Trustable Communication Between
Mathematics Systems™*

Jacques Carette, William M. Farmer, and Jérémie Wajs**

McMaster University
Hamilton, Ontario, Canada

Abstract. This paper presents a rigorous, unified framework for faci-
litating communication between mathematics systems. A mathematics
system is given one or more interfaces which offer deductive and compu-
tational services to other mathematics systems. To achieve communica-
tion between systems, a client interface is linked to a server interface by
an asymmetric connection consisting of a pair of translations. Answers
to requests are trustable in the sense that they are correct provided a
small set of prescribed conditions are satisfied. The framework is robust
with respect to interface extension and can process requests for abstract
services, where the server interface is not fully specified.

Keywords: Mechanized mathematics, computer theorem proving, com-
puter algebra, intersystem communication, knowledge representation.

1 Introduction

Current mechanized mathematics systems (MMSs), by and large, fall into
one of three camps: numerics-based (like Matlab, Octave, Scilab, etc),
symbolic (Maple, Mathematica, MuPAD, etc), and theorem provers (Coq,
HOL, IMPS, Isabelle, Nqthm, Nuprl, Otter, Pvs, etc). Each has its strong
points, although many are more often bemoaned for their weaknesses.
These weaknesses are all the more frustrating for users as one system’s
weakness is frequently another’s strength. An increasing majority of users
are becoming agnostic in their choice of MMSs, worrying more about
getting a particular task done than whether one iibersystem can do it all.
Furthermore, it is important to remark that the expertise needed to build
each kind of system is markedly different for all three flavors. Although
there have been some efforts at making some of these MMSs broader,
familiarity with them quickly dispels any notion that this dabbling is
particularly successful. A wiser approach, at least in the medium term, is
to construct a larger system out of trusted specialized pieces.

In simple terms, the problem we wish to address, illustrated in Fi-
gure 1, is the following: if system A needs access to a certain function-

* This research was supported by Bell Canada and MITACS.
** {carette,wnfarmer,wajs}@mcmaster.ca

ality f which it does not currently implement, but a service providing
this functionality is offered by system B, then A should be able to send
a request to B containing a translation of its exact problem into the lan-
guage of B, wait for B to perform the service, and then finally receive an
answer in its own language.

A-problem M B-problem

f l lB—service

translation
A-answer «——————— B-answer

Fig. 1. The basic communication problem

Informally, we wish to think of “perform f” as a request, the pair of
translations above as a connection, and the set of available functions from
B-problems to B-answers as B’s services. We then want to assert that
meaningful communication happens when the diagram above commutes.

In this paper we present a unified framework which clearly defines
these various concepts (interfaces, services, connections, requests, and an-
swers) in precise mathematical terms. The overarching concern is that of
trust: when one system requests a service from another, can it trust the
result it gets back? Certainly any system which purports to be trustable
must also insist that any communication it makes to another system sat-
isfies the same requirements. We have not generally addressed the concept
of usefulness of the resulting communication, as we are not aware of any
generally accepted mathematical definition of that concept.

Certainly examples of useful communication between systems abound!
Commercial system builders are definitely convinced of this fact, as ev-
idenced by Mathematica’s J/Link, Maple’s Matlab package, Matlab’s
Symbolic Toolbox, and so on.

For example, polynomial arithmetic is frequently a necessary step in a
proof; typical theorem provers will, at best, implement this using rewrite
rules, which are at least an order of magnitude slower than implementa-
tions by Computer Algebra Systems (CASs) [7]. In the opposite direction,
closed-form integration of even simple expressions containing parameters
involves complex algorithms but also complex side conditions which must
be verified, forcing a CAS to call a theorem prover (see [1] and the refer-
ences therein).

We consider old obstacles (issues of transport and syntax) to be es-
sentially solved by common technologies (TCP/IP, sockets, XML, etc).
What remains to be solved adequately is the problem of semantics. Re-
ferring back to Figure 1, it should be clear that describing each arrow,

in all cases and for all possible services, is nontrivial. To achieve our aim
of trustability, this issue is inescapable. To a lesser extent, there is also
a problem of interpretability: even if the answer makes sense in system
A, is it “the” answer? The notion of “the” answer in a theorem proving
system is qualitatively different than in a system centered on numerical
analysis, even though both are rigorously and uniquely defined.

More discussion can be found in the long version [9] of this paper.

The rest of the paper is organized as follows: In section 2, we look
at previous related proposals. In section 3, we give definitions for the
underlying theory necessary to the presentation of our framework. In
section 4, we give a simple framework for communication between MMSs.
In section 5, we discuss additional obstacles in achieving communication
in real cases, and show how to refine the framework presented in section 4
to address some of those obstacles. In section 6, we talk about specification
of requests and services. Finally, we conclude in section 7.

2 Previous Proposals

Several attempts at addressing the problem of communication between
MMSs have been made. We can classify them into two categories: the
first category consists of work that attempts to deal with the problem
in general. The second category consists of ad hoc solutions. We review
important members of each category below.

General Solutions The OpenMath project [10] claims to provide a
common platform for communication between various mathematics sys-
tems. However, while it provides a common syntax, it fails in our view
to specify a semantics for that syntax, which is a major drawback when
trying to make mathematics systems based on different logics commu-
nicate. In other words, there are too many implicit assumptions behind
OpenMath’s version of semantics for it to apply outside the narrow (but
useful) realm of standard operations between the standard CASs.

OMDoc [15] constitutes a refinement to the OpenMath approach: it
recognizes the need for semantics, and introduces them through a notion
of theories. However, OMDoc does not seem to address the actual me-
chanics of getting different systems to communicate as much as it provides
a common language (syntax + semantics) for them to do so. Neverthe-
less, OMDoc could be extended to handle the concepts of our framework:
interfaces, services, connections, requests, and answers.

The 2-MKRP [14] approach argues that explicit proofs are needed and
that “external” systems cannot be trusted. This seems very impractical.

The omscs (Open Mechanized Symbolic Computation Systems) [§]
work provides an architecture used to formally specify automated theorem
provers and CASs and to formally integrate them. However, it does not
seem to address the issues of trust or extending theories.

Armando and Zini’s Logic Broker Architecture [2], defines a general
framework for communication between MMSs. This approach is concep-
tually very similar to ours. It defines interfaces for MMSs and uses a Logic
Broker (LB) to achieve communication between systems. The LB includes
facilities for translation of requests and meaning-preserving translation of
answers (thus addressing the question of trust), as well as (in theory) a
logical specification matcher to match requests to services offered. How-
ever, we believe that this architecture does not support extending theories
well, which we will show can be achieved effectively by our approach.

The new European MOWGLI project [3], which aims at providing a
common machine-understandable (semantics-based) representation of ma-
thematical knowledge and a platform to exploit it, likely fits here too.

Ad-hoc approaches In many such cases in the literature, only uni-
directional cooperation exists: one system acts as a master, generating
requests, while the other one serves as a slave, fulfilling those requests.
This includes Howe’s work on embedding an HOL theory into Nuprl [13],
Ballarin and Paulson’s work on using the Sumit library for proofs in Is-
abelle [5,7], and Ballarin, Homann, and Calmet’s work on an interface
between Isabelle and Maple [6]. Ballarin and Paulson’s work clearly iden-
tifies the issue of trust, and distinguishes between trustable results, for
which a formal proof exists, and ad hoc results, based on approximations.

Another more complex ad hoc case, intended for bidirectional coop-
eration, is Harrison and Théry’s work on combining HOL and Maple [12].
Similarly to Ballarin and Paulson, they classify the systems by degree of
trust, for example trusting results proved by HOL while checking results
given by Maple.

All these ad hoc solutions have the major drawback of not seeking
generality. Howe, for instance, does not attempt to make HOL and Nuprl
communicate as much as he attempts to embed an HOL theory into Nuprl.
Why should the machinery for HOL be duplicated in Nuprl when it already
exists in HOL itself? In addition, this approach is not valid when the
system to be integrated is a black box. Our approach enables one MMS
to use another MMS’s services without, first, having to reproduce them,
and second, having to know in detail how they work. We will show how it
addresses the issue of trust, and eliminates the need to verify every single
result (which can be painfully burdensome).

3 Biform Theories

At the heart of this work lies the notion of a “biform theory”, which is
the basis for FFMM, a Formal Framework for Managing Mathematics [11].
Informally, a biform theory is simultaneously an axiomatic and an algo-
rithmic theory. Most of the definitions given here are simplified versions
of definitions given in [11].

A language is a set of typed expressions. The types include *, which
denotes the type of truth values. A formula is an expression of type .
For a formula A of a language L, —A, the negation of A, is also a formula
of L. A logic is a set of languages with a notion of logical consequence. If
K is a logic, L is a language of K, and X' U {A} is a set of formulas of L,
then ¥ =k A means that A is a logical consequence of X' in K.

Let L; be a language for i = 1,2. A transformer II from Ly to Lo is an
algorithm that implements a partial function 7 : L1 — Ls. For E € L,
let I[I(E) mean 7(E), and let dom(/I) denote the domain of 7, i.e., the
subset of Ly on which 7 is defined.

A formuloid of a language L is a pair 0 = (II, M) where:

1. II is a transformer from L to L.
2. M is a function that maps each E' € dom(II) to a formula of L.

M is intended to give the meaning of applying Il to an expression E.
M (E) usually relates the input E to the output I1(F) in some way; for
many transformers, M (F) is the equation E = II(FE), which says that IT
transforms £ into an expression with the same value as F itself.

The span of 6, written span(f), is the set {M(FE) | E € dom(II)}
of formulas of L. Thus a formuloid has both an aziomatic meaning—its
span—and an algorithmic meaning—its transformer. The purpose of its
span is to assert the truth of a set of formulas, while its transformer is
meant to be a deduction or computation rule.

A biform theory is a tuple T'= (K, L, I') where:

1. K is a logic called the logic of T'.
2. L is a language of K called the language of T
3. I' is a set of formuloids of L called the aziomoids of T

The span of T', written span(T’), is the union of the spans of the axiomoids
of T, i.e., Ugcrspan(). A is an aziom of T if A € span(T’). A is a theorem
of T, written T' |= A, if span(T) =k A. A theoremoid of T is a formuloid
6 of L such that, for each A € span(6), T = A. Obviously, each axiomoid
of T is also a theoremoid of T. An axiomoid is a generalization of an
axiom; an individual axiom A (in the usual sense) can be represented by
an axiomoid (I, M) such that dom(IT) = {A} and M(A) = A.

T can be viewed as simultaneously both an axiomatic theory and an
algorithmic theory. The axiomatic theory is represented by

Toxm = (K, L,{M(E) | (II, M) € I" for some II and F € dom(II)}),
and the algorithmic theory is represented by
Tag = (K,L,{II | (II, M) € I" for some M}).

Let T; = (K, L;, I;) be a biform theory for i = 1,2. Ty is an extension
of Ty, written T3 < Ty, if L1 C L9 and Iy C I5. Ty is a conservative
extension of Ty, written T7 Ty, if T1 < T5 and, for all formulas A of L1,
if Ty = A, then Th = A. Note that < and < are partial orders.

Let K; be a logic and T; = (K, L;, I;) be a biform theory for i = 1, 2.
A translation from 17 to 15 is a transformer @ from L to Lo that:

1. Respects types, i.e., if £1 and Ey are expressions in L; of the same
type and @(E1) and $(Es) are defined, then &(F;) and $(Es) are also
of the same type.

2. Respects negation, i.e., if A is a formula in L; and ¢(A) is defined,
then ¢(—A) = —-P(A).

T1 and T5 are called the source theory and the target theory of @, respec-
tively. @ is total if §(E) is defined for each E € Ly. ¢ fizes a language L
if ®(E) = E for each E € L.

An interpretation of T1 in T is a total translation @ from T to 15 such
that, for all formulas A € Ly, if 7 = A, then Ty = ®(A). An interpre-
tation thus maps theorems to theorems. (Since any translation respects
negation, an interpretation also maps negated theorems to negated theo-
rems.) A retraction from T to T3 is an interpretation @ of T in 77 such
that T7 < Ty and @ fixes L.

Proposition 1. If @ is a retraction from Ty to Ty, then Ty <T5.

Proof. Let A be a formula of the language of T; such that T» = A. We
must show that 77 = A. By definition, (1) @ is an interpretation of T in
T} and (2) @ fixes the language of T;. (1) implies that T} = ®#(A), and
(2) implies ¢(A) = A. Therefore, Ty = A. O

4 A Simple Communication Framework

We now present a simple communication framework, based on the theoret-
ical notions presented in the previous section, that addresses the problem

presented in Figure 1. The framework formalizes the notions we men-
tioned in the introduction: interface, service, connection, request, and an-
swer. As we will show after this section, the framework does not address
some important obstacles to effective communication between MMSs. A
refined framework, which is more practical and which generalizes this
simple framework, is presented in section 5.

An interface is a pair I = (T, S) where:
1. T is a biform theory called the theory of I.
2. S is a set of theoremoids of T called the services of I.

As a theoremoid of T', a service of I is a formuloid whose span is a set of
theorems of T" and whose transformer is a sound deduction or computation
rule for T'.
Let I; = (T;,S;) be an interface for i = 1,2. A connection from I; to
I, is a pair C' = (export,import) where export is a translation from 7} to
T5, and import is an interpretation of 715 in 737. I1 and I, are respectively
called the client interface and the server interface of C. export is for
transporting problems from 77 to T5; it need not be meaning preserving.
import transports solutions from 75 to 77; it must be meaning preserving.
An informed request is a tuple R = (C, E, 0) where:
1. C = (export,import) is a connection from I; = (T1,81) to Iy =
(T3, S2).
2. FE is an expression of the language of T7.
3. 0= (U,M) € So.

The reason to call such a request informed is that it explicitly depends
not only on the interface I but on the theoremoid 6 as well: we assume
that I; “knows” about #. We will come back to this point in section 5.
If A = (import o M o export)(E) is defined, it is the answer to R;
otherwise the answer to R is undefined. When A is defined, it is a theorem:

Proposition 2. Let R and A be as above. If A is defined, then T; = A.

Proof. Assume A is defined. Since 6 is a theoremoid of Ty, Ty = (M o
export)(E), and then since import is an interpretation of 75 in 71, T}
(import o M o export)(E). O

Note that, if C' and 6 are not chosen well, A may be a useless theorem
such as true or £ = F.

The basic problem (Figure 1) is now addressed as shown in Figure 2.
All that is necessary to perform this type of communication are interfaces
for both systems and a connection between the two interfaces.

t
B expor I

| |o

answer «——— M (E")
import

Fig. 2. Communication between two MMSs

This takes care of the question of trust (should A believe the answer
it receives from B?), so crucial to the general problem at hand. Whether
an answer is correct depends on whether a translation is an interpretation
and a service is a theoremoid. Thus an answer is trustworthy if the mech-
anisms for verifying interpretations and theoremoids are trustworthy.

Note also at this point that a given system may have many interfaces,
each containing only one or a few services of that system. This approach
allows us to consider trustable subsystems within a system and to use
those subsystems in trustable communication. For example, while a result
given by Maple cannot be fully trusted in general, many subparts of Maple
are well encapsulated and could be proved correct.

Example using Decision Procedures

Suppose Shel is a higher-order interactive theorem proving system with
several implemented theories including COF, a theory of a complete or-
dered field. COF has one model up to isomorphism, namely, the real num-
bers with the usual operations such as +, %, and <. An exceedingly rich
theory, COF is adequate for developing real analysis. Suppose also that
Stol is a first-order automated theorem proving system with several imple-
mented theories equipped with decision procedures including PA, a the-
ory of first-order Peano arithmetic. The theoremoids of PA include 6., a
decision procedure for additive number theory (Presburger arithmetic),
and 6., a decision procedure for multiplicative number theory (sometimes
called Skolem arithmetic). The framework outlined above can be used to
give Sy access to the decision procedures in Sg).

Let I; = (COF,S1) be an interface of Sy and Iy = (PA,S2) with
{0+,0.} C Sy be an interface of Sg,. Also let C' = (export,import) be
the connection from I; to Is where export translates “first-order natural
number formulas” of COF to formulas of PA and import is a standard in-
terpretation of PA in COF. (Because COF satisfies Peano’s (second-order)
axioms for natural number arithmetic, (1) export is not an interpretation
and (2) import exists.) C offers a way of deciding in COF many statements
about the natural numbers using the two decision procedures 6, and 6.,
both of which are nontrivial to implement. See [9] for further details.

5 A Refined Communication Framework

There are several obstacles to effectively employing the simple framework
presented in the previous section. In this section, three obstacles involving
connections are addressed.

The first obstacle is that constructing connections between interfaces
is a challenging task, especially when the biform theories of the interfaces
are based on different logics. The export translation of a connection must
satisfy a syntactic condition, but the import interpretation must satisfy
both a syntactic and semantic condition. As a general principle, it is easier
to construct a translation or interpretation @ if the “primitive basis” of
its source theory 77 (the primitive symbols and axiomoids of 77) is small.

The second obstacle is that translating an expression E using the
export translation or the import interpretation of a connection may result
in an expression much larger than E. As a general principle, it is easier
to construct a translation or interpretation ¢ without this kind of size
explosion if its target theory T5 contains a rich set of defined symbols.

The third obstacle is that the theory S of an MMS behind the biform
theory T of an interface is likely to be enriched with defined symbols over
time. Defining a symbol in S will have the effect of extending 7" to a new
theory T”. However, an interpretation @ of T' will not be an interpretation
of T" because @ will not be defined on expressions of 7" containing the
new defined symbol. As a result, any connection to an interface of the
form (7, S) will be broken by the definition of the new symbol.

These three obstacles can be addressed by using a “conservative stack”
in place of a biform theory in the definition of an interface. Interface,
connection, informed request, and answer are redefined. The resulting
refined framework is a generalized version of the simple framework.

A conservative stack is a pair X = (7, p) of sequences where:

1. 7 = (Tp,...,T,) is a finite sequence of biform theories such that, for
all ¢ with 0 <i <n, T; <T;y1. T, is called the theory of X.
2. p={(Pq,...,P,) is a finite sequence of translations such that, for all

1 with 0 < 7 <n, @, is a retraction from T; to T;_1.

Notice that, by Proposition 1, the sequence p of retractions implies that
T is a “stack” of conservative extensions, i.e., Ty <--- <T,,.

An interface is a pair I = (X, S) where X is a conservative stack and
S is a set of theoremoids of the theory of X called the services of I.

Let I; = ((7s,p:),Si) be an interface with 7, = (T¢,..., T}) for i =
1,2. A connection C from I to I3 is a pair (export,import) where:
1. export is a translation from U! to V2.

2. import is an interpretation of U2 in V1.
3. U! and V! are members of 7.
4. U? and V? are members of 1

Let @; be the composition of elements of p; from 7T, ,fbl to U? for i = 1, 2.
It is easy to see that @; is a retraction from T,ii to U® for i = 1,2.
(exporto @1, importo @) is a connection from (T, ,S1) to (T7,,S2) in the
simple framework even if U # V! or U? # V2.

An informed request is a tuple R = (C, E, 0) where:
1. C is a connection from I; to Iy as defined above.

2. E is an expression of the language of T, , the theory of I.
3. 0= (U,M) € Ss.

1?

If A = (import o @3 0 M o export o @1)(E) is defined (where @1 and P9
are defined as above), it is the answer to R; otherwise the answer to R is
undefined. When A is defined, it is a theorem:

Proposition 3. Let R and A be as above. If A is defined, then V! = A.

Proof. Assume that A is defined. Since 6 is a theoremoid of T3, the
theory of I, T2, k= (M oexporto®;)(E), and since P, is a retraction from
T?, to U%, U? |= (P20 M oexportod,)(E). Since import is an interpretation
of U% in V!, we conclude that V! = A. O

The refined framework facilitates the construction of a translation or
interpretation @ between two interfaces I; and Is by allowing the source
theory of @ to be chosen from the lower part of the conservative stack of
I, and the target theory of @ to be chosen from the upper part of the con-
servative stack of I (addressing the first and second obstacles discussed
above). If a conservative stack X is extended to a larger conservative
stack X', then X can be freely replaced with X’ without compromising
any existing interfaces or connections (addressing the third obstacle).

6 Specifying Requests and Services

Until now, we assumed that system A “magically” knows that it wants to
use service 6 of system B. However, in a more general setting, one would
want to specify a request (like evaluate this computation), and pass that
specification on to some entity able to match it to an available service.
Thus, instead of dealing with services of I, we need to deal with
some specification S corresponding to some function f : Ly — L; (a
computational transformer) associated with a “virtual service” #;. Given

10

S, the task then becomes one of finding an informed request such that our
communication diagram commutes. In theory, this is what we understand
that Armando and Zini’s LS Matcher [2] is somehow supposed to perform,
although its task is never defined precisely.

Let us define reachable services as those computational theoremoids
02 of T that can be given a complete specification in some meta-language
Spec. We could, for example, use CASL [4], Z [17] or Specware [16] for this
task. In other words, we wish to define services (and requests) implicitly,
allowing nonconstructive definitions as well. Note that we specifically ex-
clude theoremoids that cannot be finitely axiomatized in Spec. Symmetri-
cally to reachable services, we define (brokered) requests as those virtual
services 01 of I; which can be specified completely in Spec.

We then need to solve the specification matching problem: given a
pair (S1,S2) of specifications for #; and 69, does there exist a connection
C such that our communication diagram commutes?

Even in the simplest possible case where both systems are the same,
this problem can still be quite difficult unless great pains are taken to
specify each system’s services in a very uniform manner. However the sit-
uation is far from hopeless: even though there are many different ways to
specify that, for example, a particular function is a primality verification
function (or an implementation thereof), the task of deciding that two
such specifications are equivalent is considerably simpler than actually
providing a provably correct implementation!

7 Conclusion

In this paper we have presented a mathematically rigorous framework for
communicating mathematics between MMSs. This framework gives pre-
cise meanings to notions such as (biform) theories, interfaces, services,
connections, requests, and answers. It addresses the issue of trust, which
has been identified as a central issue in intersystem communication in re-
lated papers, by using interpretations (meaning-preserving translations)
to communicate answers. It also provides facilities for conservatively ex-
tending theories, allowing them to evolve as needed without needing to
rebuild whole new interfaces or to drastically update connections.

We have defined precisely the problem of specification of services, and
of logical specification matching. We are aware that any useful implemen-
tation of the ideas detailed in this paper would need to include such a
facility, and we are working in that direction.

11

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

A. Adams, M. Dunstan, H. Gottliebsen, T. Kelsey, U. Martin, and S. Owre. Com-
puter algebra meets automated theorem proving: Integrating Maple and pvs. In
R. J. Boulton and P. B. Jackson, editors, Theorem Proving in Higher Order Logics
(TPHOLs 2001), volume 2152 of LNCS, pages 27-42. Springer-Verlag, 2001.

A. Armando and D. Zini. Interfacing computer algebra and deduction systems
via the logic broker architecture. In M. Kerber and M. Kohlhase, editors, Sym-
bolic Computation and Automated Reasoning (CALCULEMUS-2000), pages 49—
64. A. K. Peters, 2001.

A. Asperti and B. Wegner. MOWGLI — a new approach for the content description
in digital documents. In Ninth International Conference on Electronic Resources
and the Social Role of Libraries in the Future, Autonomous Republic of Crimea,
Ukraine, 2002.

E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Briickner, P. D. Mosses, D. Sannella,
and A. Tarlecki. cASL: The Common Algebraic Specification Language. Theoretical
Computer Science, 286:153-196, 2002.

C. Ballarin. Computer Algebra and Theorem Proving. PhD thesis, Cambridge
University, 1999.

C. Ballarin, K. Homann, and J. Calmet. Theorems and algorithms: An interface
between Isabelle and Maple. In International Symposium on Symbolic & Algebraic
Computation (ISSAC-95), pages 150-157, 1995.

C. Ballarin and L. C. Paulson. A pragmatic approach to extending provers by
computer algebra - with applications to coding theory. Fundamenta Informaticae,
39:1-20, 1999.

P. G. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann. Specification and integra-
tion of theorem provers and computer algebra systems. Fundamenta Informaticae,
39:39-57, 1999.

J. Carette, W. M. Farmer, and J. Wajs. Trustable communication between math-
ematics systems. Technical report, McMaster University, 2003.

S. Dalmas, M. Gaétano, and S. M. Watt. An OpenMath 1.0 implementation.
In International Symposium on Symbolic & Algrebraic Computation (ISSAC-97),
pages 241-248, 1997.

W. M. Farmer and M. v. Mohrenschildt. An overview of a Formal Framework
for Managing Mathematics. Annals of Mathematics and Artificial Intelligence,
38:165-191, 2003.

J. Harrison and L. Théry. A skeptic’s approach to combining HOL and Maple.
Journal of Automated Reasoning, 21:279-294, 1998.

D. J. Howe. Importing mathematics from HOL into Nuprl. In J. Von Wright et al.,
editors, Theorem Proving in Higher Order Logics (TPHOLs 1996), volume 1125
of LNCS, pages 267-282. Springer-Verlag, 1996.

M. Kerber, M. Kohlhase, and V. Sorge. An integration of mechanised reasoning
and computer algebra that respects explicit proofs. Technical Report CSRP-96-9,
University of Birmingham, 1996.

M. Kohlhase. OMDoc: An open markup format for mathematical documents (ver-
sion 1.1). Technical report, Carnegie Mellon University, 2002.

Y. V. Srinivas and R. Jullig. Specware: Formal support for composing software.
In Mathematics of Program Construction, pages 399-422, 1995.

J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. Series
in Computer Science. Prentice Hall, 1996.

12

