
second definite description. Notice that the functional

F' = Af:N—N,a:sets(N). \k: N.
if(k =0,
In:N.n€aA(¥Vm:N.m<nD-=(me€a)),
(Az:N.In:N.n€anz<nA
(Vm:N.(z<mAm<n)D-(mea)))(f(k—1))),

3rd Irish Workshop on Formal Methods, 1999 10

A Scheme for Defining Partial Higher-Order Functions by Recursion

is the same as the functional given in Example 6.2 except that' contains a non-beta-reduced lambda-
application for the form

(Az:N) (f(k - 1)).

As a result, the variabl¢ is moved into a position so that the monotonicity check succeeds .ofince

Vf.stpa(f, F) = sfp,(f, F')

is valid in7, F’ can be used to defirenega_embedding instead ofF".

This trick is often useful for transforming a functional on which the monotonicity check fails to an
“equivalent” functional on which the check succeeds. In our experience, nearly all recursive definitions that
arise naturally have functionals on which the monotonicity check succeeds directly or via a transformation
by means of this trick.

There is a monotonicity check for functionals that define predicates by (mutual) recursion which is
similar to the monotonicity check described in this section for functionals that define functions by (mutual)
recursion.

9 Conclusion

We have presented in the logiwTINS a proper scheme for defining partial higher-order functions by
recursion. An instance of the scheme is a triie f, F') where7 is a theory ofLUTINS, f is a constant of

a function sorty, and F' is a functional of sortx that is monotone if¥. The instanc€7, f, F') definesf

to be the strong fixed point df in 7. The domain of the scheme is exactly the set of functions that can be
directly defined inLUTINS. We have described three extensions of the scheme and an automatic syntactic
check for monotonicity that succeeds for many common recursive definitions. The scheme, with the three
extensions and the check for monotonicity, has been implemented im#glInteractive Mathematical

Proof System.

Appendix: Continuous Functionals
This appendix presents a fixed point theorem for continuous functionals which has a stronger conclusion

than Theorem 4.2, a fixed point theorem for monotone functionals.
Let sets(a) be the sort of sets of elementsf

Definition 9.1 (Chain) V S: sets(a) . chain,(S5) =
Vg,h:a.(ge SAheS)D(gC,hVhLC,yg).

Definition 9.2 (Least Upper Bound) V.S : sets(«) . lub,(S) ~
I fra. (VgeSDgCa I)N((Af:a.YgeSDgLa f)D [Ca).

Proposition 9.3 The least upper bound of a chain is always defined.

Definition 9.4 (Continuous) V F': a — «. continuous,, (F) =
monotone, (F') AV S: sets(a) . chain,(S) D F(lub,(S)) = lub,({F(g): g € S}).

3rd Irish Workshop on Formal Methods, 1999 11

A Scheme for Defining Partial Higher-Order Functions by Recursion

For a functionalF’ and a nonnegative integéret F(g) be an abbreviation faF (- - - (F(g)) - - -) where
F occurs; times.

Theorem 9.5 (Fixed Point Theorem for Continuous Functionals)If A, is the term
AT1:iQr, oo, Tt op . Yy antr. =(y=y)

(which denotes the empty function of seytand f is the term
lub({F*(Aq): 0 < d}),

then the sentence
VF:a— «a.continuous,(F) O sfp,(f, F)

is valid in L.
Proof By the definition off,
F(f) = F(lub({F'(An): 0 < i})).

SinceF is monotone{ F(A,): 0 < i} is a chain, and so by the definition of a continuous functional,

F(ub({F'(Ag): 0<i})) = Ib({F(F'(Ay)):0<i})
= Ub({FY(Ay): 1<}
— f

Hence,f is a fixed point ofF".

We claim thatf is a strong fixed point of". Let g be any function of sortv such thatF'(¢) C, g.
Clearly, A, C, g, and so by the monotonicity of, F'(A,) C, F'(g) Ea g for all i with 0 < i.
Therefore,

f=Wb({F(As): 0<i}) Ca g.

Acknowledgments

The recursive definition scheme described in this paper was developed jointly by Dr. Joshua Guttman,
Dr. F. Javier Thayer ®a, and the author as part of the desigmes.

References

[1] A. Church. A formulation of the simple theory of type¥ournal of Symbolic Logi&:56-68, 1940.

[2] W. M. Farmer. A partial functions version of Church’s simple theory of typé&surnal of Symbolic
Logic, 55:1269-91, 1990.

3rd Irish Workshop on Formal Methods, 1999 12

A Scheme for Defining Partial Higher-Order Functions by Recursion

[3] W. M. Farmer. A simple type theory with partial functions and subtygemals of Pure and Applied
Logic, 64:211-240, 1993.

[4] W. M. Farmer. Theory interpretation in simple type theory. In J. Heering et al., eHiigner-Order
Algebra, Logic, and Term Rewritingolume 816 ot_ecture Notes in Computer Scienpages 96—123.
Springer-Verlag, 1994.

[5] W. M. Farmer. Reasoning about partial functions with the aid of a compltkenntnis 43:279-294,
1995.

[6] W. M. Farmer, J. D. Guttman, and F. J. Thayer. Little theories. In D. Kapur, eddaiomated
Deduction—CADE-11lvolume 607 ofLecture Notes in Computer Scienpages 567-581. Springer-
Verlag, 1992.

[7] W. M. Farmer, J. D. Guttman, and F. J. ThayempPs: An Interactive Mathematical Proof System.
Journal of Automated Reasoninpl:213-248, 1993.

[8] W. M. Farmer, J. D. Guttman, and F. J. Thayer. Tines user’s manual. Technical Report M-93B138,
ThemITRE Corporation, 1993. Available &tttp://imps.mcmaster.ca/

[9] M. J. C. Gordon and T. F. Melhantntroduction to HOL: A Theorem Proving Environment for Higher
Order Logic Cambridge University Press, 1993.

[10] S. Kleene.Introduction to Metamathematic¥an Nostrand, 1952.

[11] B. Knaster. Un teoeme sur les fonctions d’ensemblefnnales de la SocietePolonaise de Mathe-
matique 6:133-134, 1928.

[12] Y. N. Moschovakis. Abstract recursion as a foundation for the theory of algorithmSormputation
and Proof Theory, Lecture Notes in Mathematics 1 Jaes 289-364. Springer-Verlag, 1984.

[13] S. Owre, J. M. Rushby, and N. Shankavs. A prototype verification system. In D. Kapur, editor,
Automated Deduction—CADE-Molume 607 oLecture Notes in Computer Scienpages 748—752.
Springer-Verlag, 1992.

[14] David A. SchmidtDenotational Semantics: A Methodology for Language Developridér@. Brown,
Dubuque, lowa, 1986.

[15] Joseph E. Stoy.Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory MIT Press, Cambridge, MA, 1977.

[16] A. Tarski. A lattice-theoretical fixpoint theorem and its applicatioRacific Journal of Mathematics
5:285-309, 1955.

3rd Irish Workshop on Formal Methods, 1999 13

