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Abstract. Although set theory is the most popular foundation for mathematics, not
many mechanized mathematics systems are based on set theory. Zermelo-Fraenkel
(zf) set theory and other traditional set theories are not an adequate foundation for
mechanized mathematics. stmm is a version of von-Neumann-Bernays-Gödel (nbg)
set theory that is intended to be a Set Theory for Mechanized Mathematics. stmm
allows terms to denote proper classes and to be undefined, has a definite description
operator, provides a sort system for classifying terms by value, and includes lambda-
notation with term constructors for function application and function abstraction.
This paper describes stmm and discusses why it is a good foundation for mechanized
mathematics.
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1. Introduction

The mathematics process consists of formulating mathematical models
and then exploring them by stating and proving conjectures and by
performing calculations. The goal of mechanized mathematics is to
produce computer systems that support and improve the mathematics
process. Today mechanized mathematics systems come in two major
types. Computer algebra systems1 enable the user to perform many
kinds of calculations, both symbolic and numeric. Theorem proving
systems2 assist the user in developing mathematical models in the
form of axiomatic theories. The development is guided and checked by
formally proving that certain conjectures are theorems of the theory
being developed.

Set theory has been the most popular foundation for mathematics
for the better part of the 20th century. Consequently, mathematicians
understand set theory quite well, and all serious mathematics practi-
tioners are familiar with it to some degree. Although it is based on the
two simple notions of set and membership, it is extremely expressive:
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nearly all mathematical concepts can be expressed in terms of set and
membership. A large part of the success of set theory is due to there
being a standard formalization known as Zermelo-Fraenkel (zf) set
theory.

Set theory has not been a very popular foundation for mechanized
mathematics. Only a few mechanized mathematics systems are based
on set theory. These include the following:

1. The eves program verification system [10] based on zf.

2. M. Gordon’s augmentation of hol [23] with zf axioms [22].

3. N. Megill’s Metamath proof verifier [27] based on zf.

4. The Mizar proof development system [38] based on Tarski-
Grothendieck set theory.3

5. L. Paulson’s implementation of zf [34] in the Isabelle generic
theorem prover [35].

6. A. Quaife’s clausal formalization of von-Neumann-Bernays-Gödel
(nbg) set theory [36] in the Otter resolution theorem prover [26].

What is wrong with set theory as foundation for mechanized mathe-
matics? Although classical set theories such as zf and nbg have great
expressive power, they lack the practical machinery needed for mecha-
nized mathematics. In particular, they do not provide built-in support
for reasoning with functions and classifying terms by value (as type
theory does).

Is there a version of set theory that would be a suitable foundation
for mechanized mathematics? This paper addresses this question. It
gives a set of design goals that we would like a set theory for mechanized
mathematics to satisfy. We explain why zf and nbg do not satisfy all
of these goals. We then propose a new Set Theory for Mechanized
Mathematics called stmm4 that does satisfy each of the design goals.
After defining stmm, we discuss the support stmm offers for functions,
issues concerning the implementation of stmm, and how stmm com-
pares with other implemented set theories. The paper ends with a short
conclusion.
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2. Design Goals

The following are six design goals for a set theory intended to serve as
a logical foundation for mechanized mathematics:

Design Goal 1 (DG1). The set theory includes the standard machin-
ery of predicate logic as well as the machinery of set theory.

In a set theory with the standard machinery of predicate logic, as-
sertions about sets can be made that involve quantification and the ap-
plication of predicates and operators. zf, nbg, and related set theories
satisfy this first goal.

Design Goal 2 (DG2) Terms may denote both sets (small collections)
and proper classes (big collections).

Many basic mathematical objects, such as the universe of sets and
the mapping that takes a set to its cardinality, are proper classes. In
zf, terms range over sets but not proper classes, while in nbg, terms
range over both sets and proper classes. (Proper classes are usually
represented in zf by predicate symbols—which are not terms.) Thus,
zf does not satisfy this goal, but nbg does.

Design Goal 3 (DG3) Terms may be undefined.

Undefined terms, like x/x where x = 0 and limx→∞ sinx, are a
common and unavoidable part of mathematics. They arise naturally
in mathematics practice from the use of partial functions and definite
descriptions. The direct use of undefined terms facilitates efficient, com-
pact expression of many mathematical ideas. This is the reason that
undefined terms are commonly employed in informal mathematics.

In most set theories, including zf and nbg, terms are not allowed to
be undefined since the underlying logic is usually standard first-order
logic. There are many approaches for dealing with partial functions
and undefinedness in formal logic. The major approaches are discussed
in [11].

Design Goal 4 (DG4) There is a definite description operator for
forming terms like the “the unique x that satisfies the property P”.

Definite description is a basic tool for defining mathematical con-
cepts. It is employed in some fashion or another throughout mathe-
matics. Set theories like zf and nbg do not normally contain a definite
description operator. Definite descriptions are awkward in a system

stmm.tex; 12/11/2002; 9:00; p.3



4 Farmer

in which all terms must be defined because a nondenoting definite
description like “the unique x such x 6= x” must denote some object.

Design Goal 5 (DG5) There is a built-in system for classifying terms
by value (as there is in type theory).

A term classification system is very useful for providing some imme-
diate information about the value of a term (e.g., that the term denotes
some integer) before the value of term is known itself (e.g., that the
term denotes 17).

There is no built-in system for classifying terms by value in either zf
or nbg. In particular, zf terms are an inadequate classification system
because they denote sets, but not proper classes. Thus, for example,
there is no term that can be a classification for the domain of all
terms or a classification for the domain of terms that denote functions.
Moreover, zf terms may denote the empty set. Allowing classifications
that may be empty would severely complicate a classification system
for terms. Such terms are hard to avoid since it is undecidable whether
an arbitrary zf term denotes the empty set.

Many mechanized mathematics systems are based on type theory.
Type theory provides a system for classifying terms by value, but it also
clashes with mathematics practice [25]. For example, in type theory
there are different operators for different types. When two types have
similar structure, some of their operators may be similar to each other.
For instance, an identity function on one type will behave the same as
an identity function on another type. To deal with distinct operators
with similar behavior, many type theories admit “polymorphic” opera-
tors that may be applied to arguments of different types. Polymorphic
operators are seldom employed in mathematics practice since sets, and
not types, dominate mathematics. In a set theory like zf or nbg, there
is just one type (sets or classes), so there is no need for polymorphic
operators.

Design Goal 6 (DG6) There is good support for functions including
lambda-notation (or an equivalent notation) with term constructors for
function application and function abstraction.

Functions, both partial and total, are just as basic to mathematics
as sets and need to be fully supported.

zf has poor support for functions. The set-theoretic machinery in
zf is inadequate. Since terms denote sets but not proper classes, terms
can represent some partial functions but not any total functions. Fur-
thermore, there are no term constructors for function application and
function abstraction as with lambda-notation. It would be awkward
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to add function application and abstraction term constructors to a
system like zf in which all terms are defined. Since terms can represent
only partial functions, many applications of a term denoting a function
would be nondenoting.

The (first-order) logical machinery in zf is also inadequate. Operator
symbols represent functions, but only total functions. Moreover, oper-
ator symbols are not terms. There is a term constructor for operator
application but not for operator abstraction.

In summary, zf satisfies just DG1, and nbg satisfies only DG1 and
DG2.

3. Overview of STMM

stmm is a version of von-Neumann-Bernays-Gödel (nbg) set theory.
As we shall see, stmm satisfies all six of the design goals given in the
preceding section.

In contrast to zf, variables in nbg range over both sets and proper
classes. Thus, the universe of sets V and total functions from V to
V like the cardinality function can be defined as terms in nbg even
though they are proper classes. (A good introduction to nbg is found
in [28].)

nbg is closely related to zf. The underlying logic of both nbg and zf
is first-order logic, and nbg and zf both share the same intuitive model
of the iterated hierarchy of sets. The nonlogical axioms of nbg are very
similar to those of zf; most of them are simply zf axioms with some of
the quantifiers restricted to sets. And there is a faithful interpretation
of zf in nbg [32, 37, 40], which implies that zf is consistent iff nbg is
consistent. However, nbg is finitely axiomatizable ([21] and [28] present
finite axiomatizations of nbg), while zf is not (see [24] or [30] for a
proof).

As a version of nbg, stmm satisfies DG1 and DG2 and has the
same expressive power as nbg.

stmm has additional machinery that makes it much more appro-
priate for mechanized mathematics than ordinary nbg. The additional
machinery includes:

1. Support for undefined terms (so DG3 is satisfied).

2. A definite description operator (so DG4 is satisfied).

3. A system for classifying terms by value (so DG5 is satisfied).

4. Support for (partial and total) functions (so DG6 is satisfied).
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This machinery has the the same flavor as the special machinery of
lutins [11, 12, 13], the logic of the imps Interactive Mathematical
Proof System [20, 17]. lutins closely corresponds to mathematics prac-
tice and has proven to be an effective logic for formalizing traditional
mathematics (e.g., see [16]).

The following are the major ingredients of stmm. In contrast to zf
and nbg, the underlying logic of stmm is Partial First-Order Logic
(pfol), a version of first-order logic that admits partial functions and
undefined terms (see [14, 15]). stmm contains the usual vocabulary and
axioms of nbg. It also contains a “sort system” for classifying terms by
value that is similar to the sort system of lutins. Lastly, stmm has term
constructors for function application and function abstraction—which
provides stmm with lambda-notation for reasoning with functions.

The ingredients of stmm are briefly discussed in the remainder of
this section, and then stmm is defined in the next section.

3.1. PFOL

pfol is a formalization of what we call the traditional approach to par-
tial functions [14]. pfol is closely related to the partial logics proposed
by R. Schock [39], T. Burge [6, 7], M. Beeson [3, 4], and L. Monk [29].

The syntax of pfol is very similar to the syntax of ordinary first-
order logic. pfol has the usual logical connectives (=,¬,∧,∨,⊃,≡,∀,∃)
plus a definite description operator I. I is used to construct definite
descriptions, that is, terms of the form (Ix . ϕ). A term (Ix . ϕ) denotes
the unique x that satisfies ϕ if there is such an x and is undefined
otherwise.

The semantics of pfol is a modification of the semantics of ordinary
first-order logic. Although individual constants and predicate symbols
have the same semantics as usual, operator symbols are allowed to
denote partial functions. Since definite descriptions and applications of
operator symbols may be undefined, the valuation function on terms is
partial, but the valuation function on formulas is total. In particular,
if p is an n-ary predicate symbol and t1, . . . , tn are terms, then the
application p(t1, . . . , tn) will be false if any argument ti is undefined.

3.2. Classifying Terms

A sort is a syntactic object intended to denote a nonempty domain
of values. In the case of stmm, these values are actually classes. Se-
mantically, a sort is just a nonempty unary predicate. Like types, sorts
are assigned to terms on the basis of their syntax, but unlike types,
sorts may be assigned to nondenoting terms (i.e., terms that are not
“type correct”). If a term t is assigned a sort α, then the value of t is a
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member of the domain denoted by α provided t is defined. (Whether or
not a term is defined is an undecidable problem.) Thus, sorts provide a
means to classify terms by value that does not depend on whether the
terms are defined or undefined.

3.3. Support for Functions

stmm provides especially good support for working with partial and
total functions. As in zf and nbg, partial functions from sets to sets are
represented in stmm as certain sets of ordered pairs. However, unlike zf
and nbg, stmm has special machinery—lambda-notation and sorts—
for directly manipulating terms that denote partial and total functions
and for keeping track of when an application of a function is defined
and what kind of value an application of a function may have when it
is defined.

The special machinery in stmm for reasoning with functions is dis-
cussed in more detail in section 5.

3.4. Relationship to NBG

An alternate version of stmm, called nbg∗, is described in [14] and
defined in [15]. nbg∗ is defined in stages, while stmm is defined in a
direct way. The purpose of nbg∗ is to illustrate precisely how it (and
stmm) is related to nbg. It is for study, not use. stmm, on the other
hand, is intended to be a logic that can actually be implemented and
used as a component of a mechanized mathematics system.

stmm and nbg∗ have the expressive power of nbg plus type-theoretic
like machinery. The theorem below, which follows from the results
in [15], shows that this additional machinery is purely a convenience.

THEOREM 3.1. For every theory T of nbg∗, there is a theory of
ordinary nbg T ∗ and a computable translation from each formula ϕ
of T to a formula ϕ∗ of T ∗ such that

T |= ϕ iff T ∗ |= ϕ∗.
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4. The Definition of STMM

4.1. Sort Systems

A sort is a syntactic object intended to denote a nonempty domain of
values. Sorts are used to classify terms by value.

The set of sort symbols built from a set S of atomic sort symbols
will be the set Ω(S) defined below.

Let S be a set of symbols. Ω(S) is the set defined by:

1. S ⊆ Ω(S).

2. If α, β ∈ Ω(S), then α ⇀ β ∈ Ω(S).

A sort of the form α ⇀ β is intended to denote the domain of partial
functions from the domain denoted by α to the domain denoted by β.

Given a total function f : S → Ω(S), �f is the smallest binary
relation on Ω(S) such that:

1. If α ∈ S, then α �f f(α).

2. �f is reflexive, i.e., for all α ∈ Ω(S), α �f α.

3. �f is transitive, i.e., for all α, β, γ ∈ Ω(S), if α �f β and β �f γ,
then α �f γ.

4. If α1 �f α2 and β1 �f β2, then α1 ⇀ β1 �f α2 ⇀ β2.

The intended meaning of α �f β is that the domain denoted by α is
included in the domain denoted by β.
�f is noetherian if every ascending sequence of members of Ω(S),

α1 �f α2 �f α3 �f · · · ,

is eventually stationary, i.e., there is some m such that αi = αm for all
i ≥ m. If �f is noetherian, then �f is obviously antisymmetric (i.e.,
for all α, β ∈ Ω(S), if α �f β and β �f α, then α = β). Hence, �f is a
partial order if it is noetherian.

A sort system of stmm is a pair (A, ξ) where A is a set of symbols
with C,V ∈ A and ξ is a total function from A to Ω(A) such that:

1. For all α ∈ A, ξ(α) = α iff α = C.

2. �ξ is noetherian.

C and V are intended to denote the domains of classes and sets, re-
spectively. The relation �ξ is not an absolutely necessary part of a sort
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system. It is included for the sake of convenience; we will see later the
benefits that it offers.

A sort of (A, ξ) is any member of Ω(A). The sorts in A and Ω(A)\A
are called atomic sorts and compound sorts, respectively. The enclosing
sort of α ∈ A is the sort ξ(α). The least upper bound of α and β,
written αtξ β, is the least upper bound of α and β in the partial order
�ξ. (The least upper bound of two sorts is not always defined.) The
maximal sorts in �ξ are C plus the compound sorts formed from C
alone.

A function sort is either a compound sort or an atomic sort α
such that α �ξ β for some compound sort β ∈ Ω(A). A function
sort, whether atomic or compound, is intended to denote a domain of
partial functions. The range sort of a function sort α, written ran(α),
is defined as follows: if α = β ⇀ γ, then ran(α) = γ; otherwise,
ran(α) = ran(ξ(α)). (We leave it as an exercise to the reader to verify
that the notion of a range sort is well defined.)

A sort frame for (A, ξ) is a set {Dα : α ∈ Ω(A)} of nonempty
domains such that:

1. If α �ξ β, then Dα ⊆ Dβ.

2. Dα ⊆ DC for all α ∈ Ω(A).

A sort frame is a “model” for a sort system. The relation �ξ is used to
place a minimal structure on the members of a sort frame.

4.2. Syntax

A variable of stmm is a member of a fixed infinite set V of symbols. A
language of stmm is a tuple (C,O,P,A, ξ, σ) such that:

1. C is a set of individual constants.

2. O is a set of operator symbols, each with an assigned arity ≥ 1.
O contains the binary operator symbol ordered-pair.

3. P is a set of predicate symbols, each with an assigned arity ≥ 1.
P contains the unary predicate symbol function and the binary
predicate symbols = and ∈.

4. (A, ξ) is a sort system.

5. σ : V ∪ C → Ω(A) is total function such that

Vα = {x ∈ V : σ(x) = α}

is infinite for all α ∈ Ω(A).
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6. V, C, O, P, and A are pairwise disjoint.

In the remainder of this paper, let L = (C,O,P,A, ξ, σ) be a
language of stmm. L is minimal if C = ∅, O = {ordered-pair},
P = {function,=, ∈}, and A = {C,V}.

Let L1 = (C1,O1,P1,A1, ξ1, σ1) and L2 = (C2,O2,P2,A2, ξ2, σ2) be
languages of stmm. L1 is a sublanguage of L2 if C1 ⊆ C2, O1 ⊆ O2,
P1 ⊆ P2, A1 ⊆ A2, ξ1 is a subfunction of ξ2, and σ1 is a subfunction
of σ2.

A term of sort α of L and a formula of L are simultaneously de-
fined by the rules below. varL[x, α] asserts that x ∈ V and α = σ(x),
termL[t, α] asserts that t is a term of sort α of L, and formL[ϕ] asserts
that ϕ is a formula of L.

T1
a ∈ V ∪ C

termL[a, σ(a)]

T2
varL[x, α], formL[ϕ]
termL[(Ix : α . ϕ), α]

T3
formL[ϕ], termL[s, α], termL[t, β]

termL[if(ϕ, s, t), γ]

where γ =
{
α tξ β if α tξ β is defined
C otherwise

T4
termL[f, α], termL[a, β]

termL[f [a], γ]

where γ =
{

ran(α) if α is a function sort
V otherwise

T5
varL[x, α], termL[t, β],

termL[(λx : α . t), α ⇀ β]

T6
o ∈ O is n-ary, termL[t1, α1], . . . , termL[tn, αn]

termL[o(t1, . . . , tn),C]

F1
p ∈ P is n-ary, termL[t1, α1], . . . , termL[tn, αn]

formL[p(t1, . . . , tn)]
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F2
formL[ϕ]
formL[¬ϕ]

F3
formL[ϕ], formL[ψ]

formL[(ϕ ⊃ ψ)]

F4
varL[x, α], formL[ϕ]
formL[(∀x : α . ϕ)]

When t is a term, let σ̄(t) denote the sort of t. A term of the form
(Ix : α . ϕ), if(ϕ, s, t), f [a], or (λx : α . t) is called a definite descrip-
tion, conditional term, function application, or function abstraction,
respectively. Notice that the relation �ξ enables nontrivial sorts to be
assigned to conditional terms and function applications in certain cases.

Parentheses in terms and formulas may be suppressed when meaning
is not lost. For convenience, we also employ the following abbreviations:

(s = t) for = (s, t).
(s 6= t) for ¬(s = t).
(s ∈ t) for ∈ (s, t).
(s 6∈ t) for ¬(s ∈ t).
〈s, t〉 for ordered-pair(s, t).
(ϕ ∧ ψ) for ¬(ϕ ⊃ ¬ψ).
(ϕ ∨ ψ) for ¬ϕ ⊃ ψ.
(ϕ ≡ ψ) for (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ).
(∃x : α . ϕ) for ¬(∀x : α . ¬ϕ).
2x1, . . . , xn : α . ϕ for 2x1 : α . . .2xn : α . ϕ

where 2 is ∀ or ∃.
(t ↓ α) for ∃x : α . x = t

where x does not occur in t.
(t↓) for (t ↓ σ̄(t)).
(t↑) for ¬(t↓).
(s ' t) for (s↓ ∨ t↓) ⊃ s = t.
⊥α for Ix : α . x 6= x.
(α� β) for ∀x : α . (x ↓ β).

(t ↓ α), t↓, t↑, and s ' t are read as “t is defined in α”, “t is defined”, “t
is undefined”, and “s and t are quasi-equal”.⊥α is a canonical undefined
term of sort α, and (α� β) says α is a subsort of β.

Let an expression of L be either a term or formula of L. “Free
variable”, “closed”, and similar notions are defined in the obvious way.
A sentence is a closed formula.
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4.3. Semantics

We shall present the semantics of stmm in two stages. In the first
stage, we introduce the “logic” portion of the semantics embodied in
the notion of a model of a stmm language. The logic portion of stmm
is Partial First-Order Logic (pfol), which we discussed in section 3. In
the second stage, we formulate the “set theory” portion of the semantics
by expressing the axioms of nbg set theory as stmm sentences and then
defining a stmm theory to be a stmm language plus a set of sentences
that includes these axioms.

A structure for L is a pair ({Dα : α ∈ Ω(A)}, I) where {Dα : α ∈
Ω(A)} is a sort frame for (A, ξ) and I is a total function on C ∪O ∪P
such that:

1. If a ∈ C, I(a) ∈ Dσ(a).

2. If o ∈ O is n-ary, I(o) is a partial function from DC × · · · × DC

(n times) to DC.

3. If p ∈ P is n-ary, I(p) is a total function from DC × · · · ×DC (n
times) to {t, f} (the domain of truth values). I(=) is the identity
relation on DC.

Let M = ({Dα : α ∈ Ω(A)}, I) be a structure for L. A variable
assignment into M is a function that maps each x ∈ V to an element
of Dσ(x). Given a variable assignment A into M, x ∈ V, and d ∈ Dσ(x),
let A[x 7→ d] be the variable assignment A′ into M such A′(x) = d and
A′(y) = A(y) for all y 6= x.

Define V = VM to be the binary function such that the following
conditions are satisfied for all variable assignments A into M and all
expressions of L:

1. If t ∈ V, then VA(t) = A(t).

2. If t ∈ C, then VA(t) = I(t).

3. Let t = (Ix : α . ϕ). If there is a unique d ∈ Dα such that
VA[x 7→d](ϕ) = t, then VA(t) = d; otherwise VA(t) is undefined.

4. Let t = if(ϕ, t1, t2), γ = σ̄(t), and

t′ = Ix : γ . (ϕ ⊃ x = t1) ∧ (¬ϕ ⊃ x = t2)

where x does not occur in ϕ, t1, or t2. If VA(t′) is defined, then
VA(t) = VA(t′); otherwise VA(t) is undefined.
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5. Let t = f [a], β = σ̄(t), and

t′ = I b : β . function(f) ∧ 〈a, b〉 ∈ f

where b does not occur in f or a. If VA(t′) is defined, then VA(t) =
VA(t′); otherwise VA(t) is undefined.

6. Let t = (λx : α . s), β = σ̄(s), and

t′ = I g : α ⇀ β . ∀x : α . if((x ↓ V) ∧ (s ↓ V), g[x] = s, g[x]↑)

where g does not occur in s. If VA(t′) is defined, then VA(t) =
VA(t′); otherwise VA(t) is undefined.

7. Let t = o(t1, . . . , tn). If VA(t1), . . . , VA(tn) are defined
and I(o) is defined at 〈VA(t1), . . . , VA(tn)〉, then VA(t) =
I(o)(VA(t1), . . . , VA(tn)); otherwise VA(t) is undefined.

8. Let ϕ = p(t1, . . . , tn). If VA(t1), . . . , VA(tn) are defined, then
VA(ϕ) = I(p)(VA(t1), . . . , VA(tn)); otherwise VA(ϕ) = f.

9. Let ϕ = ¬ϕ′. If VA(ϕ′) = f, then VA(ϕ) = t; otherwise VA(ϕ) =
f.

10. Let ϕ = (ϕ′ ⊃ ϕ′′). If VA(ϕ′) = t and VA(ϕ′′) = f, then VA(ϕ) =
f; otherwise VA(ϕ) = t.

11. Let ϕ = (∀x : α . ϕ′). If VA[x 7→d](ϕ′) = t for all d ∈ Dα, then
VA(ϕ) = t; otherwise VA(ϕ) = f.

For an expression E, VMA (E) is called the value of E in M with
respect to A (when it is defined). Notice that VMA is a partial valuation
function on terms but a total valuation function on formulas. A term
t of L is defined in M with respect to A if its value VMA (t) is defined.
A formula ϕ of L is valid in M if VMA (ϕ) = t for every variable
assignment A intoM. Notice that the valuation function on conditional
terms, function applications, and function abstractions is defined in
each case in terms of the valuation function on definite descriptions.

If a term is defined (i.e., t↓ is valid), then t is defined in its assigned
sort (i.e., (t ↓ σ̄(t))) by definition and is defined in C (i.e., (t ↓ C))
since DC is the domain of classes, which includes every domain.
M is a model for L if, for all α, β ∈ Ω(A),

∀ f : C . (f ↓ α ⇀ β) ≡
(function(f) ∧ (∀ a, b : C . f [a] = b ⊃ (a ↓ α) ∧ (b ↓ β)))
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is valid in M. That is, a model is a structure such that each Dα⇀β is
the domain of (partial) functions from Dα to Dβ. One can construct a
model for L by appealing to the fact that �ξ is noetherian.

Space limitations prevent us from presenting an axiom system for
the logic portion of the semantics of stmm. It would be very similar to
the axiom system for pfol given in [15].

4.4. NBG Axioms

Let L be minimal. We present now an axiomatization of nbg as a
set of sentences of L. Our axiomatization is very similar to the finite
axiomatization of nbg given by K. Gödel in [21]. The axiomatization
consists of 31 axioms. The first 15 are definitions that define (usually)
new symbols in terms of old symbols. The remaining 16 axioms are the
“proper” axioms of nbg. We use the variables a, b, c to denote variables
of sort C and w, x, y, z to denote variables of sort V.

The first axiom defines V to be the domain of sets. (Recall that a
set is a class that is a member of some other class.)

NBG1 (Definition of V) ∀x : C . (x ↓ V) ≡ ∃ y : C . x ∈ y.

The next fourteen axioms define the operator and predicate symbols
of nbg:

NBG2 (Definition of Pair) ∀ a, b : C . {a, b} '
(Ix : V . (a ↓ V) ∧ (b ↓ V) ∧ ∀ y : V . y ∈ x ≡ (y = a ∨ y = b)).

NBG3 (Definition of Singleton) ∀ a : C . {a} ' {a, a}.

NBG4 (Definition of Ordered Pair) ∀ a, b : C . 〈a, b〉 '
{{a}, {a, b}}.

NBG5 (Definition of Ordered Triple) ∀ a, b, c : C . 〈a, b, c〉 '
〈a, 〈b, c〉〉.

NBG6 (Definition of Subset) ∀ a, b : C . a ⊆ b ≡
(∀x : V . x ∈ a ⊃ x ∈ b).

NBG7 (Definition of Proper Subset) ∀ a, b : C . a ⊂ b ≡
(a ⊆ b ∧ a 6= b).

NBG8 (Definition of Empty) ∀ a : C . empty(a) ≡ ∀x : V . x 6∈ a.

NBG9 (Definition of Univocal) ∀ a : C . univocal(a) ≡
(∀x, y, z : V . (〈x, y〉 ∈ a ∧ 〈x, z〉 ∈ a) ⊃ y = z).
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NBG10 (Definition of Function) ∀ a : C . function(a) ≡
(univocal(a) ∧ ∀x : V . x ∈ a ≡ (∃ y, z : V . x = 〈y, z〉)).

NBG11 (Definition of Intersection) ∀ a, b : C . a ∩ b '
(I c : C . ∀x : V . x ∈ c ≡ (x ∈ a ∧ x ∈ b)).

NBG12 (Definition of Complement) ∀ a : C . a '
(I b : C . ∀x : V . x ∈ b ≡ x 6∈ a).

NBG13 (Definition of Domain) ∀ a : C . domain(a) '
(I b : C . ∀x : V . x ∈ b ≡ (∃ y : V . 〈x, y〉 ∈ a)).

NBG14 (Definition of Sum Class) ∀ a : C . sum(a) '
(I b : C . ∀x : V . x ∈ b ≡ (∃ y : V . x ∈ y ∧ y ∈ a)).

NBG15 (Definition of Power Class) ∀ a : C . power(a) '
(I b : C . ∀x : V . x ∈ b ≡ x ⊆ a).

The first two proper axioms of nbg are:

NBG16 (Extensionality) ∀ a, b : C . (∀x : V . x ∈ a ≡ x ∈ b) ⊃
a = b.

NBG17 (Pairing) ∀x, y : V . {x, y}↓.

The next group of axioms assert the existence of certain classes:

NBG18 (Membership Class) ∃ a : C . ∀x, y : V . 〈x, y〉 ∈ a ≡
x ∈ y.

NBG19 (Intersection) ∀ a, b : C . (a ∩ b)↓.

NBG20 (Complement) ∀ a : C . a↓.

NBG21 (Domain) ∀ a : C . domain(a)↓.

NBG22 (Direct Product) ∀ a : C . ∃ b : C . ∀x, y : V . 〈x, y〉 ∈ b ≡
x ∈ a.

NBG23 (Permutation 1) ∀ a : C . ∃ b : C . ∀x, y : V . 〈x, y〉 ∈ b ≡
〈y, x〉 ∈ a.

NBG24 (Permutation 2) ∀ a : C . ∃ b : C . ∀x, y, z : V .
〈x, y, z〉 ∈ b ≡ 〈y, z, x〉 ∈ a.
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NBG25 (Permutation 3) ∀ a : C . ∃ b : C . ∀x, y, z : V .
〈x, y, z〉 ∈ b ≡ 〈x, z, y〉 ∈ a.

The next four axioms assert the existence of certain sets:

NBG26 (Infinity) ∃x : V . ¬empty(x) ∧
(∀ y : V . y ∈ x ⊃ (∃z : V . z ∈ x ∧ y ⊂ z)).

NBG27 (Sum Set) ∀x : V . (sum(x) ↓ V).

NBG28 (Power Set) ∀x : V . (power(x) ↓ V).

NBG29 (Replacement) ∀ a : C . univocal(a) ⊃
(∀x : V . ∃ y : V . ∀ z : V . z ∈ y ≡ (∃w : V . w ∈ x ∧ 〈w, z〉 ∈ a)).

The last two axioms are the axioms of foundation and global choice:

NBG30 (Foundation) ∀ a : C . ¬empty(a) ⊃
(∃x : V . x ∈ a ∧ ∀ y : V . ¬(y ∈ x ∧ y ∈ a)).

NBG31 (Global Choice) ∃ f : C . function(f) ∧
(∀x : V . ¬empty(x) ⊃ f [x] ∈ x).

Notes:

1. {a, b} and 〈a, b〉 are undefined whenever a is not a set or b is not
a set.

2. In Gödel’s axiomatization of nbg in [21], 〈x, y〉 represents a map-
ping of y to x; in our axiomatization it represents a mapping of
x to y.

3. Axiom NBG22 says that, for all classes a, the direct product
a× V is a class, where V is the class of all sets.

4. It is an exercise in p. 164 of [28] that the first permutation
axiom, NBG23, follows from axioms NBG21, NBG22, NBG24,
and NBG25.

5. The axiom of foundation, NBG30, is dispensable and could be
replaced with an “antifoundation” axiom (see [1]).

6. The axiom of global choice, NBG31, implies the axiom of local
choice (as given, for example, in [28]).
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4.5. Theories

Let L0 = (∅,O0,P0,A0, ξ0, σ0) be a stmm language such that:

1. O0 contains only the operator symbols defined in the axioms
above.

2. P0 contains only =, ∈, and the predicate symbols defined in the
axioms above.

3. A0 = {C,V}.

Also let Γ0 = {NBG1, . . . ,NBG31}.
A theory of stmm is a pair T = (L,Γ) where L is a language of

stmm such that L0 is a sublanguage of L and Γ is a set of sentences
of L such that Γ0 ⊆ Γ. The theory T 0 = (L0,Γ0) is called the kernel
theory of stmm. Let T = (L,Γ) be a theory of stmm. A model for T
is a model for L in which each ϕ ∈ Γ is valid. A formula ϕ of L is valid
in T , written T |= ϕ, if it is valid in every model for T .

5. Support for Functions

In this section, “mapping” means an arbitrary function, while “func-
tion” means a particular kind of class that represents a function from
sets to sets and “operator” means a function from classes to classes.

5.1. Functions

A function in stmm is a univocal class of ordered pairs that represents
a partial or total mapping from sets to sets. If the domain of a function
happens to be a set, the function itself is a set. If the domain is a
proper class, the function is a proper class. A function that is a set is
necessarily partial, while a total function is necessarily a proper class.
A total function represents a mapping defined on all sets, such as the
mapping that takes a set to its cardinality. Mappings defined on all sets
arise naturally in mathematics practice. In stmm, they are first-class
objects: they can be quantified over and represented by terms. They
are not first-class objects in zf and related set theories that do not
admit proper classes.

5.2. Operators

An operator in stmm is a partial or total mapping from classes to
classes. Operator symbols denote operators, but in general terms do
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not. Since an operator symbol is not a term, predicate symbols and
other operator symbols cannot be applied to them. This dichotomy
between terms denoting set mappings and operator symbols denoting
class mappings reflects a natural division between the different roles
mappings play in mathematics. A mapping that is to be reasoned
about—such as a mapping from the real numbers to the real numbers—
is usually a class; in stmm it can be the value of a fully endowed term.
A mapping that is only to assist in forming assertions—such as the
mapping that takes a function to its domain—may not be a class; in
stmm it can be the value of an operator symbol that can be used to
form terms but is not a term itself.

5.3. Sorts

A sort α of L is a syntactic object that denotes a nonempty domain Dα

of classes. A sort can denote any nonempty domain specified by a unary
predicate symbol. The sorts of L in a stmm theory T = (L,Γ) form a
partial order � that extends the partial order �ξ. If T |= α� β, then
Dα ⊆ Dβ is true in every model for T . In every theory, C, the sort of
classes, is the maximum sort: α � C for every sort α. A compound
sort α ⇀ β denotes the domain of all functions from the sets in Dα

to the sets in Dβ. Hence, V ⇀ V and C ⇀ C both denote the entire
domain of functions. Since functions may be partial, α ⇀ β � α′ ⇀ β′

whenever α� α′ and β � β′.
Sorts are convenient for classifying terms by value. If a term t is

defined in a sort α (i.e., (t ↓ α) holds), then t denotes a class in Dα. A
term may be defined in several sorts. For example, if (t ↓ α) and α� β,
then (t ↓ β). Like types, sorts are assigned to terms on the basis of their
syntax, but unlike types, sorts may be assigned to nondenoting terms
(i.e., terms which are not “type correct”). That is, every term t of L is
assigned a sort σ̄(t) whether or not t is defined. A term t is defined in
σ̄(t) provided t is defined.

5.4. Function Application

A function application of L is a term of the form f [a] where f and a
are terms of L. A function application f [a] is intended to denote the
result of applying a function denoted by f to an argument denoted by
a. Regardless of what values f and a have, f [a] is a legitimate, well-
formed term. However, f [a] is defined only if f denotes a function and
a denotes a set in the domain of the denotation of f . If α = σ̄(f) is a
function sort, β = σ̄(f [a]) is the range sort of α; otherwise β = V, the
sort of sets.
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Function applications provide stmm with the means to express
statements involving functions in a very concise manner. For example,
the sentence

∀x, y : R .
√
x = y ⊃ x = y2,

where R denotes the set of real numbers, says that the square of a
square root of a number is the number itself. There is no need to
mention that the domain of the square function is the set of nonnegative
real numbers since

√
x = y is true only if

√
x is defined. In traditional

set theories like zf and nbg, the application of a set representing a
function can only be expressed in a verbose, indirect way with the use
of quantifiers.

5.5. Function Abstraction

A function abstraction of L is a term of the form (λx : α . t). When
(λx : α . t) is defined, it denotes a function in the denotation of its
assigned sort α ⇀ σ̄(t). Together, function applications and function
abstractions constitute a convenient lambda-notation for applying and
defining classes which denote functions.

5.6. Definite Description

A definite description of L is a term of the form (Ix : α . ϕ). Since a
definite description (Ix : α . ϕ) is defined only if there is a unique x
satisfying ϕ, definite descriptions are exceedingly useful for specifying
functions, especially partial functions. For example,

λx : R . I y : R . 0 ≤ y ∧ y ∗ y = x,

where R denotes the set of real numbers, specifies the standard square
root function over the real numbers.

6. Implementation

For the most part, stmm can be implemented like other logics having
quantifiers and lambda-notation. However, some of the less common
aspects of stmm—undefined terms, definite descriptions, and sorts—
require special implementation techniques.

6.1. Undefined Terms and Sorts

The undefined terms and sorts of stmm can be implemented in the same
way the undefined terms and sorts of lutins are implemented in imps.

stmm.tex; 12/11/2002; 9:00; p.19



20 Farmer

Reasoning in stmm (like lutins) involves proving many obligations of
either the form t ↓ or (t ↓ α). (Recall that t ↓ is an abbreviation for
(t ↓ σ̄(t)).) For example, before a definite description (Ix : α . t) can
be “opened up”, one must prove (Ix : α . t)↓. Also, an assumption of
the form (∀x : α . ϕ) can be instantiated with a term t only if one can
prove (t ↓ α).

An implementation requires an automated mechanism for quickly
determining the truth status of definedness goals of the form t↓ and sort
definedness goals of the form (t ↓ α). The mechanism in imps for this
is built into the imps theory-specific expression simplifier [17, 18, 19].
It is able to discharge the great majority of the definedness and sort
definedness obligations that arise during the course of an imps proof.
A similar simplifier-based mechanism could be incorporated into an
implementation of stmm.

6.2. Definite Descriptions

Proving assertions containing definite descriptions can be tricky. Spe-
cial machinery is needed, for instance, for “opening up” definite de-
scriptions known to be defined, handling definite descriptions whose
definedness is not known, and simplifying expressions containing def-
inite descriptions of the form (Ix : α . x = t). Chapter 15 of [18]
discusses the definite description machinery implemented in imps. This
machinery could also be used in an implementation of stmm.

6.3. Little Theories

The little theories method is a version of the axiomatic method in which
a complex system or body of knowledge is described as a network of
axiomatic theories linked by theory interpretations. The paper [16]
argues that the little theories approach is highly desirable for mech-
anized mathematics and describes how imps supports it. stmm could
be implemented with little theories much like imps. One would have to
define the notion of an interpretation of one stmm theory in another
(see [13]).

A simple approach would be to define an interpretation of a theory
T 1 in a theory T 2 to be a function that maps the individual constants of
T 1 to appropriate terms of T 2 and the atomic sorts of T 1 to appropriate
sorts, unary predicates, and terms of T 2. Moreover, an interpretation
would be required to leave the kernel theory fixed. Operator and pred-
icate symbols would remain fixed and would be defined only in the
kernel theory. Since the kernel theory is a subtheory of every other
stmm theory, all stmm theories would have the same basic set-theoretic
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machinery and, in particular, the same operator and predicate symbols
defined in the same way.

6.4. Implementation in IMPS

stmm has been implemented in imps by using the imps logic lutins, a
partial version of higher-order logic, in place of pfol. The sort system
for stmm is inherited from the sort system for lutins with compound
sorts of stmm represented by atomic sorts of lutins. As a consequence,
the support in imps for compound sorts of lutins is not extended
to compound sorts of stmm. This is a significant shortcoming of the
implementation that can be fixed only by modifying imps itself.

7. Comparison with Other Implemented Set Theories

As we have shown, stmm is a hybrid system fashioned from the follow-
ing components:

1. pfol.

2. nbg.

3. A lutins-style sort system.

4. Lambda-notation.

The components of stmm are certainly not novel, but the idea of using
them together and the way they are combined are novel.

Unlike stmm, none of the six set theories implemented in the mecha-
nized mathematics systems listed in section 1 satisfies all of the design
goals given in section 2. In particular, none of them satisfies DG3
and only Quaife’s version of nbg satisfies DG2. zf, nbg, and related
set theories can be modified to minimally satisfy DG4–6. However,
as we noted in section 2, definite description operators, systems for
classifying terms by value, and operators for function application and
abstraction are awkward in set theories that do not admit proper classes
and undefined terms. By virtue of satisfying both DG2 and DG3,
stmm satisfies DG4–6 more effectively than traditional set theories.

As a foundation for mechanized mathematics, stmm is actually
much closer to lutins than to any of the six implemented set theories.
Although lutins is a version of Church’s simple type theory, it can
be viewed as a set theory since sets can be formalized in simple type
theory as characteristic functions (in one way or another). As such,
lutins satisfies all the design goals except DG2. Nevertheless, lutins
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is formally less expressive than stmm since simple type theory is less
expressive than zf. Also, in lutins polymorphism is a concern because
there is more than one type, while in stmm terms denoting functions
are effectively polymorphic operators because they can be applied to
all sets. stmm has all the virtues of lutins as well as the full power
of nbg set theory. Moreover, any mathematical reasoning performed in
lutins can be directly transferred to stmm.

8. Conclusion

We have presented a version of nbg set theory that is intended to serve
as a foundation for mechanized mathematics. It is based on familiar,
well-understood ideas and principles from predicate logic and mathe-
matics practice. It has the same expressive power as the zf and nbg
set theories and the same convenient machinery for reasoning about
functions as lutins, the logic of imps. It also has a sort system for
classifying terms by value, like lutins’s sort system, that is not a
major departure from traditional set theory. And, finally, it can be
implemented in much the same way that lutins is implemented in
imps.

A mechanized mathematics system based on a set theory like stmm
would be an asset for mechanized mathematics. Since set theory is
familiar to nearly all mathematics practitioners, a system based on set
theory would likely be more accessible to ordinary students, scientists,
and engineers than systems based on type theory. Also, mathemati-
cians might be more inclined to participate in mechanized mathematics
if there were more and better mechanized mathematics systems that
communicated using set theory.

Notes

1 Examples include Maple [8] and Mathematica [42].
2 Examples include Automath [31], Coq [2], eves [10], hol [23], imps [20, 17],

Isabelle [35], Mizar [38], Nqthm [5], Nuprl [9], Otter [26], and pvs [33].
3 Tarski-Grothendieck set theory is zf plus an axiom due to A. Tarski [41] that

asserts the existence of universes—sets closed under the usual set-theoretic opera-
tions.

4 Pronounced as the word “stem”.
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