
Redex capturing in term graph rewriting∗

William M. Farmer and Ronald J. Watro

The MITRE Corporation
Burlington Road, A156
Bedford, MA 01730 USA

farmer@mitre.org, watro@mitre.org

November 1990

Abstract

Term graphs are a natural generalization of terms in which struc-
ture sharing is allowed. Structure sharing makes term graph rewrit-
ing a time- and space-efficient method for implementing term rewrite
systems. Certain structure sharing schemes can lead to a situation
in which a term graph component is rewritten to another component
that contains the original. This phenomenon, called redex capturing,
introduces cycles into the term graph which is being rewritten—even
when the graph and the rule themselves do not contain cycles. In some
applications, redex capturing is undesirable, such as in contexts where
garbage collectors require that graphs be acyclic. In other applications,
for example in the use of the fixed-point combinator Y, redex capturing
acts as a rewriting optimization. We show, using results about infinite
rewritings of trees, that term graph rewriting with arbitrary structure
sharing (including redex capturing) is sound for left-linear term rewrite
systems.

Keywords: Functional programming; Graph reduction; Infinite trees;
Mathematical foundations; Term graphs; Term rewriting systems.

∗This paper is a revised version of MITRE Technical Report M89-36 (July 1989). It
has been accepted for presentation at RTA-91 and publication in the International Journal
of the Foundations of Computer Science.

1

1 Introduction

Term rewriting is a model of computation and a model of formula manip-
ulation that is employed in many areas of computer science, including ab-
stract data types, functional programming, and automated reasoning. The
most direct way of implementing term rewriting is via string rewriting or
tree rewriting. However, these approaches are inefficient because there is
no structure sharing, that is, it is not possible to represent multiple occur-
rences of a subterm by a single substring or subtree. A better approach to
implementing term rewriting is through the use of a certain kind of graph
rewriting. The basic idea is to represent terms as “term graphs” in which
structure sharing is possible. Terms are then rewritten by rewriting their
graphical representations. A single rewriting of a term graph can corre-
spond to several rewritings of the term represented by the term graph, due
to structure sharing. Thus term graph rewriting is a time-efficient as well
as a space-efficient method for implementing term rewrite systems.

Just as a term rewrite rule is an ordered pair of terms, a term graph
rewrite rule is an ordered pair of term graphs. We will define term graph
rewriting in a manner slightly different from previous work. Our definition
is nondeterministic in the sense that a redex can be reduced in several ways,
depending on how structure is shared. (Other approaches (such as [1]) have
assumed that the rewriting rule itself determines the structure sharing.) We
use the nondeterministic approach because our goal is to prove a general
soundness theorem that applies to all forms of structure sharing.

Term graphs without cycles are usually called simply directed acyclic
graphs (DAGs). Proofs about acyclic systems are simplified by the fact
that every finite DAG corresponds to a unique term. Staples [11, 12, 13]
and Barendregt et al. [1] have studied graph rewriting without cycles. In
[1], a strong soundness theorem is given, stating that when term rewriting
is implemented by acyclic graph rewriting, then each result obtainable by
graph rewriting is also obtainable by term rewriting. It is also shown in [1]
that, in regular term rewrite systems, term graph rewriting is complete with
respect to term rewriting.

Term graphs with cycles are useful for representing infinite objects and
for efficiently implementing certain term rewrite rules, such as the rule for
the fixed-point combinator Y (see Example 4.5). For some term graph
rewrite rules, certain structure sharing schemes can lead to a situation in
which a term graph component is rewritten to another component that
contains the original. This phenomenon, called redex capturing , introduces

2

cycles into the term graph being rewritten—even when the graph and the
rule themselves do not contain cycles. Redex capturing can be undesirable
in some situations. This is obviously the case in contexts where term graphs
must be acyclic, such as in the presence of garbage collectors which only work
correctly on acyclic graphs. Also, correctness proofs are complicated by the
fact that cyclic term graphs do not correspond to unique finite terms. On the
other hand, redex capturing acts as a very desirable rewriting optimization
for the Y combinator. An interesting example of a system which illustrates
the issues of structure sharing and redex capturing in term graph rewriting
is the Clio verification system [2].

The nature of graph rewriting with cycles, and with redex capturing in
particular, has not been adequately addressed in the literature. When cycles
are allowed in term graph rewriting, it is no longer sound with respect to
(finite) term rewriting in the strong sense described above. In this paper
we give a careful description of what redex capturing is and how it occurs.
We show that redex capturing results from the application of certain rewrite
rules under certain structure sharing schemes. We also show that there is a
natural sense in which term graph rewriting with redex capturing is a sound
method for implementing left-linear term rewrite systems.

This latter result follows as a corollary from the main theorem of the pa-
per, the Soundness Theorem, which says that, if only left-linear, left-finite,
left-acyclic term graph rewrite rules are employed, a term graph rewriting
of finite length with redex capturing corresponds to a certain infinite, but
“convergent” tree rewriting. The Soundness Theorem makes no assumption
about how structure sharing is performed. The proof of the theorem uses
a lemma, called the ωω-Lemma, which is the major technical result of the
paper. From the Soundness Theorem we obtain as an immediate corollary
a proof of the soundness of the cyclic rewrite rule for the fixed-point com-
binator Y. In an earlier paper, Farmer, Ramsdell and Watro [6] proved
(without using infinite rewriting) that graph head reduction of combinator
expressions using the cyclic Y -rule is a correct implementation of term head
reduction. The soundness result proved here is a broad generalization of one
part of the earlier correctness theorem.

The paper consists of five sections in addition to this introduction. In
Sections 2 and 3, we present the basic definitions of term graphs and term
graph rewriting. We emphasize that the nature of term graph rewriting is
heavily dependent on the kind of structure sharing scheme that is employed.
Section 4 is devoted to the phenomenon of redex capturing. We show that to
avoid redex capturing there is a cost to be paid in terms of generality, imple-

3

mentation efficiency, or implementation simplicity. In Section 5, we discuss
tree rewriting—which we view as a special case of term graph rewriting.
Section 5 ends with a proof of the ωω-Lemma. The Soundness Theorem
and the corollaries described above are proved in Section 6.

2 Term graphs

We present in this section the definition of a term graph and several related
concepts. A term graph is a natural generalization of a labeled tree. Infor-
mally, term graphs are rooted, directed, ordered graphs in which each node
is labeled by a function symbol or a variable. Unlike trees, term graphs allow
structure to be shared, and in particular, may contain cycles. Also, term
graphs “unravel” into trees. Most of the definitions and propositions given
below are minor adaptations of work of Barendregt et al. [1], Kennaway [7]
and Raoult [10], . Unlike [1] and [10], we do allow term graphs to have more
than one node labeled by the same variable.

Let F be a set of function symbols and let V be a set of variables. We
assume that each function symbol f has a non-negative integer arity, denoted
by arity(f), and we define arity(v) = 0 for all variables v. For any set S, let
S∗ be the set of all finite words over S. The length of a word w is denoted
by |w|.

A term graph (over F and V) is a quadruple (N, lab, suc, ρ) where N is
a set of nodes with ρ ∈ N , lab : N → F ∪ V, and suc : N → N∗ such that
|suc(α)| = arity(lab(α)) for all α ∈ N . For α ∈ N , lab(α) is called the label
of α and the members of suc(α) are called the successors of α. ρ is called
the root of the term graph. Let i-suc(α) = αi for suc(α) = α1 · · ·αn. In the
rest of this paper term graphs are simply called graphs and are denoted by
G,H, etc. The components of a graph G are denoted by NG, labG, sucG, and
ρG. When there is no possibility for confusion, the components of a graph
Gs will be denoted by Ns, labs, sucs, and ρs.

A path in a graph G is a finite sequence p = 〈(α1, i1), . . . , (αn, in), αn+1〉
(n ≥ 0) where α1, . . . , αn+1 ∈ NG, i1, . . . , in ∈ ω (the natural numbers), and
αm+1 = im-suc(αm) for all m with 1 ≤ m ≤ n. The path p is said to be
from α1 to αn+1 and to have length n. A graph is root connected if there is
a path from the root to each node in the graph. The depth of a node α in
G, written dpG(α), is the least n ≥ 0 such that there is a path from ρG to
α with length n. If α ∈ NG and there is no path from ρG to α, dpG(α) is

4

undefined. The depth of a graph G, written dp(G), is

max{dpG(α) : α ∈ NG and dpG(α) is defined}.

In many applications of graph rewriting, nodes with undefined depth are
irrelevant and are removed (whenever possible). The task of detecting and
removing such nodes is called garbage collection. In this paper, little atten-
tion will be given to nodes with undefined depth and the issue of garbage
collection will be treated trivially.

A cycle is a path from a node to itself of length ≥ 1. A graph is cyclic if
there is a cycle in the graph. A tree is a graph G such that there is exactly
one path from the root of G to each other node of G. A term is a tree T
such that NT is finite.

Let G be a graph with β ∈ NG. The subgraph of G at β, written G/β is
the graph (N ′, lab′, suc′, β) where

N ′ = {α ∈ N : there is a path from β to α}

and lab′ and suc′ are the restrictions of lab and suc to N ′. Notice that
G/β is a root connected graph. An extension of G is a graph H such that
ρH = ρG and G is a subgraph of H.

A map ϕ : NG → NH is homomorphic at α ∈ NG if

(1) labH(ϕ(α)) = labG(α) and

(2) sucH(ϕ(α)) = ϕ̄(sucG(α))

where ϕ̄(α1 · · ·αn) = ϕ(α1) · · ·ϕ(αn). ϕ is a homomorphism from G to H
if ϕ is homomorphic at every α ∈ NG. Notice that in a homomorphism
there is no distinction between nodes labeled with 0-ary function symbols
and nodes labeled with variables.

A homomorphism ϕ from G to H is rooted if ϕ(ρG) = ρH . A bijective
homomorphism ϕ from G to H is an isomorphism from G to H. G and H
are equivalent , written G ≈ H, if there is a rooted isomorphism from G to
H.

Proposition 2.1 Let G be a root connected term graph.

(1) For every α ∈ NH , there is at most one homomorphism ϕ from G to
H with ϕ(ρG) = α.

(2) A rooted homomorphism from a graph G′ to G must be surjective.

5

(3) If there is a rooted homomorphism from G to a tree T , then G ≈ T .

An unraveling of G is a tree T such that there is a rooted homomorphism
from T to G/ρG. For each graph G, let u(G) be some unraveling of G.

Proposition 2.2 (1) For every G, u(G) exists.

(2) Any two unravelings of G are equivalent.

(3) A graph G is a tree iff G ≈ u(G).

G and H are tree equivalent , written G ≈t H, if u(G) ≈ u(H). A graph
G is consolidated if no two distinct subgraphs of G are tree equivalent.

Proposition 2.3 (1) G ≈ H implies G ≈t H.

(2) If T and U are trees, then T ≈t U implies T ≈ U .

(3) For every graph G there is a consolidated graph G′ such that G ≈t G
′.

(4) If there is a rooted homomorphism from a consolidated graph G to a
root connected graph H, then G ≈ H.

A weak homomorphism from G to H is a map ϕ : NG → NH such that:

(1) ϕ is homomorphic at every α ∈ NG with labG(α) ∈ F .

(2) For all α, β ∈ NG with labG(α) = labG(β) ∈ V,

H/ϕ(α) ≈t H/ϕ(β).

Weak homomorphisms create bindings for domain nodes that are labeled by
variables. Let ϕi be a weak homomorphism from Gi to H for i = 1, 2. ϕ1

and ϕ2 are compatible if, for all α1 ∈ N1 and all α2 ∈ N2 with lab1(α1) =
lab2(α2) ∈ V,

H/ϕ1(α1) ≈t H/ϕ2(α2).

When presenting specific graphs, we shall use a linear notation and some-
times a pictorial notation. The linear notation is derived from the linear
notation for graphs given in [1]. However, we write fα(–, . . . , –) in place of
α : f(–, . . . , –); the expression fα denotes a node α with label f . Also, the
leading node-label pair in a linear notation corresponds to the root of the
graph being described. With the pictorial notation, the root of a graph is
always the top-most node, and nodes in the graph with undefined depth are
not depicted. Otherwise, the pictorial notation is basically self-explanatory.

6

3 Term graph rewriting

A (graph) rewrite rule is a pair r = 〈GL, GR〉 of root connected graphs.
GL and GR are called the left side and the right side, respectively, of the
rewrite rule. r is a term [tree] rewrite rule if GL and GR are terms [trees].
r is left-linear if there are no distinct nodes α1, α2 ∈ NL with labL(α1) =
labL(α2) ∈ V. r is left-finite if NL is finite. r is left-acyclic if GL is acyclic.

A redex in a graph G is a pair ∆ = (r, θ) where r is a rewrite rule
〈GL, GR〉 and θ is a weak homomorphism from GL to G. θ(ρL) is called the
root of ∆. The depth of ∆ in G, written dpG(∆), is dpG(θ(ρL)).

Let ∆ = (〈GL, GR〉, θL) be a redex in G. To reduce ∆ in G means to
construct a new graph H from G in two steps as follows:

(1) Build step. Choose an extension H∗ of G and a weak homomorphism
θR from GR to H∗ such that θL and θR are compatible.

(2) Redirection step. For all α ∈ NH∗ and integers i such that i-sucH∗(α) =
θL(ρL), redefine i-sucH∗(α) to be θR(ρR). Also, if ρH∗ = θL(ρL), re-
define ρH∗ to be θR(ρR). Let H be this new graph obtained from
H∗.

Notice that the build step is nondeterministic but the redirection step is
deterministic (once H∗ and θR have been chosen). Suppose there is a redex
∆ = (r, θL) in G with root α. Then to apply r at α in G (using H∗ and θR)
means to reduce the redex ∆ in G (using H∗ and θR).

In our definition we have not specified any relationship between G and
the image of GR under θR. Thus the image of GR is allowed to share the
structure of G. There are several schemes for controlling structure sharing
between G and the image of GR. Four structure sharing schemes are briefly
described below:

(1) No structure sharing. The simplest scheme is to allow no structure
sharing at all between G and the image of GR. When G is a term and
〈GL, GR〉 is a term rewrite rule, redex reduction under this scheme is the
same as redex reduction in ordinary term rewriting. Of course, any imple-
mentation of rewriting based on this scheme will be highly inefficient.

(2) Minimal structure sharing. A very natural way of sharing struc-
ture between G and the image of GR is to require that the following con-
dition holds. Suppose α ∈ NR and there is some β ∈ NL such that
labR(α) = labL(β) ∈ V. Then θR(α) = θL(γ) for some γ ∈ NL such
that labL(γ) = labR(α). Intuitively, this means that the image of a node in

7

GR labeled with the variable x is equal to the image of some node in GL
labeled with x (provided such a node in GL exists). This mode of struc-
ture sharing is incorporated in nearly all structuring sharing schemes used
in implementations of term graph rewriting.

(3) Maximal structure sharing. Another scheme is to have maximal
structure sharing between G and the image of GR. H∗ is chosen so that
H is consolidated relative to G, i.e., if α ∈ NH − NG, then there is no
β ∈ NG ∪NH distinct from α such that H/β ≈t H/α. (Maximal structure
sharing is similar to hash consing in some pure Lisp implementations.) Re-
dex reduction based on this scheme can be costly to implement because it
requires global information about the structure of G.

(4) Rule-based structure sharing. The final scheme that we shall discuss
is presented in [1]. In this scheme, structure sharing is determined entirely
by structure sharing between GL and GR. θR must satisfy two conditions:
(1) if α ∈ NL ∩ NR, then θR(α) = θL(α), and (2) if α ∈ NR − NL, then
θR(α) ∈ NH∗ − NG. This scheme leads to less structure sharing than the
former scheme, but it requires only local information about the structure of
G.

Example 3.1 Suppose we would like to apply the rewrite rule

〈h(xα), g(xα, xα)〉
h

x
?
⇒

g

xR 	

to the graph

G = f(gβ(aγ , aγ), h(aγ)).

f

g h

a

�
�	

@
@R

�
�	Wz

If we use the no structure sharing scheme above, the result is

H1 = f(gβ(aγ , aγ), g(aδ, aδ))+h(aγ).

f

g g

aa

��	 @@R

	R 	R

If we use the minimal or rule-based structure sharing scheme, the result is

8

H2 = f(gβ(aγ , aγ), g(aγ , aγ))+h(aγ).

f

g g

a

�
�	

@
@R

Wz �9

And, if we use the maximal structuring sharing scheme, the result is

H3 = f(gβ(aγ , aγ), gβ) + h(aγ).

f

g

a

R

R

	

	

Our definition of redex reduction provides several opportunities for nodes
with undefined depth to be introduced into H. For instance, in the example
above, the node labeled with h in Hi (i = 1, 2, 3) has undefined depth
(and does not appear in the pictorial notation). In general, θL(ρL) will
have undefined depth in H if θL(ρL) 6= θR(ρR). In many applications of
term graph rewriting, the data structure representing the node θL(ρL) is
overwritten so that it represents the node θR(ρR). This provides a very
efficient way of performing the redirection step of redex reduction.

Let R be a set of rewrite rules. An R-redex in G is a redex (r, θ) in G
where r ∈ R. For root connected graphs G and H, G →R H means that
H = H ′/ρH′ where H ′ is the result of reducing an R-redex ∆ in G. We
write G→∆

R H when we want to indicate the redex ∆. Let →∗R denote the
reflexive and transitive closure of the relation →R.

We shall assume in the rest of the paper that all rewrite rules are mem-
bers of a fixed set R of rewrite rules. Since R is fixed we shall use →, →∆,
etc. as abbreviations for →R, →∆

R, etc.
A graph rewriting of a graph G0 via R is either (1) a finite sequence

Γ = 〈(G0,∆0), . . . , (Gn,∆n), Gn+1〉 (n ≥ 0) such that

G0 →∆0 G1 →∆1 G2 →∆2 · · · →∆n Gn+1

or (2) an infinite sequence Γ = 〈(G0,∆0), (G1,∆1), (G2,∆2), . . .〉 such that

G0 →∆0 G1 →∆1 G2 →∆2 · · · .

9

r1 = x ⇒
f

?
x

G1 =

g

?
a

H1 =

g

?
f
K

Figure 1: Example 4.1.

r2 =

f

?
x

⇒
g

x f

x

�
��

A
AU

?

G2 =

f

?
a

H2 =

g
�
��
a

)

Figure 2: Example 4.2.

4 Redex capturing

Let r = 〈GL, GR〉 be a rewrite rule, ∆ = (r, θL) a redex in a graph G, H∗

an extension of G, and θR a weak homomorphism from GR to H∗ such that
θL and θR are compatible. Suppose that θL(ρL) 6= θR(ρR) and that there
exists a path from θR(ρR) to θL(ρL). If ∆ is reduced using H∗ and θR, the
redirection step will create a cycle that begins and ends with θR(ρR). We
call this phenomenon redex capturing (since the image of GR “captures” the
redex ∆). It is illustrated by the following three examples.

Example 4.1 [Figure 1] Let r1 = 〈xα, f(xα)〉 and G1 = g(aβ). When r1 is
applied to the redex in G1 with root β using either the minimal, maximal,
or rule-based structure sharing scheme, the result is

H1 = g(fγ(fγ)) + aβ.

Example 4.2 [Figure 2] Let r2 = 〈fα(xβ), g(xβ, fα)〉 and G2 = f(aγ).
When r2 is applied to G2 using the maximal or rule-based structure sharing
scheme, the result is

H2 = gδ(aγ , gδ) + f(aγ).

10

r3 =

f

?
x

⇒
g

x x

�
��

A
AU

G3 = f
+

H3 = g
+s

Figure 3: Example 4.3.

Example 4.3 [Figure 3] Let r3 = 〈f(xα), g(xα, xα)〉 and G3 = fβ(fβ).
When r3 is applied to G3 using either the minimal, maximal, or rule-based
structure sharing scheme, the result is

H3 = gγ(gγ , gγ) + fβ(gγ).

Examples 4.1 and 4.2 show that redex capturing can create cycles even
when there are no cycles in the graph being rewritten or in the rewrite
rule being applied. This means that, if cyclic graphs are undesired (e.g.,
so that simple garbage collectors can be used), redex capturing must be
avoided. Example 4.3 shows that the application of the most innocuous sort
of rewrite rule can, in the right situation, involve redex capturing.

Proposition 4.4 Let r = 〈GL, GR〉 be a rewrite rule such that GR contains
a node labeled by a variable. Then there is some application of r involving
redex capturing.

Proof Case 1. labR(ρR) 6∈ V: Choose some x ∈ V such that there is some
αR ∈ NR with labR(αR) = x. Define ML = {α ∈ NL : labL(α) = x} and
MR = {α ∈ NR : labR(α) = x}. (Note: ML could be empty.) For all
α ∈ NL and integers i such that i-sucL(α) ∈ ML, redefine i-sucL(α) = ρL.
Then let G be this new graph obtained from GL. Similarly, for all α ∈ NR

and integers i such that i-sucR(α) ∈MR, redefine i-sucR(α) = ρL. Then let
H∗ be this new graph obtained from GR and G. Define θL to be the rooted
homomorphism from GL to G and θR to be the rooted homomorphism from
GR to H∗. Since labR(ρR) 6∈ V, we may assume without loss of generality
that ρL 6= ρR. Clearly, ∆ = (r, θL) is a redex in G, θL and θR are compatible,
θL(ρL) 6= θR(ρR), and H∗ is an extension of G. ∆ is captured when it is
reduced in GL using H∗ and θR.

Case 2. labR(ρR) = v ∈ V: In this case, GR contains just one node.
We assume that there exists αL ∈ NL with labL(αL) = v, for otherwise the
proof is trivial. Given the assumption, the proof proceeds as in case one, but

11

the construction of G includes a preliminary step that takes GL and replaces
some node labeled by v with another copy of GL. The map θR then sends
ρR to the root of the additional copy of GL, to ensure that θL(ρL) 6= θR(ρR).
2

Let us say that a rewrite rule 〈GL, GR〉 is coherent if there exists com-
patible weak homomorphisms θL and θR such that (1) the image of θL is
acyclic and (2) there is a path from θR(ρR) to θL(ρL). Clearly, a rewrite rule
〈GL, GR〉 is coherent whenever GL is an acyclic subgraph of GR. (Thus r1

and r2 in Examples 4.1 and 4.2 are coherent.) The proof of Lemma 4.4 shows
that, in cyclic graphs, redex capturing can occur with a very large class of
rewrite rules. However, in acyclic graphs, redex capturing can only occur
when coherent rewrite rules are applied with a certain amount of structure
sharing. Hence, redex capturing can be avoided in acyclic graphs either by
not using coherent rewrite rules or by using little or no structure sharing
in the application of coherent rewrite rules. In Example 4.1, the latter pre-
scription would mean not to use even the minimal structure sharing scheme
in applying r1 to G1.

Another way to forestall the cycle generation effect of redex capturing is
to redirect only those “arrows” that do not come from the image of the right
side of the rewrite rule. This is done by employing the following alternative
version of the redirection step of redex reduction:

Alternative redirection step. For all α ∈ NH∗ and integers i such that
(1) i-sucH∗(α) = θL(ρL) and (2) there is no path from θR(ρR) to α,
redefine i-sucH∗(α) to be θR(ρR). Also, if ρH∗ = θL(ρL), redefine ρH∗

to be θR(ρR). Let H be this new graph obtained from H∗.

If the alternative redirection step is used instead of the usual redirection
step, no cycles will be generated as a result of redex capturing. (Of course,
cycles could still be generated if cycles are present in the graph being re-
duced or in the right side of the rewrite rule being applied.) However, term
graph rewriting with the alternative redirection step—alternative term graph
rewriting for short—will generally be more expensive to implement than or-
dinary term graph rewriting since there must be a (sometimes costly) check
to see if there are any paths from the root of the image of GR to the root of
the image of GL. In conjunction with a structure sharing scheme, such as
the maximal scheme, in which a significant effort is devoted to achieving a
high degree of structure sharing, the cost of alternative term graph rewriting
could be acceptable.

12

For many applications, redex capturing is definitely undesirable because
it introduces cycles and possibly unwanted rewritings. However, for some
applications, redex capturing can be used as an optimization technique. This
is illustrated in the following example.

Example 4.5 [Figure 4] The rewrite rule for the fixed-point combinator Y
is

rY = 〈A(Y, x), A(x,A(Y, x))〉.
This rule is interesting because the left side of the rule is a subgraph of the
right side (thus the rule is coherent). A tempting alternative rule for Y, in
which structure sharing is embodied, is

r′Y = 〈Aα(Y, xβ), A(xβ, Aα)〉.

However, redex capturing results when this rule is applied using the rule-
based structure sharing scheme. The effect is exactly equivalent to applying
the cyclic rule

rc
Y = 〈A(Y, x), Aα(x,Aα)〉

using the minimal structure sharing scheme. In implementations of func-
tional programming languages, rc

Y is usually used instead of rY because it is
computationally more efficient (for a discussion of this subject, see [9] and
[14]). In particular, iterative procedures defined recursively with Y execute
in constant space when rc

Y is employed, but not when rY is used.

As we have shown above, redex capturing can be either desirable or
undesirable, depending on the application that is involved. We have not,
however, addressed the very important question of whether redex capturing
ever leads to an unsound implementation of term rewriting. The rest of the
paper is devoted to showing that term graph rewriting with redex capturing
is in fact sound with respect to term rewriting, provided only left-linear term
rewrite rules are employed (Corollary 6.3). We shall show this by proving
that a finite rewriting with redex capturing corresponds to a (possibly in-
finite) “convergent tree rewriting”. This result will be proved in Section 6,
and the terminology and machinery behind “convergent tree rewritings” will
be given in the next section.

5 Tree rewriting

In this section, we explore term graph rewriting restricted to trees and define
a notion of convergence for infinite tree rewriting sequences. This subject

13

rY =

A
�
��

A
AU

Y x

⇒
A
�
��

A
AU

x A
�
��

A
AU

Y x

rcY =

A
�
��

A
AU

Y x

⇒
A
�
��
x

)

Figure 4: Example 4.5.

is also examined by Dershowitz, Kaplan and Plaisted [4], where a rewriting
system R is called top-terminating if every ω-sequence of rewritings via R
is convergent. Our notion of convergence is called strong convergence in the
work of Kennaway, Klop, Sleep and de Vries [8].

Let T,U be trees and d ≥ 0. Define Nd
T = {α ∈ NT : dpT (α) ≤ d}. A

rooted isomorphism from T to U to depth d is a map ϕ : NT → NU such
that (1) ϕ is homomorphic at each α ∈ Nd

T and (2) ϕ is a bijection from Nd
T

to Nd
U . T is equivalent to U to depth d , written T ≈d U , if there is a rooted

isomorphism from T to U to depth d.
Let σ = 〈T0, T1, T2, . . .〉 be an infinite sequence of trees. The limit of σ,

written lim(σ), is a tree T (which need not exist) such that

∀d ≥ 0 ∃m ≥ 0 ∀n ≥ m [Tn ≈d T].

Define u(R) to be the following set of tree rewrite rules:

{〈u(GL), u(GR)〉 : 〈GL, GR〉 ∈ R}.

Proposition 5.1 If G→R H, then G→u(R) H.

Proof Suppose H is the result of reducing (〈GL, GR〉, θL) in G using H∗

and θR. Clearly, there are rooted surjective homomorphisms

ψL : u(GL)→ GL and ψR : u(GR)→ GR.

14

The images of u(GL) and u(GR) under θL ◦ ψL and θR ◦ ψR are identical
to the images of GL and GR under θL and θR, respectively. Also, ∆ =
(〈u(GL), u(GR)〉, θL ◦ ψL) is a u(R)-redex in G. Therefore, H is the result
of reducing ∆ in G using H∗ and θR ◦ ψR.2

A tree rewriting via R is a graph rewriting via u(R) composed entirely
of trees. For an infinite tree rewriting Γ = 〈(T0,∆0), (T1,∆1), (T2,∆2), . . .〉,
define σ(Γ) = 〈T0, T1, T2, . . .〉. →t,R is the relation→u(R) restricted to trees,
and →∗t,R is the reflexive and transitive closure of →t,R. As before, we shall

use →t, →∆
t , etc. as abbreviations for →t,R, →∆

t,R, etc.
Let Γ be a tree rewriting. If Γ = 〈(T0,∆0), . . . , (Tn,∆n), Tn+1〉, Γ con-

verges to T means T = Tn+1. If Γ = 〈(T0,∆0), (T1,∆1), (T2,∆2), . . .〉, Γ
converges to T means that

T = lim(σ(Γ)) and lim
n→∞

dpTn(∆n) =∞.

Proposition 5.2 Let Γ = 〈(T0,∆0), (T1,∆1), (T2,∆2), . . .〉 be an infinite
tree rewriting. If limn→∞ dpTn(∆n) =∞, then lim(σ(Γ)) exists.

Let T →ω
t U mean that there is a tree rewriting of T which converges to

U . For an integer d ≥ 0, let T →d,∗
t U mean that there is a tree rewriting

Γ = 〈(T0,∆0), . . . , (Tn,∆n), Tn+1〉 such that d ≤ dpTi(∆i) for all i with

0 ≤ i ≤ n. T →d,ω
t U is defined similarly.

Lemma 5.3 (ωω-Lemma) Assume that each member of R is left-linear,
left-finite, and left-acyclic.

(1) If T0 →ω
t T1 →t T2, then T0 →ω

t T2.

(2) If T0 →ω
t T1 →ω

t T2, then T0 →ω
t T2.

(3) Let σ = 〈T0, T1, T2, . . .〉 be an infinite sequence of trees such that

(a) T0 →d0,ω
t T1 →d1,ω

t T2 →d2,ω
t · · · .

(b) limn→∞ dn =∞.

Then T0 →ω
t lim(σ).

Before proving this lemma, we present three examples, one remark, and
one lemma. The three examples show that the hypotheses of the the ωω-
Lemma cannot be eliminated.

15

T =

g

f f

�
��

A
AU

f f
?

?
...

?

?
...

g

a b

�
��

A
AU

→∗t
g

f f

�
��

A
AU

a b
? ?

→∗t
g

f f

�
��

A
AU

f f
?

?
a

?

?
b

→∗t · · ·

Figure 5: Example 5.4.

Example 5.4 [Figure 5] Let T = u(g(fα(fα), fβ(fβ))) and

R = {〈a, f(a)〉, 〈b, f(b)〉, 〈g(x, x), c〉}.

Clearly, g(a, b) →ω
t T and T →t c, but it is not the case that g(a, b) →ω

t

c. This shows that the left-linear hypothesis of the ωω-Lemma cannot be
discarded. (This example is taken from [3].)

Example 5.5 [Figure 6] Let T = u(fα(fα)) and R = {〈x, f(x)〉, 〈T, b〉}.
Clearly, a→ω

t T and T →t b, but it is not the case that a→ω
t b. This shows

that the left-finite and left-acyclic hypotheses of the ωω-Lemma cannot be
discarded.

Example 5.6 [Figure 7] Let T1 = u(g(fα(fα), b)), T2 = u(g(fα(fα), c)),
and R = {〈g(x, b), g(f(x), b)〉, 〈b, c〉}. Consider the infinite tree rewrit-
ing Γ = 〈(g(a, b),∆0), (g(f(a), b),∆1), (g(f(f(a)), b),∆2), . . .〉. Clearly, the
depth of each redex ∆i in its respective tree is 0, and so Γ does not converge.
However, lim(σ(Γ)) = T1, and T1 →t T2, but there is no infinite tree rewrit-
ing Γ′ beginning with g(a, b) such that σ(Γ′) = T2. Hence the ωω-Lemma
would not be true if T →ω

t U were defined without the condition on the
depth of redexes.

16

T =

f

?
f

?
...

a →t f

?
a

→t f

?

f

?
a

→t · · ·

Figure 6: Example 5.5.

T1 =

g

f b

�
��

A
AU

f
?

?
...

T2 =

g

f c

�
��

A
AU

f
?

?
...

Γ =

g

a b

�
��

A
AU

→t

g

f b

�
��

A
AU

a
?

→t

g

f b

�
��

A
AU

f
?

?
a

→t · · ·

Figure 7: Example 5.6.

17

Remark 5.7 An incorrect version of the ωω-Lemma (named Theorem 1)
appeared in [3] and [5]. Example 5.6 is a counterexample to that result. A
corrected version, generalized to sequences of arbitrary length, is given in [4].
The Compressing Lemma of [8] is another generalization of the ωω-Lemma
to sequences of arbitrary length.

Lemma 5.8 Let S →d,ω
t T →∆

t T ′ where ∆ = (〈TL, TR〉, θ) such that
〈TL, TR〉 is left-linear and left-finite, d1 = dpT (∆) and d2 = dp(TL). If
d1 +d2 < d, then there is a redex ∆′ = (〈TL, TR〉, θ′) in S and a tree S′ such
that

S →∆′
t S′ →ω

t T
′.

Proof Since 〈TL, TR〉 is left-linear and left-finite and d1 + d2 < d, there is
a redex ∆′ = (〈TL, TR〉, θ′) in S such that θ′(ρL) = θ(ρL). Consider the set

U of subtrees of S at nodes α where dpS(α) = d. It follows from S →d,ω
t T

that the rewriting from S to T can be viewed as an interleaving of conver-
gent rewriting of the members of U . Since d1 + d2 < d, dpS(θ′(β)) < d
for each β ∈ NL with labL(β) ∈ V. Consequently, in S′ there are 0 or
more isomorphic copies of each member of U . For each copy there is a con-
vergent rewriting corresponding to the convergent rewriting of the original.
Therefore, a rewriting of S′ converging to T ′ can be constructed by simply
interleaving the rewritings of the copies of members of U .2

Proof of ωω-Lemma. Proof of (1): The proof is trivial if T0 →∗t T1; so as-
sume this is not the case. Suppose S →ω

t T →∆
t U where ∆ = (〈TL, TR〉, θ).

The assumption on R implies that 〈TL, TR〉 is left-linear and left-finite. Let
d1 = dpT (∆), d2 = dp(TL), and d > d1 +d2. By the definition of the conver-

gence of a tree rewriting, there is some tree S′ such that S →∗t S′ →
d,ω
t T .

Hence, by Lemma 5.8, S′ →ω
t U , and so S →ω

t U .
Proof of (2): The proof is trivial if T0 →∗t T1 and follows immediately

from part (1) of the lemma if T1 →∗t T2; so assume neither situation is the
case. It is sufficient to prove that if

(∗) S →∗t S′ →
d,ω
t T →d,ω

t U

then there is some d′ > d and some trees S′′ and T ′ such that

(∗∗) S′ →∗t S′′ →
d′,ω
t T ′ →d′,ω

t U.

18

Suppose that (∗) is true and d′ > d. By the definition of the convergence

of a tree rewriting, there is some tree T ′ such that T →∗t T ′ →
d′,ω
t U . From

S′ →ω
t T →∗t T ′ we obtain S′ →ω

t T ′ by a finite number of applications of
part (1) of the lemma. Again by the definition of convergence, there is some

tree S′′ such that S′ →∗t S′′ →
d′,ω
t T ′. It follows immediately from these

results that (∗∗) is true.

Proof of (3): lim(σ) exists because limn→∞ dn = ∞ and S →d,ω
t T

implies S ≈d T . It follows from the hypothesis and part (2) of the lemma
that, for all d ≥ 0, there is some m ≥ 0 and some tree T such that T0 →∗t
T →d,ω

t Tm and, for all n ≥ m, dn ≥ d. This implies that T0 →ω
t lim(σ).2

6 Soundness of term graph rewriting

Two redexes (〈G1, H1〉, θ1) and (〈G2, H2〉, θ2) in G are independent in G if

{θ1(α) : α ∈ NG1} ∩ {θ2(α) : α ∈ NG2} = ∅.

Lemma 6.1 Assume that each member of R is left-linear, left-finite, and
left-acyclic. If G→ H, then u(G)→ω

t u(H).

Proof Let G→∆ H, where ∆ = (〈GL, GR〉, θ). Define d = dpG(∆).
Case 1. ∆ is not captured: Let ϕ be a rooted homomorphism from

S = u(G) to G/ρG. Define N to be the largest subset of NS such that:

(1) If α ∈ N , then ϕ(α) = θ(ρL).

(2) If 〈(α1, i1), . . . , (αn, in), αn+1〉 is a path in S from α1 = ρS to αn+1 ∈
N , then ϕ(αi) 6= θ(ρL) for all i with 1 ≤ i ≤ n.

For each α ∈ N , there is a redex ∆α = (〈u(GL), u(GR)〉, θα) in S such
that θα is rooted weak homomorphism from u(GL) to an isomorphic copy
of u(G/θ(ρL)) at α. Then {∆α : α ∈ N} is a set of independent redexes in

u(G) each with depth ≥ d. Therefore, u(G) →d,ω
t u(H) because ∆ is not

captured.
Case 2. ∆ is captured: Since ∆ is captured, there is an infinite graph

rewriting given by

G = G0 →∆0 G1 →∆1 G2 →∆2 · · · ,

19

such that, for all n ≥ 0, (1) ∆n has the form (〈GL, GR〉, θn), (2) ∆n is not
captured, and (3) limn→∞ dpGn

(∆n) =∞. Hence by Case 1 we have

u(G0)→d0,ω
t u(G1)→d1,ω

t u(G2)→d2,ω
t · · ·

with limn→∞ dn =∞. Also, lim(σ) = u(H) for

σ = 〈u(G0), u(G1), u(G2), . . .〉.

Therefore, by part (3) of the ωω-Lemma, we have u(G)→ω
t u(H). 2

Theorem 6.2 (Soundness Theorem) Assume that each member of R is
left-linear, left-finite, and left-acyclic. If G→∗ H, then u(G)→ω

t u(H).

Proof Follows immediately from Lemma 6.1 and part (2) of the ωω-
Lemma.2

The corollary below shows that there is a natural sense in which term
graph rewriting with redex capturing is a sound method for implementing
left-linear term rewrite systems (i.e., term rewrite systems having only left-
linear rewrite rules).

Corollary 6.3 Assume that each member of R is a left-linear term rewrite
rule, and let G and H be finite, acyclic graphs. If there is a finite graph
rewriting of G to H via R, then there is a finite tree rewriting of u(G) to
u(H) via R composed entirely of terms.

Proof By the Soundness Theorem, u(G) →ω
t u(H). Since G and H are

finite, acyclic graphs, u(G) and u(H) are terms. By assumption, each mem-
ber of R is a term rewrite rule. Therefore, any tree rewriting of u(G) which
converges to u(H) must be finite and composed entirely of terms.2

The following example (which is closely related to Example 5.4) shows
that the left-linear hypothesis in Corollary 6.3 cannot be discarded:

Example 6.4 [Figure 8] Let R = {〈a, f(a)〉, 〈b, f(b)〉, 〈g(x, x), c〉}. Then
g(a, b) →∗ g(fα(fα), fβ(fβ)) (where redex capturing has occurred twice),
and hence g(a, b) →∗ c. However, there is no rewriting of g(a, b) to c com-
posed entirely of terms.

20

g

a b

�
��

A
AU

→∗
g

f f

�
��

A
AU

K K

→
c

Figure 8: Example 6.4.

Corollary 6.5 Let R be a set of combinator rewrite rules. The cyclic
rewrite rule rc

Y for the fixed-point combinator Y (see Example 4.5) is sound
in the sense that, if G→∗ H using rc

Y , then u(G)→ω
t u(H) using rY instead

of rc
Y .

Proof A combinator rewrite rule is ordinarily left-linear, left-finite, and
left-acyclic, so R satisfies the hypothesis of the Soundness Theorem. In
Example 4.5 we showed that applying the acyclic rewrite rule rY for Y with
redex capturing has the same effect as applying the cyclic rewrite rule rc

Y

for Y (without redex capturing). The corollary follows immediately from
the Soundness Theorem and this observation.2

We conclude this paper with a simple example illustrating Corollary 6.5.

Example 6.6 [Figure 9] Let t be the term A(Y,A(A(S, x), y)). By applying
the cyclic Y -rule rc

Y and the rule for the S combinator, the term t rewrites
to the cyclic graph Aα(A(x,Aα), A(y,Aα)). This graph is a normal form,
meaning that no further rewriting is possible. When the rule rY is used with-
out redex capturing, t rewrites in two steps to the term A(A(x, t), A(y, t)).
Acyclic rewriting can continue indefinitely, establishing an infinite rewriting
sequence which converges to the unraveling of the graph normal form.

Acknowledgments

The authors wish to express special thanks to Dr. Leonard Monk for many
valuable criticisms and suggestions. The authors are also grateful to The
MITRE Corporation for supporting this work under the MITRE-Sponsored
Research program.

21

A

�
��

A
AU

Y A

�
��

A
AU

A y

�
��

A
AU

S x

⇒
A

�
��

+

A
�
��

A
AU

A y
�
��

A
AU

S x

⇒
A

�
��

A
AU

A A
�
��
x

�
��
y

)

Figure 9: Example 6.6.

References

[1] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, J. R. Ken-
naway, M. J. Plasmeijer, and M. R. Sleep, “Term graph rewriting,” in
PARLE – Parallel Architectures and Languages Europe, Springer Lec-
ture Notes in Computer Science 259, (Springer-Verlag, Berlin, 1987),
pp. 141–158.

[2] M. Bickford, C. Mills, and E. A. Schneider, Clio: An applicative
language-based verification system, Tech. Rep. 15-7, Odyssey Research
Associates, Ithaca, NY, June 1989.

[3] N. Dershowitz and S. Kaplan, “Rewrite, rewrite, rewrite, rewrite,
rewrite, . . .,” in Conference Record of the Sixteenth Annual ACM Sym-
posium on Principles of Programming Languages, 1989, pp. 250–259.

[4] N. Dershowitz, S. Kaplan, and D. A. Plaisted, “Rewrite, rewrite,
rewrite, rewrite, rewrite, . . .,” to appear.

[5] N. Dershowitz, S. Kaplan, and D. A. Plaisted, “Infinite normal forms,”
in Proceedings of the 16th International Colloquium on Automata, Lan-
guages, and Programming, Lecture Notes in Computer Science 372,
(Springer-Verlag, Berlin, 1989), pp. 249–262.

[6] W. M. Farmer, J. D. Ramsdell, and R. J. Watro, “A correctness proof
for combinator reduction with cycles,” ACM Trans. Prog. Lang. Syst.
12 (1990) 123–134.

22

[7] R. Kennaway, “On ‘On graph rewritings’,” Theoret. Comp. Sci. 52
(1987) 37–58.

[8] J. R. Kennaway, J. W. Klop, M. R. Sleep, F. J. de Vries, “Transfinite
reductions in orthogonal term rewriting systems,” to appear, Center
for Mathematics and Computer Science (CWI) Report CS-R9042, Am-
sterdam, The Netherlands; also, to appear, Proceedings of the Fourth
International Conference on Rewriting Techniques and Applications,
April 1991.

[9] S. L. Peyton Jones, The Implementation of Functional Programming
Languages, (Prentice Hall, New York, 1987).

[10] J. C. Raoult, “On graph rewritings,” Theoret. Comp. Sci. 32 (1984)
1–24.

[11] J. Staples, “Computation on graph-like expressions,” Theoret. Comp.
Sci. 10 (1980) 171–185.

[12] J. Staples, “Optimal evaluations of graph-like expressions,” Theoret.
Comp. Sci. 10 (1980) 297–316.

[13] J. Staples, “Speeding up subtree replacement systems,” Theoret. Comp.
Sci. 11 (1980) 39–47.

[14] D. A. Turner, “A new implementation technique for applicative lan-
guages,” Soft. Pract. Exper. 9 (1979) 31–49.

23

