(def-quasi-constructor equinumerous
"lambda(a:sets[ind_1],b:sets[ind_2],
forsome(f:[ind_1,ind_2], bijective_on_q(f,a,b)))"
(language pure-generic-theory-2)
(fixed-theories the-kernel-theory))
(def-quasi-constructor embeds
"lambda(a:sets[ind_1],b:sets[ind_2],
forsome(f:[ind_1,ind_2],
dom(f)=a and (ran(f) subseteq b) and injective_on_q(f,a)))"
(language pure-generic-theory-2)
(fixed-theories the-kernel-theory))
(def-theorem equinumerous-is-reflexive
"forall(a:sets[ind_1], a equinumerous a)"
(theory pure-generic-theory-1)
(usages transportable-macete)
(proof; 10 nodes
(
direct-inference
(instantiate-existential ("id{a}"))
insistent-direct-inference
insistent-direct-inference
(apply-macete-with-minor-premises dom-of-id)
(apply-macete-with-minor-premises ran-of-id)
(apply-macete-with-minor-premises id-is-injective-on-dom)
)))
(def-theorem equinumerous-is-symmetric
"forall(a:sets[ind_1],b:sets[ind_2],
(a equinumerous b) implies (b equinumerous a))"
(theory pure-generic-theory-2)
(usages transportable-macete)
(proof
(
direct-and-antecedent-inference-strategy
(instantiate-existential ("inverse{f}"))
insistent-direct-inference-strategy
(apply-macete-with-minor-premises dom-of-inverse)
(apply-macete-with-minor-premises injective-iff-injective-on-domain)
simplify
(apply-macete-with-minor-premises ran-of-inverse)
(instantiate-theorem inverse-is-injective ("f"))
(backchain "with(f:[ind_1,ind_2],injective_q{inverse{f}})")
)))
(def-theorem equinumerous-is-transitive
"forall(a:sets[ind_1],b:sets[ind_2],c:sets[ind_3],
(a equinumerous b) and (b equinumerous c) implies (a equinumerous c))"
(theory pure-generic-theory-3)
(usages transportable-macete)
(proof
(
direct-and-antecedent-inference-strategy
(instantiate-existential ("f_$0 oo f"))
insistent-direct-inference-strategy
(apply-macete-with-minor-premises domain-composition)
(apply-macete-with-minor-premises range-composition)
(cut-with-single-formula "injective_q{f}")
(cut-with-single-formula "injective_q{f_$0 oo f}")
(backchain
"with(f:[ind_1,ind_2],f_$0:[ind_2,ind_3], injective_q{f_$0 oo f})")
(apply-macete-with-minor-premises injective-composition)
simplify
(apply-macete-with-minor-premises injective-iff-injective-on-domain)
simplify
)))
(def-theorem equals-implies-equinumerous
"forall(a,b:sets[ind_1], a=b implies a equinumerous b)"
(theory pure-generic-theory-1)
(usages transportable-macete)
(proof
(
direct-and-antecedent-inference-strategy
(backchain "with(p:prop, p)")
(apply-macete-with-minor-premises equinumerous-is-reflexive)
)))
(def-theorem embeds-is-reflexive
"forall(a:sets[ind_1], a embeds a)"
(theory pure-generic-theory-1)
(usages transportable-macete)
(proof
(
direct-inference
(instantiate-existential ("id{a}"))
(apply-macete-with-minor-premises dom-of-id)
(apply-macete-with-minor-premises ran-of-id)
(apply-macete-with-minor-premises id-is-injective-on-dom)
)))
(def-theorem embeds-is-transitive
"forall(a:sets[ind_1],b:sets[ind_2],c:sets[ind_3],
(a embeds b) and (b embeds c) implies (a embeds c))"
(theory pure-generic-theory-3)
(usages transportable-macete)
(proof
(
direct-and-antecedent-inference-strategy
(instantiate-existential ("f_$1 oo f_$0"))
(apply-macete-with-minor-premises domain-composition)
(apply-macete-with-minor-premises tr%subseteq-transitivity)
auto-instantiate-existential
(apply-macete-with-minor-premises composition-decreases-range)
(apply-macete-with-minor-premises tr%injective-implies-injective-on)
(apply-macete-with-minor-premises injective-composition)
(apply-macete-with-minor-premises injective-iff-injective-on-domain)
direct-inference
(weaken (0 1 3 5 6 7))
simplify
(weaken (0 1 2 3 5 6 7))
insistent-direct-inference-strategy
simplify
)))
(def-theorem equinumerous-implies-embeds
"forall(a:sets[ind_1],b:sets[ind_2],
(a equinumerous b) implies (a embeds b))"
(theory pure-generic-theory-2)
(usages transportable-macete)
(proof
(
direct-and-antecedent-inference-strategy
auto-instantiate-existential
(incorporate-antecedent "with(b:sets[ind_2],f:[ind_1,ind_2],ran{f}=b)")
(apply-macete-with-minor-premises tr%subseteq-antisymmetry)
simplify
)))
(def-theorem embeds-implies-equinumerous-to-subset
"forall(a:sets[ind_1],b:sets[ind_2],
(a embeds b)
implies
forsome(c:sets[ind_2], a equinumerous c and c subseteq b))"
(theory pure-generic-theory-2)
(usages transportable-macete)
(proof
(
direct-and-antecedent-inference-strategy
(instantiate-existential ("ran{f_$1}"))
(instantiate-existential ("f_$1"))
insistent-direct-inference
)))
(def-theorem equinumerous-embeds-transitivity
"forall(a:sets[ind_1],b:sets[ind_2],c:sets[ind_3],
(a equinumerous b) and (b embeds c) implies (a embeds c))"
(theory pure-generic-theory-3)
(usages transportable-macete)
(proof
(
direct-inference-strategy
(apply-macete-with-minor-premises embeds-is-transitive)
(instantiate-existential ("b"))
(apply-macete-with-minor-premises equinumerous-implies-embeds)
)))
(def-theorem embeds-equinumerous-transitivity
"forall(a:sets[ind_1],b:sets[ind_2],c:sets[ind_3],
(a embeds b) and (b equinumerous c) implies (a embeds c))"
(theory pure-generic-theory-3)
(usages transportable-macete)
(proof
(
direct-inference-strategy
(apply-macete-with-minor-premises embeds-is-transitive)
(instantiate-existential ("b"))
(apply-macete-with-minor-premises tr%equinumerous-implies-embeds)
)))
(def-theorem embeds-in-empty-indic
"forall(a:sets[ind_1],
(a embeds empty_indic{ind_2}) iff a=empty_indic{ind_1})"
reverse
(theory pure-generic-theory-2)
(usages transportable-macete)
(proof
(
direct-and-antecedent-inference-strategy
(force-substitution "a" "dom{f_$1}" (0))
extensionality
direct-inference
simplify
(contrapose "with(a,b:sets[ind_2], a subseteq b)")
(instantiate-existential ("f_$1(x_0)"))
(apply-macete-with-minor-premises range-domain-membership)
(apply-macete-with-minor-premises domain-membership-iff-defined)
simplify-insistently
simplify
(force-substitution "a" "empty_indic{ind_1}" (0))
(weaken (0))
(instantiate-existential ("lambda(x:ind_1,?ind_2)"))
extensionality
direct-inference
simplify
insistent-direct-inference-strategy
simplify-insistently
insistent-direct-inference-strategy
(antecedent-inference "with(p,q,r:prop, p and q and r)")
(contrapose "with(x_$6:ind_1,x_$6 in empty_indic{ind_1})")
simplify-insistently
)))
(def-theorem equinumerous-to-empty-indic
"forall(a:sets[ind_1],
(a equinumerous empty_indic{ind_2}) iff a=empty_indic{ind_1})"
(theory pure-generic-theory-2)
(usages transportable-macete)
(proof
(
direct-inference-strategy
(apply-macete-with-minor-premises rev%embeds-in-empty-indic)
(apply-macete-with-minor-premises equinumerous-implies-embeds)
(force-substitution "a" "empty_indic{ind_1}" (0))
(instantiate-existential ("lambda(x:ind_1,?ind_2)"))
insistent-direct-inference-strategy
extensionality
direct-inference
simplify
extensionality
direct-inference
simplify
simplify
(beta-reduce-antecedent "with(p,q,r:prop, p and q and r)")
)))
(def-theorem subset-embeds-in-superset
"forall(a,b:sets[ind_1],
(a subseteq b) implies (a embeds b))"
(theory pure-generic-theory-1)
(usages transportable-macete)
(proof
(
direct-and-antecedent-inference-strategy
(instantiate-existential ("id{a}"))
(apply-macete-with-minor-premises dom-of-id)
(apply-macete-with-minor-premises ran-of-id)
(apply-macete-with-minor-premises id-is-injective-on-dom)
)))