(def-constant quadratic%bound "lambda(f:[pp_0,pp_1], forsome(a:rr, 0<=a and forall(x,y:pp_0,#(f(x)) and #(f(y)) implies dist_1(f(x),f(y))<=dist_0(x,y)*(a+dist_0(x,y)))))" (theory metric-spaces-2-tuples))
(def-theorem quadratic-is-uniformly-continuous "forall(f:[pp_0,pp_1], quadratic%bound(f) implies uniformly%continuous(f))" (proof ( unfold-defined-constants direct-and-antecedent-inference-strategy (instantiate-existential ("min(1,eps/(1+a))")) (weaken (0)) (unfold-single-defined-constant (0) min) (case-split ("1<=eps/(1+a)")) simplify simplify (apply-macete-with-minor-premises fractional-expression-manipulation) simplify (antecedent-inference "with(a,eps:rr,y_$0,x_$0:pp_0,f:[pp_0,pp_1], #(f(x_$0)) and #(f(y_$0)) and dist_0(x_$0,y_$0)<=min(1,eps/(1+a)));") (apply-macete-with-minor-premises transitivity-of-<=) (instantiate-existential ("dist_0(x_$0,y_$0)*(a+dist_0(x_$0,y_$0))")) (backchain "with(a:rr,f:[pp_0,pp_1], forall(x,y:pp_0, #(f(x)) and #(f(y)) implies dist_1(f(x),f(y))<=dist_0(x,y)*(a+dist_0(x,y))));") direct-and-antecedent-inference-strategy (apply-macete-with-minor-premises transitivity-of-<=) (instantiate-existential ("(eps/(1+a))*(a+1)")) (apply-macete-with-minor-premises monotone-product-lemma) (cut-with-single-formula "min(1,eps/(1+a))<=1 and min(1,eps/(1+a))<=eps/(1+a)") simplify (apply-macete-with-minor-premises minimum-2nd-arg) (apply-macete-with-minor-premises minimum-1st-arg) (apply-macete-with-minor-premises fractional-expression-manipulation) simplify (instantiate-universal-antecedent "with(a:rr,f:[pp_0,pp_1], forall(x,y:pp_0, #(f(x)) and #(f(y)) implies dist_1(f(x),f(y))<=dist_0(x,y)*(a+dist_0(x,y))));" ("x_$0" "y_$0")) )) (usages transportable-macete) (theory metric-spaces-2-tuples))